xref: /linux/mm/migrate.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		/* No need to invalidate - it was non-present before */
279 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 	}
281 
282 	return true;
283 }
284 
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291 	struct rmap_walk_control rwc = {
292 		.rmap_one = remove_migration_pte,
293 		.arg = old,
294 	};
295 
296 	if (locked)
297 		rmap_walk_locked(new, &rwc);
298 	else
299 		rmap_walk(new, &rwc);
300 }
301 
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 				spinlock_t *ptl)
309 {
310 	pte_t pte;
311 	swp_entry_t entry;
312 	struct page *page;
313 
314 	spin_lock(ptl);
315 	pte = *ptep;
316 	if (!is_swap_pte(pte))
317 		goto out;
318 
319 	entry = pte_to_swp_entry(pte);
320 	if (!is_migration_entry(entry))
321 		goto out;
322 
323 	page = migration_entry_to_page(entry);
324 
325 	/*
326 	 * Once radix-tree replacement of page migration started, page_count
327 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 	 * against a page without get_page().
329 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 	 * will occur again.
331 	 */
332 	if (!get_page_unless_zero(page))
333 		goto out;
334 	pte_unmap_unlock(ptep, ptl);
335 	wait_on_page_locked(page);
336 	put_page(page);
337 	return;
338 out:
339 	pte_unmap_unlock(ptep, ptl);
340 }
341 
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 				unsigned long address)
344 {
345 	spinlock_t *ptl = pte_lockptr(mm, pmd);
346 	pte_t *ptep = pte_offset_map(pmd, address);
347 	__migration_entry_wait(mm, ptep, ptl);
348 }
349 
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 		struct mm_struct *mm, pte_t *pte)
352 {
353 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 	__migration_entry_wait(mm, pte, ptl);
355 }
356 
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 	spinlock_t *ptl;
361 	struct page *page;
362 
363 	ptl = pmd_lock(mm, pmd);
364 	if (!is_pmd_migration_entry(*pmd))
365 		goto unlock;
366 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 	if (!get_page_unless_zero(page))
368 		goto unlock;
369 	spin_unlock(ptl);
370 	wait_on_page_locked(page);
371 	put_page(page);
372 	return;
373 unlock:
374 	spin_unlock(ptl);
375 }
376 #endif
377 
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 							enum migrate_mode mode)
382 {
383 	struct buffer_head *bh = head;
384 
385 	/* Simple case, sync compaction */
386 	if (mode != MIGRATE_ASYNC) {
387 		do {
388 			get_bh(bh);
389 			lock_buffer(bh);
390 			bh = bh->b_this_page;
391 
392 		} while (bh != head);
393 
394 		return true;
395 	}
396 
397 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
398 	do {
399 		get_bh(bh);
400 		if (!trylock_buffer(bh)) {
401 			/*
402 			 * We failed to lock the buffer and cannot stall in
403 			 * async migration. Release the taken locks
404 			 */
405 			struct buffer_head *failed_bh = bh;
406 			put_bh(failed_bh);
407 			bh = head;
408 			while (bh != failed_bh) {
409 				unlock_buffer(bh);
410 				put_bh(bh);
411 				bh = bh->b_this_page;
412 			}
413 			return false;
414 		}
415 
416 		bh = bh->b_this_page;
417 	} while (bh != head);
418 	return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422 							enum migrate_mode mode)
423 {
424 	return true;
425 }
426 #endif /* CONFIG_BLOCK */
427 
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437 		struct page *newpage, struct page *page,
438 		struct buffer_head *head, enum migrate_mode mode,
439 		int extra_count)
440 {
441 	struct zone *oldzone, *newzone;
442 	int dirty;
443 	int expected_count = 1 + extra_count;
444 	void **pslot;
445 
446 	/*
447 	 * Device public or private pages have an extra refcount as they are
448 	 * ZONE_DEVICE pages.
449 	 */
450 	expected_count += is_device_private_page(page);
451 	expected_count += is_device_public_page(page);
452 
453 	if (!mapping) {
454 		/* Anonymous page without mapping */
455 		if (page_count(page) != expected_count)
456 			return -EAGAIN;
457 
458 		/* No turning back from here */
459 		newpage->index = page->index;
460 		newpage->mapping = page->mapping;
461 		if (PageSwapBacked(page))
462 			__SetPageSwapBacked(newpage);
463 
464 		return MIGRATEPAGE_SUCCESS;
465 	}
466 
467 	oldzone = page_zone(page);
468 	newzone = page_zone(newpage);
469 
470 	spin_lock_irq(&mapping->tree_lock);
471 
472 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
473  					page_index(page));
474 
475 	expected_count += 1 + page_has_private(page);
476 	if (page_count(page) != expected_count ||
477 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
478 		spin_unlock_irq(&mapping->tree_lock);
479 		return -EAGAIN;
480 	}
481 
482 	if (!page_ref_freeze(page, expected_count)) {
483 		spin_unlock_irq(&mapping->tree_lock);
484 		return -EAGAIN;
485 	}
486 
487 	/*
488 	 * In the async migration case of moving a page with buffers, lock the
489 	 * buffers using trylock before the mapping is moved. If the mapping
490 	 * was moved, we later failed to lock the buffers and could not move
491 	 * the mapping back due to an elevated page count, we would have to
492 	 * block waiting on other references to be dropped.
493 	 */
494 	if (mode == MIGRATE_ASYNC && head &&
495 			!buffer_migrate_lock_buffers(head, mode)) {
496 		page_ref_unfreeze(page, expected_count);
497 		spin_unlock_irq(&mapping->tree_lock);
498 		return -EAGAIN;
499 	}
500 
501 	/*
502 	 * Now we know that no one else is looking at the page:
503 	 * no turning back from here.
504 	 */
505 	newpage->index = page->index;
506 	newpage->mapping = page->mapping;
507 	get_page(newpage);	/* add cache reference */
508 	if (PageSwapBacked(page)) {
509 		__SetPageSwapBacked(newpage);
510 		if (PageSwapCache(page)) {
511 			SetPageSwapCache(newpage);
512 			set_page_private(newpage, page_private(page));
513 		}
514 	} else {
515 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
516 	}
517 
518 	/* Move dirty while page refs frozen and newpage not yet exposed */
519 	dirty = PageDirty(page);
520 	if (dirty) {
521 		ClearPageDirty(page);
522 		SetPageDirty(newpage);
523 	}
524 
525 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
526 
527 	/*
528 	 * Drop cache reference from old page by unfreezing
529 	 * to one less reference.
530 	 * We know this isn't the last reference.
531 	 */
532 	page_ref_unfreeze(page, expected_count - 1);
533 
534 	spin_unlock(&mapping->tree_lock);
535 	/* Leave irq disabled to prevent preemption while updating stats */
536 
537 	/*
538 	 * If moved to a different zone then also account
539 	 * the page for that zone. Other VM counters will be
540 	 * taken care of when we establish references to the
541 	 * new page and drop references to the old page.
542 	 *
543 	 * Note that anonymous pages are accounted for
544 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
545 	 * are mapped to swap space.
546 	 */
547 	if (newzone != oldzone) {
548 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
549 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
550 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
551 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
552 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
553 		}
554 		if (dirty && mapping_cap_account_dirty(mapping)) {
555 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
556 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
557 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
558 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
559 		}
560 	}
561 	local_irq_enable();
562 
563 	return MIGRATEPAGE_SUCCESS;
564 }
565 EXPORT_SYMBOL(migrate_page_move_mapping);
566 
567 /*
568  * The expected number of remaining references is the same as that
569  * of migrate_page_move_mapping().
570  */
571 int migrate_huge_page_move_mapping(struct address_space *mapping,
572 				   struct page *newpage, struct page *page)
573 {
574 	int expected_count;
575 	void **pslot;
576 
577 	spin_lock_irq(&mapping->tree_lock);
578 
579 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
580 					page_index(page));
581 
582 	expected_count = 2 + page_has_private(page);
583 	if (page_count(page) != expected_count ||
584 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
585 		spin_unlock_irq(&mapping->tree_lock);
586 		return -EAGAIN;
587 	}
588 
589 	if (!page_ref_freeze(page, expected_count)) {
590 		spin_unlock_irq(&mapping->tree_lock);
591 		return -EAGAIN;
592 	}
593 
594 	newpage->index = page->index;
595 	newpage->mapping = page->mapping;
596 
597 	get_page(newpage);
598 
599 	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
600 
601 	page_ref_unfreeze(page, expected_count - 1);
602 
603 	spin_unlock_irq(&mapping->tree_lock);
604 
605 	return MIGRATEPAGE_SUCCESS;
606 }
607 
608 /*
609  * Gigantic pages are so large that we do not guarantee that page++ pointer
610  * arithmetic will work across the entire page.  We need something more
611  * specialized.
612  */
613 static void __copy_gigantic_page(struct page *dst, struct page *src,
614 				int nr_pages)
615 {
616 	int i;
617 	struct page *dst_base = dst;
618 	struct page *src_base = src;
619 
620 	for (i = 0; i < nr_pages; ) {
621 		cond_resched();
622 		copy_highpage(dst, src);
623 
624 		i++;
625 		dst = mem_map_next(dst, dst_base, i);
626 		src = mem_map_next(src, src_base, i);
627 	}
628 }
629 
630 static void copy_huge_page(struct page *dst, struct page *src)
631 {
632 	int i;
633 	int nr_pages;
634 
635 	if (PageHuge(src)) {
636 		/* hugetlbfs page */
637 		struct hstate *h = page_hstate(src);
638 		nr_pages = pages_per_huge_page(h);
639 
640 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641 			__copy_gigantic_page(dst, src, nr_pages);
642 			return;
643 		}
644 	} else {
645 		/* thp page */
646 		BUG_ON(!PageTransHuge(src));
647 		nr_pages = hpage_nr_pages(src);
648 	}
649 
650 	for (i = 0; i < nr_pages; i++) {
651 		cond_resched();
652 		copy_highpage(dst + i, src + i);
653 	}
654 }
655 
656 /*
657  * Copy the page to its new location
658  */
659 void migrate_page_states(struct page *newpage, struct page *page)
660 {
661 	int cpupid;
662 
663 	if (PageError(page))
664 		SetPageError(newpage);
665 	if (PageReferenced(page))
666 		SetPageReferenced(newpage);
667 	if (PageUptodate(page))
668 		SetPageUptodate(newpage);
669 	if (TestClearPageActive(page)) {
670 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
671 		SetPageActive(newpage);
672 	} else if (TestClearPageUnevictable(page))
673 		SetPageUnevictable(newpage);
674 	if (PageChecked(page))
675 		SetPageChecked(newpage);
676 	if (PageMappedToDisk(page))
677 		SetPageMappedToDisk(newpage);
678 
679 	/* Move dirty on pages not done by migrate_page_move_mapping() */
680 	if (PageDirty(page))
681 		SetPageDirty(newpage);
682 
683 	if (page_is_young(page))
684 		set_page_young(newpage);
685 	if (page_is_idle(page))
686 		set_page_idle(newpage);
687 
688 	/*
689 	 * Copy NUMA information to the new page, to prevent over-eager
690 	 * future migrations of this same page.
691 	 */
692 	cpupid = page_cpupid_xchg_last(page, -1);
693 	page_cpupid_xchg_last(newpage, cpupid);
694 
695 	ksm_migrate_page(newpage, page);
696 	/*
697 	 * Please do not reorder this without considering how mm/ksm.c's
698 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699 	 */
700 	if (PageSwapCache(page))
701 		ClearPageSwapCache(page);
702 	ClearPagePrivate(page);
703 	set_page_private(page, 0);
704 
705 	/*
706 	 * If any waiters have accumulated on the new page then
707 	 * wake them up.
708 	 */
709 	if (PageWriteback(newpage))
710 		end_page_writeback(newpage);
711 
712 	copy_page_owner(page, newpage);
713 
714 	mem_cgroup_migrate(page, newpage);
715 }
716 EXPORT_SYMBOL(migrate_page_states);
717 
718 void migrate_page_copy(struct page *newpage, struct page *page)
719 {
720 	if (PageHuge(page) || PageTransHuge(page))
721 		copy_huge_page(newpage, page);
722 	else
723 		copy_highpage(newpage, page);
724 
725 	migrate_page_states(newpage, page);
726 }
727 EXPORT_SYMBOL(migrate_page_copy);
728 
729 /************************************************************
730  *                    Migration functions
731  ***********************************************************/
732 
733 /*
734  * Common logic to directly migrate a single LRU page suitable for
735  * pages that do not use PagePrivate/PagePrivate2.
736  *
737  * Pages are locked upon entry and exit.
738  */
739 int migrate_page(struct address_space *mapping,
740 		struct page *newpage, struct page *page,
741 		enum migrate_mode mode)
742 {
743 	int rc;
744 
745 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
746 
747 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
748 
749 	if (rc != MIGRATEPAGE_SUCCESS)
750 		return rc;
751 
752 	if (mode != MIGRATE_SYNC_NO_COPY)
753 		migrate_page_copy(newpage, page);
754 	else
755 		migrate_page_states(newpage, page);
756 	return MIGRATEPAGE_SUCCESS;
757 }
758 EXPORT_SYMBOL(migrate_page);
759 
760 #ifdef CONFIG_BLOCK
761 /*
762  * Migration function for pages with buffers. This function can only be used
763  * if the underlying filesystem guarantees that no other references to "page"
764  * exist.
765  */
766 int buffer_migrate_page(struct address_space *mapping,
767 		struct page *newpage, struct page *page, enum migrate_mode mode)
768 {
769 	struct buffer_head *bh, *head;
770 	int rc;
771 
772 	if (!page_has_buffers(page))
773 		return migrate_page(mapping, newpage, page, mode);
774 
775 	head = page_buffers(page);
776 
777 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
778 
779 	if (rc != MIGRATEPAGE_SUCCESS)
780 		return rc;
781 
782 	/*
783 	 * In the async case, migrate_page_move_mapping locked the buffers
784 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
785 	 * need to be locked now
786 	 */
787 	if (mode != MIGRATE_ASYNC)
788 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
789 
790 	ClearPagePrivate(page);
791 	set_page_private(newpage, page_private(page));
792 	set_page_private(page, 0);
793 	put_page(page);
794 	get_page(newpage);
795 
796 	bh = head;
797 	do {
798 		set_bh_page(bh, newpage, bh_offset(bh));
799 		bh = bh->b_this_page;
800 
801 	} while (bh != head);
802 
803 	SetPagePrivate(newpage);
804 
805 	if (mode != MIGRATE_SYNC_NO_COPY)
806 		migrate_page_copy(newpage, page);
807 	else
808 		migrate_page_states(newpage, page);
809 
810 	bh = head;
811 	do {
812 		unlock_buffer(bh);
813 		put_bh(bh);
814 		bh = bh->b_this_page;
815 
816 	} while (bh != head);
817 
818 	return MIGRATEPAGE_SUCCESS;
819 }
820 EXPORT_SYMBOL(buffer_migrate_page);
821 #endif
822 
823 /*
824  * Writeback a page to clean the dirty state
825  */
826 static int writeout(struct address_space *mapping, struct page *page)
827 {
828 	struct writeback_control wbc = {
829 		.sync_mode = WB_SYNC_NONE,
830 		.nr_to_write = 1,
831 		.range_start = 0,
832 		.range_end = LLONG_MAX,
833 		.for_reclaim = 1
834 	};
835 	int rc;
836 
837 	if (!mapping->a_ops->writepage)
838 		/* No write method for the address space */
839 		return -EINVAL;
840 
841 	if (!clear_page_dirty_for_io(page))
842 		/* Someone else already triggered a write */
843 		return -EAGAIN;
844 
845 	/*
846 	 * A dirty page may imply that the underlying filesystem has
847 	 * the page on some queue. So the page must be clean for
848 	 * migration. Writeout may mean we loose the lock and the
849 	 * page state is no longer what we checked for earlier.
850 	 * At this point we know that the migration attempt cannot
851 	 * be successful.
852 	 */
853 	remove_migration_ptes(page, page, false);
854 
855 	rc = mapping->a_ops->writepage(page, &wbc);
856 
857 	if (rc != AOP_WRITEPAGE_ACTIVATE)
858 		/* unlocked. Relock */
859 		lock_page(page);
860 
861 	return (rc < 0) ? -EIO : -EAGAIN;
862 }
863 
864 /*
865  * Default handling if a filesystem does not provide a migration function.
866  */
867 static int fallback_migrate_page(struct address_space *mapping,
868 	struct page *newpage, struct page *page, enum migrate_mode mode)
869 {
870 	if (PageDirty(page)) {
871 		/* Only writeback pages in full synchronous migration */
872 		switch (mode) {
873 		case MIGRATE_SYNC:
874 		case MIGRATE_SYNC_NO_COPY:
875 			break;
876 		default:
877 			return -EBUSY;
878 		}
879 		return writeout(mapping, page);
880 	}
881 
882 	/*
883 	 * Buffers may be managed in a filesystem specific way.
884 	 * We must have no buffers or drop them.
885 	 */
886 	if (page_has_private(page) &&
887 	    !try_to_release_page(page, GFP_KERNEL))
888 		return -EAGAIN;
889 
890 	return migrate_page(mapping, newpage, page, mode);
891 }
892 
893 /*
894  * Move a page to a newly allocated page
895  * The page is locked and all ptes have been successfully removed.
896  *
897  * The new page will have replaced the old page if this function
898  * is successful.
899  *
900  * Return value:
901  *   < 0 - error code
902  *  MIGRATEPAGE_SUCCESS - success
903  */
904 static int move_to_new_page(struct page *newpage, struct page *page,
905 				enum migrate_mode mode)
906 {
907 	struct address_space *mapping;
908 	int rc = -EAGAIN;
909 	bool is_lru = !__PageMovable(page);
910 
911 	VM_BUG_ON_PAGE(!PageLocked(page), page);
912 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
913 
914 	mapping = page_mapping(page);
915 
916 	if (likely(is_lru)) {
917 		if (!mapping)
918 			rc = migrate_page(mapping, newpage, page, mode);
919 		else if (mapping->a_ops->migratepage)
920 			/*
921 			 * Most pages have a mapping and most filesystems
922 			 * provide a migratepage callback. Anonymous pages
923 			 * are part of swap space which also has its own
924 			 * migratepage callback. This is the most common path
925 			 * for page migration.
926 			 */
927 			rc = mapping->a_ops->migratepage(mapping, newpage,
928 							page, mode);
929 		else
930 			rc = fallback_migrate_page(mapping, newpage,
931 							page, mode);
932 	} else {
933 		/*
934 		 * In case of non-lru page, it could be released after
935 		 * isolation step. In that case, we shouldn't try migration.
936 		 */
937 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
938 		if (!PageMovable(page)) {
939 			rc = MIGRATEPAGE_SUCCESS;
940 			__ClearPageIsolated(page);
941 			goto out;
942 		}
943 
944 		rc = mapping->a_ops->migratepage(mapping, newpage,
945 						page, mode);
946 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947 			!PageIsolated(page));
948 	}
949 
950 	/*
951 	 * When successful, old pagecache page->mapping must be cleared before
952 	 * page is freed; but stats require that PageAnon be left as PageAnon.
953 	 */
954 	if (rc == MIGRATEPAGE_SUCCESS) {
955 		if (__PageMovable(page)) {
956 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
957 
958 			/*
959 			 * We clear PG_movable under page_lock so any compactor
960 			 * cannot try to migrate this page.
961 			 */
962 			__ClearPageIsolated(page);
963 		}
964 
965 		/*
966 		 * Anonymous and movable page->mapping will be cleard by
967 		 * free_pages_prepare so don't reset it here for keeping
968 		 * the type to work PageAnon, for example.
969 		 */
970 		if (!PageMappingFlags(page))
971 			page->mapping = NULL;
972 	}
973 out:
974 	return rc;
975 }
976 
977 static int __unmap_and_move(struct page *page, struct page *newpage,
978 				int force, enum migrate_mode mode)
979 {
980 	int rc = -EAGAIN;
981 	int page_was_mapped = 0;
982 	struct anon_vma *anon_vma = NULL;
983 	bool is_lru = !__PageMovable(page);
984 
985 	if (!trylock_page(page)) {
986 		if (!force || mode == MIGRATE_ASYNC)
987 			goto out;
988 
989 		/*
990 		 * It's not safe for direct compaction to call lock_page.
991 		 * For example, during page readahead pages are added locked
992 		 * to the LRU. Later, when the IO completes the pages are
993 		 * marked uptodate and unlocked. However, the queueing
994 		 * could be merging multiple pages for one bio (e.g.
995 		 * mpage_readpages). If an allocation happens for the
996 		 * second or third page, the process can end up locking
997 		 * the same page twice and deadlocking. Rather than
998 		 * trying to be clever about what pages can be locked,
999 		 * avoid the use of lock_page for direct compaction
1000 		 * altogether.
1001 		 */
1002 		if (current->flags & PF_MEMALLOC)
1003 			goto out;
1004 
1005 		lock_page(page);
1006 	}
1007 
1008 	if (PageWriteback(page)) {
1009 		/*
1010 		 * Only in the case of a full synchronous migration is it
1011 		 * necessary to wait for PageWriteback. In the async case,
1012 		 * the retry loop is too short and in the sync-light case,
1013 		 * the overhead of stalling is too much
1014 		 */
1015 		switch (mode) {
1016 		case MIGRATE_SYNC:
1017 		case MIGRATE_SYNC_NO_COPY:
1018 			break;
1019 		default:
1020 			rc = -EBUSY;
1021 			goto out_unlock;
1022 		}
1023 		if (!force)
1024 			goto out_unlock;
1025 		wait_on_page_writeback(page);
1026 	}
1027 
1028 	/*
1029 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1030 	 * we cannot notice that anon_vma is freed while we migrates a page.
1031 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1032 	 * of migration. File cache pages are no problem because of page_lock()
1033 	 * File Caches may use write_page() or lock_page() in migration, then,
1034 	 * just care Anon page here.
1035 	 *
1036 	 * Only page_get_anon_vma() understands the subtleties of
1037 	 * getting a hold on an anon_vma from outside one of its mms.
1038 	 * But if we cannot get anon_vma, then we won't need it anyway,
1039 	 * because that implies that the anon page is no longer mapped
1040 	 * (and cannot be remapped so long as we hold the page lock).
1041 	 */
1042 	if (PageAnon(page) && !PageKsm(page))
1043 		anon_vma = page_get_anon_vma(page);
1044 
1045 	/*
1046 	 * Block others from accessing the new page when we get around to
1047 	 * establishing additional references. We are usually the only one
1048 	 * holding a reference to newpage at this point. We used to have a BUG
1049 	 * here if trylock_page(newpage) fails, but would like to allow for
1050 	 * cases where there might be a race with the previous use of newpage.
1051 	 * This is much like races on refcount of oldpage: just don't BUG().
1052 	 */
1053 	if (unlikely(!trylock_page(newpage)))
1054 		goto out_unlock;
1055 
1056 	if (unlikely(!is_lru)) {
1057 		rc = move_to_new_page(newpage, page, mode);
1058 		goto out_unlock_both;
1059 	}
1060 
1061 	/*
1062 	 * Corner case handling:
1063 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1064 	 * and treated as swapcache but it has no rmap yet.
1065 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1066 	 * trigger a BUG.  So handle it here.
1067 	 * 2. An orphaned page (see truncate_complete_page) might have
1068 	 * fs-private metadata. The page can be picked up due to memory
1069 	 * offlining.  Everywhere else except page reclaim, the page is
1070 	 * invisible to the vm, so the page can not be migrated.  So try to
1071 	 * free the metadata, so the page can be freed.
1072 	 */
1073 	if (!page->mapping) {
1074 		VM_BUG_ON_PAGE(PageAnon(page), page);
1075 		if (page_has_private(page)) {
1076 			try_to_free_buffers(page);
1077 			goto out_unlock_both;
1078 		}
1079 	} else if (page_mapped(page)) {
1080 		/* Establish migration ptes */
1081 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1082 				page);
1083 		try_to_unmap(page,
1084 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1085 		page_was_mapped = 1;
1086 	}
1087 
1088 	if (!page_mapped(page))
1089 		rc = move_to_new_page(newpage, page, mode);
1090 
1091 	if (page_was_mapped)
1092 		remove_migration_ptes(page,
1093 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1094 
1095 out_unlock_both:
1096 	unlock_page(newpage);
1097 out_unlock:
1098 	/* Drop an anon_vma reference if we took one */
1099 	if (anon_vma)
1100 		put_anon_vma(anon_vma);
1101 	unlock_page(page);
1102 out:
1103 	/*
1104 	 * If migration is successful, decrease refcount of the newpage
1105 	 * which will not free the page because new page owner increased
1106 	 * refcounter. As well, if it is LRU page, add the page to LRU
1107 	 * list in here.
1108 	 */
1109 	if (rc == MIGRATEPAGE_SUCCESS) {
1110 		if (unlikely(__PageMovable(newpage)))
1111 			put_page(newpage);
1112 		else
1113 			putback_lru_page(newpage);
1114 	}
1115 
1116 	return rc;
1117 }
1118 
1119 /*
1120  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1121  * around it.
1122  */
1123 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1124 #define ICE_noinline noinline
1125 #else
1126 #define ICE_noinline
1127 #endif
1128 
1129 /*
1130  * Obtain the lock on page, remove all ptes and migrate the page
1131  * to the newly allocated page in newpage.
1132  */
1133 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1134 				   free_page_t put_new_page,
1135 				   unsigned long private, struct page *page,
1136 				   int force, enum migrate_mode mode,
1137 				   enum migrate_reason reason)
1138 {
1139 	int rc = MIGRATEPAGE_SUCCESS;
1140 	int *result = NULL;
1141 	struct page *newpage;
1142 
1143 	newpage = get_new_page(page, private, &result);
1144 	if (!newpage)
1145 		return -ENOMEM;
1146 
1147 	if (page_count(page) == 1) {
1148 		/* page was freed from under us. So we are done. */
1149 		ClearPageActive(page);
1150 		ClearPageUnevictable(page);
1151 		if (unlikely(__PageMovable(page))) {
1152 			lock_page(page);
1153 			if (!PageMovable(page))
1154 				__ClearPageIsolated(page);
1155 			unlock_page(page);
1156 		}
1157 		if (put_new_page)
1158 			put_new_page(newpage, private);
1159 		else
1160 			put_page(newpage);
1161 		goto out;
1162 	}
1163 
1164 	if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1165 		lock_page(page);
1166 		rc = split_huge_page(page);
1167 		unlock_page(page);
1168 		if (rc)
1169 			goto out;
1170 	}
1171 
1172 	rc = __unmap_and_move(page, newpage, force, mode);
1173 	if (rc == MIGRATEPAGE_SUCCESS)
1174 		set_page_owner_migrate_reason(newpage, reason);
1175 
1176 out:
1177 	if (rc != -EAGAIN) {
1178 		/*
1179 		 * A page that has been migrated has all references
1180 		 * removed and will be freed. A page that has not been
1181 		 * migrated will have kepts its references and be
1182 		 * restored.
1183 		 */
1184 		list_del(&page->lru);
1185 
1186 		/*
1187 		 * Compaction can migrate also non-LRU pages which are
1188 		 * not accounted to NR_ISOLATED_*. They can be recognized
1189 		 * as __PageMovable
1190 		 */
1191 		if (likely(!__PageMovable(page)))
1192 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1193 					page_is_file_cache(page), -hpage_nr_pages(page));
1194 	}
1195 
1196 	/*
1197 	 * If migration is successful, releases reference grabbed during
1198 	 * isolation. Otherwise, restore the page to right list unless
1199 	 * we want to retry.
1200 	 */
1201 	if (rc == MIGRATEPAGE_SUCCESS) {
1202 		put_page(page);
1203 		if (reason == MR_MEMORY_FAILURE) {
1204 			/*
1205 			 * Set PG_HWPoison on just freed page
1206 			 * intentionally. Although it's rather weird,
1207 			 * it's how HWPoison flag works at the moment.
1208 			 */
1209 			if (!test_set_page_hwpoison(page))
1210 				num_poisoned_pages_inc();
1211 		}
1212 	} else {
1213 		if (rc != -EAGAIN) {
1214 			if (likely(!__PageMovable(page))) {
1215 				putback_lru_page(page);
1216 				goto put_new;
1217 			}
1218 
1219 			lock_page(page);
1220 			if (PageMovable(page))
1221 				putback_movable_page(page);
1222 			else
1223 				__ClearPageIsolated(page);
1224 			unlock_page(page);
1225 			put_page(page);
1226 		}
1227 put_new:
1228 		if (put_new_page)
1229 			put_new_page(newpage, private);
1230 		else
1231 			put_page(newpage);
1232 	}
1233 
1234 	if (result) {
1235 		if (rc)
1236 			*result = rc;
1237 		else
1238 			*result = page_to_nid(newpage);
1239 	}
1240 	return rc;
1241 }
1242 
1243 /*
1244  * Counterpart of unmap_and_move_page() for hugepage migration.
1245  *
1246  * This function doesn't wait the completion of hugepage I/O
1247  * because there is no race between I/O and migration for hugepage.
1248  * Note that currently hugepage I/O occurs only in direct I/O
1249  * where no lock is held and PG_writeback is irrelevant,
1250  * and writeback status of all subpages are counted in the reference
1251  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252  * under direct I/O, the reference of the head page is 512 and a bit more.)
1253  * This means that when we try to migrate hugepage whose subpages are
1254  * doing direct I/O, some references remain after try_to_unmap() and
1255  * hugepage migration fails without data corruption.
1256  *
1257  * There is also no race when direct I/O is issued on the page under migration,
1258  * because then pte is replaced with migration swap entry and direct I/O code
1259  * will wait in the page fault for migration to complete.
1260  */
1261 static int unmap_and_move_huge_page(new_page_t get_new_page,
1262 				free_page_t put_new_page, unsigned long private,
1263 				struct page *hpage, int force,
1264 				enum migrate_mode mode, int reason)
1265 {
1266 	int rc = -EAGAIN;
1267 	int *result = NULL;
1268 	int page_was_mapped = 0;
1269 	struct page *new_hpage;
1270 	struct anon_vma *anon_vma = NULL;
1271 
1272 	/*
1273 	 * Movability of hugepages depends on architectures and hugepage size.
1274 	 * This check is necessary because some callers of hugepage migration
1275 	 * like soft offline and memory hotremove don't walk through page
1276 	 * tables or check whether the hugepage is pmd-based or not before
1277 	 * kicking migration.
1278 	 */
1279 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1280 		putback_active_hugepage(hpage);
1281 		return -ENOSYS;
1282 	}
1283 
1284 	new_hpage = get_new_page(hpage, private, &result);
1285 	if (!new_hpage)
1286 		return -ENOMEM;
1287 
1288 	if (!trylock_page(hpage)) {
1289 		if (!force)
1290 			goto out;
1291 		switch (mode) {
1292 		case MIGRATE_SYNC:
1293 		case MIGRATE_SYNC_NO_COPY:
1294 			break;
1295 		default:
1296 			goto out;
1297 		}
1298 		lock_page(hpage);
1299 	}
1300 
1301 	if (PageAnon(hpage))
1302 		anon_vma = page_get_anon_vma(hpage);
1303 
1304 	if (unlikely(!trylock_page(new_hpage)))
1305 		goto put_anon;
1306 
1307 	if (page_mapped(hpage)) {
1308 		try_to_unmap(hpage,
1309 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1310 		page_was_mapped = 1;
1311 	}
1312 
1313 	if (!page_mapped(hpage))
1314 		rc = move_to_new_page(new_hpage, hpage, mode);
1315 
1316 	if (page_was_mapped)
1317 		remove_migration_ptes(hpage,
1318 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1319 
1320 	unlock_page(new_hpage);
1321 
1322 put_anon:
1323 	if (anon_vma)
1324 		put_anon_vma(anon_vma);
1325 
1326 	if (rc == MIGRATEPAGE_SUCCESS) {
1327 		move_hugetlb_state(hpage, new_hpage, reason);
1328 		put_new_page = NULL;
1329 	}
1330 
1331 	unlock_page(hpage);
1332 out:
1333 	if (rc != -EAGAIN)
1334 		putback_active_hugepage(hpage);
1335 	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1336 		num_poisoned_pages_inc();
1337 
1338 	/*
1339 	 * If migration was not successful and there's a freeing callback, use
1340 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1341 	 * isolation.
1342 	 */
1343 	if (put_new_page)
1344 		put_new_page(new_hpage, private);
1345 	else
1346 		putback_active_hugepage(new_hpage);
1347 
1348 	if (result) {
1349 		if (rc)
1350 			*result = rc;
1351 		else
1352 			*result = page_to_nid(new_hpage);
1353 	}
1354 	return rc;
1355 }
1356 
1357 /*
1358  * migrate_pages - migrate the pages specified in a list, to the free pages
1359  *		   supplied as the target for the page migration
1360  *
1361  * @from:		The list of pages to be migrated.
1362  * @get_new_page:	The function used to allocate free pages to be used
1363  *			as the target of the page migration.
1364  * @put_new_page:	The function used to free target pages if migration
1365  *			fails, or NULL if no special handling is necessary.
1366  * @private:		Private data to be passed on to get_new_page()
1367  * @mode:		The migration mode that specifies the constraints for
1368  *			page migration, if any.
1369  * @reason:		The reason for page migration.
1370  *
1371  * The function returns after 10 attempts or if no pages are movable any more
1372  * because the list has become empty or no retryable pages exist any more.
1373  * The caller should call putback_movable_pages() to return pages to the LRU
1374  * or free list only if ret != 0.
1375  *
1376  * Returns the number of pages that were not migrated, or an error code.
1377  */
1378 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1379 		free_page_t put_new_page, unsigned long private,
1380 		enum migrate_mode mode, int reason)
1381 {
1382 	int retry = 1;
1383 	int nr_failed = 0;
1384 	int nr_succeeded = 0;
1385 	int pass = 0;
1386 	struct page *page;
1387 	struct page *page2;
1388 	int swapwrite = current->flags & PF_SWAPWRITE;
1389 	int rc;
1390 
1391 	if (!swapwrite)
1392 		current->flags |= PF_SWAPWRITE;
1393 
1394 	for(pass = 0; pass < 10 && retry; pass++) {
1395 		retry = 0;
1396 
1397 		list_for_each_entry_safe(page, page2, from, lru) {
1398 			cond_resched();
1399 
1400 			if (PageHuge(page))
1401 				rc = unmap_and_move_huge_page(get_new_page,
1402 						put_new_page, private, page,
1403 						pass > 2, mode, reason);
1404 			else
1405 				rc = unmap_and_move(get_new_page, put_new_page,
1406 						private, page, pass > 2, mode,
1407 						reason);
1408 
1409 			switch(rc) {
1410 			case -ENOMEM:
1411 				nr_failed++;
1412 				goto out;
1413 			case -EAGAIN:
1414 				retry++;
1415 				break;
1416 			case MIGRATEPAGE_SUCCESS:
1417 				nr_succeeded++;
1418 				break;
1419 			default:
1420 				/*
1421 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1422 				 * unlike -EAGAIN case, the failed page is
1423 				 * removed from migration page list and not
1424 				 * retried in the next outer loop.
1425 				 */
1426 				nr_failed++;
1427 				break;
1428 			}
1429 		}
1430 	}
1431 	nr_failed += retry;
1432 	rc = nr_failed;
1433 out:
1434 	if (nr_succeeded)
1435 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1436 	if (nr_failed)
1437 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1438 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1439 
1440 	if (!swapwrite)
1441 		current->flags &= ~PF_SWAPWRITE;
1442 
1443 	return rc;
1444 }
1445 
1446 #ifdef CONFIG_NUMA
1447 /*
1448  * Move a list of individual pages
1449  */
1450 struct page_to_node {
1451 	unsigned long addr;
1452 	struct page *page;
1453 	int node;
1454 	int status;
1455 };
1456 
1457 static struct page *new_page_node(struct page *p, unsigned long private,
1458 		int **result)
1459 {
1460 	struct page_to_node *pm = (struct page_to_node *)private;
1461 
1462 	while (pm->node != MAX_NUMNODES && pm->page != p)
1463 		pm++;
1464 
1465 	if (pm->node == MAX_NUMNODES)
1466 		return NULL;
1467 
1468 	*result = &pm->status;
1469 
1470 	if (PageHuge(p))
1471 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1472 					pm->node);
1473 	else if (thp_migration_supported() && PageTransHuge(p)) {
1474 		struct page *thp;
1475 
1476 		thp = alloc_pages_node(pm->node,
1477 			(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1478 			HPAGE_PMD_ORDER);
1479 		if (!thp)
1480 			return NULL;
1481 		prep_transhuge_page(thp);
1482 		return thp;
1483 	} else
1484 		return __alloc_pages_node(pm->node,
1485 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1486 }
1487 
1488 /*
1489  * Move a set of pages as indicated in the pm array. The addr
1490  * field must be set to the virtual address of the page to be moved
1491  * and the node number must contain a valid target node.
1492  * The pm array ends with node = MAX_NUMNODES.
1493  */
1494 static int do_move_page_to_node_array(struct mm_struct *mm,
1495 				      struct page_to_node *pm,
1496 				      int migrate_all)
1497 {
1498 	int err;
1499 	struct page_to_node *pp;
1500 	LIST_HEAD(pagelist);
1501 
1502 	down_read(&mm->mmap_sem);
1503 
1504 	/*
1505 	 * Build a list of pages to migrate
1506 	 */
1507 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1508 		struct vm_area_struct *vma;
1509 		struct page *page;
1510 		struct page *head;
1511 		unsigned int follflags;
1512 
1513 		err = -EFAULT;
1514 		vma = find_vma(mm, pp->addr);
1515 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1516 			goto set_status;
1517 
1518 		/* FOLL_DUMP to ignore special (like zero) pages */
1519 		follflags = FOLL_GET | FOLL_DUMP;
1520 		if (!thp_migration_supported())
1521 			follflags |= FOLL_SPLIT;
1522 		page = follow_page(vma, pp->addr, follflags);
1523 
1524 		err = PTR_ERR(page);
1525 		if (IS_ERR(page))
1526 			goto set_status;
1527 
1528 		err = -ENOENT;
1529 		if (!page)
1530 			goto set_status;
1531 
1532 		err = page_to_nid(page);
1533 
1534 		if (err == pp->node)
1535 			/*
1536 			 * Node already in the right place
1537 			 */
1538 			goto put_and_set;
1539 
1540 		err = -EACCES;
1541 		if (page_mapcount(page) > 1 &&
1542 				!migrate_all)
1543 			goto put_and_set;
1544 
1545 		if (PageHuge(page)) {
1546 			if (PageHead(page)) {
1547 				isolate_huge_page(page, &pagelist);
1548 				err = 0;
1549 				pp->page = page;
1550 			}
1551 			goto put_and_set;
1552 		}
1553 
1554 		pp->page = compound_head(page);
1555 		head = compound_head(page);
1556 		err = isolate_lru_page(head);
1557 		if (!err) {
1558 			list_add_tail(&head->lru, &pagelist);
1559 			mod_node_page_state(page_pgdat(head),
1560 				NR_ISOLATED_ANON + page_is_file_cache(head),
1561 				hpage_nr_pages(head));
1562 		}
1563 put_and_set:
1564 		/*
1565 		 * Either remove the duplicate refcount from
1566 		 * isolate_lru_page() or drop the page ref if it was
1567 		 * not isolated.
1568 		 */
1569 		put_page(page);
1570 set_status:
1571 		pp->status = err;
1572 	}
1573 
1574 	err = 0;
1575 	if (!list_empty(&pagelist)) {
1576 		err = migrate_pages(&pagelist, new_page_node, NULL,
1577 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1578 		if (err)
1579 			putback_movable_pages(&pagelist);
1580 	}
1581 
1582 	up_read(&mm->mmap_sem);
1583 	return err;
1584 }
1585 
1586 /*
1587  * Migrate an array of page address onto an array of nodes and fill
1588  * the corresponding array of status.
1589  */
1590 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591 			 unsigned long nr_pages,
1592 			 const void __user * __user *pages,
1593 			 const int __user *nodes,
1594 			 int __user *status, int flags)
1595 {
1596 	struct page_to_node *pm;
1597 	unsigned long chunk_nr_pages;
1598 	unsigned long chunk_start;
1599 	int err;
1600 
1601 	err = -ENOMEM;
1602 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1603 	if (!pm)
1604 		goto out;
1605 
1606 	migrate_prep();
1607 
1608 	/*
1609 	 * Store a chunk of page_to_node array in a page,
1610 	 * but keep the last one as a marker
1611 	 */
1612 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1613 
1614 	for (chunk_start = 0;
1615 	     chunk_start < nr_pages;
1616 	     chunk_start += chunk_nr_pages) {
1617 		int j;
1618 
1619 		if (chunk_start + chunk_nr_pages > nr_pages)
1620 			chunk_nr_pages = nr_pages - chunk_start;
1621 
1622 		/* fill the chunk pm with addrs and nodes from user-space */
1623 		for (j = 0; j < chunk_nr_pages; j++) {
1624 			const void __user *p;
1625 			int node;
1626 
1627 			err = -EFAULT;
1628 			if (get_user(p, pages + j + chunk_start))
1629 				goto out_pm;
1630 			pm[j].addr = (unsigned long) p;
1631 
1632 			if (get_user(node, nodes + j + chunk_start))
1633 				goto out_pm;
1634 
1635 			err = -ENODEV;
1636 			if (node < 0 || node >= MAX_NUMNODES)
1637 				goto out_pm;
1638 
1639 			if (!node_state(node, N_MEMORY))
1640 				goto out_pm;
1641 
1642 			err = -EACCES;
1643 			if (!node_isset(node, task_nodes))
1644 				goto out_pm;
1645 
1646 			pm[j].node = node;
1647 		}
1648 
1649 		/* End marker for this chunk */
1650 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1651 
1652 		/* Migrate this chunk */
1653 		err = do_move_page_to_node_array(mm, pm,
1654 						 flags & MPOL_MF_MOVE_ALL);
1655 		if (err < 0)
1656 			goto out_pm;
1657 
1658 		/* Return status information */
1659 		for (j = 0; j < chunk_nr_pages; j++)
1660 			if (put_user(pm[j].status, status + j + chunk_start)) {
1661 				err = -EFAULT;
1662 				goto out_pm;
1663 			}
1664 	}
1665 	err = 0;
1666 
1667 out_pm:
1668 	free_page((unsigned long)pm);
1669 out:
1670 	return err;
1671 }
1672 
1673 /*
1674  * Determine the nodes of an array of pages and store it in an array of status.
1675  */
1676 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1677 				const void __user **pages, int *status)
1678 {
1679 	unsigned long i;
1680 
1681 	down_read(&mm->mmap_sem);
1682 
1683 	for (i = 0; i < nr_pages; i++) {
1684 		unsigned long addr = (unsigned long)(*pages);
1685 		struct vm_area_struct *vma;
1686 		struct page *page;
1687 		int err = -EFAULT;
1688 
1689 		vma = find_vma(mm, addr);
1690 		if (!vma || addr < vma->vm_start)
1691 			goto set_status;
1692 
1693 		/* FOLL_DUMP to ignore special (like zero) pages */
1694 		page = follow_page(vma, addr, FOLL_DUMP);
1695 
1696 		err = PTR_ERR(page);
1697 		if (IS_ERR(page))
1698 			goto set_status;
1699 
1700 		err = page ? page_to_nid(page) : -ENOENT;
1701 set_status:
1702 		*status = err;
1703 
1704 		pages++;
1705 		status++;
1706 	}
1707 
1708 	up_read(&mm->mmap_sem);
1709 }
1710 
1711 /*
1712  * Determine the nodes of a user array of pages and store it in
1713  * a user array of status.
1714  */
1715 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1716 			 const void __user * __user *pages,
1717 			 int __user *status)
1718 {
1719 #define DO_PAGES_STAT_CHUNK_NR 16
1720 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1721 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1722 
1723 	while (nr_pages) {
1724 		unsigned long chunk_nr;
1725 
1726 		chunk_nr = nr_pages;
1727 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1728 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1729 
1730 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1731 			break;
1732 
1733 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1734 
1735 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1736 			break;
1737 
1738 		pages += chunk_nr;
1739 		status += chunk_nr;
1740 		nr_pages -= chunk_nr;
1741 	}
1742 	return nr_pages ? -EFAULT : 0;
1743 }
1744 
1745 /*
1746  * Move a list of pages in the address space of the currently executing
1747  * process.
1748  */
1749 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1750 			     const void __user * __user *pages,
1751 			     const int __user *nodes,
1752 			     int __user *status, int flags)
1753 {
1754 	struct task_struct *task;
1755 	struct mm_struct *mm;
1756 	int err;
1757 	nodemask_t task_nodes;
1758 
1759 	/* Check flags */
1760 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1761 		return -EINVAL;
1762 
1763 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1764 		return -EPERM;
1765 
1766 	/* Find the mm_struct */
1767 	rcu_read_lock();
1768 	task = pid ? find_task_by_vpid(pid) : current;
1769 	if (!task) {
1770 		rcu_read_unlock();
1771 		return -ESRCH;
1772 	}
1773 	get_task_struct(task);
1774 
1775 	/*
1776 	 * Check if this process has the right to modify the specified
1777 	 * process. Use the regular "ptrace_may_access()" checks.
1778 	 */
1779 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1780 		rcu_read_unlock();
1781 		err = -EPERM;
1782 		goto out;
1783 	}
1784 	rcu_read_unlock();
1785 
1786  	err = security_task_movememory(task);
1787  	if (err)
1788 		goto out;
1789 
1790 	task_nodes = cpuset_mems_allowed(task);
1791 	mm = get_task_mm(task);
1792 	put_task_struct(task);
1793 
1794 	if (!mm)
1795 		return -EINVAL;
1796 
1797 	if (nodes)
1798 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1799 				    nodes, status, flags);
1800 	else
1801 		err = do_pages_stat(mm, nr_pages, pages, status);
1802 
1803 	mmput(mm);
1804 	return err;
1805 
1806 out:
1807 	put_task_struct(task);
1808 	return err;
1809 }
1810 
1811 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1812 		const void __user * __user *, pages,
1813 		const int __user *, nodes,
1814 		int __user *, status, int, flags)
1815 {
1816 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1817 }
1818 
1819 #ifdef CONFIG_COMPAT
1820 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1821 		       compat_uptr_t __user *, pages32,
1822 		       const int __user *, nodes,
1823 		       int __user *, status,
1824 		       int, flags)
1825 {
1826 	const void __user * __user *pages;
1827 	int i;
1828 
1829 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1830 	for (i = 0; i < nr_pages; i++) {
1831 		compat_uptr_t p;
1832 
1833 		if (get_user(p, pages32 + i) ||
1834 			put_user(compat_ptr(p), pages + i))
1835 			return -EFAULT;
1836 	}
1837 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1838 }
1839 #endif /* CONFIG_COMPAT */
1840 
1841 #ifdef CONFIG_NUMA_BALANCING
1842 /*
1843  * Returns true if this is a safe migration target node for misplaced NUMA
1844  * pages. Currently it only checks the watermarks which crude
1845  */
1846 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1847 				   unsigned long nr_migrate_pages)
1848 {
1849 	int z;
1850 
1851 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1852 		struct zone *zone = pgdat->node_zones + z;
1853 
1854 		if (!populated_zone(zone))
1855 			continue;
1856 
1857 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1858 		if (!zone_watermark_ok(zone, 0,
1859 				       high_wmark_pages(zone) +
1860 				       nr_migrate_pages,
1861 				       0, 0))
1862 			continue;
1863 		return true;
1864 	}
1865 	return false;
1866 }
1867 
1868 static struct page *alloc_misplaced_dst_page(struct page *page,
1869 					   unsigned long data,
1870 					   int **result)
1871 {
1872 	int nid = (int) data;
1873 	struct page *newpage;
1874 
1875 	newpage = __alloc_pages_node(nid,
1876 					 (GFP_HIGHUSER_MOVABLE |
1877 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1878 					  __GFP_NORETRY | __GFP_NOWARN) &
1879 					 ~__GFP_RECLAIM, 0);
1880 
1881 	return newpage;
1882 }
1883 
1884 /*
1885  * page migration rate limiting control.
1886  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1887  * window of time. Default here says do not migrate more than 1280M per second.
1888  */
1889 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1890 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1891 
1892 /* Returns true if the node is migrate rate-limited after the update */
1893 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1894 					unsigned long nr_pages)
1895 {
1896 	/*
1897 	 * Rate-limit the amount of data that is being migrated to a node.
1898 	 * Optimal placement is no good if the memory bus is saturated and
1899 	 * all the time is being spent migrating!
1900 	 */
1901 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1902 		spin_lock(&pgdat->numabalancing_migrate_lock);
1903 		pgdat->numabalancing_migrate_nr_pages = 0;
1904 		pgdat->numabalancing_migrate_next_window = jiffies +
1905 			msecs_to_jiffies(migrate_interval_millisecs);
1906 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1907 	}
1908 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1909 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1910 								nr_pages);
1911 		return true;
1912 	}
1913 
1914 	/*
1915 	 * This is an unlocked non-atomic update so errors are possible.
1916 	 * The consequences are failing to migrate when we potentiall should
1917 	 * have which is not severe enough to warrant locking. If it is ever
1918 	 * a problem, it can be converted to a per-cpu counter.
1919 	 */
1920 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1921 	return false;
1922 }
1923 
1924 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1925 {
1926 	int page_lru;
1927 
1928 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1929 
1930 	/* Avoid migrating to a node that is nearly full */
1931 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1932 		return 0;
1933 
1934 	if (isolate_lru_page(page))
1935 		return 0;
1936 
1937 	/*
1938 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1939 	 * check on page_count(), so we must do it here, now that the page
1940 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1941 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1942 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1943 	 */
1944 	if (PageTransHuge(page) && page_count(page) != 3) {
1945 		putback_lru_page(page);
1946 		return 0;
1947 	}
1948 
1949 	page_lru = page_is_file_cache(page);
1950 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1951 				hpage_nr_pages(page));
1952 
1953 	/*
1954 	 * Isolating the page has taken another reference, so the
1955 	 * caller's reference can be safely dropped without the page
1956 	 * disappearing underneath us during migration.
1957 	 */
1958 	put_page(page);
1959 	return 1;
1960 }
1961 
1962 bool pmd_trans_migrating(pmd_t pmd)
1963 {
1964 	struct page *page = pmd_page(pmd);
1965 	return PageLocked(page);
1966 }
1967 
1968 /*
1969  * Attempt to migrate a misplaced page to the specified destination
1970  * node. Caller is expected to have an elevated reference count on
1971  * the page that will be dropped by this function before returning.
1972  */
1973 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1974 			   int node)
1975 {
1976 	pg_data_t *pgdat = NODE_DATA(node);
1977 	int isolated;
1978 	int nr_remaining;
1979 	LIST_HEAD(migratepages);
1980 
1981 	/*
1982 	 * Don't migrate file pages that are mapped in multiple processes
1983 	 * with execute permissions as they are probably shared libraries.
1984 	 */
1985 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1986 	    (vma->vm_flags & VM_EXEC))
1987 		goto out;
1988 
1989 	/*
1990 	 * Rate-limit the amount of data that is being migrated to a node.
1991 	 * Optimal placement is no good if the memory bus is saturated and
1992 	 * all the time is being spent migrating!
1993 	 */
1994 	if (numamigrate_update_ratelimit(pgdat, 1))
1995 		goto out;
1996 
1997 	isolated = numamigrate_isolate_page(pgdat, page);
1998 	if (!isolated)
1999 		goto out;
2000 
2001 	list_add(&page->lru, &migratepages);
2002 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2003 				     NULL, node, MIGRATE_ASYNC,
2004 				     MR_NUMA_MISPLACED);
2005 	if (nr_remaining) {
2006 		if (!list_empty(&migratepages)) {
2007 			list_del(&page->lru);
2008 			dec_node_page_state(page, NR_ISOLATED_ANON +
2009 					page_is_file_cache(page));
2010 			putback_lru_page(page);
2011 		}
2012 		isolated = 0;
2013 	} else
2014 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2015 	BUG_ON(!list_empty(&migratepages));
2016 	return isolated;
2017 
2018 out:
2019 	put_page(page);
2020 	return 0;
2021 }
2022 #endif /* CONFIG_NUMA_BALANCING */
2023 
2024 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2025 /*
2026  * Migrates a THP to a given target node. page must be locked and is unlocked
2027  * before returning.
2028  */
2029 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2030 				struct vm_area_struct *vma,
2031 				pmd_t *pmd, pmd_t entry,
2032 				unsigned long address,
2033 				struct page *page, int node)
2034 {
2035 	spinlock_t *ptl;
2036 	pg_data_t *pgdat = NODE_DATA(node);
2037 	int isolated = 0;
2038 	struct page *new_page = NULL;
2039 	int page_lru = page_is_file_cache(page);
2040 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2041 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2042 
2043 	/*
2044 	 * Rate-limit the amount of data that is being migrated to a node.
2045 	 * Optimal placement is no good if the memory bus is saturated and
2046 	 * all the time is being spent migrating!
2047 	 */
2048 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2049 		goto out_dropref;
2050 
2051 	new_page = alloc_pages_node(node,
2052 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2053 		HPAGE_PMD_ORDER);
2054 	if (!new_page)
2055 		goto out_fail;
2056 	prep_transhuge_page(new_page);
2057 
2058 	isolated = numamigrate_isolate_page(pgdat, page);
2059 	if (!isolated) {
2060 		put_page(new_page);
2061 		goto out_fail;
2062 	}
2063 
2064 	/* Prepare a page as a migration target */
2065 	__SetPageLocked(new_page);
2066 	if (PageSwapBacked(page))
2067 		__SetPageSwapBacked(new_page);
2068 
2069 	/* anon mapping, we can simply copy page->mapping to the new page: */
2070 	new_page->mapping = page->mapping;
2071 	new_page->index = page->index;
2072 	migrate_page_copy(new_page, page);
2073 	WARN_ON(PageLRU(new_page));
2074 
2075 	/* Recheck the target PMD */
2076 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2077 	ptl = pmd_lock(mm, pmd);
2078 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2079 		spin_unlock(ptl);
2080 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2081 
2082 		/* Reverse changes made by migrate_page_copy() */
2083 		if (TestClearPageActive(new_page))
2084 			SetPageActive(page);
2085 		if (TestClearPageUnevictable(new_page))
2086 			SetPageUnevictable(page);
2087 
2088 		unlock_page(new_page);
2089 		put_page(new_page);		/* Free it */
2090 
2091 		/* Retake the callers reference and putback on LRU */
2092 		get_page(page);
2093 		putback_lru_page(page);
2094 		mod_node_page_state(page_pgdat(page),
2095 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2096 
2097 		goto out_unlock;
2098 	}
2099 
2100 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2101 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2102 
2103 	/*
2104 	 * Clear the old entry under pagetable lock and establish the new PTE.
2105 	 * Any parallel GUP will either observe the old page blocking on the
2106 	 * page lock, block on the page table lock or observe the new page.
2107 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2108 	 * guarantee the copy is visible before the pagetable update.
2109 	 */
2110 	flush_cache_range(vma, mmun_start, mmun_end);
2111 	page_add_anon_rmap(new_page, vma, mmun_start, true);
2112 	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2113 	set_pmd_at(mm, mmun_start, pmd, entry);
2114 	update_mmu_cache_pmd(vma, address, &entry);
2115 
2116 	page_ref_unfreeze(page, 2);
2117 	mlock_migrate_page(new_page, page);
2118 	page_remove_rmap(page, true);
2119 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2120 
2121 	spin_unlock(ptl);
2122 	/*
2123 	 * No need to double call mmu_notifier->invalidate_range() callback as
2124 	 * the above pmdp_huge_clear_flush_notify() did already call it.
2125 	 */
2126 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2127 
2128 	/* Take an "isolate" reference and put new page on the LRU. */
2129 	get_page(new_page);
2130 	putback_lru_page(new_page);
2131 
2132 	unlock_page(new_page);
2133 	unlock_page(page);
2134 	put_page(page);			/* Drop the rmap reference */
2135 	put_page(page);			/* Drop the LRU isolation reference */
2136 
2137 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2138 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2139 
2140 	mod_node_page_state(page_pgdat(page),
2141 			NR_ISOLATED_ANON + page_lru,
2142 			-HPAGE_PMD_NR);
2143 	return isolated;
2144 
2145 out_fail:
2146 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2147 out_dropref:
2148 	ptl = pmd_lock(mm, pmd);
2149 	if (pmd_same(*pmd, entry)) {
2150 		entry = pmd_modify(entry, vma->vm_page_prot);
2151 		set_pmd_at(mm, mmun_start, pmd, entry);
2152 		update_mmu_cache_pmd(vma, address, &entry);
2153 	}
2154 	spin_unlock(ptl);
2155 
2156 out_unlock:
2157 	unlock_page(page);
2158 	put_page(page);
2159 	return 0;
2160 }
2161 #endif /* CONFIG_NUMA_BALANCING */
2162 
2163 #endif /* CONFIG_NUMA */
2164 
2165 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2166 struct migrate_vma {
2167 	struct vm_area_struct	*vma;
2168 	unsigned long		*dst;
2169 	unsigned long		*src;
2170 	unsigned long		cpages;
2171 	unsigned long		npages;
2172 	unsigned long		start;
2173 	unsigned long		end;
2174 };
2175 
2176 static int migrate_vma_collect_hole(unsigned long start,
2177 				    unsigned long end,
2178 				    struct mm_walk *walk)
2179 {
2180 	struct migrate_vma *migrate = walk->private;
2181 	unsigned long addr;
2182 
2183 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2184 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2185 		migrate->dst[migrate->npages] = 0;
2186 		migrate->npages++;
2187 		migrate->cpages++;
2188 	}
2189 
2190 	return 0;
2191 }
2192 
2193 static int migrate_vma_collect_skip(unsigned long start,
2194 				    unsigned long end,
2195 				    struct mm_walk *walk)
2196 {
2197 	struct migrate_vma *migrate = walk->private;
2198 	unsigned long addr;
2199 
2200 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2201 		migrate->dst[migrate->npages] = 0;
2202 		migrate->src[migrate->npages++] = 0;
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2209 				   unsigned long start,
2210 				   unsigned long end,
2211 				   struct mm_walk *walk)
2212 {
2213 	struct migrate_vma *migrate = walk->private;
2214 	struct vm_area_struct *vma = walk->vma;
2215 	struct mm_struct *mm = vma->vm_mm;
2216 	unsigned long addr = start, unmapped = 0;
2217 	spinlock_t *ptl;
2218 	pte_t *ptep;
2219 
2220 again:
2221 	if (pmd_none(*pmdp))
2222 		return migrate_vma_collect_hole(start, end, walk);
2223 
2224 	if (pmd_trans_huge(*pmdp)) {
2225 		struct page *page;
2226 
2227 		ptl = pmd_lock(mm, pmdp);
2228 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2229 			spin_unlock(ptl);
2230 			goto again;
2231 		}
2232 
2233 		page = pmd_page(*pmdp);
2234 		if (is_huge_zero_page(page)) {
2235 			spin_unlock(ptl);
2236 			split_huge_pmd(vma, pmdp, addr);
2237 			if (pmd_trans_unstable(pmdp))
2238 				return migrate_vma_collect_skip(start, end,
2239 								walk);
2240 		} else {
2241 			int ret;
2242 
2243 			get_page(page);
2244 			spin_unlock(ptl);
2245 			if (unlikely(!trylock_page(page)))
2246 				return migrate_vma_collect_skip(start, end,
2247 								walk);
2248 			ret = split_huge_page(page);
2249 			unlock_page(page);
2250 			put_page(page);
2251 			if (ret)
2252 				return migrate_vma_collect_skip(start, end,
2253 								walk);
2254 			if (pmd_none(*pmdp))
2255 				return migrate_vma_collect_hole(start, end,
2256 								walk);
2257 		}
2258 	}
2259 
2260 	if (unlikely(pmd_bad(*pmdp)))
2261 		return migrate_vma_collect_skip(start, end, walk);
2262 
2263 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2264 	arch_enter_lazy_mmu_mode();
2265 
2266 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2267 		unsigned long mpfn, pfn;
2268 		struct page *page;
2269 		swp_entry_t entry;
2270 		pte_t pte;
2271 
2272 		pte = *ptep;
2273 		pfn = pte_pfn(pte);
2274 
2275 		if (pte_none(pte)) {
2276 			mpfn = MIGRATE_PFN_MIGRATE;
2277 			migrate->cpages++;
2278 			pfn = 0;
2279 			goto next;
2280 		}
2281 
2282 		if (!pte_present(pte)) {
2283 			mpfn = pfn = 0;
2284 
2285 			/*
2286 			 * Only care about unaddressable device page special
2287 			 * page table entry. Other special swap entries are not
2288 			 * migratable, and we ignore regular swapped page.
2289 			 */
2290 			entry = pte_to_swp_entry(pte);
2291 			if (!is_device_private_entry(entry))
2292 				goto next;
2293 
2294 			page = device_private_entry_to_page(entry);
2295 			mpfn = migrate_pfn(page_to_pfn(page))|
2296 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2297 			if (is_write_device_private_entry(entry))
2298 				mpfn |= MIGRATE_PFN_WRITE;
2299 		} else {
2300 			if (is_zero_pfn(pfn)) {
2301 				mpfn = MIGRATE_PFN_MIGRATE;
2302 				migrate->cpages++;
2303 				pfn = 0;
2304 				goto next;
2305 			}
2306 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2307 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2308 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2309 		}
2310 
2311 		/* FIXME support THP */
2312 		if (!page || !page->mapping || PageTransCompound(page)) {
2313 			mpfn = pfn = 0;
2314 			goto next;
2315 		}
2316 		pfn = page_to_pfn(page);
2317 
2318 		/*
2319 		 * By getting a reference on the page we pin it and that blocks
2320 		 * any kind of migration. Side effect is that it "freezes" the
2321 		 * pte.
2322 		 *
2323 		 * We drop this reference after isolating the page from the lru
2324 		 * for non device page (device page are not on the lru and thus
2325 		 * can't be dropped from it).
2326 		 */
2327 		get_page(page);
2328 		migrate->cpages++;
2329 
2330 		/*
2331 		 * Optimize for the common case where page is only mapped once
2332 		 * in one process. If we can lock the page, then we can safely
2333 		 * set up a special migration page table entry now.
2334 		 */
2335 		if (trylock_page(page)) {
2336 			pte_t swp_pte;
2337 
2338 			mpfn |= MIGRATE_PFN_LOCKED;
2339 			ptep_get_and_clear(mm, addr, ptep);
2340 
2341 			/* Setup special migration page table entry */
2342 			entry = make_migration_entry(page, pte_write(pte));
2343 			swp_pte = swp_entry_to_pte(entry);
2344 			if (pte_soft_dirty(pte))
2345 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2346 			set_pte_at(mm, addr, ptep, swp_pte);
2347 
2348 			/*
2349 			 * This is like regular unmap: we remove the rmap and
2350 			 * drop page refcount. Page won't be freed, as we took
2351 			 * a reference just above.
2352 			 */
2353 			page_remove_rmap(page, false);
2354 			put_page(page);
2355 
2356 			if (pte_present(pte))
2357 				unmapped++;
2358 		}
2359 
2360 next:
2361 		migrate->dst[migrate->npages] = 0;
2362 		migrate->src[migrate->npages++] = mpfn;
2363 	}
2364 	arch_leave_lazy_mmu_mode();
2365 	pte_unmap_unlock(ptep - 1, ptl);
2366 
2367 	/* Only flush the TLB if we actually modified any entries */
2368 	if (unmapped)
2369 		flush_tlb_range(walk->vma, start, end);
2370 
2371 	return 0;
2372 }
2373 
2374 /*
2375  * migrate_vma_collect() - collect pages over a range of virtual addresses
2376  * @migrate: migrate struct containing all migration information
2377  *
2378  * This will walk the CPU page table. For each virtual address backed by a
2379  * valid page, it updates the src array and takes a reference on the page, in
2380  * order to pin the page until we lock it and unmap it.
2381  */
2382 static void migrate_vma_collect(struct migrate_vma *migrate)
2383 {
2384 	struct mm_walk mm_walk;
2385 
2386 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2387 	mm_walk.pte_entry = NULL;
2388 	mm_walk.pte_hole = migrate_vma_collect_hole;
2389 	mm_walk.hugetlb_entry = NULL;
2390 	mm_walk.test_walk = NULL;
2391 	mm_walk.vma = migrate->vma;
2392 	mm_walk.mm = migrate->vma->vm_mm;
2393 	mm_walk.private = migrate;
2394 
2395 	mmu_notifier_invalidate_range_start(mm_walk.mm,
2396 					    migrate->start,
2397 					    migrate->end);
2398 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2399 	mmu_notifier_invalidate_range_end(mm_walk.mm,
2400 					  migrate->start,
2401 					  migrate->end);
2402 
2403 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2404 }
2405 
2406 /*
2407  * migrate_vma_check_page() - check if page is pinned or not
2408  * @page: struct page to check
2409  *
2410  * Pinned pages cannot be migrated. This is the same test as in
2411  * migrate_page_move_mapping(), except that here we allow migration of a
2412  * ZONE_DEVICE page.
2413  */
2414 static bool migrate_vma_check_page(struct page *page)
2415 {
2416 	/*
2417 	 * One extra ref because caller holds an extra reference, either from
2418 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2419 	 * a device page.
2420 	 */
2421 	int extra = 1;
2422 
2423 	/*
2424 	 * FIXME support THP (transparent huge page), it is bit more complex to
2425 	 * check them than regular pages, because they can be mapped with a pmd
2426 	 * or with a pte (split pte mapping).
2427 	 */
2428 	if (PageCompound(page))
2429 		return false;
2430 
2431 	/* Page from ZONE_DEVICE have one extra reference */
2432 	if (is_zone_device_page(page)) {
2433 		/*
2434 		 * Private page can never be pin as they have no valid pte and
2435 		 * GUP will fail for those. Yet if there is a pending migration
2436 		 * a thread might try to wait on the pte migration entry and
2437 		 * will bump the page reference count. Sadly there is no way to
2438 		 * differentiate a regular pin from migration wait. Hence to
2439 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2440 		 * infinite loop (one stoping migration because the other is
2441 		 * waiting on pte migration entry). We always return true here.
2442 		 *
2443 		 * FIXME proper solution is to rework migration_entry_wait() so
2444 		 * it does not need to take a reference on page.
2445 		 */
2446 		if (is_device_private_page(page))
2447 			return true;
2448 
2449 		/*
2450 		 * Only allow device public page to be migrated and account for
2451 		 * the extra reference count imply by ZONE_DEVICE pages.
2452 		 */
2453 		if (!is_device_public_page(page))
2454 			return false;
2455 		extra++;
2456 	}
2457 
2458 	/* For file back page */
2459 	if (page_mapping(page))
2460 		extra += 1 + page_has_private(page);
2461 
2462 	if ((page_count(page) - extra) > page_mapcount(page))
2463 		return false;
2464 
2465 	return true;
2466 }
2467 
2468 /*
2469  * migrate_vma_prepare() - lock pages and isolate them from the lru
2470  * @migrate: migrate struct containing all migration information
2471  *
2472  * This locks pages that have been collected by migrate_vma_collect(). Once each
2473  * page is locked it is isolated from the lru (for non-device pages). Finally,
2474  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2475  * migrated by concurrent kernel threads.
2476  */
2477 static void migrate_vma_prepare(struct migrate_vma *migrate)
2478 {
2479 	const unsigned long npages = migrate->npages;
2480 	const unsigned long start = migrate->start;
2481 	unsigned long addr, i, restore = 0;
2482 	bool allow_drain = true;
2483 
2484 	lru_add_drain();
2485 
2486 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2487 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2488 		bool remap = true;
2489 
2490 		if (!page)
2491 			continue;
2492 
2493 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2494 			/*
2495 			 * Because we are migrating several pages there can be
2496 			 * a deadlock between 2 concurrent migration where each
2497 			 * are waiting on each other page lock.
2498 			 *
2499 			 * Make migrate_vma() a best effort thing and backoff
2500 			 * for any page we can not lock right away.
2501 			 */
2502 			if (!trylock_page(page)) {
2503 				migrate->src[i] = 0;
2504 				migrate->cpages--;
2505 				put_page(page);
2506 				continue;
2507 			}
2508 			remap = false;
2509 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2510 		}
2511 
2512 		/* ZONE_DEVICE pages are not on LRU */
2513 		if (!is_zone_device_page(page)) {
2514 			if (!PageLRU(page) && allow_drain) {
2515 				/* Drain CPU's pagevec */
2516 				lru_add_drain_all();
2517 				allow_drain = false;
2518 			}
2519 
2520 			if (isolate_lru_page(page)) {
2521 				if (remap) {
2522 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2523 					migrate->cpages--;
2524 					restore++;
2525 				} else {
2526 					migrate->src[i] = 0;
2527 					unlock_page(page);
2528 					migrate->cpages--;
2529 					put_page(page);
2530 				}
2531 				continue;
2532 			}
2533 
2534 			/* Drop the reference we took in collect */
2535 			put_page(page);
2536 		}
2537 
2538 		if (!migrate_vma_check_page(page)) {
2539 			if (remap) {
2540 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2541 				migrate->cpages--;
2542 				restore++;
2543 
2544 				if (!is_zone_device_page(page)) {
2545 					get_page(page);
2546 					putback_lru_page(page);
2547 				}
2548 			} else {
2549 				migrate->src[i] = 0;
2550 				unlock_page(page);
2551 				migrate->cpages--;
2552 
2553 				if (!is_zone_device_page(page))
2554 					putback_lru_page(page);
2555 				else
2556 					put_page(page);
2557 			}
2558 		}
2559 	}
2560 
2561 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2562 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563 
2564 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565 			continue;
2566 
2567 		remove_migration_pte(page, migrate->vma, addr, page);
2568 
2569 		migrate->src[i] = 0;
2570 		unlock_page(page);
2571 		put_page(page);
2572 		restore--;
2573 	}
2574 }
2575 
2576 /*
2577  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2578  * @migrate: migrate struct containing all migration information
2579  *
2580  * Replace page mapping (CPU page table pte) with a special migration pte entry
2581  * and check again if it has been pinned. Pinned pages are restored because we
2582  * cannot migrate them.
2583  *
2584  * This is the last step before we call the device driver callback to allocate
2585  * destination memory and copy contents of original page over to new page.
2586  */
2587 static void migrate_vma_unmap(struct migrate_vma *migrate)
2588 {
2589 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2590 	const unsigned long npages = migrate->npages;
2591 	const unsigned long start = migrate->start;
2592 	unsigned long addr, i, restore = 0;
2593 
2594 	for (i = 0; i < npages; i++) {
2595 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2596 
2597 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2598 			continue;
2599 
2600 		if (page_mapped(page)) {
2601 			try_to_unmap(page, flags);
2602 			if (page_mapped(page))
2603 				goto restore;
2604 		}
2605 
2606 		if (migrate_vma_check_page(page))
2607 			continue;
2608 
2609 restore:
2610 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2611 		migrate->cpages--;
2612 		restore++;
2613 	}
2614 
2615 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2616 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2617 
2618 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2619 			continue;
2620 
2621 		remove_migration_ptes(page, page, false);
2622 
2623 		migrate->src[i] = 0;
2624 		unlock_page(page);
2625 		restore--;
2626 
2627 		if (is_zone_device_page(page))
2628 			put_page(page);
2629 		else
2630 			putback_lru_page(page);
2631 	}
2632 }
2633 
2634 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2635 				    unsigned long addr,
2636 				    struct page *page,
2637 				    unsigned long *src,
2638 				    unsigned long *dst)
2639 {
2640 	struct vm_area_struct *vma = migrate->vma;
2641 	struct mm_struct *mm = vma->vm_mm;
2642 	struct mem_cgroup *memcg;
2643 	bool flush = false;
2644 	spinlock_t *ptl;
2645 	pte_t entry;
2646 	pgd_t *pgdp;
2647 	p4d_t *p4dp;
2648 	pud_t *pudp;
2649 	pmd_t *pmdp;
2650 	pte_t *ptep;
2651 
2652 	/* Only allow populating anonymous memory */
2653 	if (!vma_is_anonymous(vma))
2654 		goto abort;
2655 
2656 	pgdp = pgd_offset(mm, addr);
2657 	p4dp = p4d_alloc(mm, pgdp, addr);
2658 	if (!p4dp)
2659 		goto abort;
2660 	pudp = pud_alloc(mm, p4dp, addr);
2661 	if (!pudp)
2662 		goto abort;
2663 	pmdp = pmd_alloc(mm, pudp, addr);
2664 	if (!pmdp)
2665 		goto abort;
2666 
2667 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2668 		goto abort;
2669 
2670 	/*
2671 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2672 	 * pte_offset_map() on pmds where a huge pmd might be created
2673 	 * from a different thread.
2674 	 *
2675 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2676 	 * parallel threads are excluded by other means.
2677 	 *
2678 	 * Here we only have down_read(mmap_sem).
2679 	 */
2680 	if (pte_alloc(mm, pmdp, addr))
2681 		goto abort;
2682 
2683 	/* See the comment in pte_alloc_one_map() */
2684 	if (unlikely(pmd_trans_unstable(pmdp)))
2685 		goto abort;
2686 
2687 	if (unlikely(anon_vma_prepare(vma)))
2688 		goto abort;
2689 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2690 		goto abort;
2691 
2692 	/*
2693 	 * The memory barrier inside __SetPageUptodate makes sure that
2694 	 * preceding stores to the page contents become visible before
2695 	 * the set_pte_at() write.
2696 	 */
2697 	__SetPageUptodate(page);
2698 
2699 	if (is_zone_device_page(page)) {
2700 		if (is_device_private_page(page)) {
2701 			swp_entry_t swp_entry;
2702 
2703 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2704 			entry = swp_entry_to_pte(swp_entry);
2705 		} else if (is_device_public_page(page)) {
2706 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2707 			if (vma->vm_flags & VM_WRITE)
2708 				entry = pte_mkwrite(pte_mkdirty(entry));
2709 			entry = pte_mkdevmap(entry);
2710 		}
2711 	} else {
2712 		entry = mk_pte(page, vma->vm_page_prot);
2713 		if (vma->vm_flags & VM_WRITE)
2714 			entry = pte_mkwrite(pte_mkdirty(entry));
2715 	}
2716 
2717 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2718 
2719 	if (pte_present(*ptep)) {
2720 		unsigned long pfn = pte_pfn(*ptep);
2721 
2722 		if (!is_zero_pfn(pfn)) {
2723 			pte_unmap_unlock(ptep, ptl);
2724 			mem_cgroup_cancel_charge(page, memcg, false);
2725 			goto abort;
2726 		}
2727 		flush = true;
2728 	} else if (!pte_none(*ptep)) {
2729 		pte_unmap_unlock(ptep, ptl);
2730 		mem_cgroup_cancel_charge(page, memcg, false);
2731 		goto abort;
2732 	}
2733 
2734 	/*
2735 	 * Check for usefaultfd but do not deliver the fault. Instead,
2736 	 * just back off.
2737 	 */
2738 	if (userfaultfd_missing(vma)) {
2739 		pte_unmap_unlock(ptep, ptl);
2740 		mem_cgroup_cancel_charge(page, memcg, false);
2741 		goto abort;
2742 	}
2743 
2744 	inc_mm_counter(mm, MM_ANONPAGES);
2745 	page_add_new_anon_rmap(page, vma, addr, false);
2746 	mem_cgroup_commit_charge(page, memcg, false, false);
2747 	if (!is_zone_device_page(page))
2748 		lru_cache_add_active_or_unevictable(page, vma);
2749 	get_page(page);
2750 
2751 	if (flush) {
2752 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2753 		ptep_clear_flush_notify(vma, addr, ptep);
2754 		set_pte_at_notify(mm, addr, ptep, entry);
2755 		update_mmu_cache(vma, addr, ptep);
2756 	} else {
2757 		/* No need to invalidate - it was non-present before */
2758 		set_pte_at(mm, addr, ptep, entry);
2759 		update_mmu_cache(vma, addr, ptep);
2760 	}
2761 
2762 	pte_unmap_unlock(ptep, ptl);
2763 	*src = MIGRATE_PFN_MIGRATE;
2764 	return;
2765 
2766 abort:
2767 	*src &= ~MIGRATE_PFN_MIGRATE;
2768 }
2769 
2770 /*
2771  * migrate_vma_pages() - migrate meta-data from src page to dst page
2772  * @migrate: migrate struct containing all migration information
2773  *
2774  * This migrates struct page meta-data from source struct page to destination
2775  * struct page. This effectively finishes the migration from source page to the
2776  * destination page.
2777  */
2778 static void migrate_vma_pages(struct migrate_vma *migrate)
2779 {
2780 	const unsigned long npages = migrate->npages;
2781 	const unsigned long start = migrate->start;
2782 	struct vm_area_struct *vma = migrate->vma;
2783 	struct mm_struct *mm = vma->vm_mm;
2784 	unsigned long addr, i, mmu_start;
2785 	bool notified = false;
2786 
2787 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2788 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2789 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2790 		struct address_space *mapping;
2791 		int r;
2792 
2793 		if (!newpage) {
2794 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2795 			continue;
2796 		}
2797 
2798 		if (!page) {
2799 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2800 				continue;
2801 			}
2802 			if (!notified) {
2803 				mmu_start = addr;
2804 				notified = true;
2805 				mmu_notifier_invalidate_range_start(mm,
2806 								mmu_start,
2807 								migrate->end);
2808 			}
2809 			migrate_vma_insert_page(migrate, addr, newpage,
2810 						&migrate->src[i],
2811 						&migrate->dst[i]);
2812 			continue;
2813 		}
2814 
2815 		mapping = page_mapping(page);
2816 
2817 		if (is_zone_device_page(newpage)) {
2818 			if (is_device_private_page(newpage)) {
2819 				/*
2820 				 * For now only support private anonymous when
2821 				 * migrating to un-addressable device memory.
2822 				 */
2823 				if (mapping) {
2824 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825 					continue;
2826 				}
2827 			} else if (!is_device_public_page(newpage)) {
2828 				/*
2829 				 * Other types of ZONE_DEVICE page are not
2830 				 * supported.
2831 				 */
2832 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2833 				continue;
2834 			}
2835 		}
2836 
2837 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2838 		if (r != MIGRATEPAGE_SUCCESS)
2839 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2840 	}
2841 
2842 	/*
2843 	 * No need to double call mmu_notifier->invalidate_range() callback as
2844 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2845 	 * did already call it.
2846 	 */
2847 	if (notified)
2848 		mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2849 						       migrate->end);
2850 }
2851 
2852 /*
2853  * migrate_vma_finalize() - restore CPU page table entry
2854  * @migrate: migrate struct containing all migration information
2855  *
2856  * This replaces the special migration pte entry with either a mapping to the
2857  * new page if migration was successful for that page, or to the original page
2858  * otherwise.
2859  *
2860  * This also unlocks the pages and puts them back on the lru, or drops the extra
2861  * refcount, for device pages.
2862  */
2863 static void migrate_vma_finalize(struct migrate_vma *migrate)
2864 {
2865 	const unsigned long npages = migrate->npages;
2866 	unsigned long i;
2867 
2868 	for (i = 0; i < npages; i++) {
2869 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2870 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2871 
2872 		if (!page) {
2873 			if (newpage) {
2874 				unlock_page(newpage);
2875 				put_page(newpage);
2876 			}
2877 			continue;
2878 		}
2879 
2880 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2881 			if (newpage) {
2882 				unlock_page(newpage);
2883 				put_page(newpage);
2884 			}
2885 			newpage = page;
2886 		}
2887 
2888 		remove_migration_ptes(page, newpage, false);
2889 		unlock_page(page);
2890 		migrate->cpages--;
2891 
2892 		if (is_zone_device_page(page))
2893 			put_page(page);
2894 		else
2895 			putback_lru_page(page);
2896 
2897 		if (newpage != page) {
2898 			unlock_page(newpage);
2899 			if (is_zone_device_page(newpage))
2900 				put_page(newpage);
2901 			else
2902 				putback_lru_page(newpage);
2903 		}
2904 	}
2905 }
2906 
2907 /*
2908  * migrate_vma() - migrate a range of memory inside vma
2909  *
2910  * @ops: migration callback for allocating destination memory and copying
2911  * @vma: virtual memory area containing the range to be migrated
2912  * @start: start address of the range to migrate (inclusive)
2913  * @end: end address of the range to migrate (exclusive)
2914  * @src: array of hmm_pfn_t containing source pfns
2915  * @dst: array of hmm_pfn_t containing destination pfns
2916  * @private: pointer passed back to each of the callback
2917  * Returns: 0 on success, error code otherwise
2918  *
2919  * This function tries to migrate a range of memory virtual address range, using
2920  * callbacks to allocate and copy memory from source to destination. First it
2921  * collects all the pages backing each virtual address in the range, saving this
2922  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2923  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2924  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2925  * in the corresponding src array entry. It then restores any pages that are
2926  * pinned, by remapping and unlocking those pages.
2927  *
2928  * At this point it calls the alloc_and_copy() callback. For documentation on
2929  * what is expected from that callback, see struct migrate_vma_ops comments in
2930  * include/linux/migrate.h
2931  *
2932  * After the alloc_and_copy() callback, this function goes over each entry in
2933  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2934  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2935  * then the function tries to migrate struct page information from the source
2936  * struct page to the destination struct page. If it fails to migrate the struct
2937  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2938  * array.
2939  *
2940  * At this point all successfully migrated pages have an entry in the src
2941  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2942  * array entry with MIGRATE_PFN_VALID flag set.
2943  *
2944  * It then calls the finalize_and_map() callback. See comments for "struct
2945  * migrate_vma_ops", in include/linux/migrate.h for details about
2946  * finalize_and_map() behavior.
2947  *
2948  * After the finalize_and_map() callback, for successfully migrated pages, this
2949  * function updates the CPU page table to point to new pages, otherwise it
2950  * restores the CPU page table to point to the original source pages.
2951  *
2952  * Function returns 0 after the above steps, even if no pages were migrated
2953  * (The function only returns an error if any of the arguments are invalid.)
2954  *
2955  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2956  * unsigned long entries.
2957  */
2958 int migrate_vma(const struct migrate_vma_ops *ops,
2959 		struct vm_area_struct *vma,
2960 		unsigned long start,
2961 		unsigned long end,
2962 		unsigned long *src,
2963 		unsigned long *dst,
2964 		void *private)
2965 {
2966 	struct migrate_vma migrate;
2967 
2968 	/* Sanity check the arguments */
2969 	start &= PAGE_MASK;
2970 	end &= PAGE_MASK;
2971 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2972 		return -EINVAL;
2973 	if (start < vma->vm_start || start >= vma->vm_end)
2974 		return -EINVAL;
2975 	if (end <= vma->vm_start || end > vma->vm_end)
2976 		return -EINVAL;
2977 	if (!ops || !src || !dst || start >= end)
2978 		return -EINVAL;
2979 
2980 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2981 	migrate.src = src;
2982 	migrate.dst = dst;
2983 	migrate.start = start;
2984 	migrate.npages = 0;
2985 	migrate.cpages = 0;
2986 	migrate.end = end;
2987 	migrate.vma = vma;
2988 
2989 	/* Collect, and try to unmap source pages */
2990 	migrate_vma_collect(&migrate);
2991 	if (!migrate.cpages)
2992 		return 0;
2993 
2994 	/* Lock and isolate page */
2995 	migrate_vma_prepare(&migrate);
2996 	if (!migrate.cpages)
2997 		return 0;
2998 
2999 	/* Unmap pages */
3000 	migrate_vma_unmap(&migrate);
3001 	if (!migrate.cpages)
3002 		return 0;
3003 
3004 	/*
3005 	 * At this point pages are locked and unmapped, and thus they have
3006 	 * stable content and can safely be copied to destination memory that
3007 	 * is allocated by the callback.
3008 	 *
3009 	 * Note that migration can fail in migrate_vma_struct_page() for each
3010 	 * individual page.
3011 	 */
3012 	ops->alloc_and_copy(vma, src, dst, start, end, private);
3013 
3014 	/* This does the real migration of struct page */
3015 	migrate_vma_pages(&migrate);
3016 
3017 	ops->finalize_and_map(vma, src, dst, start, end, private);
3018 
3019 	/* Unlock and remap pages */
3020 	migrate_vma_finalize(&migrate);
3021 
3022 	return 0;
3023 }
3024 EXPORT_SYMBOL(migrate_vma);
3025 #endif /* defined(MIGRATE_VMA_HELPER) */
3026