1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/compat.h> 37 #include <linux/hugetlb.h> 38 #include <linux/hugetlb_cgroup.h> 39 #include <linux/gfp.h> 40 #include <linux/pfn_t.h> 41 #include <linux/memremap.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/balloon_compaction.h> 44 #include <linux/page_idle.h> 45 #include <linux/page_owner.h> 46 #include <linux/sched/mm.h> 47 #include <linux/ptrace.h> 48 #include <linux/oom.h> 49 #include <linux/memory.h> 50 #include <linux/random.h> 51 #include <linux/sched/sysctl.h> 52 #include <linux/memory-tiers.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct folio *folio = folio_get_nontail_page(page); 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (!folio) 75 goto out; 76 77 if (unlikely(folio_test_slab(folio))) 78 goto out_putfolio; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__folio_test_movable(folio))) 87 goto out_putfolio; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(folio_test_slab(folio))) 91 goto out_putfolio; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!folio_trylock(folio))) 105 goto out_putfolio; 106 107 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 108 goto out_no_isolated; 109 110 mops = folio_movable_ops(folio); 111 VM_BUG_ON_FOLIO(!mops, folio); 112 113 if (!mops->isolate_page(&folio->page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use PG_isolated bit of page->flags */ 117 WARN_ON_ONCE(folio_test_isolated(folio)); 118 folio_set_isolated(folio); 119 folio_unlock(folio); 120 121 return true; 122 123 out_no_isolated: 124 folio_unlock(folio); 125 out_putfolio: 126 folio_put(folio); 127 out: 128 return false; 129 } 130 131 static void putback_movable_folio(struct folio *folio) 132 { 133 const struct movable_operations *mops = folio_movable_ops(folio); 134 135 mops->putback_page(&folio->page); 136 folio_clear_isolated(folio); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct folio *folio; 150 struct folio *folio2; 151 152 list_for_each_entry_safe(folio, folio2, l, lru) { 153 if (unlikely(folio_test_hugetlb(folio))) { 154 folio_putback_active_hugetlb(folio); 155 continue; 156 } 157 list_del(&folio->lru); 158 /* 159 * We isolated non-lru movable folio so here we can use 160 * __folio_test_movable because LRU folio's mapping cannot 161 * have PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__folio_test_movable(folio))) { 164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 165 folio_lock(folio); 166 if (folio_test_movable(folio)) 167 putback_movable_folio(folio); 168 else 169 folio_clear_isolated(folio); 170 folio_unlock(folio); 171 folio_put(folio); 172 } else { 173 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 174 folio_is_file_lru(folio), -folio_nr_pages(folio)); 175 folio_putback_lru(folio); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t old_pte; 191 pte_t pte; 192 swp_entry_t entry; 193 struct page *new; 194 unsigned long idx = 0; 195 196 /* pgoff is invalid for ksm pages, but they are never large */ 197 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 199 new = folio_page(folio, idx); 200 201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 202 /* PMD-mapped THP migration entry */ 203 if (!pvmw.pte) { 204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 205 !folio_test_pmd_mappable(folio), folio); 206 remove_migration_pmd(&pvmw, new); 207 continue; 208 } 209 #endif 210 211 folio_get(folio); 212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 213 old_pte = ptep_get(pvmw.pte); 214 if (pte_swp_soft_dirty(old_pte)) 215 pte = pte_mksoft_dirty(pte); 216 217 entry = pte_to_swp_entry(old_pte); 218 if (!is_migration_entry_young(entry)) 219 pte = pte_mkold(pte); 220 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 221 pte = pte_mkdirty(pte); 222 if (is_writable_migration_entry(entry)) 223 pte = pte_mkwrite(pte, vma); 224 else if (pte_swp_uffd_wp(old_pte)) 225 pte = pte_mkuffd_wp(pte); 226 227 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 228 rmap_flags |= RMAP_EXCLUSIVE; 229 230 if (unlikely(is_device_private_page(new))) { 231 if (pte_write(pte)) 232 entry = make_writable_device_private_entry( 233 page_to_pfn(new)); 234 else 235 entry = make_readable_device_private_entry( 236 page_to_pfn(new)); 237 pte = swp_entry_to_pte(entry); 238 if (pte_swp_soft_dirty(old_pte)) 239 pte = pte_swp_mksoft_dirty(pte); 240 if (pte_swp_uffd_wp(old_pte)) 241 pte = pte_swp_mkuffd_wp(pte); 242 } 243 244 #ifdef CONFIG_HUGETLB_PAGE 245 if (folio_test_hugetlb(folio)) { 246 struct hstate *h = hstate_vma(vma); 247 unsigned int shift = huge_page_shift(h); 248 unsigned long psize = huge_page_size(h); 249 250 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 251 if (folio_test_anon(folio)) 252 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 253 rmap_flags); 254 else 255 hugetlb_add_file_rmap(folio); 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 257 psize); 258 } else 259 #endif 260 { 261 if (folio_test_anon(folio)) 262 folio_add_anon_rmap_pte(folio, new, vma, 263 pvmw.address, rmap_flags); 264 else 265 folio_add_file_rmap_pte(folio, new, vma); 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 } 268 if (vma->vm_flags & VM_LOCKED) 269 mlock_drain_local(); 270 271 trace_remove_migration_pte(pvmw.address, pte_val(pte), 272 compound_order(new)); 273 274 /* No need to invalidate - it was non-present before */ 275 update_mmu_cache(vma, pvmw.address, pvmw.pte); 276 } 277 278 return true; 279 } 280 281 /* 282 * Get rid of all migration entries and replace them by 283 * references to the indicated page. 284 */ 285 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 286 { 287 struct rmap_walk_control rwc = { 288 .rmap_one = remove_migration_pte, 289 .arg = src, 290 }; 291 292 if (locked) 293 rmap_walk_locked(dst, &rwc); 294 else 295 rmap_walk(dst, &rwc); 296 } 297 298 /* 299 * Something used the pte of a page under migration. We need to 300 * get to the page and wait until migration is finished. 301 * When we return from this function the fault will be retried. 302 */ 303 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 304 unsigned long address) 305 { 306 spinlock_t *ptl; 307 pte_t *ptep; 308 pte_t pte; 309 swp_entry_t entry; 310 311 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 312 if (!ptep) 313 return; 314 315 pte = ptep_get(ptep); 316 pte_unmap(ptep); 317 318 if (!is_swap_pte(pte)) 319 goto out; 320 321 entry = pte_to_swp_entry(pte); 322 if (!is_migration_entry(entry)) 323 goto out; 324 325 migration_entry_wait_on_locked(entry, ptl); 326 return; 327 out: 328 spin_unlock(ptl); 329 } 330 331 #ifdef CONFIG_HUGETLB_PAGE 332 /* 333 * The vma read lock must be held upon entry. Holding that lock prevents either 334 * the pte or the ptl from being freed. 335 * 336 * This function will release the vma lock before returning. 337 */ 338 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep) 339 { 340 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 341 pte_t pte; 342 343 hugetlb_vma_assert_locked(vma); 344 spin_lock(ptl); 345 pte = huge_ptep_get(ptep); 346 347 if (unlikely(!is_hugetlb_entry_migration(pte))) { 348 spin_unlock(ptl); 349 hugetlb_vma_unlock_read(vma); 350 } else { 351 /* 352 * If migration entry existed, safe to release vma lock 353 * here because the pgtable page won't be freed without the 354 * pgtable lock released. See comment right above pgtable 355 * lock release in migration_entry_wait_on_locked(). 356 */ 357 hugetlb_vma_unlock_read(vma); 358 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 359 } 360 } 361 #endif 362 363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 364 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 365 { 366 spinlock_t *ptl; 367 368 ptl = pmd_lock(mm, pmd); 369 if (!is_pmd_migration_entry(*pmd)) 370 goto unlock; 371 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 372 return; 373 unlock: 374 spin_unlock(ptl); 375 } 376 #endif 377 378 static int folio_expected_refs(struct address_space *mapping, 379 struct folio *folio) 380 { 381 int refs = 1; 382 if (!mapping) 383 return refs; 384 385 refs += folio_nr_pages(folio); 386 if (folio_test_private(folio)) 387 refs++; 388 389 return refs; 390 } 391 392 /* 393 * Replace the page in the mapping. 394 * 395 * The number of remaining references must be: 396 * 1 for anonymous pages without a mapping 397 * 2 for pages with a mapping 398 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 399 */ 400 int folio_migrate_mapping(struct address_space *mapping, 401 struct folio *newfolio, struct folio *folio, int extra_count) 402 { 403 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 404 struct zone *oldzone, *newzone; 405 int dirty; 406 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 407 long nr = folio_nr_pages(folio); 408 long entries, i; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (folio_ref_count(folio) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newfolio->index = folio->index; 417 newfolio->mapping = folio->mapping; 418 if (folio_test_swapbacked(folio)) 419 __folio_set_swapbacked(newfolio); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = folio_zone(folio); 425 newzone = folio_zone(newfolio); 426 427 xas_lock_irq(&xas); 428 if (!folio_ref_freeze(folio, expected_count)) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 /* 434 * Now we know that no one else is looking at the folio: 435 * no turning back from here. 436 */ 437 newfolio->index = folio->index; 438 newfolio->mapping = folio->mapping; 439 folio_ref_add(newfolio, nr); /* add cache reference */ 440 if (folio_test_swapbacked(folio)) { 441 __folio_set_swapbacked(newfolio); 442 if (folio_test_swapcache(folio)) { 443 folio_set_swapcache(newfolio); 444 newfolio->private = folio_get_private(folio); 445 } 446 entries = nr; 447 } else { 448 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 449 entries = 1; 450 } 451 452 /* Move dirty while page refs frozen and newpage not yet exposed */ 453 dirty = folio_test_dirty(folio); 454 if (dirty) { 455 folio_clear_dirty(folio); 456 folio_set_dirty(newfolio); 457 } 458 459 /* Swap cache still stores N entries instead of a high-order entry */ 460 for (i = 0; i < entries; i++) { 461 xas_store(&xas, newfolio); 462 xas_next(&xas); 463 } 464 465 /* 466 * Drop cache reference from old page by unfreezing 467 * to one less reference. 468 * We know this isn't the last reference. 469 */ 470 folio_ref_unfreeze(folio, expected_count - nr); 471 472 xas_unlock(&xas); 473 /* Leave irq disabled to prevent preemption while updating stats */ 474 475 /* 476 * If moved to a different zone then also account 477 * the page for that zone. Other VM counters will be 478 * taken care of when we establish references to the 479 * new page and drop references to the old page. 480 * 481 * Note that anonymous pages are accounted for 482 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 483 * are mapped to swap space. 484 */ 485 if (newzone != oldzone) { 486 struct lruvec *old_lruvec, *new_lruvec; 487 struct mem_cgroup *memcg; 488 489 memcg = folio_memcg(folio); 490 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 491 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 492 493 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 494 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 495 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 496 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 497 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 498 499 if (folio_test_pmd_mappable(folio)) { 500 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 501 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 502 } 503 } 504 #ifdef CONFIG_SWAP 505 if (folio_test_swapcache(folio)) { 506 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 507 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 508 } 509 #endif 510 if (dirty && mapping_can_writeback(mapping)) { 511 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 512 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 513 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 514 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 515 } 516 } 517 local_irq_enable(); 518 519 return MIGRATEPAGE_SUCCESS; 520 } 521 EXPORT_SYMBOL(folio_migrate_mapping); 522 523 /* 524 * The expected number of remaining references is the same as that 525 * of folio_migrate_mapping(). 526 */ 527 int migrate_huge_page_move_mapping(struct address_space *mapping, 528 struct folio *dst, struct folio *src) 529 { 530 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 531 int expected_count; 532 533 xas_lock_irq(&xas); 534 expected_count = folio_expected_refs(mapping, src); 535 if (!folio_ref_freeze(src, expected_count)) { 536 xas_unlock_irq(&xas); 537 return -EAGAIN; 538 } 539 540 dst->index = src->index; 541 dst->mapping = src->mapping; 542 543 folio_ref_add(dst, folio_nr_pages(dst)); 544 545 xas_store(&xas, dst); 546 547 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 548 549 xas_unlock_irq(&xas); 550 551 return MIGRATEPAGE_SUCCESS; 552 } 553 554 /* 555 * Copy the flags and some other ancillary information 556 */ 557 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 558 { 559 int cpupid; 560 561 if (folio_test_error(folio)) 562 folio_set_error(newfolio); 563 if (folio_test_referenced(folio)) 564 folio_set_referenced(newfolio); 565 if (folio_test_uptodate(folio)) 566 folio_mark_uptodate(newfolio); 567 if (folio_test_clear_active(folio)) { 568 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 569 folio_set_active(newfolio); 570 } else if (folio_test_clear_unevictable(folio)) 571 folio_set_unevictable(newfolio); 572 if (folio_test_workingset(folio)) 573 folio_set_workingset(newfolio); 574 if (folio_test_checked(folio)) 575 folio_set_checked(newfolio); 576 /* 577 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 578 * migration entries. We can still have PG_anon_exclusive set on an 579 * effectively unmapped and unreferenced first sub-pages of an 580 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 581 */ 582 if (folio_test_mappedtodisk(folio)) 583 folio_set_mappedtodisk(newfolio); 584 585 /* Move dirty on pages not done by folio_migrate_mapping() */ 586 if (folio_test_dirty(folio)) 587 folio_set_dirty(newfolio); 588 589 if (folio_test_young(folio)) 590 folio_set_young(newfolio); 591 if (folio_test_idle(folio)) 592 folio_set_idle(newfolio); 593 594 /* 595 * Copy NUMA information to the new page, to prevent over-eager 596 * future migrations of this same page. 597 */ 598 cpupid = folio_xchg_last_cpupid(folio, -1); 599 /* 600 * For memory tiering mode, when migrate between slow and fast 601 * memory node, reset cpupid, because that is used to record 602 * page access time in slow memory node. 603 */ 604 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 605 bool f_toptier = node_is_toptier(folio_nid(folio)); 606 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 607 608 if (f_toptier != t_toptier) 609 cpupid = -1; 610 } 611 folio_xchg_last_cpupid(newfolio, cpupid); 612 613 folio_migrate_ksm(newfolio, folio); 614 /* 615 * Please do not reorder this without considering how mm/ksm.c's 616 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 617 */ 618 if (folio_test_swapcache(folio)) 619 folio_clear_swapcache(folio); 620 folio_clear_private(folio); 621 622 /* page->private contains hugetlb specific flags */ 623 if (!folio_test_hugetlb(folio)) 624 folio->private = NULL; 625 626 /* 627 * If any waiters have accumulated on the new page then 628 * wake them up. 629 */ 630 if (folio_test_writeback(newfolio)) 631 folio_end_writeback(newfolio); 632 633 /* 634 * PG_readahead shares the same bit with PG_reclaim. The above 635 * end_page_writeback() may clear PG_readahead mistakenly, so set the 636 * bit after that. 637 */ 638 if (folio_test_readahead(folio)) 639 folio_set_readahead(newfolio); 640 641 folio_copy_owner(newfolio, folio); 642 643 mem_cgroup_migrate(folio, newfolio); 644 } 645 EXPORT_SYMBOL(folio_migrate_flags); 646 647 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 648 { 649 folio_copy(newfolio, folio); 650 folio_migrate_flags(newfolio, folio); 651 } 652 EXPORT_SYMBOL(folio_migrate_copy); 653 654 /************************************************************ 655 * Migration functions 656 ***********************************************************/ 657 658 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 659 struct folio *src, enum migrate_mode mode, int extra_count) 660 { 661 int rc; 662 663 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 664 665 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 666 667 if (rc != MIGRATEPAGE_SUCCESS) 668 return rc; 669 670 if (mode != MIGRATE_SYNC_NO_COPY) 671 folio_migrate_copy(dst, src); 672 else 673 folio_migrate_flags(dst, src); 674 return MIGRATEPAGE_SUCCESS; 675 } 676 677 /** 678 * migrate_folio() - Simple folio migration. 679 * @mapping: The address_space containing the folio. 680 * @dst: The folio to migrate the data to. 681 * @src: The folio containing the current data. 682 * @mode: How to migrate the page. 683 * 684 * Common logic to directly migrate a single LRU folio suitable for 685 * folios that do not use PagePrivate/PagePrivate2. 686 * 687 * Folios are locked upon entry and exit. 688 */ 689 int migrate_folio(struct address_space *mapping, struct folio *dst, 690 struct folio *src, enum migrate_mode mode) 691 { 692 return migrate_folio_extra(mapping, dst, src, mode, 0); 693 } 694 EXPORT_SYMBOL(migrate_folio); 695 696 #ifdef CONFIG_BUFFER_HEAD 697 /* Returns true if all buffers are successfully locked */ 698 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 699 enum migrate_mode mode) 700 { 701 struct buffer_head *bh = head; 702 struct buffer_head *failed_bh; 703 704 do { 705 if (!trylock_buffer(bh)) { 706 if (mode == MIGRATE_ASYNC) 707 goto unlock; 708 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 709 goto unlock; 710 lock_buffer(bh); 711 } 712 713 bh = bh->b_this_page; 714 } while (bh != head); 715 716 return true; 717 718 unlock: 719 /* We failed to lock the buffer and cannot stall. */ 720 failed_bh = bh; 721 bh = head; 722 while (bh != failed_bh) { 723 unlock_buffer(bh); 724 bh = bh->b_this_page; 725 } 726 727 return false; 728 } 729 730 static int __buffer_migrate_folio(struct address_space *mapping, 731 struct folio *dst, struct folio *src, enum migrate_mode mode, 732 bool check_refs) 733 { 734 struct buffer_head *bh, *head; 735 int rc; 736 int expected_count; 737 738 head = folio_buffers(src); 739 if (!head) 740 return migrate_folio(mapping, dst, src, mode); 741 742 /* Check whether page does not have extra refs before we do more work */ 743 expected_count = folio_expected_refs(mapping, src); 744 if (folio_ref_count(src) != expected_count) 745 return -EAGAIN; 746 747 if (!buffer_migrate_lock_buffers(head, mode)) 748 return -EAGAIN; 749 750 if (check_refs) { 751 bool busy; 752 bool invalidated = false; 753 754 recheck_buffers: 755 busy = false; 756 spin_lock(&mapping->i_private_lock); 757 bh = head; 758 do { 759 if (atomic_read(&bh->b_count)) { 760 busy = true; 761 break; 762 } 763 bh = bh->b_this_page; 764 } while (bh != head); 765 if (busy) { 766 if (invalidated) { 767 rc = -EAGAIN; 768 goto unlock_buffers; 769 } 770 spin_unlock(&mapping->i_private_lock); 771 invalidate_bh_lrus(); 772 invalidated = true; 773 goto recheck_buffers; 774 } 775 } 776 777 rc = folio_migrate_mapping(mapping, dst, src, 0); 778 if (rc != MIGRATEPAGE_SUCCESS) 779 goto unlock_buffers; 780 781 folio_attach_private(dst, folio_detach_private(src)); 782 783 bh = head; 784 do { 785 folio_set_bh(bh, dst, bh_offset(bh)); 786 bh = bh->b_this_page; 787 } while (bh != head); 788 789 if (mode != MIGRATE_SYNC_NO_COPY) 790 folio_migrate_copy(dst, src); 791 else 792 folio_migrate_flags(dst, src); 793 794 rc = MIGRATEPAGE_SUCCESS; 795 unlock_buffers: 796 if (check_refs) 797 spin_unlock(&mapping->i_private_lock); 798 bh = head; 799 do { 800 unlock_buffer(bh); 801 bh = bh->b_this_page; 802 } while (bh != head); 803 804 return rc; 805 } 806 807 /** 808 * buffer_migrate_folio() - Migration function for folios with buffers. 809 * @mapping: The address space containing @src. 810 * @dst: The folio to migrate to. 811 * @src: The folio to migrate from. 812 * @mode: How to migrate the folio. 813 * 814 * This function can only be used if the underlying filesystem guarantees 815 * that no other references to @src exist. For example attached buffer 816 * heads are accessed only under the folio lock. If your filesystem cannot 817 * provide this guarantee, buffer_migrate_folio_norefs() may be more 818 * appropriate. 819 * 820 * Return: 0 on success or a negative errno on failure. 821 */ 822 int buffer_migrate_folio(struct address_space *mapping, 823 struct folio *dst, struct folio *src, enum migrate_mode mode) 824 { 825 return __buffer_migrate_folio(mapping, dst, src, mode, false); 826 } 827 EXPORT_SYMBOL(buffer_migrate_folio); 828 829 /** 830 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 831 * @mapping: The address space containing @src. 832 * @dst: The folio to migrate to. 833 * @src: The folio to migrate from. 834 * @mode: How to migrate the folio. 835 * 836 * Like buffer_migrate_folio() except that this variant is more careful 837 * and checks that there are also no buffer head references. This function 838 * is the right one for mappings where buffer heads are directly looked 839 * up and referenced (such as block device mappings). 840 * 841 * Return: 0 on success or a negative errno on failure. 842 */ 843 int buffer_migrate_folio_norefs(struct address_space *mapping, 844 struct folio *dst, struct folio *src, enum migrate_mode mode) 845 { 846 return __buffer_migrate_folio(mapping, dst, src, mode, true); 847 } 848 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 849 #endif /* CONFIG_BUFFER_HEAD */ 850 851 int filemap_migrate_folio(struct address_space *mapping, 852 struct folio *dst, struct folio *src, enum migrate_mode mode) 853 { 854 int ret; 855 856 ret = folio_migrate_mapping(mapping, dst, src, 0); 857 if (ret != MIGRATEPAGE_SUCCESS) 858 return ret; 859 860 if (folio_get_private(src)) 861 folio_attach_private(dst, folio_detach_private(src)); 862 863 if (mode != MIGRATE_SYNC_NO_COPY) 864 folio_migrate_copy(dst, src); 865 else 866 folio_migrate_flags(dst, src); 867 return MIGRATEPAGE_SUCCESS; 868 } 869 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 870 871 /* 872 * Writeback a folio to clean the dirty state 873 */ 874 static int writeout(struct address_space *mapping, struct folio *folio) 875 { 876 struct writeback_control wbc = { 877 .sync_mode = WB_SYNC_NONE, 878 .nr_to_write = 1, 879 .range_start = 0, 880 .range_end = LLONG_MAX, 881 .for_reclaim = 1 882 }; 883 int rc; 884 885 if (!mapping->a_ops->writepage) 886 /* No write method for the address space */ 887 return -EINVAL; 888 889 if (!folio_clear_dirty_for_io(folio)) 890 /* Someone else already triggered a write */ 891 return -EAGAIN; 892 893 /* 894 * A dirty folio may imply that the underlying filesystem has 895 * the folio on some queue. So the folio must be clean for 896 * migration. Writeout may mean we lose the lock and the 897 * folio state is no longer what we checked for earlier. 898 * At this point we know that the migration attempt cannot 899 * be successful. 900 */ 901 remove_migration_ptes(folio, folio, false); 902 903 rc = mapping->a_ops->writepage(&folio->page, &wbc); 904 905 if (rc != AOP_WRITEPAGE_ACTIVATE) 906 /* unlocked. Relock */ 907 folio_lock(folio); 908 909 return (rc < 0) ? -EIO : -EAGAIN; 910 } 911 912 /* 913 * Default handling if a filesystem does not provide a migration function. 914 */ 915 static int fallback_migrate_folio(struct address_space *mapping, 916 struct folio *dst, struct folio *src, enum migrate_mode mode) 917 { 918 if (folio_test_dirty(src)) { 919 /* Only writeback folios in full synchronous migration */ 920 switch (mode) { 921 case MIGRATE_SYNC: 922 case MIGRATE_SYNC_NO_COPY: 923 break; 924 default: 925 return -EBUSY; 926 } 927 return writeout(mapping, src); 928 } 929 930 /* 931 * Buffers may be managed in a filesystem specific way. 932 * We must have no buffers or drop them. 933 */ 934 if (!filemap_release_folio(src, GFP_KERNEL)) 935 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 936 937 return migrate_folio(mapping, dst, src, mode); 938 } 939 940 /* 941 * Move a page to a newly allocated page 942 * The page is locked and all ptes have been successfully removed. 943 * 944 * The new page will have replaced the old page if this function 945 * is successful. 946 * 947 * Return value: 948 * < 0 - error code 949 * MIGRATEPAGE_SUCCESS - success 950 */ 951 static int move_to_new_folio(struct folio *dst, struct folio *src, 952 enum migrate_mode mode) 953 { 954 int rc = -EAGAIN; 955 bool is_lru = !__folio_test_movable(src); 956 957 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 958 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 959 960 if (likely(is_lru)) { 961 struct address_space *mapping = folio_mapping(src); 962 963 if (!mapping) 964 rc = migrate_folio(mapping, dst, src, mode); 965 else if (mapping_unmovable(mapping)) 966 rc = -EOPNOTSUPP; 967 else if (mapping->a_ops->migrate_folio) 968 /* 969 * Most folios have a mapping and most filesystems 970 * provide a migrate_folio callback. Anonymous folios 971 * are part of swap space which also has its own 972 * migrate_folio callback. This is the most common path 973 * for page migration. 974 */ 975 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 976 mode); 977 else 978 rc = fallback_migrate_folio(mapping, dst, src, mode); 979 } else { 980 const struct movable_operations *mops; 981 982 /* 983 * In case of non-lru page, it could be released after 984 * isolation step. In that case, we shouldn't try migration. 985 */ 986 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 987 if (!folio_test_movable(src)) { 988 rc = MIGRATEPAGE_SUCCESS; 989 folio_clear_isolated(src); 990 goto out; 991 } 992 993 mops = folio_movable_ops(src); 994 rc = mops->migrate_page(&dst->page, &src->page, mode); 995 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 996 !folio_test_isolated(src)); 997 } 998 999 /* 1000 * When successful, old pagecache src->mapping must be cleared before 1001 * src is freed; but stats require that PageAnon be left as PageAnon. 1002 */ 1003 if (rc == MIGRATEPAGE_SUCCESS) { 1004 if (__folio_test_movable(src)) { 1005 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1006 1007 /* 1008 * We clear PG_movable under page_lock so any compactor 1009 * cannot try to migrate this page. 1010 */ 1011 folio_clear_isolated(src); 1012 } 1013 1014 /* 1015 * Anonymous and movable src->mapping will be cleared by 1016 * free_pages_prepare so don't reset it here for keeping 1017 * the type to work PageAnon, for example. 1018 */ 1019 if (!folio_mapping_flags(src)) 1020 src->mapping = NULL; 1021 1022 if (likely(!folio_is_zone_device(dst))) 1023 flush_dcache_folio(dst); 1024 } 1025 out: 1026 return rc; 1027 } 1028 1029 /* 1030 * To record some information during migration, we use unused private 1031 * field of struct folio of the newly allocated destination folio. 1032 * This is safe because nobody is using it except us. 1033 */ 1034 enum { 1035 PAGE_WAS_MAPPED = BIT(0), 1036 PAGE_WAS_MLOCKED = BIT(1), 1037 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1038 }; 1039 1040 static void __migrate_folio_record(struct folio *dst, 1041 int old_page_state, 1042 struct anon_vma *anon_vma) 1043 { 1044 dst->private = (void *)anon_vma + old_page_state; 1045 } 1046 1047 static void __migrate_folio_extract(struct folio *dst, 1048 int *old_page_state, 1049 struct anon_vma **anon_vmap) 1050 { 1051 unsigned long private = (unsigned long)dst->private; 1052 1053 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1054 *old_page_state = private & PAGE_OLD_STATES; 1055 dst->private = NULL; 1056 } 1057 1058 /* Restore the source folio to the original state upon failure */ 1059 static void migrate_folio_undo_src(struct folio *src, 1060 int page_was_mapped, 1061 struct anon_vma *anon_vma, 1062 bool locked, 1063 struct list_head *ret) 1064 { 1065 if (page_was_mapped) 1066 remove_migration_ptes(src, src, false); 1067 /* Drop an anon_vma reference if we took one */ 1068 if (anon_vma) 1069 put_anon_vma(anon_vma); 1070 if (locked) 1071 folio_unlock(src); 1072 if (ret) 1073 list_move_tail(&src->lru, ret); 1074 } 1075 1076 /* Restore the destination folio to the original state upon failure */ 1077 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1078 free_folio_t put_new_folio, unsigned long private) 1079 { 1080 if (locked) 1081 folio_unlock(dst); 1082 if (put_new_folio) 1083 put_new_folio(dst, private); 1084 else 1085 folio_put(dst); 1086 } 1087 1088 /* Cleanup src folio upon migration success */ 1089 static void migrate_folio_done(struct folio *src, 1090 enum migrate_reason reason) 1091 { 1092 /* 1093 * Compaction can migrate also non-LRU pages which are 1094 * not accounted to NR_ISOLATED_*. They can be recognized 1095 * as __folio_test_movable 1096 */ 1097 if (likely(!__folio_test_movable(src))) 1098 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1099 folio_is_file_lru(src), -folio_nr_pages(src)); 1100 1101 if (reason != MR_MEMORY_FAILURE) 1102 /* We release the page in page_handle_poison. */ 1103 folio_put(src); 1104 } 1105 1106 /* Obtain the lock on page, remove all ptes. */ 1107 static int migrate_folio_unmap(new_folio_t get_new_folio, 1108 free_folio_t put_new_folio, unsigned long private, 1109 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1110 enum migrate_reason reason, struct list_head *ret) 1111 { 1112 struct folio *dst; 1113 int rc = -EAGAIN; 1114 int old_page_state = 0; 1115 struct anon_vma *anon_vma = NULL; 1116 bool is_lru = !__folio_test_movable(src); 1117 bool locked = false; 1118 bool dst_locked = false; 1119 1120 if (folio_ref_count(src) == 1) { 1121 /* Folio was freed from under us. So we are done. */ 1122 folio_clear_active(src); 1123 folio_clear_unevictable(src); 1124 /* free_pages_prepare() will clear PG_isolated. */ 1125 list_del(&src->lru); 1126 migrate_folio_done(src, reason); 1127 return MIGRATEPAGE_SUCCESS; 1128 } 1129 1130 dst = get_new_folio(src, private); 1131 if (!dst) 1132 return -ENOMEM; 1133 *dstp = dst; 1134 1135 dst->private = NULL; 1136 1137 if (!folio_trylock(src)) { 1138 if (mode == MIGRATE_ASYNC) 1139 goto out; 1140 1141 /* 1142 * It's not safe for direct compaction to call lock_page. 1143 * For example, during page readahead pages are added locked 1144 * to the LRU. Later, when the IO completes the pages are 1145 * marked uptodate and unlocked. However, the queueing 1146 * could be merging multiple pages for one bio (e.g. 1147 * mpage_readahead). If an allocation happens for the 1148 * second or third page, the process can end up locking 1149 * the same page twice and deadlocking. Rather than 1150 * trying to be clever about what pages can be locked, 1151 * avoid the use of lock_page for direct compaction 1152 * altogether. 1153 */ 1154 if (current->flags & PF_MEMALLOC) 1155 goto out; 1156 1157 /* 1158 * In "light" mode, we can wait for transient locks (eg 1159 * inserting a page into the page table), but it's not 1160 * worth waiting for I/O. 1161 */ 1162 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1163 goto out; 1164 1165 folio_lock(src); 1166 } 1167 locked = true; 1168 if (folio_test_mlocked(src)) 1169 old_page_state |= PAGE_WAS_MLOCKED; 1170 1171 if (folio_test_writeback(src)) { 1172 /* 1173 * Only in the case of a full synchronous migration is it 1174 * necessary to wait for PageWriteback. In the async case, 1175 * the retry loop is too short and in the sync-light case, 1176 * the overhead of stalling is too much 1177 */ 1178 switch (mode) { 1179 case MIGRATE_SYNC: 1180 case MIGRATE_SYNC_NO_COPY: 1181 break; 1182 default: 1183 rc = -EBUSY; 1184 goto out; 1185 } 1186 folio_wait_writeback(src); 1187 } 1188 1189 /* 1190 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1191 * we cannot notice that anon_vma is freed while we migrate a page. 1192 * This get_anon_vma() delays freeing anon_vma pointer until the end 1193 * of migration. File cache pages are no problem because of page_lock() 1194 * File Caches may use write_page() or lock_page() in migration, then, 1195 * just care Anon page here. 1196 * 1197 * Only folio_get_anon_vma() understands the subtleties of 1198 * getting a hold on an anon_vma from outside one of its mms. 1199 * But if we cannot get anon_vma, then we won't need it anyway, 1200 * because that implies that the anon page is no longer mapped 1201 * (and cannot be remapped so long as we hold the page lock). 1202 */ 1203 if (folio_test_anon(src) && !folio_test_ksm(src)) 1204 anon_vma = folio_get_anon_vma(src); 1205 1206 /* 1207 * Block others from accessing the new page when we get around to 1208 * establishing additional references. We are usually the only one 1209 * holding a reference to dst at this point. We used to have a BUG 1210 * here if folio_trylock(dst) fails, but would like to allow for 1211 * cases where there might be a race with the previous use of dst. 1212 * This is much like races on refcount of oldpage: just don't BUG(). 1213 */ 1214 if (unlikely(!folio_trylock(dst))) 1215 goto out; 1216 dst_locked = true; 1217 1218 if (unlikely(!is_lru)) { 1219 __migrate_folio_record(dst, old_page_state, anon_vma); 1220 return MIGRATEPAGE_UNMAP; 1221 } 1222 1223 /* 1224 * Corner case handling: 1225 * 1. When a new swap-cache page is read into, it is added to the LRU 1226 * and treated as swapcache but it has no rmap yet. 1227 * Calling try_to_unmap() against a src->mapping==NULL page will 1228 * trigger a BUG. So handle it here. 1229 * 2. An orphaned page (see truncate_cleanup_page) might have 1230 * fs-private metadata. The page can be picked up due to memory 1231 * offlining. Everywhere else except page reclaim, the page is 1232 * invisible to the vm, so the page can not be migrated. So try to 1233 * free the metadata, so the page can be freed. 1234 */ 1235 if (!src->mapping) { 1236 if (folio_test_private(src)) { 1237 try_to_free_buffers(src); 1238 goto out; 1239 } 1240 } else if (folio_mapped(src)) { 1241 /* Establish migration ptes */ 1242 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1243 !folio_test_ksm(src) && !anon_vma, src); 1244 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1245 old_page_state |= PAGE_WAS_MAPPED; 1246 } 1247 1248 if (!folio_mapped(src)) { 1249 __migrate_folio_record(dst, old_page_state, anon_vma); 1250 return MIGRATEPAGE_UNMAP; 1251 } 1252 1253 out: 1254 /* 1255 * A folio that has not been unmapped will be restored to 1256 * right list unless we want to retry. 1257 */ 1258 if (rc == -EAGAIN) 1259 ret = NULL; 1260 1261 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1262 anon_vma, locked, ret); 1263 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1264 1265 return rc; 1266 } 1267 1268 /* Migrate the folio to the newly allocated folio in dst. */ 1269 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1270 struct folio *src, struct folio *dst, 1271 enum migrate_mode mode, enum migrate_reason reason, 1272 struct list_head *ret) 1273 { 1274 int rc; 1275 int old_page_state = 0; 1276 struct anon_vma *anon_vma = NULL; 1277 bool is_lru = !__folio_test_movable(src); 1278 struct list_head *prev; 1279 1280 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1281 prev = dst->lru.prev; 1282 list_del(&dst->lru); 1283 1284 rc = move_to_new_folio(dst, src, mode); 1285 if (rc) 1286 goto out; 1287 1288 if (unlikely(!is_lru)) 1289 goto out_unlock_both; 1290 1291 /* 1292 * When successful, push dst to LRU immediately: so that if it 1293 * turns out to be an mlocked page, remove_migration_ptes() will 1294 * automatically build up the correct dst->mlock_count for it. 1295 * 1296 * We would like to do something similar for the old page, when 1297 * unsuccessful, and other cases when a page has been temporarily 1298 * isolated from the unevictable LRU: but this case is the easiest. 1299 */ 1300 folio_add_lru(dst); 1301 if (old_page_state & PAGE_WAS_MLOCKED) 1302 lru_add_drain(); 1303 1304 if (old_page_state & PAGE_WAS_MAPPED) 1305 remove_migration_ptes(src, dst, false); 1306 1307 out_unlock_both: 1308 folio_unlock(dst); 1309 set_page_owner_migrate_reason(&dst->page, reason); 1310 /* 1311 * If migration is successful, decrease refcount of dst, 1312 * which will not free the page because new page owner increased 1313 * refcounter. 1314 */ 1315 folio_put(dst); 1316 1317 /* 1318 * A folio that has been migrated has all references removed 1319 * and will be freed. 1320 */ 1321 list_del(&src->lru); 1322 /* Drop an anon_vma reference if we took one */ 1323 if (anon_vma) 1324 put_anon_vma(anon_vma); 1325 folio_unlock(src); 1326 migrate_folio_done(src, reason); 1327 1328 return rc; 1329 out: 1330 /* 1331 * A folio that has not been migrated will be restored to 1332 * right list unless we want to retry. 1333 */ 1334 if (rc == -EAGAIN) { 1335 list_add(&dst->lru, prev); 1336 __migrate_folio_record(dst, old_page_state, anon_vma); 1337 return rc; 1338 } 1339 1340 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1341 anon_vma, true, ret); 1342 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1343 1344 return rc; 1345 } 1346 1347 /* 1348 * Counterpart of unmap_and_move_page() for hugepage migration. 1349 * 1350 * This function doesn't wait the completion of hugepage I/O 1351 * because there is no race between I/O and migration for hugepage. 1352 * Note that currently hugepage I/O occurs only in direct I/O 1353 * where no lock is held and PG_writeback is irrelevant, 1354 * and writeback status of all subpages are counted in the reference 1355 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1356 * under direct I/O, the reference of the head page is 512 and a bit more.) 1357 * This means that when we try to migrate hugepage whose subpages are 1358 * doing direct I/O, some references remain after try_to_unmap() and 1359 * hugepage migration fails without data corruption. 1360 * 1361 * There is also no race when direct I/O is issued on the page under migration, 1362 * because then pte is replaced with migration swap entry and direct I/O code 1363 * will wait in the page fault for migration to complete. 1364 */ 1365 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1366 free_folio_t put_new_folio, unsigned long private, 1367 struct folio *src, int force, enum migrate_mode mode, 1368 int reason, struct list_head *ret) 1369 { 1370 struct folio *dst; 1371 int rc = -EAGAIN; 1372 int page_was_mapped = 0; 1373 struct anon_vma *anon_vma = NULL; 1374 struct address_space *mapping = NULL; 1375 1376 if (folio_ref_count(src) == 1) { 1377 /* page was freed from under us. So we are done. */ 1378 folio_putback_active_hugetlb(src); 1379 return MIGRATEPAGE_SUCCESS; 1380 } 1381 1382 dst = get_new_folio(src, private); 1383 if (!dst) 1384 return -ENOMEM; 1385 1386 if (!folio_trylock(src)) { 1387 if (!force) 1388 goto out; 1389 switch (mode) { 1390 case MIGRATE_SYNC: 1391 case MIGRATE_SYNC_NO_COPY: 1392 break; 1393 default: 1394 goto out; 1395 } 1396 folio_lock(src); 1397 } 1398 1399 /* 1400 * Check for pages which are in the process of being freed. Without 1401 * folio_mapping() set, hugetlbfs specific move page routine will not 1402 * be called and we could leak usage counts for subpools. 1403 */ 1404 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1405 rc = -EBUSY; 1406 goto out_unlock; 1407 } 1408 1409 if (folio_test_anon(src)) 1410 anon_vma = folio_get_anon_vma(src); 1411 1412 if (unlikely(!folio_trylock(dst))) 1413 goto put_anon; 1414 1415 if (folio_mapped(src)) { 1416 enum ttu_flags ttu = 0; 1417 1418 if (!folio_test_anon(src)) { 1419 /* 1420 * In shared mappings, try_to_unmap could potentially 1421 * call huge_pmd_unshare. Because of this, take 1422 * semaphore in write mode here and set TTU_RMAP_LOCKED 1423 * to let lower levels know we have taken the lock. 1424 */ 1425 mapping = hugetlb_page_mapping_lock_write(&src->page); 1426 if (unlikely(!mapping)) 1427 goto unlock_put_anon; 1428 1429 ttu = TTU_RMAP_LOCKED; 1430 } 1431 1432 try_to_migrate(src, ttu); 1433 page_was_mapped = 1; 1434 1435 if (ttu & TTU_RMAP_LOCKED) 1436 i_mmap_unlock_write(mapping); 1437 } 1438 1439 if (!folio_mapped(src)) 1440 rc = move_to_new_folio(dst, src, mode); 1441 1442 if (page_was_mapped) 1443 remove_migration_ptes(src, 1444 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1445 1446 unlock_put_anon: 1447 folio_unlock(dst); 1448 1449 put_anon: 1450 if (anon_vma) 1451 put_anon_vma(anon_vma); 1452 1453 if (rc == MIGRATEPAGE_SUCCESS) { 1454 move_hugetlb_state(src, dst, reason); 1455 put_new_folio = NULL; 1456 } 1457 1458 out_unlock: 1459 folio_unlock(src); 1460 out: 1461 if (rc == MIGRATEPAGE_SUCCESS) 1462 folio_putback_active_hugetlb(src); 1463 else if (rc != -EAGAIN) 1464 list_move_tail(&src->lru, ret); 1465 1466 /* 1467 * If migration was not successful and there's a freeing callback, use 1468 * it. Otherwise, put_page() will drop the reference grabbed during 1469 * isolation. 1470 */ 1471 if (put_new_folio) 1472 put_new_folio(dst, private); 1473 else 1474 folio_putback_active_hugetlb(dst); 1475 1476 return rc; 1477 } 1478 1479 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1480 { 1481 int rc; 1482 1483 folio_lock(folio); 1484 rc = split_folio_to_list(folio, split_folios); 1485 folio_unlock(folio); 1486 if (!rc) 1487 list_move_tail(&folio->lru, split_folios); 1488 1489 return rc; 1490 } 1491 1492 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1493 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1494 #else 1495 #define NR_MAX_BATCHED_MIGRATION 512 1496 #endif 1497 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1498 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1499 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1500 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1501 1502 struct migrate_pages_stats { 1503 int nr_succeeded; /* Normal and large folios migrated successfully, in 1504 units of base pages */ 1505 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1506 units of base pages. Untried folios aren't counted */ 1507 int nr_thp_succeeded; /* THP migrated successfully */ 1508 int nr_thp_failed; /* THP failed to be migrated */ 1509 int nr_thp_split; /* THP split before migrating */ 1510 int nr_split; /* Large folio (include THP) split before migrating */ 1511 }; 1512 1513 /* 1514 * Returns the number of hugetlb folios that were not migrated, or an error code 1515 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1516 * any more because the list has become empty or no retryable hugetlb folios 1517 * exist any more. It is caller's responsibility to call putback_movable_pages() 1518 * only if ret != 0. 1519 */ 1520 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1521 free_folio_t put_new_folio, unsigned long private, 1522 enum migrate_mode mode, int reason, 1523 struct migrate_pages_stats *stats, 1524 struct list_head *ret_folios) 1525 { 1526 int retry = 1; 1527 int nr_failed = 0; 1528 int nr_retry_pages = 0; 1529 int pass = 0; 1530 struct folio *folio, *folio2; 1531 int rc, nr_pages; 1532 1533 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1534 retry = 0; 1535 nr_retry_pages = 0; 1536 1537 list_for_each_entry_safe(folio, folio2, from, lru) { 1538 if (!folio_test_hugetlb(folio)) 1539 continue; 1540 1541 nr_pages = folio_nr_pages(folio); 1542 1543 cond_resched(); 1544 1545 /* 1546 * Migratability of hugepages depends on architectures and 1547 * their size. This check is necessary because some callers 1548 * of hugepage migration like soft offline and memory 1549 * hotremove don't walk through page tables or check whether 1550 * the hugepage is pmd-based or not before kicking migration. 1551 */ 1552 if (!hugepage_migration_supported(folio_hstate(folio))) { 1553 nr_failed++; 1554 stats->nr_failed_pages += nr_pages; 1555 list_move_tail(&folio->lru, ret_folios); 1556 continue; 1557 } 1558 1559 rc = unmap_and_move_huge_page(get_new_folio, 1560 put_new_folio, private, 1561 folio, pass > 2, mode, 1562 reason, ret_folios); 1563 /* 1564 * The rules are: 1565 * Success: hugetlb folio will be put back 1566 * -EAGAIN: stay on the from list 1567 * -ENOMEM: stay on the from list 1568 * Other errno: put on ret_folios list 1569 */ 1570 switch(rc) { 1571 case -ENOMEM: 1572 /* 1573 * When memory is low, don't bother to try to migrate 1574 * other folios, just exit. 1575 */ 1576 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1577 return -ENOMEM; 1578 case -EAGAIN: 1579 retry++; 1580 nr_retry_pages += nr_pages; 1581 break; 1582 case MIGRATEPAGE_SUCCESS: 1583 stats->nr_succeeded += nr_pages; 1584 break; 1585 default: 1586 /* 1587 * Permanent failure (-EBUSY, etc.): 1588 * unlike -EAGAIN case, the failed folio is 1589 * removed from migration folio list and not 1590 * retried in the next outer loop. 1591 */ 1592 nr_failed++; 1593 stats->nr_failed_pages += nr_pages; 1594 break; 1595 } 1596 } 1597 } 1598 /* 1599 * nr_failed is number of hugetlb folios failed to be migrated. After 1600 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1601 * folios as failed. 1602 */ 1603 nr_failed += retry; 1604 stats->nr_failed_pages += nr_retry_pages; 1605 1606 return nr_failed; 1607 } 1608 1609 /* 1610 * migrate_pages_batch() first unmaps folios in the from list as many as 1611 * possible, then move the unmapped folios. 1612 * 1613 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1614 * lock or bit when we have locked more than one folio. Which may cause 1615 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1616 * length of the from list must be <= 1. 1617 */ 1618 static int migrate_pages_batch(struct list_head *from, 1619 new_folio_t get_new_folio, free_folio_t put_new_folio, 1620 unsigned long private, enum migrate_mode mode, int reason, 1621 struct list_head *ret_folios, struct list_head *split_folios, 1622 struct migrate_pages_stats *stats, int nr_pass) 1623 { 1624 int retry = 1; 1625 int thp_retry = 1; 1626 int nr_failed = 0; 1627 int nr_retry_pages = 0; 1628 int pass = 0; 1629 bool is_thp = false; 1630 bool is_large = false; 1631 struct folio *folio, *folio2, *dst = NULL, *dst2; 1632 int rc, rc_saved = 0, nr_pages; 1633 LIST_HEAD(unmap_folios); 1634 LIST_HEAD(dst_folios); 1635 bool nosplit = (reason == MR_NUMA_MISPLACED); 1636 1637 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1638 !list_empty(from) && !list_is_singular(from)); 1639 1640 for (pass = 0; pass < nr_pass && retry; pass++) { 1641 retry = 0; 1642 thp_retry = 0; 1643 nr_retry_pages = 0; 1644 1645 list_for_each_entry_safe(folio, folio2, from, lru) { 1646 is_large = folio_test_large(folio); 1647 is_thp = is_large && folio_test_pmd_mappable(folio); 1648 nr_pages = folio_nr_pages(folio); 1649 1650 cond_resched(); 1651 1652 /* 1653 * Large folio migration might be unsupported or 1654 * the allocation might be failed so we should retry 1655 * on the same folio with the large folio split 1656 * to normal folios. 1657 * 1658 * Split folios are put in split_folios, and 1659 * we will migrate them after the rest of the 1660 * list is processed. 1661 */ 1662 if (!thp_migration_supported() && is_thp) { 1663 nr_failed++; 1664 stats->nr_thp_failed++; 1665 if (!try_split_folio(folio, split_folios)) { 1666 stats->nr_thp_split++; 1667 stats->nr_split++; 1668 continue; 1669 } 1670 stats->nr_failed_pages += nr_pages; 1671 list_move_tail(&folio->lru, ret_folios); 1672 continue; 1673 } 1674 1675 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1676 private, folio, &dst, mode, reason, 1677 ret_folios); 1678 /* 1679 * The rules are: 1680 * Success: folio will be freed 1681 * Unmap: folio will be put on unmap_folios list, 1682 * dst folio put on dst_folios list 1683 * -EAGAIN: stay on the from list 1684 * -ENOMEM: stay on the from list 1685 * Other errno: put on ret_folios list 1686 */ 1687 switch(rc) { 1688 case -ENOMEM: 1689 /* 1690 * When memory is low, don't bother to try to migrate 1691 * other folios, move unmapped folios, then exit. 1692 */ 1693 nr_failed++; 1694 stats->nr_thp_failed += is_thp; 1695 /* Large folio NUMA faulting doesn't split to retry. */ 1696 if (is_large && !nosplit) { 1697 int ret = try_split_folio(folio, split_folios); 1698 1699 if (!ret) { 1700 stats->nr_thp_split += is_thp; 1701 stats->nr_split++; 1702 break; 1703 } else if (reason == MR_LONGTERM_PIN && 1704 ret == -EAGAIN) { 1705 /* 1706 * Try again to split large folio to 1707 * mitigate the failure of longterm pinning. 1708 */ 1709 retry++; 1710 thp_retry += is_thp; 1711 nr_retry_pages += nr_pages; 1712 /* Undo duplicated failure counting. */ 1713 nr_failed--; 1714 stats->nr_thp_failed -= is_thp; 1715 break; 1716 } 1717 } 1718 1719 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1720 /* nr_failed isn't updated for not used */ 1721 stats->nr_thp_failed += thp_retry; 1722 rc_saved = rc; 1723 if (list_empty(&unmap_folios)) 1724 goto out; 1725 else 1726 goto move; 1727 case -EAGAIN: 1728 retry++; 1729 thp_retry += is_thp; 1730 nr_retry_pages += nr_pages; 1731 break; 1732 case MIGRATEPAGE_SUCCESS: 1733 stats->nr_succeeded += nr_pages; 1734 stats->nr_thp_succeeded += is_thp; 1735 break; 1736 case MIGRATEPAGE_UNMAP: 1737 list_move_tail(&folio->lru, &unmap_folios); 1738 list_add_tail(&dst->lru, &dst_folios); 1739 break; 1740 default: 1741 /* 1742 * Permanent failure (-EBUSY, etc.): 1743 * unlike -EAGAIN case, the failed folio is 1744 * removed from migration folio list and not 1745 * retried in the next outer loop. 1746 */ 1747 nr_failed++; 1748 stats->nr_thp_failed += is_thp; 1749 stats->nr_failed_pages += nr_pages; 1750 break; 1751 } 1752 } 1753 } 1754 nr_failed += retry; 1755 stats->nr_thp_failed += thp_retry; 1756 stats->nr_failed_pages += nr_retry_pages; 1757 move: 1758 /* Flush TLBs for all unmapped folios */ 1759 try_to_unmap_flush(); 1760 1761 retry = 1; 1762 for (pass = 0; pass < nr_pass && retry; pass++) { 1763 retry = 0; 1764 thp_retry = 0; 1765 nr_retry_pages = 0; 1766 1767 dst = list_first_entry(&dst_folios, struct folio, lru); 1768 dst2 = list_next_entry(dst, lru); 1769 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1770 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1771 nr_pages = folio_nr_pages(folio); 1772 1773 cond_resched(); 1774 1775 rc = migrate_folio_move(put_new_folio, private, 1776 folio, dst, mode, 1777 reason, ret_folios); 1778 /* 1779 * The rules are: 1780 * Success: folio will be freed 1781 * -EAGAIN: stay on the unmap_folios list 1782 * Other errno: put on ret_folios list 1783 */ 1784 switch(rc) { 1785 case -EAGAIN: 1786 retry++; 1787 thp_retry += is_thp; 1788 nr_retry_pages += nr_pages; 1789 break; 1790 case MIGRATEPAGE_SUCCESS: 1791 stats->nr_succeeded += nr_pages; 1792 stats->nr_thp_succeeded += is_thp; 1793 break; 1794 default: 1795 nr_failed++; 1796 stats->nr_thp_failed += is_thp; 1797 stats->nr_failed_pages += nr_pages; 1798 break; 1799 } 1800 dst = dst2; 1801 dst2 = list_next_entry(dst, lru); 1802 } 1803 } 1804 nr_failed += retry; 1805 stats->nr_thp_failed += thp_retry; 1806 stats->nr_failed_pages += nr_retry_pages; 1807 1808 rc = rc_saved ? : nr_failed; 1809 out: 1810 /* Cleanup remaining folios */ 1811 dst = list_first_entry(&dst_folios, struct folio, lru); 1812 dst2 = list_next_entry(dst, lru); 1813 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1814 int old_page_state = 0; 1815 struct anon_vma *anon_vma = NULL; 1816 1817 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1818 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1819 anon_vma, true, ret_folios); 1820 list_del(&dst->lru); 1821 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1822 dst = dst2; 1823 dst2 = list_next_entry(dst, lru); 1824 } 1825 1826 return rc; 1827 } 1828 1829 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1830 free_folio_t put_new_folio, unsigned long private, 1831 enum migrate_mode mode, int reason, 1832 struct list_head *ret_folios, struct list_head *split_folios, 1833 struct migrate_pages_stats *stats) 1834 { 1835 int rc, nr_failed = 0; 1836 LIST_HEAD(folios); 1837 struct migrate_pages_stats astats; 1838 1839 memset(&astats, 0, sizeof(astats)); 1840 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1841 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1842 reason, &folios, split_folios, &astats, 1843 NR_MAX_MIGRATE_ASYNC_RETRY); 1844 stats->nr_succeeded += astats.nr_succeeded; 1845 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1846 stats->nr_thp_split += astats.nr_thp_split; 1847 stats->nr_split += astats.nr_split; 1848 if (rc < 0) { 1849 stats->nr_failed_pages += astats.nr_failed_pages; 1850 stats->nr_thp_failed += astats.nr_thp_failed; 1851 list_splice_tail(&folios, ret_folios); 1852 return rc; 1853 } 1854 stats->nr_thp_failed += astats.nr_thp_split; 1855 /* 1856 * Do not count rc, as pages will be retried below. 1857 * Count nr_split only, since it includes nr_thp_split. 1858 */ 1859 nr_failed += astats.nr_split; 1860 /* 1861 * Fall back to migrate all failed folios one by one synchronously. All 1862 * failed folios except split THPs will be retried, so their failure 1863 * isn't counted 1864 */ 1865 list_splice_tail_init(&folios, from); 1866 while (!list_empty(from)) { 1867 list_move(from->next, &folios); 1868 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1869 private, mode, reason, ret_folios, 1870 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1871 list_splice_tail_init(&folios, ret_folios); 1872 if (rc < 0) 1873 return rc; 1874 nr_failed += rc; 1875 } 1876 1877 return nr_failed; 1878 } 1879 1880 /* 1881 * migrate_pages - migrate the folios specified in a list, to the free folios 1882 * supplied as the target for the page migration 1883 * 1884 * @from: The list of folios to be migrated. 1885 * @get_new_folio: The function used to allocate free folios to be used 1886 * as the target of the folio migration. 1887 * @put_new_folio: The function used to free target folios if migration 1888 * fails, or NULL if no special handling is necessary. 1889 * @private: Private data to be passed on to get_new_folio() 1890 * @mode: The migration mode that specifies the constraints for 1891 * folio migration, if any. 1892 * @reason: The reason for folio migration. 1893 * @ret_succeeded: Set to the number of folios migrated successfully if 1894 * the caller passes a non-NULL pointer. 1895 * 1896 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 1897 * are movable any more because the list has become empty or no retryable folios 1898 * exist any more. It is caller's responsibility to call putback_movable_pages() 1899 * only if ret != 0. 1900 * 1901 * Returns the number of {normal folio, large folio, hugetlb} that were not 1902 * migrated, or an error code. The number of large folio splits will be 1903 * considered as the number of non-migrated large folio, no matter how many 1904 * split folios of the large folio are migrated successfully. 1905 */ 1906 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 1907 free_folio_t put_new_folio, unsigned long private, 1908 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1909 { 1910 int rc, rc_gather; 1911 int nr_pages; 1912 struct folio *folio, *folio2; 1913 LIST_HEAD(folios); 1914 LIST_HEAD(ret_folios); 1915 LIST_HEAD(split_folios); 1916 struct migrate_pages_stats stats; 1917 1918 trace_mm_migrate_pages_start(mode, reason); 1919 1920 memset(&stats, 0, sizeof(stats)); 1921 1922 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 1923 mode, reason, &stats, &ret_folios); 1924 if (rc_gather < 0) 1925 goto out; 1926 1927 again: 1928 nr_pages = 0; 1929 list_for_each_entry_safe(folio, folio2, from, lru) { 1930 /* Retried hugetlb folios will be kept in list */ 1931 if (folio_test_hugetlb(folio)) { 1932 list_move_tail(&folio->lru, &ret_folios); 1933 continue; 1934 } 1935 1936 nr_pages += folio_nr_pages(folio); 1937 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1938 break; 1939 } 1940 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1941 list_cut_before(&folios, from, &folio2->lru); 1942 else 1943 list_splice_init(from, &folios); 1944 if (mode == MIGRATE_ASYNC) 1945 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1946 private, mode, reason, &ret_folios, 1947 &split_folios, &stats, 1948 NR_MAX_MIGRATE_PAGES_RETRY); 1949 else 1950 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 1951 private, mode, reason, &ret_folios, 1952 &split_folios, &stats); 1953 list_splice_tail_init(&folios, &ret_folios); 1954 if (rc < 0) { 1955 rc_gather = rc; 1956 list_splice_tail(&split_folios, &ret_folios); 1957 goto out; 1958 } 1959 if (!list_empty(&split_folios)) { 1960 /* 1961 * Failure isn't counted since all split folios of a large folio 1962 * is counted as 1 failure already. And, we only try to migrate 1963 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 1964 */ 1965 migrate_pages_batch(&split_folios, get_new_folio, 1966 put_new_folio, private, MIGRATE_ASYNC, reason, 1967 &ret_folios, NULL, &stats, 1); 1968 list_splice_tail_init(&split_folios, &ret_folios); 1969 } 1970 rc_gather += rc; 1971 if (!list_empty(from)) 1972 goto again; 1973 out: 1974 /* 1975 * Put the permanent failure folio back to migration list, they 1976 * will be put back to the right list by the caller. 1977 */ 1978 list_splice(&ret_folios, from); 1979 1980 /* 1981 * Return 0 in case all split folios of fail-to-migrate large folios 1982 * are migrated successfully. 1983 */ 1984 if (list_empty(from)) 1985 rc_gather = 0; 1986 1987 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 1988 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 1989 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 1990 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 1991 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 1992 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 1993 stats.nr_thp_succeeded, stats.nr_thp_failed, 1994 stats.nr_thp_split, stats.nr_split, mode, 1995 reason); 1996 1997 if (ret_succeeded) 1998 *ret_succeeded = stats.nr_succeeded; 1999 2000 return rc_gather; 2001 } 2002 2003 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2004 { 2005 struct migration_target_control *mtc; 2006 gfp_t gfp_mask; 2007 unsigned int order = 0; 2008 int nid; 2009 int zidx; 2010 2011 mtc = (struct migration_target_control *)private; 2012 gfp_mask = mtc->gfp_mask; 2013 nid = mtc->nid; 2014 if (nid == NUMA_NO_NODE) 2015 nid = folio_nid(src); 2016 2017 if (folio_test_hugetlb(src)) { 2018 struct hstate *h = folio_hstate(src); 2019 2020 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2021 return alloc_hugetlb_folio_nodemask(h, nid, 2022 mtc->nmask, gfp_mask); 2023 } 2024 2025 if (folio_test_large(src)) { 2026 /* 2027 * clear __GFP_RECLAIM to make the migration callback 2028 * consistent with regular THP allocations. 2029 */ 2030 gfp_mask &= ~__GFP_RECLAIM; 2031 gfp_mask |= GFP_TRANSHUGE; 2032 order = folio_order(src); 2033 } 2034 zidx = zone_idx(folio_zone(src)); 2035 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2036 gfp_mask |= __GFP_HIGHMEM; 2037 2038 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2039 } 2040 2041 #ifdef CONFIG_NUMA 2042 2043 static int store_status(int __user *status, int start, int value, int nr) 2044 { 2045 while (nr-- > 0) { 2046 if (put_user(value, status + start)) 2047 return -EFAULT; 2048 start++; 2049 } 2050 2051 return 0; 2052 } 2053 2054 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2055 { 2056 int err; 2057 struct migration_target_control mtc = { 2058 .nid = node, 2059 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2060 }; 2061 2062 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2063 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2064 if (err) 2065 putback_movable_pages(pagelist); 2066 return err; 2067 } 2068 2069 /* 2070 * Resolves the given address to a struct page, isolates it from the LRU and 2071 * puts it to the given pagelist. 2072 * Returns: 2073 * errno - if the page cannot be found/isolated 2074 * 0 - when it doesn't have to be migrated because it is already on the 2075 * target node 2076 * 1 - when it has been queued 2077 */ 2078 static int add_page_for_migration(struct mm_struct *mm, const void __user *p, 2079 int node, struct list_head *pagelist, bool migrate_all) 2080 { 2081 struct vm_area_struct *vma; 2082 unsigned long addr; 2083 struct page *page; 2084 struct folio *folio; 2085 int err; 2086 2087 mmap_read_lock(mm); 2088 addr = (unsigned long)untagged_addr_remote(mm, p); 2089 2090 err = -EFAULT; 2091 vma = vma_lookup(mm, addr); 2092 if (!vma || !vma_migratable(vma)) 2093 goto out; 2094 2095 /* FOLL_DUMP to ignore special (like zero) pages */ 2096 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2097 2098 err = PTR_ERR(page); 2099 if (IS_ERR(page)) 2100 goto out; 2101 2102 err = -ENOENT; 2103 if (!page) 2104 goto out; 2105 2106 folio = page_folio(page); 2107 if (folio_is_zone_device(folio)) 2108 goto out_putfolio; 2109 2110 err = 0; 2111 if (folio_nid(folio) == node) 2112 goto out_putfolio; 2113 2114 err = -EACCES; 2115 if (page_mapcount(page) > 1 && !migrate_all) 2116 goto out_putfolio; 2117 2118 err = -EBUSY; 2119 if (folio_test_hugetlb(folio)) { 2120 if (isolate_hugetlb(folio, pagelist)) 2121 err = 1; 2122 } else { 2123 if (!folio_isolate_lru(folio)) 2124 goto out_putfolio; 2125 2126 err = 1; 2127 list_add_tail(&folio->lru, pagelist); 2128 node_stat_mod_folio(folio, 2129 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2130 folio_nr_pages(folio)); 2131 } 2132 out_putfolio: 2133 /* 2134 * Either remove the duplicate refcount from folio_isolate_lru() 2135 * or drop the folio ref if it was not isolated. 2136 */ 2137 folio_put(folio); 2138 out: 2139 mmap_read_unlock(mm); 2140 return err; 2141 } 2142 2143 static int move_pages_and_store_status(int node, 2144 struct list_head *pagelist, int __user *status, 2145 int start, int i, unsigned long nr_pages) 2146 { 2147 int err; 2148 2149 if (list_empty(pagelist)) 2150 return 0; 2151 2152 err = do_move_pages_to_node(pagelist, node); 2153 if (err) { 2154 /* 2155 * Positive err means the number of failed 2156 * pages to migrate. Since we are going to 2157 * abort and return the number of non-migrated 2158 * pages, so need to include the rest of the 2159 * nr_pages that have not been attempted as 2160 * well. 2161 */ 2162 if (err > 0) 2163 err += nr_pages - i; 2164 return err; 2165 } 2166 return store_status(status, start, node, i - start); 2167 } 2168 2169 /* 2170 * Migrate an array of page address onto an array of nodes and fill 2171 * the corresponding array of status. 2172 */ 2173 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2174 unsigned long nr_pages, 2175 const void __user * __user *pages, 2176 const int __user *nodes, 2177 int __user *status, int flags) 2178 { 2179 compat_uptr_t __user *compat_pages = (void __user *)pages; 2180 int current_node = NUMA_NO_NODE; 2181 LIST_HEAD(pagelist); 2182 int start, i; 2183 int err = 0, err1; 2184 2185 lru_cache_disable(); 2186 2187 for (i = start = 0; i < nr_pages; i++) { 2188 const void __user *p; 2189 int node; 2190 2191 err = -EFAULT; 2192 if (in_compat_syscall()) { 2193 compat_uptr_t cp; 2194 2195 if (get_user(cp, compat_pages + i)) 2196 goto out_flush; 2197 2198 p = compat_ptr(cp); 2199 } else { 2200 if (get_user(p, pages + i)) 2201 goto out_flush; 2202 } 2203 if (get_user(node, nodes + i)) 2204 goto out_flush; 2205 2206 err = -ENODEV; 2207 if (node < 0 || node >= MAX_NUMNODES) 2208 goto out_flush; 2209 if (!node_state(node, N_MEMORY)) 2210 goto out_flush; 2211 2212 err = -EACCES; 2213 if (!node_isset(node, task_nodes)) 2214 goto out_flush; 2215 2216 if (current_node == NUMA_NO_NODE) { 2217 current_node = node; 2218 start = i; 2219 } else if (node != current_node) { 2220 err = move_pages_and_store_status(current_node, 2221 &pagelist, status, start, i, nr_pages); 2222 if (err) 2223 goto out; 2224 start = i; 2225 current_node = node; 2226 } 2227 2228 /* 2229 * Errors in the page lookup or isolation are not fatal and we simply 2230 * report them via status 2231 */ 2232 err = add_page_for_migration(mm, p, current_node, &pagelist, 2233 flags & MPOL_MF_MOVE_ALL); 2234 2235 if (err > 0) { 2236 /* The page is successfully queued for migration */ 2237 continue; 2238 } 2239 2240 /* 2241 * The move_pages() man page does not have an -EEXIST choice, so 2242 * use -EFAULT instead. 2243 */ 2244 if (err == -EEXIST) 2245 err = -EFAULT; 2246 2247 /* 2248 * If the page is already on the target node (!err), store the 2249 * node, otherwise, store the err. 2250 */ 2251 err = store_status(status, i, err ? : current_node, 1); 2252 if (err) 2253 goto out_flush; 2254 2255 err = move_pages_and_store_status(current_node, &pagelist, 2256 status, start, i, nr_pages); 2257 if (err) { 2258 /* We have accounted for page i */ 2259 if (err > 0) 2260 err--; 2261 goto out; 2262 } 2263 current_node = NUMA_NO_NODE; 2264 } 2265 out_flush: 2266 /* Make sure we do not overwrite the existing error */ 2267 err1 = move_pages_and_store_status(current_node, &pagelist, 2268 status, start, i, nr_pages); 2269 if (err >= 0) 2270 err = err1; 2271 out: 2272 lru_cache_enable(); 2273 return err; 2274 } 2275 2276 /* 2277 * Determine the nodes of an array of pages and store it in an array of status. 2278 */ 2279 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2280 const void __user **pages, int *status) 2281 { 2282 unsigned long i; 2283 2284 mmap_read_lock(mm); 2285 2286 for (i = 0; i < nr_pages; i++) { 2287 unsigned long addr = (unsigned long)(*pages); 2288 struct vm_area_struct *vma; 2289 struct page *page; 2290 int err = -EFAULT; 2291 2292 vma = vma_lookup(mm, addr); 2293 if (!vma) 2294 goto set_status; 2295 2296 /* FOLL_DUMP to ignore special (like zero) pages */ 2297 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2298 2299 err = PTR_ERR(page); 2300 if (IS_ERR(page)) 2301 goto set_status; 2302 2303 err = -ENOENT; 2304 if (!page) 2305 goto set_status; 2306 2307 if (!is_zone_device_page(page)) 2308 err = page_to_nid(page); 2309 2310 put_page(page); 2311 set_status: 2312 *status = err; 2313 2314 pages++; 2315 status++; 2316 } 2317 2318 mmap_read_unlock(mm); 2319 } 2320 2321 static int get_compat_pages_array(const void __user *chunk_pages[], 2322 const void __user * __user *pages, 2323 unsigned long chunk_nr) 2324 { 2325 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2326 compat_uptr_t p; 2327 int i; 2328 2329 for (i = 0; i < chunk_nr; i++) { 2330 if (get_user(p, pages32 + i)) 2331 return -EFAULT; 2332 chunk_pages[i] = compat_ptr(p); 2333 } 2334 2335 return 0; 2336 } 2337 2338 /* 2339 * Determine the nodes of a user array of pages and store it in 2340 * a user array of status. 2341 */ 2342 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2343 const void __user * __user *pages, 2344 int __user *status) 2345 { 2346 #define DO_PAGES_STAT_CHUNK_NR 16UL 2347 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2348 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2349 2350 while (nr_pages) { 2351 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2352 2353 if (in_compat_syscall()) { 2354 if (get_compat_pages_array(chunk_pages, pages, 2355 chunk_nr)) 2356 break; 2357 } else { 2358 if (copy_from_user(chunk_pages, pages, 2359 chunk_nr * sizeof(*chunk_pages))) 2360 break; 2361 } 2362 2363 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2364 2365 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2366 break; 2367 2368 pages += chunk_nr; 2369 status += chunk_nr; 2370 nr_pages -= chunk_nr; 2371 } 2372 return nr_pages ? -EFAULT : 0; 2373 } 2374 2375 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2376 { 2377 struct task_struct *task; 2378 struct mm_struct *mm; 2379 2380 /* 2381 * There is no need to check if current process has the right to modify 2382 * the specified process when they are same. 2383 */ 2384 if (!pid) { 2385 mmget(current->mm); 2386 *mem_nodes = cpuset_mems_allowed(current); 2387 return current->mm; 2388 } 2389 2390 /* Find the mm_struct */ 2391 rcu_read_lock(); 2392 task = find_task_by_vpid(pid); 2393 if (!task) { 2394 rcu_read_unlock(); 2395 return ERR_PTR(-ESRCH); 2396 } 2397 get_task_struct(task); 2398 2399 /* 2400 * Check if this process has the right to modify the specified 2401 * process. Use the regular "ptrace_may_access()" checks. 2402 */ 2403 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2404 rcu_read_unlock(); 2405 mm = ERR_PTR(-EPERM); 2406 goto out; 2407 } 2408 rcu_read_unlock(); 2409 2410 mm = ERR_PTR(security_task_movememory(task)); 2411 if (IS_ERR(mm)) 2412 goto out; 2413 *mem_nodes = cpuset_mems_allowed(task); 2414 mm = get_task_mm(task); 2415 out: 2416 put_task_struct(task); 2417 if (!mm) 2418 mm = ERR_PTR(-EINVAL); 2419 return mm; 2420 } 2421 2422 /* 2423 * Move a list of pages in the address space of the currently executing 2424 * process. 2425 */ 2426 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2427 const void __user * __user *pages, 2428 const int __user *nodes, 2429 int __user *status, int flags) 2430 { 2431 struct mm_struct *mm; 2432 int err; 2433 nodemask_t task_nodes; 2434 2435 /* Check flags */ 2436 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2437 return -EINVAL; 2438 2439 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2440 return -EPERM; 2441 2442 mm = find_mm_struct(pid, &task_nodes); 2443 if (IS_ERR(mm)) 2444 return PTR_ERR(mm); 2445 2446 if (nodes) 2447 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2448 nodes, status, flags); 2449 else 2450 err = do_pages_stat(mm, nr_pages, pages, status); 2451 2452 mmput(mm); 2453 return err; 2454 } 2455 2456 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2457 const void __user * __user *, pages, 2458 const int __user *, nodes, 2459 int __user *, status, int, flags) 2460 { 2461 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2462 } 2463 2464 #ifdef CONFIG_NUMA_BALANCING 2465 /* 2466 * Returns true if this is a safe migration target node for misplaced NUMA 2467 * pages. Currently it only checks the watermarks which is crude. 2468 */ 2469 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2470 unsigned long nr_migrate_pages) 2471 { 2472 int z; 2473 2474 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2475 struct zone *zone = pgdat->node_zones + z; 2476 2477 if (!managed_zone(zone)) 2478 continue; 2479 2480 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2481 if (!zone_watermark_ok(zone, 0, 2482 high_wmark_pages(zone) + 2483 nr_migrate_pages, 2484 ZONE_MOVABLE, 0)) 2485 continue; 2486 return true; 2487 } 2488 return false; 2489 } 2490 2491 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2492 unsigned long data) 2493 { 2494 int nid = (int) data; 2495 int order = folio_order(src); 2496 gfp_t gfp = __GFP_THISNODE; 2497 2498 if (order > 0) 2499 gfp |= GFP_TRANSHUGE_LIGHT; 2500 else { 2501 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2502 __GFP_NOWARN; 2503 gfp &= ~__GFP_RECLAIM; 2504 } 2505 return __folio_alloc_node(gfp, order, nid); 2506 } 2507 2508 static int numamigrate_isolate_folio(pg_data_t *pgdat, struct folio *folio) 2509 { 2510 int nr_pages = folio_nr_pages(folio); 2511 2512 /* Avoid migrating to a node that is nearly full */ 2513 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2514 int z; 2515 2516 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2517 return 0; 2518 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2519 if (managed_zone(pgdat->node_zones + z)) 2520 break; 2521 } 2522 wakeup_kswapd(pgdat->node_zones + z, 0, 2523 folio_order(folio), ZONE_MOVABLE); 2524 return 0; 2525 } 2526 2527 if (!folio_isolate_lru(folio)) 2528 return 0; 2529 2530 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2531 nr_pages); 2532 2533 /* 2534 * Isolating the folio has taken another reference, so the 2535 * caller's reference can be safely dropped without the folio 2536 * disappearing underneath us during migration. 2537 */ 2538 folio_put(folio); 2539 return 1; 2540 } 2541 2542 /* 2543 * Attempt to migrate a misplaced folio to the specified destination 2544 * node. Caller is expected to have an elevated reference count on 2545 * the folio that will be dropped by this function before returning. 2546 */ 2547 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma, 2548 int node) 2549 { 2550 pg_data_t *pgdat = NODE_DATA(node); 2551 int isolated; 2552 int nr_remaining; 2553 unsigned int nr_succeeded; 2554 LIST_HEAD(migratepages); 2555 int nr_pages = folio_nr_pages(folio); 2556 2557 /* 2558 * Don't migrate file folios that are mapped in multiple processes 2559 * with execute permissions as they are probably shared libraries. 2560 * To check if the folio is shared, ideally we want to make sure 2561 * every page is mapped to the same process. Doing that is very 2562 * expensive, so check the estimated mapcount of the folio instead. 2563 */ 2564 if (folio_estimated_sharers(folio) != 1 && folio_is_file_lru(folio) && 2565 (vma->vm_flags & VM_EXEC)) 2566 goto out; 2567 2568 /* 2569 * Also do not migrate dirty folios as not all filesystems can move 2570 * dirty folios in MIGRATE_ASYNC mode which is a waste of cycles. 2571 */ 2572 if (folio_is_file_lru(folio) && folio_test_dirty(folio)) 2573 goto out; 2574 2575 isolated = numamigrate_isolate_folio(pgdat, folio); 2576 if (!isolated) 2577 goto out; 2578 2579 list_add(&folio->lru, &migratepages); 2580 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2581 NULL, node, MIGRATE_ASYNC, 2582 MR_NUMA_MISPLACED, &nr_succeeded); 2583 if (nr_remaining) { 2584 if (!list_empty(&migratepages)) { 2585 list_del(&folio->lru); 2586 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 2587 folio_is_file_lru(folio), -nr_pages); 2588 folio_putback_lru(folio); 2589 } 2590 isolated = 0; 2591 } 2592 if (nr_succeeded) { 2593 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2594 if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node)) 2595 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2596 nr_succeeded); 2597 } 2598 BUG_ON(!list_empty(&migratepages)); 2599 return isolated; 2600 2601 out: 2602 folio_put(folio); 2603 return 0; 2604 } 2605 #endif /* CONFIG_NUMA_BALANCING */ 2606 #endif /* CONFIG_NUMA */ 2607