1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/leafops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/ksm.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/backing-dev.h> 33 #include <linux/compaction.h> 34 #include <linux/syscalls.h> 35 #include <linux/compat.h> 36 #include <linux/hugetlb.h> 37 #include <linux/gfp.h> 38 #include <linux/page_idle.h> 39 #include <linux/page_owner.h> 40 #include <linux/sched/mm.h> 41 #include <linux/ptrace.h> 42 #include <linux/memory.h> 43 #include <linux/sched/sysctl.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/pagewalk.h> 46 47 #include <asm/tlbflush.h> 48 49 #include <trace/events/migrate.h> 50 51 #include "internal.h" 52 #include "swap.h" 53 54 static const struct movable_operations *offline_movable_ops; 55 static const struct movable_operations *zsmalloc_movable_ops; 56 57 int set_movable_ops(const struct movable_operations *ops, enum pagetype type) 58 { 59 /* 60 * We only allow for selected types and don't handle concurrent 61 * registration attempts yet. 62 */ 63 switch (type) { 64 case PGTY_offline: 65 if (offline_movable_ops && ops) 66 return -EBUSY; 67 offline_movable_ops = ops; 68 break; 69 case PGTY_zsmalloc: 70 if (zsmalloc_movable_ops && ops) 71 return -EBUSY; 72 zsmalloc_movable_ops = ops; 73 break; 74 default: 75 return -EINVAL; 76 } 77 return 0; 78 } 79 EXPORT_SYMBOL_GPL(set_movable_ops); 80 81 static const struct movable_operations *page_movable_ops(struct page *page) 82 { 83 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 84 85 /* 86 * If we enable page migration for a page of a certain type by marking 87 * it as movable, the page type must be sticky until the page gets freed 88 * back to the buddy. 89 */ 90 if (PageOffline(page)) 91 /* Only balloon compaction sets PageOffline pages movable. */ 92 return offline_movable_ops; 93 if (PageZsmalloc(page)) 94 return zsmalloc_movable_ops; 95 96 return NULL; 97 } 98 99 /** 100 * isolate_movable_ops_page - isolate a movable_ops page for migration 101 * @page: The page. 102 * @mode: The isolation mode. 103 * 104 * Try to isolate a movable_ops page for migration. Will fail if the page is 105 * not a movable_ops page, if the page is already isolated for migration 106 * or if the page was just was released by its owner. 107 * 108 * Once isolated, the page cannot get freed until it is either putback 109 * or migrated. 110 * 111 * Returns true if isolation succeeded, otherwise false. 112 */ 113 bool isolate_movable_ops_page(struct page *page, isolate_mode_t mode) 114 { 115 /* 116 * TODO: these pages will not be folios in the future. All 117 * folio dependencies will have to be removed. 118 */ 119 struct folio *folio = folio_get_nontail_page(page); 120 const struct movable_operations *mops; 121 122 /* 123 * Avoid burning cycles with pages that are yet under __free_pages(), 124 * or just got freed under us. 125 * 126 * In case we 'win' a race for a movable page being freed under us and 127 * raise its refcount preventing __free_pages() from doing its job 128 * the put_page() at the end of this block will take care of 129 * release this page, thus avoiding a nasty leakage. 130 */ 131 if (!folio) 132 goto out; 133 134 /* 135 * Check for movable_ops pages before taking the page lock because 136 * we use non-atomic bitops on newly allocated page flags so 137 * unconditionally grabbing the lock ruins page's owner side. 138 * 139 * Note that once a page has movable_ops, it will stay that way 140 * until the page was freed. 141 */ 142 if (unlikely(!page_has_movable_ops(page))) 143 goto out_putfolio; 144 145 /* 146 * As movable pages are not isolated from LRU lists, concurrent 147 * compaction threads can race against page migration functions 148 * as well as race against the releasing a page. 149 * 150 * In order to avoid having an already isolated movable page 151 * being (wrongly) re-isolated while it is under migration, 152 * or to avoid attempting to isolate pages being released, 153 * lets be sure we have the page lock 154 * before proceeding with the movable page isolation steps. 155 */ 156 if (unlikely(!folio_trylock(folio))) 157 goto out_putfolio; 158 159 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 160 if (PageMovableOpsIsolated(page)) 161 goto out_no_isolated; 162 163 mops = page_movable_ops(page); 164 if (WARN_ON_ONCE(!mops)) 165 goto out_no_isolated; 166 167 if (!mops->isolate_page(page, mode)) 168 goto out_no_isolated; 169 170 /* Driver shouldn't use the isolated flag */ 171 VM_WARN_ON_ONCE_PAGE(PageMovableOpsIsolated(page), page); 172 SetPageMovableOpsIsolated(page); 173 folio_unlock(folio); 174 175 return true; 176 177 out_no_isolated: 178 folio_unlock(folio); 179 out_putfolio: 180 folio_put(folio); 181 out: 182 return false; 183 } 184 185 /** 186 * putback_movable_ops_page - putback an isolated movable_ops page 187 * @page: The isolated page. 188 * 189 * Putback an isolated movable_ops page. 190 * 191 * After the page was putback, it might get freed instantly. 192 */ 193 static void putback_movable_ops_page(struct page *page) 194 { 195 /* 196 * TODO: these pages will not be folios in the future. All 197 * folio dependencies will have to be removed. 198 */ 199 struct folio *folio = page_folio(page); 200 201 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 202 VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(page), page); 203 folio_lock(folio); 204 page_movable_ops(page)->putback_page(page); 205 ClearPageMovableOpsIsolated(page); 206 folio_unlock(folio); 207 folio_put(folio); 208 } 209 210 /** 211 * migrate_movable_ops_page - migrate an isolated movable_ops page 212 * @dst: The destination page. 213 * @src: The source page. 214 * @mode: The migration mode. 215 * 216 * Migrate an isolated movable_ops page. 217 * 218 * If the src page was already released by its owner, the src page is 219 * un-isolated (putback) and migration succeeds; the migration core will be the 220 * owner of both pages. 221 * 222 * If the src page was not released by its owner and the migration was 223 * successful, the owner of the src page and the dst page are swapped and 224 * the src page is un-isolated. 225 * 226 * If migration fails, the ownership stays unmodified and the src page 227 * remains isolated: migration may be retried later or the page can be putback. 228 * 229 * TODO: migration core will treat both pages as folios and lock them before 230 * this call to unlock them after this call. Further, the folio refcounts on 231 * src and dst are also released by migration core. These pages will not be 232 * folios in the future, so that must be reworked. 233 * 234 * Returns 0 on success, otherwise a negative error code. 235 */ 236 static int migrate_movable_ops_page(struct page *dst, struct page *src, 237 enum migrate_mode mode) 238 { 239 int rc; 240 241 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(src), src); 242 VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(src), src); 243 rc = page_movable_ops(src)->migrate_page(dst, src, mode); 244 if (!rc) 245 ClearPageMovableOpsIsolated(src); 246 return rc; 247 } 248 249 /* 250 * Put previously isolated pages back onto the appropriate lists 251 * from where they were once taken off for compaction/migration. 252 * 253 * This function shall be used whenever the isolated pageset has been 254 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 255 * and folio_isolate_hugetlb(). 256 */ 257 void putback_movable_pages(struct list_head *l) 258 { 259 struct folio *folio; 260 struct folio *folio2; 261 262 list_for_each_entry_safe(folio, folio2, l, lru) { 263 if (unlikely(folio_test_hugetlb(folio))) { 264 folio_putback_hugetlb(folio); 265 continue; 266 } 267 list_del(&folio->lru); 268 if (unlikely(page_has_movable_ops(&folio->page))) { 269 putback_movable_ops_page(&folio->page); 270 } else { 271 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 272 folio_is_file_lru(folio), -folio_nr_pages(folio)); 273 folio_putback_lru(folio); 274 } 275 } 276 } 277 278 /* Must be called with an elevated refcount on the non-hugetlb folio */ 279 bool isolate_folio_to_list(struct folio *folio, struct list_head *list) 280 { 281 if (folio_test_hugetlb(folio)) 282 return folio_isolate_hugetlb(folio, list); 283 284 if (page_has_movable_ops(&folio->page)) { 285 if (!isolate_movable_ops_page(&folio->page, 286 ISOLATE_UNEVICTABLE)) 287 return false; 288 } else { 289 if (!folio_isolate_lru(folio)) 290 return false; 291 node_stat_add_folio(folio, NR_ISOLATED_ANON + 292 folio_is_file_lru(folio)); 293 } 294 list_add(&folio->lru, list); 295 return true; 296 } 297 298 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw, 299 struct folio *folio, pte_t old_pte, unsigned long idx) 300 { 301 struct page *page = folio_page(folio, idx); 302 pte_t newpte; 303 304 if (PageCompound(page) || PageHWPoison(page)) 305 return false; 306 307 VM_BUG_ON_PAGE(!PageAnon(page), page); 308 VM_BUG_ON_PAGE(!PageLocked(page), page); 309 VM_BUG_ON_PAGE(pte_present(old_pte), page); 310 VM_WARN_ON_ONCE_FOLIO(folio_is_device_private(folio), folio); 311 312 if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) || 313 mm_forbids_zeropage(pvmw->vma->vm_mm)) 314 return false; 315 316 /* 317 * The pmd entry mapping the old thp was flushed and the pte mapping 318 * this subpage has been non present. If the subpage is only zero-filled 319 * then map it to the shared zeropage. 320 */ 321 if (!pages_identical(page, ZERO_PAGE(0))) 322 return false; 323 324 newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address), 325 pvmw->vma->vm_page_prot)); 326 327 if (pte_swp_soft_dirty(old_pte)) 328 newpte = pte_mksoft_dirty(newpte); 329 if (pte_swp_uffd_wp(old_pte)) 330 newpte = pte_mkuffd_wp(newpte); 331 332 set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte); 333 334 dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio)); 335 return true; 336 } 337 338 struct rmap_walk_arg { 339 struct folio *folio; 340 bool map_unused_to_zeropage; 341 }; 342 343 /* 344 * Restore a potential migration pte to a working pte entry 345 */ 346 static bool remove_migration_pte(struct folio *folio, 347 struct vm_area_struct *vma, unsigned long addr, void *arg) 348 { 349 struct rmap_walk_arg *rmap_walk_arg = arg; 350 DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 351 352 while (page_vma_mapped_walk(&pvmw)) { 353 rmap_t rmap_flags = RMAP_NONE; 354 pte_t old_pte; 355 pte_t pte; 356 softleaf_t entry; 357 struct page *new; 358 unsigned long idx = 0; 359 360 /* pgoff is invalid for ksm pages, but they are never large */ 361 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 362 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 363 new = folio_page(folio, idx); 364 365 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 366 /* PMD-mapped THP migration entry */ 367 if (!pvmw.pte) { 368 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 369 !folio_test_pmd_mappable(folio), folio); 370 remove_migration_pmd(&pvmw, new); 371 continue; 372 } 373 #endif 374 old_pte = ptep_get(pvmw.pte); 375 if (rmap_walk_arg->map_unused_to_zeropage && 376 try_to_map_unused_to_zeropage(&pvmw, folio, old_pte, idx)) 377 continue; 378 379 folio_get(folio); 380 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 381 382 entry = softleaf_from_pte(old_pte); 383 if (!softleaf_is_migration_young(entry)) 384 pte = pte_mkold(pte); 385 if (folio_test_dirty(folio) && softleaf_is_migration_dirty(entry)) 386 pte = pte_mkdirty(pte); 387 if (pte_swp_soft_dirty(old_pte)) 388 pte = pte_mksoft_dirty(pte); 389 else 390 pte = pte_clear_soft_dirty(pte); 391 392 if (softleaf_is_migration_write(entry)) 393 pte = pte_mkwrite(pte, vma); 394 else if (pte_swp_uffd_wp(old_pte)) 395 pte = pte_mkuffd_wp(pte); 396 397 if (folio_test_anon(folio) && !softleaf_is_migration_read(entry)) 398 rmap_flags |= RMAP_EXCLUSIVE; 399 400 if (unlikely(is_device_private_page(new))) { 401 if (pte_write(pte)) 402 entry = make_writable_device_private_entry( 403 page_to_pfn(new)); 404 else 405 entry = make_readable_device_private_entry( 406 page_to_pfn(new)); 407 pte = softleaf_to_pte(entry); 408 if (pte_swp_soft_dirty(old_pte)) 409 pte = pte_swp_mksoft_dirty(pte); 410 if (pte_swp_uffd_wp(old_pte)) 411 pte = pte_swp_mkuffd_wp(pte); 412 } 413 414 #ifdef CONFIG_HUGETLB_PAGE 415 if (folio_test_hugetlb(folio)) { 416 struct hstate *h = hstate_vma(vma); 417 unsigned int shift = huge_page_shift(h); 418 unsigned long psize = huge_page_size(h); 419 420 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 421 if (folio_test_anon(folio)) 422 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 423 rmap_flags); 424 else 425 hugetlb_add_file_rmap(folio); 426 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 427 psize); 428 } else 429 #endif 430 { 431 if (folio_test_anon(folio)) 432 folio_add_anon_rmap_pte(folio, new, vma, 433 pvmw.address, rmap_flags); 434 else 435 folio_add_file_rmap_pte(folio, new, vma); 436 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 437 } 438 if (READ_ONCE(vma->vm_flags) & VM_LOCKED) 439 mlock_drain_local(); 440 441 trace_remove_migration_pte(pvmw.address, pte_val(pte), 442 compound_order(new)); 443 444 /* No need to invalidate - it was non-present before */ 445 update_mmu_cache(vma, pvmw.address, pvmw.pte); 446 } 447 448 return true; 449 } 450 451 /* 452 * Get rid of all migration entries and replace them by 453 * references to the indicated page. 454 */ 455 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags) 456 { 457 struct rmap_walk_arg rmap_walk_arg = { 458 .folio = src, 459 .map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE, 460 }; 461 462 struct rmap_walk_control rwc = { 463 .rmap_one = remove_migration_pte, 464 .arg = &rmap_walk_arg, 465 }; 466 467 VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src); 468 469 if (flags & RMP_LOCKED) 470 rmap_walk_locked(dst, &rwc); 471 else 472 rmap_walk(dst, &rwc); 473 } 474 475 /* 476 * Something used the pte of a page under migration. We need to 477 * get to the page and wait until migration is finished. 478 * When we return from this function the fault will be retried. 479 */ 480 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 481 unsigned long address) 482 { 483 spinlock_t *ptl; 484 pte_t *ptep; 485 pte_t pte; 486 softleaf_t entry; 487 488 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 489 if (!ptep) 490 return; 491 492 pte = ptep_get(ptep); 493 pte_unmap(ptep); 494 495 if (pte_none(pte) || pte_present(pte)) 496 goto out; 497 498 entry = softleaf_from_pte(pte); 499 if (!softleaf_is_migration(entry)) 500 goto out; 501 502 migration_entry_wait_on_locked(entry, ptl); 503 return; 504 out: 505 spin_unlock(ptl); 506 } 507 508 #ifdef CONFIG_HUGETLB_PAGE 509 /* 510 * The vma read lock must be held upon entry. Holding that lock prevents either 511 * the pte or the ptl from being freed. 512 * 513 * This function will release the vma lock before returning. 514 */ 515 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 516 { 517 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 518 softleaf_t entry; 519 pte_t pte; 520 521 hugetlb_vma_assert_locked(vma); 522 spin_lock(ptl); 523 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 524 525 if (huge_pte_none(pte)) 526 goto fail; 527 528 entry = softleaf_from_pte(pte); 529 if (softleaf_is_migration(entry)) { 530 /* 531 * If migration entry existed, safe to release vma lock 532 * here because the pgtable page won't be freed without the 533 * pgtable lock released. See comment right above pgtable 534 * lock release in migration_entry_wait_on_locked(). 535 */ 536 hugetlb_vma_unlock_read(vma); 537 migration_entry_wait_on_locked(entry, ptl); 538 return; 539 } 540 541 fail: 542 spin_unlock(ptl); 543 hugetlb_vma_unlock_read(vma); 544 } 545 #endif 546 547 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 548 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 549 { 550 spinlock_t *ptl; 551 552 ptl = pmd_lock(mm, pmd); 553 if (!pmd_is_migration_entry(*pmd)) 554 goto unlock; 555 migration_entry_wait_on_locked(softleaf_from_pmd(*pmd), ptl); 556 return; 557 unlock: 558 spin_unlock(ptl); 559 } 560 #endif 561 562 /* 563 * Replace the folio in the mapping. 564 * 565 * The number of remaining references must be: 566 * 1 for anonymous folios without a mapping 567 * 2 for folios with a mapping 568 * 3 for folios with a mapping and the private flag set. 569 */ 570 static int __folio_migrate_mapping(struct address_space *mapping, 571 struct folio *newfolio, struct folio *folio, int expected_count) 572 { 573 XA_STATE(xas, &mapping->i_pages, folio->index); 574 struct swap_cluster_info *ci = NULL; 575 struct zone *oldzone, *newzone; 576 int dirty; 577 long nr = folio_nr_pages(folio); 578 579 if (!mapping) { 580 /* Take off deferred split queue while frozen and memcg set */ 581 if (folio_test_large(folio) && 582 folio_test_large_rmappable(folio)) { 583 if (!folio_ref_freeze(folio, expected_count)) 584 return -EAGAIN; 585 folio_unqueue_deferred_split(folio); 586 folio_ref_unfreeze(folio, expected_count); 587 } 588 589 /* No turning back from here */ 590 newfolio->index = folio->index; 591 newfolio->mapping = folio->mapping; 592 if (folio_test_anon(folio) && folio_test_large(folio)) 593 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 594 if (folio_test_swapbacked(folio)) 595 __folio_set_swapbacked(newfolio); 596 597 return 0; 598 } 599 600 oldzone = folio_zone(folio); 601 newzone = folio_zone(newfolio); 602 603 if (folio_test_swapcache(folio)) 604 ci = swap_cluster_get_and_lock_irq(folio); 605 else 606 xas_lock_irq(&xas); 607 608 if (!folio_ref_freeze(folio, expected_count)) { 609 if (ci) 610 swap_cluster_unlock_irq(ci); 611 else 612 xas_unlock_irq(&xas); 613 return -EAGAIN; 614 } 615 616 /* Take off deferred split queue while frozen and memcg set */ 617 folio_unqueue_deferred_split(folio); 618 619 /* 620 * Now we know that no one else is looking at the folio: 621 * no turning back from here. 622 */ 623 newfolio->index = folio->index; 624 newfolio->mapping = folio->mapping; 625 if (folio_test_anon(folio) && folio_test_large(folio)) 626 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 627 folio_ref_add(newfolio, nr); /* add cache reference */ 628 if (folio_test_swapbacked(folio)) 629 __folio_set_swapbacked(newfolio); 630 if (folio_test_swapcache(folio)) { 631 folio_set_swapcache(newfolio); 632 newfolio->private = folio_get_private(folio); 633 } 634 635 /* Move dirty while folio refs frozen and newfolio not yet exposed */ 636 dirty = folio_test_dirty(folio); 637 if (dirty) { 638 folio_clear_dirty(folio); 639 folio_set_dirty(newfolio); 640 } 641 642 if (folio_test_swapcache(folio)) 643 __swap_cache_replace_folio(ci, folio, newfolio); 644 else 645 xas_store(&xas, newfolio); 646 647 /* 648 * Drop cache reference from old folio by unfreezing 649 * to one less reference. 650 * We know this isn't the last reference. 651 */ 652 folio_ref_unfreeze(folio, expected_count - nr); 653 654 /* Leave irq disabled to prevent preemption while updating stats */ 655 if (ci) 656 swap_cluster_unlock(ci); 657 else 658 xas_unlock(&xas); 659 660 /* 661 * If moved to a different zone then also account 662 * the folio for that zone. Other VM counters will be 663 * taken care of when we establish references to the 664 * new folio and drop references to the old folio. 665 * 666 * Note that anonymous folios are accounted for 667 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 668 * are mapped to swap space. 669 */ 670 if (newzone != oldzone) { 671 struct lruvec *old_lruvec, *new_lruvec; 672 struct mem_cgroup *memcg; 673 674 memcg = folio_memcg(folio); 675 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 676 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 677 678 mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 679 mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 680 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 681 mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 682 mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 683 684 if (folio_test_pmd_mappable(folio)) { 685 mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 686 mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 687 } 688 } 689 #ifdef CONFIG_SWAP 690 if (folio_test_swapcache(folio)) { 691 mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 692 mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 693 } 694 #endif 695 if (dirty && mapping_can_writeback(mapping)) { 696 mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 697 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 698 mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 699 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 700 } 701 } 702 local_irq_enable(); 703 704 return 0; 705 } 706 707 int folio_migrate_mapping(struct address_space *mapping, 708 struct folio *newfolio, struct folio *folio, int extra_count) 709 { 710 int expected_count = folio_expected_ref_count(folio) + extra_count + 1; 711 712 if (folio_ref_count(folio) != expected_count) 713 return -EAGAIN; 714 715 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count); 716 } 717 EXPORT_SYMBOL(folio_migrate_mapping); 718 719 /* 720 * The expected number of remaining references is the same as that 721 * of folio_migrate_mapping(). 722 */ 723 int migrate_huge_page_move_mapping(struct address_space *mapping, 724 struct folio *dst, struct folio *src) 725 { 726 XA_STATE(xas, &mapping->i_pages, src->index); 727 int rc, expected_count = folio_expected_ref_count(src) + 1; 728 729 if (folio_ref_count(src) != expected_count) 730 return -EAGAIN; 731 732 rc = folio_mc_copy(dst, src); 733 if (unlikely(rc)) 734 return rc; 735 736 xas_lock_irq(&xas); 737 if (!folio_ref_freeze(src, expected_count)) { 738 xas_unlock_irq(&xas); 739 return -EAGAIN; 740 } 741 742 dst->index = src->index; 743 dst->mapping = src->mapping; 744 745 folio_ref_add(dst, folio_nr_pages(dst)); 746 747 xas_store(&xas, dst); 748 749 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 750 751 xas_unlock_irq(&xas); 752 753 return 0; 754 } 755 756 /* 757 * Copy the flags and some other ancillary information 758 */ 759 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 760 { 761 int cpupid; 762 763 if (folio_test_referenced(folio)) 764 folio_set_referenced(newfolio); 765 if (folio_test_uptodate(folio)) 766 folio_mark_uptodate(newfolio); 767 if (folio_test_clear_active(folio)) { 768 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 769 folio_set_active(newfolio); 770 } else if (folio_test_clear_unevictable(folio)) 771 folio_set_unevictable(newfolio); 772 if (folio_test_workingset(folio)) 773 folio_set_workingset(newfolio); 774 if (folio_test_checked(folio)) 775 folio_set_checked(newfolio); 776 /* 777 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 778 * migration entries. We can still have PG_anon_exclusive set on an 779 * effectively unmapped and unreferenced first sub-pages of an 780 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 781 */ 782 if (folio_test_mappedtodisk(folio)) 783 folio_set_mappedtodisk(newfolio); 784 785 /* Move dirty on pages not done by folio_migrate_mapping() */ 786 if (folio_test_dirty(folio)) 787 folio_set_dirty(newfolio); 788 789 if (folio_test_young(folio)) 790 folio_set_young(newfolio); 791 if (folio_test_idle(folio)) 792 folio_set_idle(newfolio); 793 794 folio_migrate_refs(newfolio, folio); 795 /* 796 * Copy NUMA information to the new page, to prevent over-eager 797 * future migrations of this same page. 798 */ 799 cpupid = folio_xchg_last_cpupid(folio, -1); 800 /* 801 * For memory tiering mode, when migrate between slow and fast 802 * memory node, reset cpupid, because that is used to record 803 * page access time in slow memory node. 804 */ 805 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 806 bool f_toptier = node_is_toptier(folio_nid(folio)); 807 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 808 809 if (f_toptier != t_toptier) 810 cpupid = -1; 811 } 812 folio_xchg_last_cpupid(newfolio, cpupid); 813 814 folio_migrate_ksm(newfolio, folio); 815 /* 816 * Please do not reorder this without considering how mm/ksm.c's 817 * ksm_get_folio() depends upon ksm_migrate_page() and the 818 * swapcache flag. 819 */ 820 if (folio_test_swapcache(folio)) 821 folio_clear_swapcache(folio); 822 folio_clear_private(folio); 823 824 /* page->private contains hugetlb specific flags */ 825 if (!folio_test_hugetlb(folio)) 826 folio->private = NULL; 827 828 /* 829 * If any waiters have accumulated on the new page then 830 * wake them up. 831 */ 832 if (folio_test_writeback(newfolio)) 833 folio_end_writeback(newfolio); 834 835 /* 836 * PG_readahead shares the same bit with PG_reclaim. The above 837 * end_page_writeback() may clear PG_readahead mistakenly, so set the 838 * bit after that. 839 */ 840 if (folio_test_readahead(folio)) 841 folio_set_readahead(newfolio); 842 843 folio_copy_owner(newfolio, folio); 844 pgalloc_tag_swap(newfolio, folio); 845 846 mem_cgroup_migrate(folio, newfolio); 847 } 848 EXPORT_SYMBOL(folio_migrate_flags); 849 850 /************************************************************ 851 * Migration functions 852 ***********************************************************/ 853 854 static int __migrate_folio(struct address_space *mapping, struct folio *dst, 855 struct folio *src, void *src_private, 856 enum migrate_mode mode) 857 { 858 int rc, expected_count = folio_expected_ref_count(src) + 1; 859 860 /* Check whether src does not have extra refs before we do more work */ 861 if (folio_ref_count(src) != expected_count) 862 return -EAGAIN; 863 864 rc = folio_mc_copy(dst, src); 865 if (unlikely(rc)) 866 return rc; 867 868 rc = __folio_migrate_mapping(mapping, dst, src, expected_count); 869 if (rc) 870 return rc; 871 872 if (src_private) 873 folio_attach_private(dst, folio_detach_private(src)); 874 875 folio_migrate_flags(dst, src); 876 return 0; 877 } 878 879 /** 880 * migrate_folio() - Simple folio migration. 881 * @mapping: The address_space containing the folio. 882 * @dst: The folio to migrate the data to. 883 * @src: The folio containing the current data. 884 * @mode: How to migrate the page. 885 * 886 * Common logic to directly migrate a single LRU folio suitable for 887 * folios that do not have private data. 888 * 889 * Folios are locked upon entry and exit. 890 */ 891 int migrate_folio(struct address_space *mapping, struct folio *dst, 892 struct folio *src, enum migrate_mode mode) 893 { 894 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 895 return __migrate_folio(mapping, dst, src, NULL, mode); 896 } 897 EXPORT_SYMBOL(migrate_folio); 898 899 #ifdef CONFIG_BUFFER_HEAD 900 /* Returns true if all buffers are successfully locked */ 901 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 902 enum migrate_mode mode) 903 { 904 struct buffer_head *bh = head; 905 struct buffer_head *failed_bh; 906 907 do { 908 if (!trylock_buffer(bh)) { 909 if (mode == MIGRATE_ASYNC) 910 goto unlock; 911 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 912 goto unlock; 913 lock_buffer(bh); 914 } 915 916 bh = bh->b_this_page; 917 } while (bh != head); 918 919 return true; 920 921 unlock: 922 /* We failed to lock the buffer and cannot stall. */ 923 failed_bh = bh; 924 bh = head; 925 while (bh != failed_bh) { 926 unlock_buffer(bh); 927 bh = bh->b_this_page; 928 } 929 930 return false; 931 } 932 933 static int __buffer_migrate_folio(struct address_space *mapping, 934 struct folio *dst, struct folio *src, enum migrate_mode mode, 935 bool check_refs) 936 { 937 struct buffer_head *bh, *head; 938 int rc; 939 int expected_count; 940 941 head = folio_buffers(src); 942 if (!head) 943 return migrate_folio(mapping, dst, src, mode); 944 945 /* Check whether page does not have extra refs before we do more work */ 946 expected_count = folio_expected_ref_count(src) + 1; 947 if (folio_ref_count(src) != expected_count) 948 return -EAGAIN; 949 950 if (!buffer_migrate_lock_buffers(head, mode)) 951 return -EAGAIN; 952 953 if (check_refs) { 954 bool busy, migrating; 955 bool invalidated = false; 956 957 migrating = test_and_set_bit_lock(BH_Migrate, &head->b_state); 958 VM_WARN_ON_ONCE(migrating); 959 recheck_buffers: 960 busy = false; 961 spin_lock(&mapping->i_private_lock); 962 bh = head; 963 do { 964 if (atomic_read(&bh->b_count)) { 965 busy = true; 966 break; 967 } 968 bh = bh->b_this_page; 969 } while (bh != head); 970 spin_unlock(&mapping->i_private_lock); 971 if (busy) { 972 if (invalidated) { 973 rc = -EAGAIN; 974 goto unlock_buffers; 975 } 976 invalidate_bh_lrus(); 977 invalidated = true; 978 goto recheck_buffers; 979 } 980 } 981 982 rc = filemap_migrate_folio(mapping, dst, src, mode); 983 if (rc) 984 goto unlock_buffers; 985 986 bh = head; 987 do { 988 folio_set_bh(bh, dst, bh_offset(bh)); 989 bh = bh->b_this_page; 990 } while (bh != head); 991 992 unlock_buffers: 993 if (check_refs) 994 clear_bit_unlock(BH_Migrate, &head->b_state); 995 bh = head; 996 do { 997 unlock_buffer(bh); 998 bh = bh->b_this_page; 999 } while (bh != head); 1000 1001 return rc; 1002 } 1003 1004 /** 1005 * buffer_migrate_folio() - Migration function for folios with buffers. 1006 * @mapping: The address space containing @src. 1007 * @dst: The folio to migrate to. 1008 * @src: The folio to migrate from. 1009 * @mode: How to migrate the folio. 1010 * 1011 * This function can only be used if the underlying filesystem guarantees 1012 * that no other references to @src exist. For example attached buffer 1013 * heads are accessed only under the folio lock. If your filesystem cannot 1014 * provide this guarantee, buffer_migrate_folio_norefs() may be more 1015 * appropriate. 1016 * 1017 * Return: 0 on success or a negative errno on failure. 1018 */ 1019 int buffer_migrate_folio(struct address_space *mapping, 1020 struct folio *dst, struct folio *src, enum migrate_mode mode) 1021 { 1022 return __buffer_migrate_folio(mapping, dst, src, mode, false); 1023 } 1024 EXPORT_SYMBOL(buffer_migrate_folio); 1025 1026 /** 1027 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 1028 * @mapping: The address space containing @src. 1029 * @dst: The folio to migrate to. 1030 * @src: The folio to migrate from. 1031 * @mode: How to migrate the folio. 1032 * 1033 * Like buffer_migrate_folio() except that this variant is more careful 1034 * and checks that there are also no buffer head references. This function 1035 * is the right one for mappings where buffer heads are directly looked 1036 * up and referenced (such as block device mappings). 1037 * 1038 * Return: 0 on success or a negative errno on failure. 1039 */ 1040 int buffer_migrate_folio_norefs(struct address_space *mapping, 1041 struct folio *dst, struct folio *src, enum migrate_mode mode) 1042 { 1043 return __buffer_migrate_folio(mapping, dst, src, mode, true); 1044 } 1045 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 1046 #endif /* CONFIG_BUFFER_HEAD */ 1047 1048 int filemap_migrate_folio(struct address_space *mapping, 1049 struct folio *dst, struct folio *src, enum migrate_mode mode) 1050 { 1051 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode); 1052 } 1053 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 1054 1055 /* 1056 * Default handling if a filesystem does not provide a migration function. 1057 */ 1058 static int fallback_migrate_folio(struct address_space *mapping, 1059 struct folio *dst, struct folio *src, enum migrate_mode mode) 1060 { 1061 WARN_ONCE(mapping->a_ops->writepages, 1062 "%ps does not implement migrate_folio\n", 1063 mapping->a_ops); 1064 if (folio_test_dirty(src)) 1065 return -EBUSY; 1066 1067 /* 1068 * Filesystem may have private data at folio->private that we 1069 * can't migrate automatically. 1070 */ 1071 if (!filemap_release_folio(src, GFP_KERNEL)) 1072 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 1073 1074 return migrate_folio(mapping, dst, src, mode); 1075 } 1076 1077 /* 1078 * Move a src folio to a newly allocated dst folio. 1079 * 1080 * The src and dst folios are locked and the src folios was unmapped from 1081 * the page tables. 1082 * 1083 * On success, the src folio was replaced by the dst folio. 1084 * 1085 * Return value: 1086 * < 0 - error code 1087 * 0 - success 1088 */ 1089 static int move_to_new_folio(struct folio *dst, struct folio *src, 1090 enum migrate_mode mode) 1091 { 1092 struct address_space *mapping = folio_mapping(src); 1093 int rc = -EAGAIN; 1094 1095 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 1096 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 1097 1098 if (!mapping) 1099 rc = migrate_folio(mapping, dst, src, mode); 1100 else if (mapping_inaccessible(mapping)) 1101 rc = -EOPNOTSUPP; 1102 else if (mapping->a_ops->migrate_folio) 1103 /* 1104 * Most folios have a mapping and most filesystems 1105 * provide a migrate_folio callback. Anonymous folios 1106 * are part of swap space which also has its own 1107 * migrate_folio callback. This is the most common path 1108 * for page migration. 1109 */ 1110 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 1111 mode); 1112 else 1113 rc = fallback_migrate_folio(mapping, dst, src, mode); 1114 1115 if (!rc) { 1116 /* 1117 * For pagecache folios, src->mapping must be cleared before src 1118 * is freed. Anonymous folios must stay anonymous until freed. 1119 */ 1120 if (!folio_test_anon(src)) 1121 src->mapping = NULL; 1122 1123 if (likely(!folio_is_zone_device(dst))) 1124 flush_dcache_folio(dst); 1125 } 1126 return rc; 1127 } 1128 1129 /* 1130 * To record some information during migration, we use unused private 1131 * field of struct folio of the newly allocated destination folio. 1132 * This is safe because nobody is using it except us. 1133 */ 1134 enum { 1135 PAGE_WAS_MAPPED = BIT(0), 1136 PAGE_WAS_MLOCKED = BIT(1), 1137 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1138 }; 1139 1140 static void __migrate_folio_record(struct folio *dst, 1141 int old_page_state, 1142 struct anon_vma *anon_vma) 1143 { 1144 dst->private = (void *)anon_vma + old_page_state; 1145 } 1146 1147 static void __migrate_folio_extract(struct folio *dst, 1148 int *old_page_state, 1149 struct anon_vma **anon_vmap) 1150 { 1151 unsigned long private = (unsigned long)dst->private; 1152 1153 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1154 *old_page_state = private & PAGE_OLD_STATES; 1155 dst->private = NULL; 1156 } 1157 1158 /* Restore the source folio to the original state upon failure */ 1159 static void migrate_folio_undo_src(struct folio *src, 1160 int page_was_mapped, 1161 struct anon_vma *anon_vma, 1162 bool locked, 1163 struct list_head *ret) 1164 { 1165 if (page_was_mapped) 1166 remove_migration_ptes(src, src, 0); 1167 /* Drop an anon_vma reference if we took one */ 1168 if (anon_vma) 1169 put_anon_vma(anon_vma); 1170 if (locked) 1171 folio_unlock(src); 1172 if (ret) 1173 list_move_tail(&src->lru, ret); 1174 } 1175 1176 /* Restore the destination folio to the original state upon failure */ 1177 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1178 free_folio_t put_new_folio, unsigned long private) 1179 { 1180 if (locked) 1181 folio_unlock(dst); 1182 if (put_new_folio) 1183 put_new_folio(dst, private); 1184 else 1185 folio_put(dst); 1186 } 1187 1188 /* Cleanup src folio upon migration success */ 1189 static void migrate_folio_done(struct folio *src, 1190 enum migrate_reason reason) 1191 { 1192 if (likely(!page_has_movable_ops(&src->page)) && reason != MR_DEMOTION) 1193 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1194 folio_is_file_lru(src), -folio_nr_pages(src)); 1195 1196 if (reason != MR_MEMORY_FAILURE) 1197 /* We release the page in page_handle_poison. */ 1198 folio_put(src); 1199 } 1200 1201 /* Obtain the lock on page, remove all ptes. */ 1202 static int migrate_folio_unmap(new_folio_t get_new_folio, 1203 free_folio_t put_new_folio, unsigned long private, 1204 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1205 struct list_head *ret) 1206 { 1207 struct folio *dst; 1208 int rc = -EAGAIN; 1209 int old_page_state = 0; 1210 struct anon_vma *anon_vma = NULL; 1211 bool locked = false; 1212 bool dst_locked = false; 1213 1214 dst = get_new_folio(src, private); 1215 if (!dst) 1216 return -ENOMEM; 1217 *dstp = dst; 1218 1219 dst->private = NULL; 1220 1221 if (!folio_trylock(src)) { 1222 if (mode == MIGRATE_ASYNC) 1223 goto out; 1224 1225 /* 1226 * It's not safe for direct compaction to call lock_page. 1227 * For example, during page readahead pages are added locked 1228 * to the LRU. Later, when the IO completes the pages are 1229 * marked uptodate and unlocked. However, the queueing 1230 * could be merging multiple pages for one bio (e.g. 1231 * mpage_readahead). If an allocation happens for the 1232 * second or third page, the process can end up locking 1233 * the same page twice and deadlocking. Rather than 1234 * trying to be clever about what pages can be locked, 1235 * avoid the use of lock_page for direct compaction 1236 * altogether. 1237 */ 1238 if (current->flags & PF_MEMALLOC) 1239 goto out; 1240 1241 /* 1242 * In "light" mode, we can wait for transient locks (eg 1243 * inserting a page into the page table), but it's not 1244 * worth waiting for I/O. 1245 */ 1246 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1247 goto out; 1248 1249 folio_lock(src); 1250 } 1251 locked = true; 1252 if (folio_test_mlocked(src)) 1253 old_page_state |= PAGE_WAS_MLOCKED; 1254 1255 if (folio_test_writeback(src)) { 1256 /* 1257 * Only in the case of a full synchronous migration is it 1258 * necessary to wait for PageWriteback. In the async case, 1259 * the retry loop is too short and in the sync-light case, 1260 * the overhead of stalling is too much 1261 */ 1262 switch (mode) { 1263 case MIGRATE_SYNC: 1264 break; 1265 default: 1266 rc = -EBUSY; 1267 goto out; 1268 } 1269 folio_wait_writeback(src); 1270 } 1271 1272 /* 1273 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1274 * we cannot notice that anon_vma is freed while we migrate a page. 1275 * This get_anon_vma() delays freeing anon_vma pointer until the end 1276 * of migration. File cache pages are no problem because of page_lock() 1277 * File Caches may use write_page() or lock_page() in migration, then, 1278 * just care Anon page here. 1279 * 1280 * Only folio_get_anon_vma() understands the subtleties of 1281 * getting a hold on an anon_vma from outside one of its mms. 1282 * But if we cannot get anon_vma, then we won't need it anyway, 1283 * because that implies that the anon page is no longer mapped 1284 * (and cannot be remapped so long as we hold the page lock). 1285 */ 1286 if (folio_test_anon(src) && !folio_test_ksm(src)) 1287 anon_vma = folio_get_anon_vma(src); 1288 1289 /* 1290 * Block others from accessing the new page when we get around to 1291 * establishing additional references. We are usually the only one 1292 * holding a reference to dst at this point. We used to have a BUG 1293 * here if folio_trylock(dst) fails, but would like to allow for 1294 * cases where there might be a race with the previous use of dst. 1295 * This is much like races on refcount of oldpage: just don't BUG(). 1296 */ 1297 if (unlikely(!folio_trylock(dst))) 1298 goto out; 1299 dst_locked = true; 1300 1301 if (unlikely(page_has_movable_ops(&src->page))) { 1302 __migrate_folio_record(dst, old_page_state, anon_vma); 1303 return 0; 1304 } 1305 1306 /* 1307 * Corner case handling: 1308 * 1. When a new swap-cache page is read into, it is added to the LRU 1309 * and treated as swapcache but it has no rmap yet. 1310 * Calling try_to_unmap() against a src->mapping==NULL page will 1311 * trigger a BUG. So handle it here. 1312 * 2. An orphaned page (see truncate_cleanup_page) might have 1313 * fs-private metadata. The page can be picked up due to memory 1314 * offlining. Everywhere else except page reclaim, the page is 1315 * invisible to the vm, so the page can not be migrated. So try to 1316 * free the metadata, so the page can be freed. 1317 */ 1318 if (!src->mapping) { 1319 if (folio_test_private(src)) { 1320 try_to_free_buffers(src); 1321 goto out; 1322 } 1323 } else if (folio_mapped(src)) { 1324 /* Establish migration ptes */ 1325 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1326 !folio_test_ksm(src) && !anon_vma, src); 1327 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1328 old_page_state |= PAGE_WAS_MAPPED; 1329 } 1330 1331 if (!folio_mapped(src)) { 1332 __migrate_folio_record(dst, old_page_state, anon_vma); 1333 return 0; 1334 } 1335 1336 out: 1337 /* 1338 * A folio that has not been unmapped will be restored to 1339 * right list unless we want to retry. 1340 */ 1341 if (rc == -EAGAIN) 1342 ret = NULL; 1343 1344 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1345 anon_vma, locked, ret); 1346 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1347 1348 return rc; 1349 } 1350 1351 /* Migrate the folio to the newly allocated folio in dst. */ 1352 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1353 struct folio *src, struct folio *dst, 1354 enum migrate_mode mode, enum migrate_reason reason, 1355 struct list_head *ret) 1356 { 1357 int rc; 1358 int old_page_state = 0; 1359 struct anon_vma *anon_vma = NULL; 1360 struct list_head *prev; 1361 1362 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1363 prev = dst->lru.prev; 1364 list_del(&dst->lru); 1365 1366 if (unlikely(page_has_movable_ops(&src->page))) { 1367 rc = migrate_movable_ops_page(&dst->page, &src->page, mode); 1368 if (rc) 1369 goto out; 1370 goto out_unlock_both; 1371 } 1372 1373 rc = move_to_new_folio(dst, src, mode); 1374 if (rc) 1375 goto out; 1376 1377 /* 1378 * When successful, push dst to LRU immediately: so that if it 1379 * turns out to be an mlocked page, remove_migration_ptes() will 1380 * automatically build up the correct dst->mlock_count for it. 1381 * 1382 * We would like to do something similar for the old page, when 1383 * unsuccessful, and other cases when a page has been temporarily 1384 * isolated from the unevictable LRU: but this case is the easiest. 1385 */ 1386 folio_add_lru(dst); 1387 if (old_page_state & PAGE_WAS_MLOCKED) 1388 lru_add_drain(); 1389 1390 if (old_page_state & PAGE_WAS_MAPPED) 1391 remove_migration_ptes(src, dst, 0); 1392 1393 out_unlock_both: 1394 folio_unlock(dst); 1395 folio_set_owner_migrate_reason(dst, reason); 1396 /* 1397 * If migration is successful, decrease refcount of dst, 1398 * which will not free the page because new page owner increased 1399 * refcounter. 1400 */ 1401 folio_put(dst); 1402 1403 /* 1404 * A folio that has been migrated has all references removed 1405 * and will be freed. 1406 */ 1407 list_del(&src->lru); 1408 /* Drop an anon_vma reference if we took one */ 1409 if (anon_vma) 1410 put_anon_vma(anon_vma); 1411 folio_unlock(src); 1412 migrate_folio_done(src, reason); 1413 1414 return rc; 1415 out: 1416 /* 1417 * A folio that has not been migrated will be restored to 1418 * right list unless we want to retry. 1419 */ 1420 if (rc == -EAGAIN) { 1421 list_add(&dst->lru, prev); 1422 __migrate_folio_record(dst, old_page_state, anon_vma); 1423 return rc; 1424 } 1425 1426 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1427 anon_vma, true, ret); 1428 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1429 1430 return rc; 1431 } 1432 1433 /* 1434 * Counterpart of unmap_and_move_page() for hugepage migration. 1435 * 1436 * This function doesn't wait the completion of hugepage I/O 1437 * because there is no race between I/O and migration for hugepage. 1438 * Note that currently hugepage I/O occurs only in direct I/O 1439 * where no lock is held and PG_writeback is irrelevant, 1440 * and writeback status of all subpages are counted in the reference 1441 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1442 * under direct I/O, the reference of the head page is 512 and a bit more.) 1443 * This means that when we try to migrate hugepage whose subpages are 1444 * doing direct I/O, some references remain after try_to_unmap() and 1445 * hugepage migration fails without data corruption. 1446 * 1447 * There is also no race when direct I/O is issued on the page under migration, 1448 * because then pte is replaced with migration swap entry and direct I/O code 1449 * will wait in the page fault for migration to complete. 1450 */ 1451 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1452 free_folio_t put_new_folio, unsigned long private, 1453 struct folio *src, int force, enum migrate_mode mode, 1454 int reason, struct list_head *ret) 1455 { 1456 struct folio *dst; 1457 int rc = -EAGAIN; 1458 int page_was_mapped = 0; 1459 struct anon_vma *anon_vma = NULL; 1460 struct address_space *mapping = NULL; 1461 1462 if (folio_ref_count(src) == 1) { 1463 /* page was freed from under us. So we are done. */ 1464 folio_putback_hugetlb(src); 1465 return 0; 1466 } 1467 1468 dst = get_new_folio(src, private); 1469 if (!dst) 1470 return -ENOMEM; 1471 1472 if (!folio_trylock(src)) { 1473 if (!force) 1474 goto out; 1475 switch (mode) { 1476 case MIGRATE_SYNC: 1477 break; 1478 default: 1479 goto out; 1480 } 1481 folio_lock(src); 1482 } 1483 1484 /* 1485 * Check for pages which are in the process of being freed. Without 1486 * folio_mapping() set, hugetlbfs specific move page routine will not 1487 * be called and we could leak usage counts for subpools. 1488 */ 1489 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1490 rc = -EBUSY; 1491 goto out_unlock; 1492 } 1493 1494 if (folio_test_anon(src)) 1495 anon_vma = folio_get_anon_vma(src); 1496 1497 if (unlikely(!folio_trylock(dst))) 1498 goto put_anon; 1499 1500 if (folio_mapped(src)) { 1501 enum ttu_flags ttu = 0; 1502 1503 if (!folio_test_anon(src)) { 1504 /* 1505 * In shared mappings, try_to_unmap could potentially 1506 * call huge_pmd_unshare. Because of this, take 1507 * semaphore in write mode here and set TTU_RMAP_LOCKED 1508 * to let lower levels know we have taken the lock. 1509 */ 1510 mapping = hugetlb_folio_mapping_lock_write(src); 1511 if (unlikely(!mapping)) 1512 goto unlock_put_anon; 1513 1514 ttu = TTU_RMAP_LOCKED; 1515 } 1516 1517 try_to_migrate(src, ttu); 1518 page_was_mapped = 1; 1519 1520 if (ttu & TTU_RMAP_LOCKED) 1521 i_mmap_unlock_write(mapping); 1522 } 1523 1524 if (!folio_mapped(src)) 1525 rc = move_to_new_folio(dst, src, mode); 1526 1527 if (page_was_mapped) 1528 remove_migration_ptes(src, !rc ? dst : src, 0); 1529 1530 unlock_put_anon: 1531 folio_unlock(dst); 1532 1533 put_anon: 1534 if (anon_vma) 1535 put_anon_vma(anon_vma); 1536 1537 if (!rc) { 1538 move_hugetlb_state(src, dst, reason); 1539 put_new_folio = NULL; 1540 } 1541 1542 out_unlock: 1543 folio_unlock(src); 1544 out: 1545 if (!rc) 1546 folio_putback_hugetlb(src); 1547 else if (rc != -EAGAIN) 1548 list_move_tail(&src->lru, ret); 1549 1550 /* 1551 * If migration was not successful and there's a freeing callback, 1552 * return the folio to that special allocator. Otherwise, simply drop 1553 * our additional reference. 1554 */ 1555 if (put_new_folio) 1556 put_new_folio(dst, private); 1557 else 1558 folio_put(dst); 1559 1560 return rc; 1561 } 1562 1563 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios, 1564 enum migrate_mode mode) 1565 { 1566 int rc; 1567 1568 if (mode == MIGRATE_ASYNC) { 1569 if (!folio_trylock(folio)) 1570 return -EAGAIN; 1571 } else { 1572 folio_lock(folio); 1573 } 1574 rc = split_folio_to_list(folio, split_folios); 1575 folio_unlock(folio); 1576 if (!rc) 1577 list_move_tail(&folio->lru, split_folios); 1578 1579 return rc; 1580 } 1581 1582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1583 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1584 #else 1585 #define NR_MAX_BATCHED_MIGRATION 512 1586 #endif 1587 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1588 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1589 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1590 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1591 1592 struct migrate_pages_stats { 1593 int nr_succeeded; /* Normal and large folios migrated successfully, in 1594 units of base pages */ 1595 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1596 units of base pages. Untried folios aren't counted */ 1597 int nr_thp_succeeded; /* THP migrated successfully */ 1598 int nr_thp_failed; /* THP failed to be migrated */ 1599 int nr_thp_split; /* THP split before migrating */ 1600 int nr_split; /* Large folio (include THP) split before migrating */ 1601 }; 1602 1603 /* 1604 * Returns the number of hugetlb folios that were not migrated, or an error code 1605 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1606 * any more because the list has become empty or no retryable hugetlb folios 1607 * exist any more. It is caller's responsibility to call putback_movable_pages() 1608 * only if ret != 0. 1609 */ 1610 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1611 free_folio_t put_new_folio, unsigned long private, 1612 enum migrate_mode mode, int reason, 1613 struct migrate_pages_stats *stats, 1614 struct list_head *ret_folios) 1615 { 1616 int retry = 1; 1617 int nr_failed = 0; 1618 int nr_retry_pages = 0; 1619 int pass = 0; 1620 struct folio *folio, *folio2; 1621 int rc, nr_pages; 1622 1623 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1624 retry = 0; 1625 nr_retry_pages = 0; 1626 1627 list_for_each_entry_safe(folio, folio2, from, lru) { 1628 if (!folio_test_hugetlb(folio)) 1629 continue; 1630 1631 nr_pages = folio_nr_pages(folio); 1632 1633 cond_resched(); 1634 1635 /* 1636 * Migratability of hugepages depends on architectures and 1637 * their size. This check is necessary because some callers 1638 * of hugepage migration like soft offline and memory 1639 * hotremove don't walk through page tables or check whether 1640 * the hugepage is pmd-based or not before kicking migration. 1641 */ 1642 if (!hugepage_migration_supported(folio_hstate(folio))) { 1643 nr_failed++; 1644 stats->nr_failed_pages += nr_pages; 1645 list_move_tail(&folio->lru, ret_folios); 1646 continue; 1647 } 1648 1649 rc = unmap_and_move_huge_page(get_new_folio, 1650 put_new_folio, private, 1651 folio, pass > 2, mode, 1652 reason, ret_folios); 1653 /* 1654 * The rules are: 1655 * 0: hugetlb folio will be put back 1656 * -EAGAIN: stay on the from list 1657 * -ENOMEM: stay on the from list 1658 * Other errno: put on ret_folios list 1659 */ 1660 switch(rc) { 1661 case -ENOMEM: 1662 /* 1663 * When memory is low, don't bother to try to migrate 1664 * other folios, just exit. 1665 */ 1666 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1667 return -ENOMEM; 1668 case -EAGAIN: 1669 retry++; 1670 nr_retry_pages += nr_pages; 1671 break; 1672 case 0: 1673 stats->nr_succeeded += nr_pages; 1674 break; 1675 default: 1676 /* 1677 * Permanent failure (-EBUSY, etc.): 1678 * unlike -EAGAIN case, the failed folio is 1679 * removed from migration folio list and not 1680 * retried in the next outer loop. 1681 */ 1682 nr_failed++; 1683 stats->nr_failed_pages += nr_pages; 1684 break; 1685 } 1686 } 1687 } 1688 /* 1689 * nr_failed is number of hugetlb folios failed to be migrated. After 1690 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1691 * folios as failed. 1692 */ 1693 nr_failed += retry; 1694 stats->nr_failed_pages += nr_retry_pages; 1695 1696 return nr_failed; 1697 } 1698 1699 static void migrate_folios_move(struct list_head *src_folios, 1700 struct list_head *dst_folios, 1701 free_folio_t put_new_folio, unsigned long private, 1702 enum migrate_mode mode, int reason, 1703 struct list_head *ret_folios, 1704 struct migrate_pages_stats *stats, 1705 int *retry, int *thp_retry, int *nr_failed, 1706 int *nr_retry_pages) 1707 { 1708 struct folio *folio, *folio2, *dst, *dst2; 1709 bool is_thp; 1710 int nr_pages; 1711 int rc; 1712 1713 dst = list_first_entry(dst_folios, struct folio, lru); 1714 dst2 = list_next_entry(dst, lru); 1715 list_for_each_entry_safe(folio, folio2, src_folios, lru) { 1716 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1717 nr_pages = folio_nr_pages(folio); 1718 1719 cond_resched(); 1720 1721 rc = migrate_folio_move(put_new_folio, private, 1722 folio, dst, mode, 1723 reason, ret_folios); 1724 /* 1725 * The rules are: 1726 * 0: folio will be freed 1727 * -EAGAIN: stay on the unmap_folios list 1728 * Other errno: put on ret_folios list 1729 */ 1730 switch (rc) { 1731 case -EAGAIN: 1732 *retry += 1; 1733 *thp_retry += is_thp; 1734 *nr_retry_pages += nr_pages; 1735 break; 1736 case 0: 1737 stats->nr_succeeded += nr_pages; 1738 stats->nr_thp_succeeded += is_thp; 1739 break; 1740 default: 1741 *nr_failed += 1; 1742 stats->nr_thp_failed += is_thp; 1743 stats->nr_failed_pages += nr_pages; 1744 break; 1745 } 1746 dst = dst2; 1747 dst2 = list_next_entry(dst, lru); 1748 } 1749 } 1750 1751 static void migrate_folios_undo(struct list_head *src_folios, 1752 struct list_head *dst_folios, 1753 free_folio_t put_new_folio, unsigned long private, 1754 struct list_head *ret_folios) 1755 { 1756 struct folio *folio, *folio2, *dst, *dst2; 1757 1758 dst = list_first_entry(dst_folios, struct folio, lru); 1759 dst2 = list_next_entry(dst, lru); 1760 list_for_each_entry_safe(folio, folio2, src_folios, lru) { 1761 int old_page_state = 0; 1762 struct anon_vma *anon_vma = NULL; 1763 1764 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1765 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1766 anon_vma, true, ret_folios); 1767 list_del(&dst->lru); 1768 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1769 dst = dst2; 1770 dst2 = list_next_entry(dst, lru); 1771 } 1772 } 1773 1774 /* 1775 * migrate_pages_batch() first unmaps folios in the from list as many as 1776 * possible, then move the unmapped folios. 1777 * 1778 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1779 * lock or bit when we have locked more than one folio. Which may cause 1780 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1781 * length of the from list must be <= 1. 1782 */ 1783 static int migrate_pages_batch(struct list_head *from, 1784 new_folio_t get_new_folio, free_folio_t put_new_folio, 1785 unsigned long private, enum migrate_mode mode, int reason, 1786 struct list_head *ret_folios, struct list_head *split_folios, 1787 struct migrate_pages_stats *stats, int nr_pass) 1788 { 1789 int retry = 1; 1790 int thp_retry = 1; 1791 int nr_failed = 0; 1792 int nr_retry_pages = 0; 1793 int pass = 0; 1794 bool is_thp = false; 1795 bool is_large = false; 1796 struct folio *folio, *folio2, *dst = NULL; 1797 int rc, rc_saved = 0, nr_pages; 1798 LIST_HEAD(unmap_folios); 1799 LIST_HEAD(dst_folios); 1800 bool nosplit = (reason == MR_NUMA_MISPLACED); 1801 1802 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1803 !list_empty(from) && !list_is_singular(from)); 1804 1805 for (pass = 0; pass < nr_pass && retry; pass++) { 1806 retry = 0; 1807 thp_retry = 0; 1808 nr_retry_pages = 0; 1809 1810 list_for_each_entry_safe(folio, folio2, from, lru) { 1811 is_large = folio_test_large(folio); 1812 is_thp = folio_test_pmd_mappable(folio); 1813 nr_pages = folio_nr_pages(folio); 1814 1815 cond_resched(); 1816 1817 /* 1818 * The rare folio on the deferred split list should 1819 * be split now. It should not count as a failure: 1820 * but increment nr_failed because, without doing so, 1821 * migrate_pages() may report success with (split but 1822 * unmigrated) pages still on its fromlist; whereas it 1823 * always reports success when its fromlist is empty. 1824 * stats->nr_thp_failed should be increased too, 1825 * otherwise stats inconsistency will happen when 1826 * migrate_pages_batch is called via migrate_pages() 1827 * with MIGRATE_SYNC and MIGRATE_ASYNC. 1828 * 1829 * Only check it without removing it from the list. 1830 * Since the folio can be on deferred_split_scan() 1831 * local list and removing it can cause the local list 1832 * corruption. Folio split process below can handle it 1833 * with the help of folio_ref_freeze(). 1834 * 1835 * nr_pages > 2 is needed to avoid checking order-1 1836 * page cache folios. They exist, in contrast to 1837 * non-existent order-1 anonymous folios, and do not 1838 * use _deferred_list. 1839 */ 1840 if (nr_pages > 2 && 1841 !list_empty(&folio->_deferred_list) && 1842 folio_test_partially_mapped(folio)) { 1843 if (!try_split_folio(folio, split_folios, mode)) { 1844 nr_failed++; 1845 stats->nr_thp_failed += is_thp; 1846 stats->nr_thp_split += is_thp; 1847 stats->nr_split++; 1848 continue; 1849 } 1850 } 1851 1852 /* 1853 * Large folio migration might be unsupported or 1854 * the allocation might be failed so we should retry 1855 * on the same folio with the large folio split 1856 * to normal folios. 1857 * 1858 * Split folios are put in split_folios, and 1859 * we will migrate them after the rest of the 1860 * list is processed. 1861 */ 1862 if (!thp_migration_supported() && is_thp) { 1863 nr_failed++; 1864 stats->nr_thp_failed++; 1865 if (!try_split_folio(folio, split_folios, mode)) { 1866 stats->nr_thp_split++; 1867 stats->nr_split++; 1868 continue; 1869 } 1870 stats->nr_failed_pages += nr_pages; 1871 list_move_tail(&folio->lru, ret_folios); 1872 continue; 1873 } 1874 1875 /* 1876 * If we are holding the last folio reference, the folio 1877 * was freed from under us, so just drop our reference. 1878 */ 1879 if (likely(!page_has_movable_ops(&folio->page)) && 1880 folio_ref_count(folio) == 1) { 1881 folio_clear_active(folio); 1882 folio_clear_unevictable(folio); 1883 list_del(&folio->lru); 1884 migrate_folio_done(folio, reason); 1885 stats->nr_succeeded += nr_pages; 1886 stats->nr_thp_succeeded += is_thp; 1887 continue; 1888 } 1889 1890 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1891 private, folio, &dst, mode, ret_folios); 1892 /* 1893 * The rules are: 1894 * 0: folio will be put on unmap_folios list, 1895 * dst folio put on dst_folios list 1896 * -EAGAIN: stay on the from list 1897 * -ENOMEM: stay on the from list 1898 * Other errno: put on ret_folios list 1899 */ 1900 switch(rc) { 1901 case -ENOMEM: 1902 /* 1903 * When memory is low, don't bother to try to migrate 1904 * other folios, move unmapped folios, then exit. 1905 */ 1906 nr_failed++; 1907 stats->nr_thp_failed += is_thp; 1908 /* Large folio NUMA faulting doesn't split to retry. */ 1909 if (is_large && !nosplit) { 1910 int ret = try_split_folio(folio, split_folios, mode); 1911 1912 if (!ret) { 1913 stats->nr_thp_split += is_thp; 1914 stats->nr_split++; 1915 break; 1916 } else if (reason == MR_LONGTERM_PIN && 1917 ret == -EAGAIN) { 1918 /* 1919 * Try again to split large folio to 1920 * mitigate the failure of longterm pinning. 1921 */ 1922 retry++; 1923 thp_retry += is_thp; 1924 nr_retry_pages += nr_pages; 1925 /* Undo duplicated failure counting. */ 1926 nr_failed--; 1927 stats->nr_thp_failed -= is_thp; 1928 break; 1929 } 1930 } 1931 1932 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1933 /* nr_failed isn't updated for not used */ 1934 stats->nr_thp_failed += thp_retry; 1935 rc_saved = rc; 1936 if (list_empty(&unmap_folios)) 1937 goto out; 1938 else 1939 goto move; 1940 case -EAGAIN: 1941 retry++; 1942 thp_retry += is_thp; 1943 nr_retry_pages += nr_pages; 1944 break; 1945 case 0: 1946 list_move_tail(&folio->lru, &unmap_folios); 1947 list_add_tail(&dst->lru, &dst_folios); 1948 break; 1949 default: 1950 /* 1951 * Permanent failure (-EBUSY, etc.): 1952 * unlike -EAGAIN case, the failed folio is 1953 * removed from migration folio list and not 1954 * retried in the next outer loop. 1955 */ 1956 nr_failed++; 1957 stats->nr_thp_failed += is_thp; 1958 stats->nr_failed_pages += nr_pages; 1959 break; 1960 } 1961 } 1962 } 1963 nr_failed += retry; 1964 stats->nr_thp_failed += thp_retry; 1965 stats->nr_failed_pages += nr_retry_pages; 1966 move: 1967 /* Flush TLBs for all unmapped folios */ 1968 try_to_unmap_flush(); 1969 1970 retry = 1; 1971 for (pass = 0; pass < nr_pass && retry; pass++) { 1972 retry = 0; 1973 thp_retry = 0; 1974 nr_retry_pages = 0; 1975 1976 /* Move the unmapped folios */ 1977 migrate_folios_move(&unmap_folios, &dst_folios, 1978 put_new_folio, private, mode, reason, 1979 ret_folios, stats, &retry, &thp_retry, 1980 &nr_failed, &nr_retry_pages); 1981 } 1982 nr_failed += retry; 1983 stats->nr_thp_failed += thp_retry; 1984 stats->nr_failed_pages += nr_retry_pages; 1985 1986 rc = rc_saved ? : nr_failed; 1987 out: 1988 /* Cleanup remaining folios */ 1989 migrate_folios_undo(&unmap_folios, &dst_folios, 1990 put_new_folio, private, ret_folios); 1991 1992 return rc; 1993 } 1994 1995 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1996 free_folio_t put_new_folio, unsigned long private, 1997 enum migrate_mode mode, int reason, 1998 struct list_head *ret_folios, struct list_head *split_folios, 1999 struct migrate_pages_stats *stats) 2000 { 2001 int rc, nr_failed = 0; 2002 LIST_HEAD(folios); 2003 struct migrate_pages_stats astats; 2004 2005 memset(&astats, 0, sizeof(astats)); 2006 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 2007 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 2008 reason, &folios, split_folios, &astats, 2009 NR_MAX_MIGRATE_ASYNC_RETRY); 2010 stats->nr_succeeded += astats.nr_succeeded; 2011 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 2012 stats->nr_thp_split += astats.nr_thp_split; 2013 stats->nr_split += astats.nr_split; 2014 if (rc < 0) { 2015 stats->nr_failed_pages += astats.nr_failed_pages; 2016 stats->nr_thp_failed += astats.nr_thp_failed; 2017 list_splice_tail(&folios, ret_folios); 2018 return rc; 2019 } 2020 stats->nr_thp_failed += astats.nr_thp_split; 2021 /* 2022 * Do not count rc, as pages will be retried below. 2023 * Count nr_split only, since it includes nr_thp_split. 2024 */ 2025 nr_failed += astats.nr_split; 2026 /* 2027 * Fall back to migrate all failed folios one by one synchronously. All 2028 * failed folios except split THPs will be retried, so their failure 2029 * isn't counted 2030 */ 2031 list_splice_tail_init(&folios, from); 2032 while (!list_empty(from)) { 2033 list_move(from->next, &folios); 2034 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2035 private, mode, reason, ret_folios, 2036 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 2037 list_splice_tail_init(&folios, ret_folios); 2038 if (rc < 0) 2039 return rc; 2040 nr_failed += rc; 2041 } 2042 2043 return nr_failed; 2044 } 2045 2046 /* 2047 * migrate_pages - migrate the folios specified in a list, to the free folios 2048 * supplied as the target for the page migration 2049 * 2050 * @from: The list of folios to be migrated. 2051 * @get_new_folio: The function used to allocate free folios to be used 2052 * as the target of the folio migration. 2053 * @put_new_folio: The function used to free target folios if migration 2054 * fails, or NULL if no special handling is necessary. 2055 * @private: Private data to be passed on to get_new_folio() 2056 * @mode: The migration mode that specifies the constraints for 2057 * folio migration, if any. 2058 * @reason: The reason for folio migration. 2059 * @ret_succeeded: Set to the number of folios migrated successfully if 2060 * the caller passes a non-NULL pointer. 2061 * 2062 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 2063 * are movable any more because the list has become empty or no retryable folios 2064 * exist any more. It is caller's responsibility to call putback_movable_pages() 2065 * only if ret != 0. 2066 * 2067 * Returns the number of {normal folio, large folio, hugetlb} that were not 2068 * migrated, or an error code. The number of large folio splits will be 2069 * considered as the number of non-migrated large folio, no matter how many 2070 * split folios of the large folio are migrated successfully. 2071 */ 2072 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 2073 free_folio_t put_new_folio, unsigned long private, 2074 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 2075 { 2076 int rc, rc_gather; 2077 int nr_pages; 2078 struct folio *folio, *folio2; 2079 LIST_HEAD(folios); 2080 LIST_HEAD(ret_folios); 2081 LIST_HEAD(split_folios); 2082 struct migrate_pages_stats stats; 2083 2084 trace_mm_migrate_pages_start(mode, reason); 2085 2086 memset(&stats, 0, sizeof(stats)); 2087 2088 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 2089 mode, reason, &stats, &ret_folios); 2090 if (rc_gather < 0) 2091 goto out; 2092 2093 again: 2094 nr_pages = 0; 2095 list_for_each_entry_safe(folio, folio2, from, lru) { 2096 /* Retried hugetlb folios will be kept in list */ 2097 if (folio_test_hugetlb(folio)) { 2098 list_move_tail(&folio->lru, &ret_folios); 2099 continue; 2100 } 2101 2102 nr_pages += folio_nr_pages(folio); 2103 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2104 break; 2105 } 2106 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2107 list_cut_before(&folios, from, &folio2->lru); 2108 else 2109 list_splice_init(from, &folios); 2110 if (mode == MIGRATE_ASYNC) 2111 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2112 private, mode, reason, &ret_folios, 2113 &split_folios, &stats, 2114 NR_MAX_MIGRATE_PAGES_RETRY); 2115 else 2116 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 2117 private, mode, reason, &ret_folios, 2118 &split_folios, &stats); 2119 list_splice_tail_init(&folios, &ret_folios); 2120 if (rc < 0) { 2121 rc_gather = rc; 2122 list_splice_tail(&split_folios, &ret_folios); 2123 goto out; 2124 } 2125 if (!list_empty(&split_folios)) { 2126 /* 2127 * Failure isn't counted since all split folios of a large folio 2128 * is counted as 1 failure already. And, we only try to migrate 2129 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 2130 */ 2131 migrate_pages_batch(&split_folios, get_new_folio, 2132 put_new_folio, private, MIGRATE_ASYNC, reason, 2133 &ret_folios, NULL, &stats, 1); 2134 list_splice_tail_init(&split_folios, &ret_folios); 2135 } 2136 rc_gather += rc; 2137 if (!list_empty(from)) 2138 goto again; 2139 out: 2140 /* 2141 * Put the permanent failure folio back to migration list, they 2142 * will be put back to the right list by the caller. 2143 */ 2144 list_splice(&ret_folios, from); 2145 2146 /* 2147 * Return 0 in case all split folios of fail-to-migrate large folios 2148 * are migrated successfully. 2149 */ 2150 if (list_empty(from)) 2151 rc_gather = 0; 2152 2153 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2154 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2155 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2156 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2157 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2158 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2159 stats.nr_thp_succeeded, stats.nr_thp_failed, 2160 stats.nr_thp_split, stats.nr_split, mode, 2161 reason); 2162 2163 if (ret_succeeded) 2164 *ret_succeeded = stats.nr_succeeded; 2165 2166 return rc_gather; 2167 } 2168 2169 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2170 { 2171 struct migration_target_control *mtc; 2172 gfp_t gfp_mask; 2173 unsigned int order = 0; 2174 int nid; 2175 enum zone_type zidx; 2176 2177 mtc = (struct migration_target_control *)private; 2178 gfp_mask = mtc->gfp_mask; 2179 nid = mtc->nid; 2180 if (nid == NUMA_NO_NODE) 2181 nid = folio_nid(src); 2182 2183 if (folio_test_hugetlb(src)) { 2184 struct hstate *h = folio_hstate(src); 2185 2186 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2187 return alloc_hugetlb_folio_nodemask(h, nid, 2188 mtc->nmask, gfp_mask, 2189 htlb_allow_alloc_fallback(mtc->reason)); 2190 } 2191 2192 if (folio_test_large(src)) { 2193 /* 2194 * clear __GFP_RECLAIM to make the migration callback 2195 * consistent with regular THP allocations. 2196 */ 2197 gfp_mask &= ~__GFP_RECLAIM; 2198 gfp_mask |= GFP_TRANSHUGE; 2199 order = folio_order(src); 2200 } 2201 zidx = folio_zonenum(src); 2202 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2203 gfp_mask |= __GFP_HIGHMEM; 2204 2205 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2206 } 2207 2208 #ifdef CONFIG_NUMA 2209 2210 static int store_status(int __user *status, int start, int value, int nr) 2211 { 2212 while (nr-- > 0) { 2213 if (put_user(value, status + start)) 2214 return -EFAULT; 2215 start++; 2216 } 2217 2218 return 0; 2219 } 2220 2221 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2222 { 2223 int err; 2224 struct migration_target_control mtc = { 2225 .nid = node, 2226 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2227 .reason = MR_SYSCALL, 2228 }; 2229 2230 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2231 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2232 if (err) 2233 putback_movable_pages(pagelist); 2234 return err; 2235 } 2236 2237 static int __add_folio_for_migration(struct folio *folio, int node, 2238 struct list_head *pagelist, bool migrate_all) 2239 { 2240 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2241 return -EFAULT; 2242 2243 if (folio_is_zone_device(folio)) 2244 return -ENOENT; 2245 2246 if (folio_nid(folio) == node) 2247 return 0; 2248 2249 if (folio_maybe_mapped_shared(folio) && !migrate_all) 2250 return -EACCES; 2251 2252 if (folio_test_hugetlb(folio)) { 2253 if (folio_isolate_hugetlb(folio, pagelist)) 2254 return 1; 2255 } else if (folio_isolate_lru(folio)) { 2256 list_add_tail(&folio->lru, pagelist); 2257 node_stat_mod_folio(folio, 2258 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2259 folio_nr_pages(folio)); 2260 return 1; 2261 } 2262 return -EBUSY; 2263 } 2264 2265 /* 2266 * Resolves the given address to a struct folio, isolates it from the LRU and 2267 * puts it to the given pagelist. 2268 * Returns: 2269 * errno - if the folio cannot be found/isolated 2270 * 0 - when it doesn't have to be migrated because it is already on the 2271 * target node 2272 * 1 - when it has been queued 2273 */ 2274 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p, 2275 int node, struct list_head *pagelist, bool migrate_all) 2276 { 2277 struct vm_area_struct *vma; 2278 struct folio_walk fw; 2279 struct folio *folio; 2280 unsigned long addr; 2281 int err = -EFAULT; 2282 2283 mmap_read_lock(mm); 2284 addr = (unsigned long)untagged_addr_remote(mm, p); 2285 2286 vma = vma_lookup(mm, addr); 2287 if (vma && vma_migratable(vma)) { 2288 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2289 if (folio) { 2290 err = __add_folio_for_migration(folio, node, pagelist, 2291 migrate_all); 2292 folio_walk_end(&fw, vma); 2293 } else { 2294 err = -ENOENT; 2295 } 2296 } 2297 mmap_read_unlock(mm); 2298 return err; 2299 } 2300 2301 static int move_pages_and_store_status(int node, 2302 struct list_head *pagelist, int __user *status, 2303 int start, int i, unsigned long nr_pages) 2304 { 2305 int err; 2306 2307 if (list_empty(pagelist)) 2308 return 0; 2309 2310 err = do_move_pages_to_node(pagelist, node); 2311 if (err) { 2312 /* 2313 * Positive err means the number of failed 2314 * pages to migrate. Since we are going to 2315 * abort and return the number of non-migrated 2316 * pages, so need to include the rest of the 2317 * nr_pages that have not been attempted as 2318 * well. 2319 */ 2320 if (err > 0) 2321 err += nr_pages - i; 2322 return err; 2323 } 2324 return store_status(status, start, node, i - start); 2325 } 2326 2327 /* 2328 * Migrate an array of page address onto an array of nodes and fill 2329 * the corresponding array of status. 2330 */ 2331 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2332 unsigned long nr_pages, 2333 const void __user * __user *pages, 2334 const int __user *nodes, 2335 int __user *status, int flags) 2336 { 2337 compat_uptr_t __user *compat_pages = (void __user *)pages; 2338 int current_node = NUMA_NO_NODE; 2339 LIST_HEAD(pagelist); 2340 int start, i; 2341 int err = 0, err1; 2342 2343 lru_cache_disable(); 2344 2345 for (i = start = 0; i < nr_pages; i++) { 2346 const void __user *p; 2347 int node; 2348 2349 err = -EFAULT; 2350 if (in_compat_syscall()) { 2351 compat_uptr_t cp; 2352 2353 if (get_user(cp, compat_pages + i)) 2354 goto out_flush; 2355 2356 p = compat_ptr(cp); 2357 } else { 2358 if (get_user(p, pages + i)) 2359 goto out_flush; 2360 } 2361 if (get_user(node, nodes + i)) 2362 goto out_flush; 2363 2364 err = -ENODEV; 2365 if (node < 0 || node >= MAX_NUMNODES) 2366 goto out_flush; 2367 if (!node_state(node, N_MEMORY)) 2368 goto out_flush; 2369 2370 err = -EACCES; 2371 if (!node_isset(node, task_nodes)) 2372 goto out_flush; 2373 2374 if (current_node == NUMA_NO_NODE) { 2375 current_node = node; 2376 start = i; 2377 } else if (node != current_node) { 2378 err = move_pages_and_store_status(current_node, 2379 &pagelist, status, start, i, nr_pages); 2380 if (err) 2381 goto out; 2382 start = i; 2383 current_node = node; 2384 } 2385 2386 /* 2387 * Errors in the page lookup or isolation are not fatal and we simply 2388 * report them via status 2389 */ 2390 err = add_folio_for_migration(mm, p, current_node, &pagelist, 2391 flags & MPOL_MF_MOVE_ALL); 2392 2393 if (err > 0) { 2394 /* The page is successfully queued for migration */ 2395 continue; 2396 } 2397 2398 /* 2399 * If the page is already on the target node (!err), store the 2400 * node, otherwise, store the err. 2401 */ 2402 err = store_status(status, i, err ? : current_node, 1); 2403 if (err) 2404 goto out_flush; 2405 2406 err = move_pages_and_store_status(current_node, &pagelist, 2407 status, start, i, nr_pages); 2408 if (err) { 2409 /* We have accounted for page i */ 2410 if (err > 0) 2411 err--; 2412 goto out; 2413 } 2414 current_node = NUMA_NO_NODE; 2415 } 2416 out_flush: 2417 /* Make sure we do not overwrite the existing error */ 2418 err1 = move_pages_and_store_status(current_node, &pagelist, 2419 status, start, i, nr_pages); 2420 if (err >= 0) 2421 err = err1; 2422 out: 2423 lru_cache_enable(); 2424 return err; 2425 } 2426 2427 /* 2428 * Determine the nodes of an array of pages and store it in an array of status. 2429 */ 2430 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2431 const void __user **pages, int *status) 2432 { 2433 unsigned long i; 2434 2435 mmap_read_lock(mm); 2436 2437 for (i = 0; i < nr_pages; i++) { 2438 unsigned long addr = (unsigned long)(*pages); 2439 struct vm_area_struct *vma; 2440 struct folio_walk fw; 2441 struct folio *folio; 2442 int err = -EFAULT; 2443 2444 vma = vma_lookup(mm, addr); 2445 if (!vma) 2446 goto set_status; 2447 2448 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2449 if (folio) { 2450 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2451 err = -EFAULT; 2452 else if (folio_is_zone_device(folio)) 2453 err = -ENOENT; 2454 else 2455 err = folio_nid(folio); 2456 folio_walk_end(&fw, vma); 2457 } else { 2458 err = -ENOENT; 2459 } 2460 set_status: 2461 *status = err; 2462 2463 pages++; 2464 status++; 2465 } 2466 2467 mmap_read_unlock(mm); 2468 } 2469 2470 static int get_compat_pages_array(const void __user *chunk_pages[], 2471 const void __user * __user *pages, 2472 unsigned long chunk_offset, 2473 unsigned long chunk_nr) 2474 { 2475 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2476 compat_uptr_t p; 2477 int i; 2478 2479 for (i = 0; i < chunk_nr; i++) { 2480 if (get_user(p, pages32 + chunk_offset + i)) 2481 return -EFAULT; 2482 chunk_pages[i] = compat_ptr(p); 2483 } 2484 2485 return 0; 2486 } 2487 2488 /* 2489 * Determine the nodes of a user array of pages and store it in 2490 * a user array of status. 2491 */ 2492 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2493 const void __user * __user *pages, 2494 int __user *status) 2495 { 2496 #define DO_PAGES_STAT_CHUNK_NR 16UL 2497 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2498 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2499 unsigned long chunk_offset = 0; 2500 2501 while (nr_pages) { 2502 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2503 2504 if (in_compat_syscall()) { 2505 if (get_compat_pages_array(chunk_pages, pages, 2506 chunk_offset, chunk_nr)) 2507 break; 2508 } else { 2509 if (copy_from_user(chunk_pages, pages + chunk_offset, 2510 chunk_nr * sizeof(*chunk_pages))) 2511 break; 2512 } 2513 2514 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2515 2516 if (copy_to_user(status + chunk_offset, chunk_status, 2517 chunk_nr * sizeof(*status))) 2518 break; 2519 2520 chunk_offset += chunk_nr; 2521 nr_pages -= chunk_nr; 2522 } 2523 return nr_pages ? -EFAULT : 0; 2524 } 2525 2526 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2527 { 2528 struct task_struct *task; 2529 struct mm_struct *mm; 2530 2531 /* 2532 * There is no need to check if current process has the right to modify 2533 * the specified process when they are same. 2534 */ 2535 if (!pid) { 2536 mmget(current->mm); 2537 *mem_nodes = cpuset_mems_allowed(current); 2538 return current->mm; 2539 } 2540 2541 task = find_get_task_by_vpid(pid); 2542 if (!task) { 2543 return ERR_PTR(-ESRCH); 2544 } 2545 2546 /* 2547 * Check if this process has the right to modify the specified 2548 * process. Use the regular "ptrace_may_access()" checks. 2549 */ 2550 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2551 mm = ERR_PTR(-EPERM); 2552 goto out; 2553 } 2554 2555 mm = ERR_PTR(security_task_movememory(task)); 2556 if (IS_ERR(mm)) 2557 goto out; 2558 *mem_nodes = cpuset_mems_allowed(task); 2559 mm = get_task_mm(task); 2560 out: 2561 put_task_struct(task); 2562 if (!mm) 2563 mm = ERR_PTR(-EINVAL); 2564 return mm; 2565 } 2566 2567 /* 2568 * Move a list of pages in the address space of the currently executing 2569 * process. 2570 */ 2571 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2572 const void __user * __user *pages, 2573 const int __user *nodes, 2574 int __user *status, int flags) 2575 { 2576 struct mm_struct *mm; 2577 int err; 2578 nodemask_t task_nodes; 2579 2580 /* Check flags */ 2581 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2582 return -EINVAL; 2583 2584 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2585 return -EPERM; 2586 2587 mm = find_mm_struct(pid, &task_nodes); 2588 if (IS_ERR(mm)) 2589 return PTR_ERR(mm); 2590 2591 if (nodes) 2592 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2593 nodes, status, flags); 2594 else 2595 err = do_pages_stat(mm, nr_pages, pages, status); 2596 2597 mmput(mm); 2598 return err; 2599 } 2600 2601 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2602 const void __user * __user *, pages, 2603 const int __user *, nodes, 2604 int __user *, status, int, flags) 2605 { 2606 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2607 } 2608 2609 #ifdef CONFIG_NUMA_BALANCING 2610 /* 2611 * Returns true if this is a safe migration target node for misplaced NUMA 2612 * pages. Currently it only checks the watermarks which is crude. 2613 */ 2614 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2615 unsigned long nr_migrate_pages) 2616 { 2617 int z; 2618 2619 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2620 struct zone *zone = pgdat->node_zones + z; 2621 2622 if (!managed_zone(zone)) 2623 continue; 2624 2625 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2626 if (!zone_watermark_ok(zone, 0, 2627 high_wmark_pages(zone) + 2628 nr_migrate_pages, 2629 ZONE_MOVABLE, ALLOC_CMA)) 2630 continue; 2631 return true; 2632 } 2633 return false; 2634 } 2635 2636 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2637 unsigned long data) 2638 { 2639 int nid = (int) data; 2640 int order = folio_order(src); 2641 gfp_t gfp = __GFP_THISNODE; 2642 2643 if (order > 0) 2644 gfp |= GFP_TRANSHUGE_LIGHT; 2645 else { 2646 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2647 __GFP_NOWARN; 2648 gfp &= ~__GFP_RECLAIM; 2649 } 2650 return __folio_alloc_node(gfp, order, nid); 2651 } 2652 2653 /* 2654 * Prepare for calling migrate_misplaced_folio() by isolating the folio if 2655 * permitted. Must be called with the PTL still held. 2656 */ 2657 int migrate_misplaced_folio_prepare(struct folio *folio, 2658 struct vm_area_struct *vma, int node) 2659 { 2660 int nr_pages = folio_nr_pages(folio); 2661 pg_data_t *pgdat = NODE_DATA(node); 2662 2663 if (folio_is_file_lru(folio)) { 2664 /* 2665 * Do not migrate file folios that are mapped in multiple 2666 * processes with execute permissions as they are probably 2667 * shared libraries. 2668 * 2669 * See folio_maybe_mapped_shared() on possible imprecision 2670 * when we cannot easily detect if a folio is shared. 2671 */ 2672 if ((vma->vm_flags & VM_EXEC) && folio_maybe_mapped_shared(folio)) 2673 return -EACCES; 2674 2675 /* 2676 * Do not migrate dirty folios as not all filesystems can move 2677 * dirty folios in MIGRATE_ASYNC mode which is a waste of 2678 * cycles. 2679 */ 2680 if (folio_test_dirty(folio)) 2681 return -EAGAIN; 2682 } 2683 2684 /* Avoid migrating to a node that is nearly full */ 2685 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2686 int z; 2687 2688 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2689 return -EAGAIN; 2690 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2691 if (managed_zone(pgdat->node_zones + z)) 2692 break; 2693 } 2694 2695 /* 2696 * If there are no managed zones, it should not proceed 2697 * further. 2698 */ 2699 if (z < 0) 2700 return -EAGAIN; 2701 2702 wakeup_kswapd(pgdat->node_zones + z, 0, 2703 folio_order(folio), ZONE_MOVABLE); 2704 return -EAGAIN; 2705 } 2706 2707 if (!folio_isolate_lru(folio)) 2708 return -EAGAIN; 2709 2710 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2711 nr_pages); 2712 return 0; 2713 } 2714 2715 /* 2716 * Attempt to migrate a misplaced folio to the specified destination 2717 * node. Caller is expected to have isolated the folio by calling 2718 * migrate_misplaced_folio_prepare(), which will result in an 2719 * elevated reference count on the folio. This function will un-isolate the 2720 * folio, dereferencing the folio before returning. 2721 */ 2722 int migrate_misplaced_folio(struct folio *folio, int node) 2723 { 2724 pg_data_t *pgdat = NODE_DATA(node); 2725 int nr_remaining; 2726 unsigned int nr_succeeded; 2727 LIST_HEAD(migratepages); 2728 struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio); 2729 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2730 2731 list_add(&folio->lru, &migratepages); 2732 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2733 NULL, node, MIGRATE_ASYNC, 2734 MR_NUMA_MISPLACED, &nr_succeeded); 2735 if (nr_remaining && !list_empty(&migratepages)) 2736 putback_movable_pages(&migratepages); 2737 if (nr_succeeded) { 2738 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2739 count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded); 2740 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 2741 && !node_is_toptier(folio_nid(folio)) 2742 && node_is_toptier(node)) 2743 mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded); 2744 } 2745 mem_cgroup_put(memcg); 2746 BUG_ON(!list_empty(&migratepages)); 2747 return nr_remaining ? -EAGAIN : 0; 2748 } 2749 #endif /* CONFIG_NUMA_BALANCING */ 2750 #endif /* CONFIG_NUMA */ 2751