1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grapping the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } else if (is_device_public_page(new)) { 250 pte = pte_mkdevmap(pte); 251 flush_dcache_page(new); 252 } 253 } else 254 flush_dcache_page(new); 255 256 #ifdef CONFIG_HUGETLB_PAGE 257 if (PageHuge(new)) { 258 pte = pte_mkhuge(pte); 259 pte = arch_make_huge_pte(pte, vma, new, 0); 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 261 if (PageAnon(new)) 262 hugepage_add_anon_rmap(new, vma, pvmw.address); 263 else 264 page_dup_rmap(new, true); 265 } else 266 #endif 267 { 268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 269 270 if (PageAnon(new)) 271 page_add_anon_rmap(new, vma, pvmw.address, false); 272 else 273 page_add_file_rmap(new, false); 274 } 275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 276 mlock_vma_page(new); 277 278 /* No need to invalidate - it was non-present before */ 279 update_mmu_cache(vma, pvmw.address, pvmw.pte); 280 } 281 282 return true; 283 } 284 285 /* 286 * Get rid of all migration entries and replace them by 287 * references to the indicated page. 288 */ 289 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 290 { 291 struct rmap_walk_control rwc = { 292 .rmap_one = remove_migration_pte, 293 .arg = old, 294 }; 295 296 if (locked) 297 rmap_walk_locked(new, &rwc); 298 else 299 rmap_walk(new, &rwc); 300 } 301 302 /* 303 * Something used the pte of a page under migration. We need to 304 * get to the page and wait until migration is finished. 305 * When we return from this function the fault will be retried. 306 */ 307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 308 spinlock_t *ptl) 309 { 310 pte_t pte; 311 swp_entry_t entry; 312 struct page *page; 313 314 spin_lock(ptl); 315 pte = *ptep; 316 if (!is_swap_pte(pte)) 317 goto out; 318 319 entry = pte_to_swp_entry(pte); 320 if (!is_migration_entry(entry)) 321 goto out; 322 323 page = migration_entry_to_page(entry); 324 325 /* 326 * Once radix-tree replacement of page migration started, page_count 327 * *must* be zero. And, we don't want to call wait_on_page_locked() 328 * against a page without get_page(). 329 * So, we use get_page_unless_zero(), here. Even failed, page fault 330 * will occur again. 331 */ 332 if (!get_page_unless_zero(page)) 333 goto out; 334 pte_unmap_unlock(ptep, ptl); 335 wait_on_page_locked(page); 336 put_page(page); 337 return; 338 out: 339 pte_unmap_unlock(ptep, ptl); 340 } 341 342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 343 unsigned long address) 344 { 345 spinlock_t *ptl = pte_lockptr(mm, pmd); 346 pte_t *ptep = pte_offset_map(pmd, address); 347 __migration_entry_wait(mm, ptep, ptl); 348 } 349 350 void migration_entry_wait_huge(struct vm_area_struct *vma, 351 struct mm_struct *mm, pte_t *pte) 352 { 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 354 __migration_entry_wait(mm, pte, ptl); 355 } 356 357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 359 { 360 spinlock_t *ptl; 361 struct page *page; 362 363 ptl = pmd_lock(mm, pmd); 364 if (!is_pmd_migration_entry(*pmd)) 365 goto unlock; 366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 367 if (!get_page_unless_zero(page)) 368 goto unlock; 369 spin_unlock(ptl); 370 wait_on_page_locked(page); 371 put_page(page); 372 return; 373 unlock: 374 spin_unlock(ptl); 375 } 376 #endif 377 378 #ifdef CONFIG_BLOCK 379 /* Returns true if all buffers are successfully locked */ 380 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 381 enum migrate_mode mode) 382 { 383 struct buffer_head *bh = head; 384 385 /* Simple case, sync compaction */ 386 if (mode != MIGRATE_ASYNC) { 387 do { 388 get_bh(bh); 389 lock_buffer(bh); 390 bh = bh->b_this_page; 391 392 } while (bh != head); 393 394 return true; 395 } 396 397 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 398 do { 399 get_bh(bh); 400 if (!trylock_buffer(bh)) { 401 /* 402 * We failed to lock the buffer and cannot stall in 403 * async migration. Release the taken locks 404 */ 405 struct buffer_head *failed_bh = bh; 406 put_bh(failed_bh); 407 bh = head; 408 while (bh != failed_bh) { 409 unlock_buffer(bh); 410 put_bh(bh); 411 bh = bh->b_this_page; 412 } 413 return false; 414 } 415 416 bh = bh->b_this_page; 417 } while (bh != head); 418 return true; 419 } 420 #else 421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 422 enum migrate_mode mode) 423 { 424 return true; 425 } 426 #endif /* CONFIG_BLOCK */ 427 428 /* 429 * Replace the page in the mapping. 430 * 431 * The number of remaining references must be: 432 * 1 for anonymous pages without a mapping 433 * 2 for pages with a mapping 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 435 */ 436 int migrate_page_move_mapping(struct address_space *mapping, 437 struct page *newpage, struct page *page, 438 struct buffer_head *head, enum migrate_mode mode, 439 int extra_count) 440 { 441 struct zone *oldzone, *newzone; 442 int dirty; 443 int expected_count = 1 + extra_count; 444 void **pslot; 445 446 /* 447 * Device public or private pages have an extra refcount as they are 448 * ZONE_DEVICE pages. 449 */ 450 expected_count += is_device_private_page(page); 451 expected_count += is_device_public_page(page); 452 453 if (!mapping) { 454 /* Anonymous page without mapping */ 455 if (page_count(page) != expected_count) 456 return -EAGAIN; 457 458 /* No turning back from here */ 459 newpage->index = page->index; 460 newpage->mapping = page->mapping; 461 if (PageSwapBacked(page)) 462 __SetPageSwapBacked(newpage); 463 464 return MIGRATEPAGE_SUCCESS; 465 } 466 467 oldzone = page_zone(page); 468 newzone = page_zone(newpage); 469 470 spin_lock_irq(&mapping->tree_lock); 471 472 pslot = radix_tree_lookup_slot(&mapping->page_tree, 473 page_index(page)); 474 475 expected_count += 1 + page_has_private(page); 476 if (page_count(page) != expected_count || 477 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 478 spin_unlock_irq(&mapping->tree_lock); 479 return -EAGAIN; 480 } 481 482 if (!page_ref_freeze(page, expected_count)) { 483 spin_unlock_irq(&mapping->tree_lock); 484 return -EAGAIN; 485 } 486 487 /* 488 * In the async migration case of moving a page with buffers, lock the 489 * buffers using trylock before the mapping is moved. If the mapping 490 * was moved, we later failed to lock the buffers and could not move 491 * the mapping back due to an elevated page count, we would have to 492 * block waiting on other references to be dropped. 493 */ 494 if (mode == MIGRATE_ASYNC && head && 495 !buffer_migrate_lock_buffers(head, mode)) { 496 page_ref_unfreeze(page, expected_count); 497 spin_unlock_irq(&mapping->tree_lock); 498 return -EAGAIN; 499 } 500 501 /* 502 * Now we know that no one else is looking at the page: 503 * no turning back from here. 504 */ 505 newpage->index = page->index; 506 newpage->mapping = page->mapping; 507 get_page(newpage); /* add cache reference */ 508 if (PageSwapBacked(page)) { 509 __SetPageSwapBacked(newpage); 510 if (PageSwapCache(page)) { 511 SetPageSwapCache(newpage); 512 set_page_private(newpage, page_private(page)); 513 } 514 } else { 515 VM_BUG_ON_PAGE(PageSwapCache(page), page); 516 } 517 518 /* Move dirty while page refs frozen and newpage not yet exposed */ 519 dirty = PageDirty(page); 520 if (dirty) { 521 ClearPageDirty(page); 522 SetPageDirty(newpage); 523 } 524 525 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 526 527 /* 528 * Drop cache reference from old page by unfreezing 529 * to one less reference. 530 * We know this isn't the last reference. 531 */ 532 page_ref_unfreeze(page, expected_count - 1); 533 534 spin_unlock(&mapping->tree_lock); 535 /* Leave irq disabled to prevent preemption while updating stats */ 536 537 /* 538 * If moved to a different zone then also account 539 * the page for that zone. Other VM counters will be 540 * taken care of when we establish references to the 541 * new page and drop references to the old page. 542 * 543 * Note that anonymous pages are accounted for 544 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 545 * are mapped to swap space. 546 */ 547 if (newzone != oldzone) { 548 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 549 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 550 if (PageSwapBacked(page) && !PageSwapCache(page)) { 551 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 552 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 553 } 554 if (dirty && mapping_cap_account_dirty(mapping)) { 555 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 556 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 557 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 558 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 559 } 560 } 561 local_irq_enable(); 562 563 return MIGRATEPAGE_SUCCESS; 564 } 565 EXPORT_SYMBOL(migrate_page_move_mapping); 566 567 /* 568 * The expected number of remaining references is the same as that 569 * of migrate_page_move_mapping(). 570 */ 571 int migrate_huge_page_move_mapping(struct address_space *mapping, 572 struct page *newpage, struct page *page) 573 { 574 int expected_count; 575 void **pslot; 576 577 spin_lock_irq(&mapping->tree_lock); 578 579 pslot = radix_tree_lookup_slot(&mapping->page_tree, 580 page_index(page)); 581 582 expected_count = 2 + page_has_private(page); 583 if (page_count(page) != expected_count || 584 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 585 spin_unlock_irq(&mapping->tree_lock); 586 return -EAGAIN; 587 } 588 589 if (!page_ref_freeze(page, expected_count)) { 590 spin_unlock_irq(&mapping->tree_lock); 591 return -EAGAIN; 592 } 593 594 newpage->index = page->index; 595 newpage->mapping = page->mapping; 596 597 get_page(newpage); 598 599 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage); 600 601 page_ref_unfreeze(page, expected_count - 1); 602 603 spin_unlock_irq(&mapping->tree_lock); 604 605 return MIGRATEPAGE_SUCCESS; 606 } 607 608 /* 609 * Gigantic pages are so large that we do not guarantee that page++ pointer 610 * arithmetic will work across the entire page. We need something more 611 * specialized. 612 */ 613 static void __copy_gigantic_page(struct page *dst, struct page *src, 614 int nr_pages) 615 { 616 int i; 617 struct page *dst_base = dst; 618 struct page *src_base = src; 619 620 for (i = 0; i < nr_pages; ) { 621 cond_resched(); 622 copy_highpage(dst, src); 623 624 i++; 625 dst = mem_map_next(dst, dst_base, i); 626 src = mem_map_next(src, src_base, i); 627 } 628 } 629 630 static void copy_huge_page(struct page *dst, struct page *src) 631 { 632 int i; 633 int nr_pages; 634 635 if (PageHuge(src)) { 636 /* hugetlbfs page */ 637 struct hstate *h = page_hstate(src); 638 nr_pages = pages_per_huge_page(h); 639 640 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 641 __copy_gigantic_page(dst, src, nr_pages); 642 return; 643 } 644 } else { 645 /* thp page */ 646 BUG_ON(!PageTransHuge(src)); 647 nr_pages = hpage_nr_pages(src); 648 } 649 650 for (i = 0; i < nr_pages; i++) { 651 cond_resched(); 652 copy_highpage(dst + i, src + i); 653 } 654 } 655 656 /* 657 * Copy the page to its new location 658 */ 659 void migrate_page_states(struct page *newpage, struct page *page) 660 { 661 int cpupid; 662 663 if (PageError(page)) 664 SetPageError(newpage); 665 if (PageReferenced(page)) 666 SetPageReferenced(newpage); 667 if (PageUptodate(page)) 668 SetPageUptodate(newpage); 669 if (TestClearPageActive(page)) { 670 VM_BUG_ON_PAGE(PageUnevictable(page), page); 671 SetPageActive(newpage); 672 } else if (TestClearPageUnevictable(page)) 673 SetPageUnevictable(newpage); 674 if (PageChecked(page)) 675 SetPageChecked(newpage); 676 if (PageMappedToDisk(page)) 677 SetPageMappedToDisk(newpage); 678 679 /* Move dirty on pages not done by migrate_page_move_mapping() */ 680 if (PageDirty(page)) 681 SetPageDirty(newpage); 682 683 if (page_is_young(page)) 684 set_page_young(newpage); 685 if (page_is_idle(page)) 686 set_page_idle(newpage); 687 688 /* 689 * Copy NUMA information to the new page, to prevent over-eager 690 * future migrations of this same page. 691 */ 692 cpupid = page_cpupid_xchg_last(page, -1); 693 page_cpupid_xchg_last(newpage, cpupid); 694 695 ksm_migrate_page(newpage, page); 696 /* 697 * Please do not reorder this without considering how mm/ksm.c's 698 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 699 */ 700 if (PageSwapCache(page)) 701 ClearPageSwapCache(page); 702 ClearPagePrivate(page); 703 set_page_private(page, 0); 704 705 /* 706 * If any waiters have accumulated on the new page then 707 * wake them up. 708 */ 709 if (PageWriteback(newpage)) 710 end_page_writeback(newpage); 711 712 copy_page_owner(page, newpage); 713 714 mem_cgroup_migrate(page, newpage); 715 } 716 EXPORT_SYMBOL(migrate_page_states); 717 718 void migrate_page_copy(struct page *newpage, struct page *page) 719 { 720 if (PageHuge(page) || PageTransHuge(page)) 721 copy_huge_page(newpage, page); 722 else 723 copy_highpage(newpage, page); 724 725 migrate_page_states(newpage, page); 726 } 727 EXPORT_SYMBOL(migrate_page_copy); 728 729 /************************************************************ 730 * Migration functions 731 ***********************************************************/ 732 733 /* 734 * Common logic to directly migrate a single LRU page suitable for 735 * pages that do not use PagePrivate/PagePrivate2. 736 * 737 * Pages are locked upon entry and exit. 738 */ 739 int migrate_page(struct address_space *mapping, 740 struct page *newpage, struct page *page, 741 enum migrate_mode mode) 742 { 743 int rc; 744 745 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 746 747 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 748 749 if (rc != MIGRATEPAGE_SUCCESS) 750 return rc; 751 752 if (mode != MIGRATE_SYNC_NO_COPY) 753 migrate_page_copy(newpage, page); 754 else 755 migrate_page_states(newpage, page); 756 return MIGRATEPAGE_SUCCESS; 757 } 758 EXPORT_SYMBOL(migrate_page); 759 760 #ifdef CONFIG_BLOCK 761 /* 762 * Migration function for pages with buffers. This function can only be used 763 * if the underlying filesystem guarantees that no other references to "page" 764 * exist. 765 */ 766 int buffer_migrate_page(struct address_space *mapping, 767 struct page *newpage, struct page *page, enum migrate_mode mode) 768 { 769 struct buffer_head *bh, *head; 770 int rc; 771 772 if (!page_has_buffers(page)) 773 return migrate_page(mapping, newpage, page, mode); 774 775 head = page_buffers(page); 776 777 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 778 779 if (rc != MIGRATEPAGE_SUCCESS) 780 return rc; 781 782 /* 783 * In the async case, migrate_page_move_mapping locked the buffers 784 * with an IRQ-safe spinlock held. In the sync case, the buffers 785 * need to be locked now 786 */ 787 if (mode != MIGRATE_ASYNC) 788 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 789 790 ClearPagePrivate(page); 791 set_page_private(newpage, page_private(page)); 792 set_page_private(page, 0); 793 put_page(page); 794 get_page(newpage); 795 796 bh = head; 797 do { 798 set_bh_page(bh, newpage, bh_offset(bh)); 799 bh = bh->b_this_page; 800 801 } while (bh != head); 802 803 SetPagePrivate(newpage); 804 805 if (mode != MIGRATE_SYNC_NO_COPY) 806 migrate_page_copy(newpage, page); 807 else 808 migrate_page_states(newpage, page); 809 810 bh = head; 811 do { 812 unlock_buffer(bh); 813 put_bh(bh); 814 bh = bh->b_this_page; 815 816 } while (bh != head); 817 818 return MIGRATEPAGE_SUCCESS; 819 } 820 EXPORT_SYMBOL(buffer_migrate_page); 821 #endif 822 823 /* 824 * Writeback a page to clean the dirty state 825 */ 826 static int writeout(struct address_space *mapping, struct page *page) 827 { 828 struct writeback_control wbc = { 829 .sync_mode = WB_SYNC_NONE, 830 .nr_to_write = 1, 831 .range_start = 0, 832 .range_end = LLONG_MAX, 833 .for_reclaim = 1 834 }; 835 int rc; 836 837 if (!mapping->a_ops->writepage) 838 /* No write method for the address space */ 839 return -EINVAL; 840 841 if (!clear_page_dirty_for_io(page)) 842 /* Someone else already triggered a write */ 843 return -EAGAIN; 844 845 /* 846 * A dirty page may imply that the underlying filesystem has 847 * the page on some queue. So the page must be clean for 848 * migration. Writeout may mean we loose the lock and the 849 * page state is no longer what we checked for earlier. 850 * At this point we know that the migration attempt cannot 851 * be successful. 852 */ 853 remove_migration_ptes(page, page, false); 854 855 rc = mapping->a_ops->writepage(page, &wbc); 856 857 if (rc != AOP_WRITEPAGE_ACTIVATE) 858 /* unlocked. Relock */ 859 lock_page(page); 860 861 return (rc < 0) ? -EIO : -EAGAIN; 862 } 863 864 /* 865 * Default handling if a filesystem does not provide a migration function. 866 */ 867 static int fallback_migrate_page(struct address_space *mapping, 868 struct page *newpage, struct page *page, enum migrate_mode mode) 869 { 870 if (PageDirty(page)) { 871 /* Only writeback pages in full synchronous migration */ 872 switch (mode) { 873 case MIGRATE_SYNC: 874 case MIGRATE_SYNC_NO_COPY: 875 break; 876 default: 877 return -EBUSY; 878 } 879 return writeout(mapping, page); 880 } 881 882 /* 883 * Buffers may be managed in a filesystem specific way. 884 * We must have no buffers or drop them. 885 */ 886 if (page_has_private(page) && 887 !try_to_release_page(page, GFP_KERNEL)) 888 return -EAGAIN; 889 890 return migrate_page(mapping, newpage, page, mode); 891 } 892 893 /* 894 * Move a page to a newly allocated page 895 * The page is locked and all ptes have been successfully removed. 896 * 897 * The new page will have replaced the old page if this function 898 * is successful. 899 * 900 * Return value: 901 * < 0 - error code 902 * MIGRATEPAGE_SUCCESS - success 903 */ 904 static int move_to_new_page(struct page *newpage, struct page *page, 905 enum migrate_mode mode) 906 { 907 struct address_space *mapping; 908 int rc = -EAGAIN; 909 bool is_lru = !__PageMovable(page); 910 911 VM_BUG_ON_PAGE(!PageLocked(page), page); 912 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 913 914 mapping = page_mapping(page); 915 916 if (likely(is_lru)) { 917 if (!mapping) 918 rc = migrate_page(mapping, newpage, page, mode); 919 else if (mapping->a_ops->migratepage) 920 /* 921 * Most pages have a mapping and most filesystems 922 * provide a migratepage callback. Anonymous pages 923 * are part of swap space which also has its own 924 * migratepage callback. This is the most common path 925 * for page migration. 926 */ 927 rc = mapping->a_ops->migratepage(mapping, newpage, 928 page, mode); 929 else 930 rc = fallback_migrate_page(mapping, newpage, 931 page, mode); 932 } else { 933 /* 934 * In case of non-lru page, it could be released after 935 * isolation step. In that case, we shouldn't try migration. 936 */ 937 VM_BUG_ON_PAGE(!PageIsolated(page), page); 938 if (!PageMovable(page)) { 939 rc = MIGRATEPAGE_SUCCESS; 940 __ClearPageIsolated(page); 941 goto out; 942 } 943 944 rc = mapping->a_ops->migratepage(mapping, newpage, 945 page, mode); 946 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 947 !PageIsolated(page)); 948 } 949 950 /* 951 * When successful, old pagecache page->mapping must be cleared before 952 * page is freed; but stats require that PageAnon be left as PageAnon. 953 */ 954 if (rc == MIGRATEPAGE_SUCCESS) { 955 if (__PageMovable(page)) { 956 VM_BUG_ON_PAGE(!PageIsolated(page), page); 957 958 /* 959 * We clear PG_movable under page_lock so any compactor 960 * cannot try to migrate this page. 961 */ 962 __ClearPageIsolated(page); 963 } 964 965 /* 966 * Anonymous and movable page->mapping will be cleard by 967 * free_pages_prepare so don't reset it here for keeping 968 * the type to work PageAnon, for example. 969 */ 970 if (!PageMappingFlags(page)) 971 page->mapping = NULL; 972 } 973 out: 974 return rc; 975 } 976 977 static int __unmap_and_move(struct page *page, struct page *newpage, 978 int force, enum migrate_mode mode) 979 { 980 int rc = -EAGAIN; 981 int page_was_mapped = 0; 982 struct anon_vma *anon_vma = NULL; 983 bool is_lru = !__PageMovable(page); 984 985 if (!trylock_page(page)) { 986 if (!force || mode == MIGRATE_ASYNC) 987 goto out; 988 989 /* 990 * It's not safe for direct compaction to call lock_page. 991 * For example, during page readahead pages are added locked 992 * to the LRU. Later, when the IO completes the pages are 993 * marked uptodate and unlocked. However, the queueing 994 * could be merging multiple pages for one bio (e.g. 995 * mpage_readpages). If an allocation happens for the 996 * second or third page, the process can end up locking 997 * the same page twice and deadlocking. Rather than 998 * trying to be clever about what pages can be locked, 999 * avoid the use of lock_page for direct compaction 1000 * altogether. 1001 */ 1002 if (current->flags & PF_MEMALLOC) 1003 goto out; 1004 1005 lock_page(page); 1006 } 1007 1008 if (PageWriteback(page)) { 1009 /* 1010 * Only in the case of a full synchronous migration is it 1011 * necessary to wait for PageWriteback. In the async case, 1012 * the retry loop is too short and in the sync-light case, 1013 * the overhead of stalling is too much 1014 */ 1015 switch (mode) { 1016 case MIGRATE_SYNC: 1017 case MIGRATE_SYNC_NO_COPY: 1018 break; 1019 default: 1020 rc = -EBUSY; 1021 goto out_unlock; 1022 } 1023 if (!force) 1024 goto out_unlock; 1025 wait_on_page_writeback(page); 1026 } 1027 1028 /* 1029 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1030 * we cannot notice that anon_vma is freed while we migrates a page. 1031 * This get_anon_vma() delays freeing anon_vma pointer until the end 1032 * of migration. File cache pages are no problem because of page_lock() 1033 * File Caches may use write_page() or lock_page() in migration, then, 1034 * just care Anon page here. 1035 * 1036 * Only page_get_anon_vma() understands the subtleties of 1037 * getting a hold on an anon_vma from outside one of its mms. 1038 * But if we cannot get anon_vma, then we won't need it anyway, 1039 * because that implies that the anon page is no longer mapped 1040 * (and cannot be remapped so long as we hold the page lock). 1041 */ 1042 if (PageAnon(page) && !PageKsm(page)) 1043 anon_vma = page_get_anon_vma(page); 1044 1045 /* 1046 * Block others from accessing the new page when we get around to 1047 * establishing additional references. We are usually the only one 1048 * holding a reference to newpage at this point. We used to have a BUG 1049 * here if trylock_page(newpage) fails, but would like to allow for 1050 * cases where there might be a race with the previous use of newpage. 1051 * This is much like races on refcount of oldpage: just don't BUG(). 1052 */ 1053 if (unlikely(!trylock_page(newpage))) 1054 goto out_unlock; 1055 1056 if (unlikely(!is_lru)) { 1057 rc = move_to_new_page(newpage, page, mode); 1058 goto out_unlock_both; 1059 } 1060 1061 /* 1062 * Corner case handling: 1063 * 1. When a new swap-cache page is read into, it is added to the LRU 1064 * and treated as swapcache but it has no rmap yet. 1065 * Calling try_to_unmap() against a page->mapping==NULL page will 1066 * trigger a BUG. So handle it here. 1067 * 2. An orphaned page (see truncate_complete_page) might have 1068 * fs-private metadata. The page can be picked up due to memory 1069 * offlining. Everywhere else except page reclaim, the page is 1070 * invisible to the vm, so the page can not be migrated. So try to 1071 * free the metadata, so the page can be freed. 1072 */ 1073 if (!page->mapping) { 1074 VM_BUG_ON_PAGE(PageAnon(page), page); 1075 if (page_has_private(page)) { 1076 try_to_free_buffers(page); 1077 goto out_unlock_both; 1078 } 1079 } else if (page_mapped(page)) { 1080 /* Establish migration ptes */ 1081 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1082 page); 1083 try_to_unmap(page, 1084 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1085 page_was_mapped = 1; 1086 } 1087 1088 if (!page_mapped(page)) 1089 rc = move_to_new_page(newpage, page, mode); 1090 1091 if (page_was_mapped) 1092 remove_migration_ptes(page, 1093 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1094 1095 out_unlock_both: 1096 unlock_page(newpage); 1097 out_unlock: 1098 /* Drop an anon_vma reference if we took one */ 1099 if (anon_vma) 1100 put_anon_vma(anon_vma); 1101 unlock_page(page); 1102 out: 1103 /* 1104 * If migration is successful, decrease refcount of the newpage 1105 * which will not free the page because new page owner increased 1106 * refcounter. As well, if it is LRU page, add the page to LRU 1107 * list in here. 1108 */ 1109 if (rc == MIGRATEPAGE_SUCCESS) { 1110 if (unlikely(__PageMovable(newpage))) 1111 put_page(newpage); 1112 else 1113 putback_lru_page(newpage); 1114 } 1115 1116 return rc; 1117 } 1118 1119 /* 1120 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1121 * around it. 1122 */ 1123 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 1124 #define ICE_noinline noinline 1125 #else 1126 #define ICE_noinline 1127 #endif 1128 1129 /* 1130 * Obtain the lock on page, remove all ptes and migrate the page 1131 * to the newly allocated page in newpage. 1132 */ 1133 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1134 free_page_t put_new_page, 1135 unsigned long private, struct page *page, 1136 int force, enum migrate_mode mode, 1137 enum migrate_reason reason) 1138 { 1139 int rc = MIGRATEPAGE_SUCCESS; 1140 int *result = NULL; 1141 struct page *newpage; 1142 1143 newpage = get_new_page(page, private, &result); 1144 if (!newpage) 1145 return -ENOMEM; 1146 1147 if (page_count(page) == 1) { 1148 /* page was freed from under us. So we are done. */ 1149 ClearPageActive(page); 1150 ClearPageUnevictable(page); 1151 if (unlikely(__PageMovable(page))) { 1152 lock_page(page); 1153 if (!PageMovable(page)) 1154 __ClearPageIsolated(page); 1155 unlock_page(page); 1156 } 1157 if (put_new_page) 1158 put_new_page(newpage, private); 1159 else 1160 put_page(newpage); 1161 goto out; 1162 } 1163 1164 if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) { 1165 lock_page(page); 1166 rc = split_huge_page(page); 1167 unlock_page(page); 1168 if (rc) 1169 goto out; 1170 } 1171 1172 rc = __unmap_and_move(page, newpage, force, mode); 1173 if (rc == MIGRATEPAGE_SUCCESS) 1174 set_page_owner_migrate_reason(newpage, reason); 1175 1176 out: 1177 if (rc != -EAGAIN) { 1178 /* 1179 * A page that has been migrated has all references 1180 * removed and will be freed. A page that has not been 1181 * migrated will have kepts its references and be 1182 * restored. 1183 */ 1184 list_del(&page->lru); 1185 1186 /* 1187 * Compaction can migrate also non-LRU pages which are 1188 * not accounted to NR_ISOLATED_*. They can be recognized 1189 * as __PageMovable 1190 */ 1191 if (likely(!__PageMovable(page))) 1192 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1193 page_is_file_cache(page), -hpage_nr_pages(page)); 1194 } 1195 1196 /* 1197 * If migration is successful, releases reference grabbed during 1198 * isolation. Otherwise, restore the page to right list unless 1199 * we want to retry. 1200 */ 1201 if (rc == MIGRATEPAGE_SUCCESS) { 1202 put_page(page); 1203 if (reason == MR_MEMORY_FAILURE) { 1204 /* 1205 * Set PG_HWPoison on just freed page 1206 * intentionally. Although it's rather weird, 1207 * it's how HWPoison flag works at the moment. 1208 */ 1209 if (!test_set_page_hwpoison(page)) 1210 num_poisoned_pages_inc(); 1211 } 1212 } else { 1213 if (rc != -EAGAIN) { 1214 if (likely(!__PageMovable(page))) { 1215 putback_lru_page(page); 1216 goto put_new; 1217 } 1218 1219 lock_page(page); 1220 if (PageMovable(page)) 1221 putback_movable_page(page); 1222 else 1223 __ClearPageIsolated(page); 1224 unlock_page(page); 1225 put_page(page); 1226 } 1227 put_new: 1228 if (put_new_page) 1229 put_new_page(newpage, private); 1230 else 1231 put_page(newpage); 1232 } 1233 1234 if (result) { 1235 if (rc) 1236 *result = rc; 1237 else 1238 *result = page_to_nid(newpage); 1239 } 1240 return rc; 1241 } 1242 1243 /* 1244 * Counterpart of unmap_and_move_page() for hugepage migration. 1245 * 1246 * This function doesn't wait the completion of hugepage I/O 1247 * because there is no race between I/O and migration for hugepage. 1248 * Note that currently hugepage I/O occurs only in direct I/O 1249 * where no lock is held and PG_writeback is irrelevant, 1250 * and writeback status of all subpages are counted in the reference 1251 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1252 * under direct I/O, the reference of the head page is 512 and a bit more.) 1253 * This means that when we try to migrate hugepage whose subpages are 1254 * doing direct I/O, some references remain after try_to_unmap() and 1255 * hugepage migration fails without data corruption. 1256 * 1257 * There is also no race when direct I/O is issued on the page under migration, 1258 * because then pte is replaced with migration swap entry and direct I/O code 1259 * will wait in the page fault for migration to complete. 1260 */ 1261 static int unmap_and_move_huge_page(new_page_t get_new_page, 1262 free_page_t put_new_page, unsigned long private, 1263 struct page *hpage, int force, 1264 enum migrate_mode mode, int reason) 1265 { 1266 int rc = -EAGAIN; 1267 int *result = NULL; 1268 int page_was_mapped = 0; 1269 struct page *new_hpage; 1270 struct anon_vma *anon_vma = NULL; 1271 1272 /* 1273 * Movability of hugepages depends on architectures and hugepage size. 1274 * This check is necessary because some callers of hugepage migration 1275 * like soft offline and memory hotremove don't walk through page 1276 * tables or check whether the hugepage is pmd-based or not before 1277 * kicking migration. 1278 */ 1279 if (!hugepage_migration_supported(page_hstate(hpage))) { 1280 putback_active_hugepage(hpage); 1281 return -ENOSYS; 1282 } 1283 1284 new_hpage = get_new_page(hpage, private, &result); 1285 if (!new_hpage) 1286 return -ENOMEM; 1287 1288 if (!trylock_page(hpage)) { 1289 if (!force) 1290 goto out; 1291 switch (mode) { 1292 case MIGRATE_SYNC: 1293 case MIGRATE_SYNC_NO_COPY: 1294 break; 1295 default: 1296 goto out; 1297 } 1298 lock_page(hpage); 1299 } 1300 1301 if (PageAnon(hpage)) 1302 anon_vma = page_get_anon_vma(hpage); 1303 1304 if (unlikely(!trylock_page(new_hpage))) 1305 goto put_anon; 1306 1307 if (page_mapped(hpage)) { 1308 try_to_unmap(hpage, 1309 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1310 page_was_mapped = 1; 1311 } 1312 1313 if (!page_mapped(hpage)) 1314 rc = move_to_new_page(new_hpage, hpage, mode); 1315 1316 if (page_was_mapped) 1317 remove_migration_ptes(hpage, 1318 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1319 1320 unlock_page(new_hpage); 1321 1322 put_anon: 1323 if (anon_vma) 1324 put_anon_vma(anon_vma); 1325 1326 if (rc == MIGRATEPAGE_SUCCESS) { 1327 move_hugetlb_state(hpage, new_hpage, reason); 1328 put_new_page = NULL; 1329 } 1330 1331 unlock_page(hpage); 1332 out: 1333 if (rc != -EAGAIN) 1334 putback_active_hugepage(hpage); 1335 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage)) 1336 num_poisoned_pages_inc(); 1337 1338 /* 1339 * If migration was not successful and there's a freeing callback, use 1340 * it. Otherwise, put_page() will drop the reference grabbed during 1341 * isolation. 1342 */ 1343 if (put_new_page) 1344 put_new_page(new_hpage, private); 1345 else 1346 putback_active_hugepage(new_hpage); 1347 1348 if (result) { 1349 if (rc) 1350 *result = rc; 1351 else 1352 *result = page_to_nid(new_hpage); 1353 } 1354 return rc; 1355 } 1356 1357 /* 1358 * migrate_pages - migrate the pages specified in a list, to the free pages 1359 * supplied as the target for the page migration 1360 * 1361 * @from: The list of pages to be migrated. 1362 * @get_new_page: The function used to allocate free pages to be used 1363 * as the target of the page migration. 1364 * @put_new_page: The function used to free target pages if migration 1365 * fails, or NULL if no special handling is necessary. 1366 * @private: Private data to be passed on to get_new_page() 1367 * @mode: The migration mode that specifies the constraints for 1368 * page migration, if any. 1369 * @reason: The reason for page migration. 1370 * 1371 * The function returns after 10 attempts or if no pages are movable any more 1372 * because the list has become empty or no retryable pages exist any more. 1373 * The caller should call putback_movable_pages() to return pages to the LRU 1374 * or free list only if ret != 0. 1375 * 1376 * Returns the number of pages that were not migrated, or an error code. 1377 */ 1378 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1379 free_page_t put_new_page, unsigned long private, 1380 enum migrate_mode mode, int reason) 1381 { 1382 int retry = 1; 1383 int nr_failed = 0; 1384 int nr_succeeded = 0; 1385 int pass = 0; 1386 struct page *page; 1387 struct page *page2; 1388 int swapwrite = current->flags & PF_SWAPWRITE; 1389 int rc; 1390 1391 if (!swapwrite) 1392 current->flags |= PF_SWAPWRITE; 1393 1394 for(pass = 0; pass < 10 && retry; pass++) { 1395 retry = 0; 1396 1397 list_for_each_entry_safe(page, page2, from, lru) { 1398 cond_resched(); 1399 1400 if (PageHuge(page)) 1401 rc = unmap_and_move_huge_page(get_new_page, 1402 put_new_page, private, page, 1403 pass > 2, mode, reason); 1404 else 1405 rc = unmap_and_move(get_new_page, put_new_page, 1406 private, page, pass > 2, mode, 1407 reason); 1408 1409 switch(rc) { 1410 case -ENOMEM: 1411 nr_failed++; 1412 goto out; 1413 case -EAGAIN: 1414 retry++; 1415 break; 1416 case MIGRATEPAGE_SUCCESS: 1417 nr_succeeded++; 1418 break; 1419 default: 1420 /* 1421 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1422 * unlike -EAGAIN case, the failed page is 1423 * removed from migration page list and not 1424 * retried in the next outer loop. 1425 */ 1426 nr_failed++; 1427 break; 1428 } 1429 } 1430 } 1431 nr_failed += retry; 1432 rc = nr_failed; 1433 out: 1434 if (nr_succeeded) 1435 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1436 if (nr_failed) 1437 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1438 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1439 1440 if (!swapwrite) 1441 current->flags &= ~PF_SWAPWRITE; 1442 1443 return rc; 1444 } 1445 1446 #ifdef CONFIG_NUMA 1447 /* 1448 * Move a list of individual pages 1449 */ 1450 struct page_to_node { 1451 unsigned long addr; 1452 struct page *page; 1453 int node; 1454 int status; 1455 }; 1456 1457 static struct page *new_page_node(struct page *p, unsigned long private, 1458 int **result) 1459 { 1460 struct page_to_node *pm = (struct page_to_node *)private; 1461 1462 while (pm->node != MAX_NUMNODES && pm->page != p) 1463 pm++; 1464 1465 if (pm->node == MAX_NUMNODES) 1466 return NULL; 1467 1468 *result = &pm->status; 1469 1470 if (PageHuge(p)) 1471 return alloc_huge_page_node(page_hstate(compound_head(p)), 1472 pm->node); 1473 else if (thp_migration_supported() && PageTransHuge(p)) { 1474 struct page *thp; 1475 1476 thp = alloc_pages_node(pm->node, 1477 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM, 1478 HPAGE_PMD_ORDER); 1479 if (!thp) 1480 return NULL; 1481 prep_transhuge_page(thp); 1482 return thp; 1483 } else 1484 return __alloc_pages_node(pm->node, 1485 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1486 } 1487 1488 /* 1489 * Move a set of pages as indicated in the pm array. The addr 1490 * field must be set to the virtual address of the page to be moved 1491 * and the node number must contain a valid target node. 1492 * The pm array ends with node = MAX_NUMNODES. 1493 */ 1494 static int do_move_page_to_node_array(struct mm_struct *mm, 1495 struct page_to_node *pm, 1496 int migrate_all) 1497 { 1498 int err; 1499 struct page_to_node *pp; 1500 LIST_HEAD(pagelist); 1501 1502 down_read(&mm->mmap_sem); 1503 1504 /* 1505 * Build a list of pages to migrate 1506 */ 1507 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1508 struct vm_area_struct *vma; 1509 struct page *page; 1510 struct page *head; 1511 unsigned int follflags; 1512 1513 err = -EFAULT; 1514 vma = find_vma(mm, pp->addr); 1515 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1516 goto set_status; 1517 1518 /* FOLL_DUMP to ignore special (like zero) pages */ 1519 follflags = FOLL_GET | FOLL_DUMP; 1520 if (!thp_migration_supported()) 1521 follflags |= FOLL_SPLIT; 1522 page = follow_page(vma, pp->addr, follflags); 1523 1524 err = PTR_ERR(page); 1525 if (IS_ERR(page)) 1526 goto set_status; 1527 1528 err = -ENOENT; 1529 if (!page) 1530 goto set_status; 1531 1532 err = page_to_nid(page); 1533 1534 if (err == pp->node) 1535 /* 1536 * Node already in the right place 1537 */ 1538 goto put_and_set; 1539 1540 err = -EACCES; 1541 if (page_mapcount(page) > 1 && 1542 !migrate_all) 1543 goto put_and_set; 1544 1545 if (PageHuge(page)) { 1546 if (PageHead(page)) { 1547 isolate_huge_page(page, &pagelist); 1548 err = 0; 1549 pp->page = page; 1550 } 1551 goto put_and_set; 1552 } 1553 1554 pp->page = compound_head(page); 1555 head = compound_head(page); 1556 err = isolate_lru_page(head); 1557 if (!err) { 1558 list_add_tail(&head->lru, &pagelist); 1559 mod_node_page_state(page_pgdat(head), 1560 NR_ISOLATED_ANON + page_is_file_cache(head), 1561 hpage_nr_pages(head)); 1562 } 1563 put_and_set: 1564 /* 1565 * Either remove the duplicate refcount from 1566 * isolate_lru_page() or drop the page ref if it was 1567 * not isolated. 1568 */ 1569 put_page(page); 1570 set_status: 1571 pp->status = err; 1572 } 1573 1574 err = 0; 1575 if (!list_empty(&pagelist)) { 1576 err = migrate_pages(&pagelist, new_page_node, NULL, 1577 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1578 if (err) 1579 putback_movable_pages(&pagelist); 1580 } 1581 1582 up_read(&mm->mmap_sem); 1583 return err; 1584 } 1585 1586 /* 1587 * Migrate an array of page address onto an array of nodes and fill 1588 * the corresponding array of status. 1589 */ 1590 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1591 unsigned long nr_pages, 1592 const void __user * __user *pages, 1593 const int __user *nodes, 1594 int __user *status, int flags) 1595 { 1596 struct page_to_node *pm; 1597 unsigned long chunk_nr_pages; 1598 unsigned long chunk_start; 1599 int err; 1600 1601 err = -ENOMEM; 1602 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1603 if (!pm) 1604 goto out; 1605 1606 migrate_prep(); 1607 1608 /* 1609 * Store a chunk of page_to_node array in a page, 1610 * but keep the last one as a marker 1611 */ 1612 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1613 1614 for (chunk_start = 0; 1615 chunk_start < nr_pages; 1616 chunk_start += chunk_nr_pages) { 1617 int j; 1618 1619 if (chunk_start + chunk_nr_pages > nr_pages) 1620 chunk_nr_pages = nr_pages - chunk_start; 1621 1622 /* fill the chunk pm with addrs and nodes from user-space */ 1623 for (j = 0; j < chunk_nr_pages; j++) { 1624 const void __user *p; 1625 int node; 1626 1627 err = -EFAULT; 1628 if (get_user(p, pages + j + chunk_start)) 1629 goto out_pm; 1630 pm[j].addr = (unsigned long) p; 1631 1632 if (get_user(node, nodes + j + chunk_start)) 1633 goto out_pm; 1634 1635 err = -ENODEV; 1636 if (node < 0 || node >= MAX_NUMNODES) 1637 goto out_pm; 1638 1639 if (!node_state(node, N_MEMORY)) 1640 goto out_pm; 1641 1642 err = -EACCES; 1643 if (!node_isset(node, task_nodes)) 1644 goto out_pm; 1645 1646 pm[j].node = node; 1647 } 1648 1649 /* End marker for this chunk */ 1650 pm[chunk_nr_pages].node = MAX_NUMNODES; 1651 1652 /* Migrate this chunk */ 1653 err = do_move_page_to_node_array(mm, pm, 1654 flags & MPOL_MF_MOVE_ALL); 1655 if (err < 0) 1656 goto out_pm; 1657 1658 /* Return status information */ 1659 for (j = 0; j < chunk_nr_pages; j++) 1660 if (put_user(pm[j].status, status + j + chunk_start)) { 1661 err = -EFAULT; 1662 goto out_pm; 1663 } 1664 } 1665 err = 0; 1666 1667 out_pm: 1668 free_page((unsigned long)pm); 1669 out: 1670 return err; 1671 } 1672 1673 /* 1674 * Determine the nodes of an array of pages and store it in an array of status. 1675 */ 1676 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1677 const void __user **pages, int *status) 1678 { 1679 unsigned long i; 1680 1681 down_read(&mm->mmap_sem); 1682 1683 for (i = 0; i < nr_pages; i++) { 1684 unsigned long addr = (unsigned long)(*pages); 1685 struct vm_area_struct *vma; 1686 struct page *page; 1687 int err = -EFAULT; 1688 1689 vma = find_vma(mm, addr); 1690 if (!vma || addr < vma->vm_start) 1691 goto set_status; 1692 1693 /* FOLL_DUMP to ignore special (like zero) pages */ 1694 page = follow_page(vma, addr, FOLL_DUMP); 1695 1696 err = PTR_ERR(page); 1697 if (IS_ERR(page)) 1698 goto set_status; 1699 1700 err = page ? page_to_nid(page) : -ENOENT; 1701 set_status: 1702 *status = err; 1703 1704 pages++; 1705 status++; 1706 } 1707 1708 up_read(&mm->mmap_sem); 1709 } 1710 1711 /* 1712 * Determine the nodes of a user array of pages and store it in 1713 * a user array of status. 1714 */ 1715 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1716 const void __user * __user *pages, 1717 int __user *status) 1718 { 1719 #define DO_PAGES_STAT_CHUNK_NR 16 1720 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1721 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1722 1723 while (nr_pages) { 1724 unsigned long chunk_nr; 1725 1726 chunk_nr = nr_pages; 1727 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1728 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1729 1730 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1731 break; 1732 1733 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1734 1735 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1736 break; 1737 1738 pages += chunk_nr; 1739 status += chunk_nr; 1740 nr_pages -= chunk_nr; 1741 } 1742 return nr_pages ? -EFAULT : 0; 1743 } 1744 1745 /* 1746 * Move a list of pages in the address space of the currently executing 1747 * process. 1748 */ 1749 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1750 const void __user * __user *pages, 1751 const int __user *nodes, 1752 int __user *status, int flags) 1753 { 1754 struct task_struct *task; 1755 struct mm_struct *mm; 1756 int err; 1757 nodemask_t task_nodes; 1758 1759 /* Check flags */ 1760 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1761 return -EINVAL; 1762 1763 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1764 return -EPERM; 1765 1766 /* Find the mm_struct */ 1767 rcu_read_lock(); 1768 task = pid ? find_task_by_vpid(pid) : current; 1769 if (!task) { 1770 rcu_read_unlock(); 1771 return -ESRCH; 1772 } 1773 get_task_struct(task); 1774 1775 /* 1776 * Check if this process has the right to modify the specified 1777 * process. Use the regular "ptrace_may_access()" checks. 1778 */ 1779 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1780 rcu_read_unlock(); 1781 err = -EPERM; 1782 goto out; 1783 } 1784 rcu_read_unlock(); 1785 1786 err = security_task_movememory(task); 1787 if (err) 1788 goto out; 1789 1790 task_nodes = cpuset_mems_allowed(task); 1791 mm = get_task_mm(task); 1792 put_task_struct(task); 1793 1794 if (!mm) 1795 return -EINVAL; 1796 1797 if (nodes) 1798 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1799 nodes, status, flags); 1800 else 1801 err = do_pages_stat(mm, nr_pages, pages, status); 1802 1803 mmput(mm); 1804 return err; 1805 1806 out: 1807 put_task_struct(task); 1808 return err; 1809 } 1810 1811 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1812 const void __user * __user *, pages, 1813 const int __user *, nodes, 1814 int __user *, status, int, flags) 1815 { 1816 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1817 } 1818 1819 #ifdef CONFIG_COMPAT 1820 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1821 compat_uptr_t __user *, pages32, 1822 const int __user *, nodes, 1823 int __user *, status, 1824 int, flags) 1825 { 1826 const void __user * __user *pages; 1827 int i; 1828 1829 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1830 for (i = 0; i < nr_pages; i++) { 1831 compat_uptr_t p; 1832 1833 if (get_user(p, pages32 + i) || 1834 put_user(compat_ptr(p), pages + i)) 1835 return -EFAULT; 1836 } 1837 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1838 } 1839 #endif /* CONFIG_COMPAT */ 1840 1841 #ifdef CONFIG_NUMA_BALANCING 1842 /* 1843 * Returns true if this is a safe migration target node for misplaced NUMA 1844 * pages. Currently it only checks the watermarks which crude 1845 */ 1846 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1847 unsigned long nr_migrate_pages) 1848 { 1849 int z; 1850 1851 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1852 struct zone *zone = pgdat->node_zones + z; 1853 1854 if (!populated_zone(zone)) 1855 continue; 1856 1857 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1858 if (!zone_watermark_ok(zone, 0, 1859 high_wmark_pages(zone) + 1860 nr_migrate_pages, 1861 0, 0)) 1862 continue; 1863 return true; 1864 } 1865 return false; 1866 } 1867 1868 static struct page *alloc_misplaced_dst_page(struct page *page, 1869 unsigned long data, 1870 int **result) 1871 { 1872 int nid = (int) data; 1873 struct page *newpage; 1874 1875 newpage = __alloc_pages_node(nid, 1876 (GFP_HIGHUSER_MOVABLE | 1877 __GFP_THISNODE | __GFP_NOMEMALLOC | 1878 __GFP_NORETRY | __GFP_NOWARN) & 1879 ~__GFP_RECLAIM, 0); 1880 1881 return newpage; 1882 } 1883 1884 /* 1885 * page migration rate limiting control. 1886 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1887 * window of time. Default here says do not migrate more than 1280M per second. 1888 */ 1889 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1890 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1891 1892 /* Returns true if the node is migrate rate-limited after the update */ 1893 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1894 unsigned long nr_pages) 1895 { 1896 /* 1897 * Rate-limit the amount of data that is being migrated to a node. 1898 * Optimal placement is no good if the memory bus is saturated and 1899 * all the time is being spent migrating! 1900 */ 1901 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1902 spin_lock(&pgdat->numabalancing_migrate_lock); 1903 pgdat->numabalancing_migrate_nr_pages = 0; 1904 pgdat->numabalancing_migrate_next_window = jiffies + 1905 msecs_to_jiffies(migrate_interval_millisecs); 1906 spin_unlock(&pgdat->numabalancing_migrate_lock); 1907 } 1908 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1909 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1910 nr_pages); 1911 return true; 1912 } 1913 1914 /* 1915 * This is an unlocked non-atomic update so errors are possible. 1916 * The consequences are failing to migrate when we potentiall should 1917 * have which is not severe enough to warrant locking. If it is ever 1918 * a problem, it can be converted to a per-cpu counter. 1919 */ 1920 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1921 return false; 1922 } 1923 1924 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1925 { 1926 int page_lru; 1927 1928 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1929 1930 /* Avoid migrating to a node that is nearly full */ 1931 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1932 return 0; 1933 1934 if (isolate_lru_page(page)) 1935 return 0; 1936 1937 /* 1938 * migrate_misplaced_transhuge_page() skips page migration's usual 1939 * check on page_count(), so we must do it here, now that the page 1940 * has been isolated: a GUP pin, or any other pin, prevents migration. 1941 * The expected page count is 3: 1 for page's mapcount and 1 for the 1942 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1943 */ 1944 if (PageTransHuge(page) && page_count(page) != 3) { 1945 putback_lru_page(page); 1946 return 0; 1947 } 1948 1949 page_lru = page_is_file_cache(page); 1950 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1951 hpage_nr_pages(page)); 1952 1953 /* 1954 * Isolating the page has taken another reference, so the 1955 * caller's reference can be safely dropped without the page 1956 * disappearing underneath us during migration. 1957 */ 1958 put_page(page); 1959 return 1; 1960 } 1961 1962 bool pmd_trans_migrating(pmd_t pmd) 1963 { 1964 struct page *page = pmd_page(pmd); 1965 return PageLocked(page); 1966 } 1967 1968 /* 1969 * Attempt to migrate a misplaced page to the specified destination 1970 * node. Caller is expected to have an elevated reference count on 1971 * the page that will be dropped by this function before returning. 1972 */ 1973 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1974 int node) 1975 { 1976 pg_data_t *pgdat = NODE_DATA(node); 1977 int isolated; 1978 int nr_remaining; 1979 LIST_HEAD(migratepages); 1980 1981 /* 1982 * Don't migrate file pages that are mapped in multiple processes 1983 * with execute permissions as they are probably shared libraries. 1984 */ 1985 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1986 (vma->vm_flags & VM_EXEC)) 1987 goto out; 1988 1989 /* 1990 * Rate-limit the amount of data that is being migrated to a node. 1991 * Optimal placement is no good if the memory bus is saturated and 1992 * all the time is being spent migrating! 1993 */ 1994 if (numamigrate_update_ratelimit(pgdat, 1)) 1995 goto out; 1996 1997 isolated = numamigrate_isolate_page(pgdat, page); 1998 if (!isolated) 1999 goto out; 2000 2001 list_add(&page->lru, &migratepages); 2002 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2003 NULL, node, MIGRATE_ASYNC, 2004 MR_NUMA_MISPLACED); 2005 if (nr_remaining) { 2006 if (!list_empty(&migratepages)) { 2007 list_del(&page->lru); 2008 dec_node_page_state(page, NR_ISOLATED_ANON + 2009 page_is_file_cache(page)); 2010 putback_lru_page(page); 2011 } 2012 isolated = 0; 2013 } else 2014 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2015 BUG_ON(!list_empty(&migratepages)); 2016 return isolated; 2017 2018 out: 2019 put_page(page); 2020 return 0; 2021 } 2022 #endif /* CONFIG_NUMA_BALANCING */ 2023 2024 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2025 /* 2026 * Migrates a THP to a given target node. page must be locked and is unlocked 2027 * before returning. 2028 */ 2029 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2030 struct vm_area_struct *vma, 2031 pmd_t *pmd, pmd_t entry, 2032 unsigned long address, 2033 struct page *page, int node) 2034 { 2035 spinlock_t *ptl; 2036 pg_data_t *pgdat = NODE_DATA(node); 2037 int isolated = 0; 2038 struct page *new_page = NULL; 2039 int page_lru = page_is_file_cache(page); 2040 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2041 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 2042 2043 /* 2044 * Rate-limit the amount of data that is being migrated to a node. 2045 * Optimal placement is no good if the memory bus is saturated and 2046 * all the time is being spent migrating! 2047 */ 2048 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 2049 goto out_dropref; 2050 2051 new_page = alloc_pages_node(node, 2052 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2053 HPAGE_PMD_ORDER); 2054 if (!new_page) 2055 goto out_fail; 2056 prep_transhuge_page(new_page); 2057 2058 isolated = numamigrate_isolate_page(pgdat, page); 2059 if (!isolated) { 2060 put_page(new_page); 2061 goto out_fail; 2062 } 2063 2064 /* Prepare a page as a migration target */ 2065 __SetPageLocked(new_page); 2066 if (PageSwapBacked(page)) 2067 __SetPageSwapBacked(new_page); 2068 2069 /* anon mapping, we can simply copy page->mapping to the new page: */ 2070 new_page->mapping = page->mapping; 2071 new_page->index = page->index; 2072 migrate_page_copy(new_page, page); 2073 WARN_ON(PageLRU(new_page)); 2074 2075 /* Recheck the target PMD */ 2076 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2077 ptl = pmd_lock(mm, pmd); 2078 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2079 spin_unlock(ptl); 2080 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2081 2082 /* Reverse changes made by migrate_page_copy() */ 2083 if (TestClearPageActive(new_page)) 2084 SetPageActive(page); 2085 if (TestClearPageUnevictable(new_page)) 2086 SetPageUnevictable(page); 2087 2088 unlock_page(new_page); 2089 put_page(new_page); /* Free it */ 2090 2091 /* Retake the callers reference and putback on LRU */ 2092 get_page(page); 2093 putback_lru_page(page); 2094 mod_node_page_state(page_pgdat(page), 2095 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2096 2097 goto out_unlock; 2098 } 2099 2100 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2101 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2102 2103 /* 2104 * Clear the old entry under pagetable lock and establish the new PTE. 2105 * Any parallel GUP will either observe the old page blocking on the 2106 * page lock, block on the page table lock or observe the new page. 2107 * The SetPageUptodate on the new page and page_add_new_anon_rmap 2108 * guarantee the copy is visible before the pagetable update. 2109 */ 2110 flush_cache_range(vma, mmun_start, mmun_end); 2111 page_add_anon_rmap(new_page, vma, mmun_start, true); 2112 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd); 2113 set_pmd_at(mm, mmun_start, pmd, entry); 2114 update_mmu_cache_pmd(vma, address, &entry); 2115 2116 page_ref_unfreeze(page, 2); 2117 mlock_migrate_page(new_page, page); 2118 page_remove_rmap(page, true); 2119 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2120 2121 spin_unlock(ptl); 2122 /* 2123 * No need to double call mmu_notifier->invalidate_range() callback as 2124 * the above pmdp_huge_clear_flush_notify() did already call it. 2125 */ 2126 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2127 2128 /* Take an "isolate" reference and put new page on the LRU. */ 2129 get_page(new_page); 2130 putback_lru_page(new_page); 2131 2132 unlock_page(new_page); 2133 unlock_page(page); 2134 put_page(page); /* Drop the rmap reference */ 2135 put_page(page); /* Drop the LRU isolation reference */ 2136 2137 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2138 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2139 2140 mod_node_page_state(page_pgdat(page), 2141 NR_ISOLATED_ANON + page_lru, 2142 -HPAGE_PMD_NR); 2143 return isolated; 2144 2145 out_fail: 2146 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2147 out_dropref: 2148 ptl = pmd_lock(mm, pmd); 2149 if (pmd_same(*pmd, entry)) { 2150 entry = pmd_modify(entry, vma->vm_page_prot); 2151 set_pmd_at(mm, mmun_start, pmd, entry); 2152 update_mmu_cache_pmd(vma, address, &entry); 2153 } 2154 spin_unlock(ptl); 2155 2156 out_unlock: 2157 unlock_page(page); 2158 put_page(page); 2159 return 0; 2160 } 2161 #endif /* CONFIG_NUMA_BALANCING */ 2162 2163 #endif /* CONFIG_NUMA */ 2164 2165 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2166 struct migrate_vma { 2167 struct vm_area_struct *vma; 2168 unsigned long *dst; 2169 unsigned long *src; 2170 unsigned long cpages; 2171 unsigned long npages; 2172 unsigned long start; 2173 unsigned long end; 2174 }; 2175 2176 static int migrate_vma_collect_hole(unsigned long start, 2177 unsigned long end, 2178 struct mm_walk *walk) 2179 { 2180 struct migrate_vma *migrate = walk->private; 2181 unsigned long addr; 2182 2183 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2184 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2185 migrate->dst[migrate->npages] = 0; 2186 migrate->npages++; 2187 migrate->cpages++; 2188 } 2189 2190 return 0; 2191 } 2192 2193 static int migrate_vma_collect_skip(unsigned long start, 2194 unsigned long end, 2195 struct mm_walk *walk) 2196 { 2197 struct migrate_vma *migrate = walk->private; 2198 unsigned long addr; 2199 2200 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2201 migrate->dst[migrate->npages] = 0; 2202 migrate->src[migrate->npages++] = 0; 2203 } 2204 2205 return 0; 2206 } 2207 2208 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2209 unsigned long start, 2210 unsigned long end, 2211 struct mm_walk *walk) 2212 { 2213 struct migrate_vma *migrate = walk->private; 2214 struct vm_area_struct *vma = walk->vma; 2215 struct mm_struct *mm = vma->vm_mm; 2216 unsigned long addr = start, unmapped = 0; 2217 spinlock_t *ptl; 2218 pte_t *ptep; 2219 2220 again: 2221 if (pmd_none(*pmdp)) 2222 return migrate_vma_collect_hole(start, end, walk); 2223 2224 if (pmd_trans_huge(*pmdp)) { 2225 struct page *page; 2226 2227 ptl = pmd_lock(mm, pmdp); 2228 if (unlikely(!pmd_trans_huge(*pmdp))) { 2229 spin_unlock(ptl); 2230 goto again; 2231 } 2232 2233 page = pmd_page(*pmdp); 2234 if (is_huge_zero_page(page)) { 2235 spin_unlock(ptl); 2236 split_huge_pmd(vma, pmdp, addr); 2237 if (pmd_trans_unstable(pmdp)) 2238 return migrate_vma_collect_skip(start, end, 2239 walk); 2240 } else { 2241 int ret; 2242 2243 get_page(page); 2244 spin_unlock(ptl); 2245 if (unlikely(!trylock_page(page))) 2246 return migrate_vma_collect_skip(start, end, 2247 walk); 2248 ret = split_huge_page(page); 2249 unlock_page(page); 2250 put_page(page); 2251 if (ret) 2252 return migrate_vma_collect_skip(start, end, 2253 walk); 2254 if (pmd_none(*pmdp)) 2255 return migrate_vma_collect_hole(start, end, 2256 walk); 2257 } 2258 } 2259 2260 if (unlikely(pmd_bad(*pmdp))) 2261 return migrate_vma_collect_skip(start, end, walk); 2262 2263 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2264 arch_enter_lazy_mmu_mode(); 2265 2266 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2267 unsigned long mpfn, pfn; 2268 struct page *page; 2269 swp_entry_t entry; 2270 pte_t pte; 2271 2272 pte = *ptep; 2273 pfn = pte_pfn(pte); 2274 2275 if (pte_none(pte)) { 2276 mpfn = MIGRATE_PFN_MIGRATE; 2277 migrate->cpages++; 2278 pfn = 0; 2279 goto next; 2280 } 2281 2282 if (!pte_present(pte)) { 2283 mpfn = pfn = 0; 2284 2285 /* 2286 * Only care about unaddressable device page special 2287 * page table entry. Other special swap entries are not 2288 * migratable, and we ignore regular swapped page. 2289 */ 2290 entry = pte_to_swp_entry(pte); 2291 if (!is_device_private_entry(entry)) 2292 goto next; 2293 2294 page = device_private_entry_to_page(entry); 2295 mpfn = migrate_pfn(page_to_pfn(page))| 2296 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2297 if (is_write_device_private_entry(entry)) 2298 mpfn |= MIGRATE_PFN_WRITE; 2299 } else { 2300 if (is_zero_pfn(pfn)) { 2301 mpfn = MIGRATE_PFN_MIGRATE; 2302 migrate->cpages++; 2303 pfn = 0; 2304 goto next; 2305 } 2306 page = _vm_normal_page(migrate->vma, addr, pte, true); 2307 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2308 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2309 } 2310 2311 /* FIXME support THP */ 2312 if (!page || !page->mapping || PageTransCompound(page)) { 2313 mpfn = pfn = 0; 2314 goto next; 2315 } 2316 pfn = page_to_pfn(page); 2317 2318 /* 2319 * By getting a reference on the page we pin it and that blocks 2320 * any kind of migration. Side effect is that it "freezes" the 2321 * pte. 2322 * 2323 * We drop this reference after isolating the page from the lru 2324 * for non device page (device page are not on the lru and thus 2325 * can't be dropped from it). 2326 */ 2327 get_page(page); 2328 migrate->cpages++; 2329 2330 /* 2331 * Optimize for the common case where page is only mapped once 2332 * in one process. If we can lock the page, then we can safely 2333 * set up a special migration page table entry now. 2334 */ 2335 if (trylock_page(page)) { 2336 pte_t swp_pte; 2337 2338 mpfn |= MIGRATE_PFN_LOCKED; 2339 ptep_get_and_clear(mm, addr, ptep); 2340 2341 /* Setup special migration page table entry */ 2342 entry = make_migration_entry(page, pte_write(pte)); 2343 swp_pte = swp_entry_to_pte(entry); 2344 if (pte_soft_dirty(pte)) 2345 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2346 set_pte_at(mm, addr, ptep, swp_pte); 2347 2348 /* 2349 * This is like regular unmap: we remove the rmap and 2350 * drop page refcount. Page won't be freed, as we took 2351 * a reference just above. 2352 */ 2353 page_remove_rmap(page, false); 2354 put_page(page); 2355 2356 if (pte_present(pte)) 2357 unmapped++; 2358 } 2359 2360 next: 2361 migrate->dst[migrate->npages] = 0; 2362 migrate->src[migrate->npages++] = mpfn; 2363 } 2364 arch_leave_lazy_mmu_mode(); 2365 pte_unmap_unlock(ptep - 1, ptl); 2366 2367 /* Only flush the TLB if we actually modified any entries */ 2368 if (unmapped) 2369 flush_tlb_range(walk->vma, start, end); 2370 2371 return 0; 2372 } 2373 2374 /* 2375 * migrate_vma_collect() - collect pages over a range of virtual addresses 2376 * @migrate: migrate struct containing all migration information 2377 * 2378 * This will walk the CPU page table. For each virtual address backed by a 2379 * valid page, it updates the src array and takes a reference on the page, in 2380 * order to pin the page until we lock it and unmap it. 2381 */ 2382 static void migrate_vma_collect(struct migrate_vma *migrate) 2383 { 2384 struct mm_walk mm_walk; 2385 2386 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2387 mm_walk.pte_entry = NULL; 2388 mm_walk.pte_hole = migrate_vma_collect_hole; 2389 mm_walk.hugetlb_entry = NULL; 2390 mm_walk.test_walk = NULL; 2391 mm_walk.vma = migrate->vma; 2392 mm_walk.mm = migrate->vma->vm_mm; 2393 mm_walk.private = migrate; 2394 2395 mmu_notifier_invalidate_range_start(mm_walk.mm, 2396 migrate->start, 2397 migrate->end); 2398 walk_page_range(migrate->start, migrate->end, &mm_walk); 2399 mmu_notifier_invalidate_range_end(mm_walk.mm, 2400 migrate->start, 2401 migrate->end); 2402 2403 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2404 } 2405 2406 /* 2407 * migrate_vma_check_page() - check if page is pinned or not 2408 * @page: struct page to check 2409 * 2410 * Pinned pages cannot be migrated. This is the same test as in 2411 * migrate_page_move_mapping(), except that here we allow migration of a 2412 * ZONE_DEVICE page. 2413 */ 2414 static bool migrate_vma_check_page(struct page *page) 2415 { 2416 /* 2417 * One extra ref because caller holds an extra reference, either from 2418 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2419 * a device page. 2420 */ 2421 int extra = 1; 2422 2423 /* 2424 * FIXME support THP (transparent huge page), it is bit more complex to 2425 * check them than regular pages, because they can be mapped with a pmd 2426 * or with a pte (split pte mapping). 2427 */ 2428 if (PageCompound(page)) 2429 return false; 2430 2431 /* Page from ZONE_DEVICE have one extra reference */ 2432 if (is_zone_device_page(page)) { 2433 /* 2434 * Private page can never be pin as they have no valid pte and 2435 * GUP will fail for those. Yet if there is a pending migration 2436 * a thread might try to wait on the pte migration entry and 2437 * will bump the page reference count. Sadly there is no way to 2438 * differentiate a regular pin from migration wait. Hence to 2439 * avoid 2 racing thread trying to migrate back to CPU to enter 2440 * infinite loop (one stoping migration because the other is 2441 * waiting on pte migration entry). We always return true here. 2442 * 2443 * FIXME proper solution is to rework migration_entry_wait() so 2444 * it does not need to take a reference on page. 2445 */ 2446 if (is_device_private_page(page)) 2447 return true; 2448 2449 /* 2450 * Only allow device public page to be migrated and account for 2451 * the extra reference count imply by ZONE_DEVICE pages. 2452 */ 2453 if (!is_device_public_page(page)) 2454 return false; 2455 extra++; 2456 } 2457 2458 /* For file back page */ 2459 if (page_mapping(page)) 2460 extra += 1 + page_has_private(page); 2461 2462 if ((page_count(page) - extra) > page_mapcount(page)) 2463 return false; 2464 2465 return true; 2466 } 2467 2468 /* 2469 * migrate_vma_prepare() - lock pages and isolate them from the lru 2470 * @migrate: migrate struct containing all migration information 2471 * 2472 * This locks pages that have been collected by migrate_vma_collect(). Once each 2473 * page is locked it is isolated from the lru (for non-device pages). Finally, 2474 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2475 * migrated by concurrent kernel threads. 2476 */ 2477 static void migrate_vma_prepare(struct migrate_vma *migrate) 2478 { 2479 const unsigned long npages = migrate->npages; 2480 const unsigned long start = migrate->start; 2481 unsigned long addr, i, restore = 0; 2482 bool allow_drain = true; 2483 2484 lru_add_drain(); 2485 2486 for (i = 0; (i < npages) && migrate->cpages; i++) { 2487 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2488 bool remap = true; 2489 2490 if (!page) 2491 continue; 2492 2493 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2494 /* 2495 * Because we are migrating several pages there can be 2496 * a deadlock between 2 concurrent migration where each 2497 * are waiting on each other page lock. 2498 * 2499 * Make migrate_vma() a best effort thing and backoff 2500 * for any page we can not lock right away. 2501 */ 2502 if (!trylock_page(page)) { 2503 migrate->src[i] = 0; 2504 migrate->cpages--; 2505 put_page(page); 2506 continue; 2507 } 2508 remap = false; 2509 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2510 } 2511 2512 /* ZONE_DEVICE pages are not on LRU */ 2513 if (!is_zone_device_page(page)) { 2514 if (!PageLRU(page) && allow_drain) { 2515 /* Drain CPU's pagevec */ 2516 lru_add_drain_all(); 2517 allow_drain = false; 2518 } 2519 2520 if (isolate_lru_page(page)) { 2521 if (remap) { 2522 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2523 migrate->cpages--; 2524 restore++; 2525 } else { 2526 migrate->src[i] = 0; 2527 unlock_page(page); 2528 migrate->cpages--; 2529 put_page(page); 2530 } 2531 continue; 2532 } 2533 2534 /* Drop the reference we took in collect */ 2535 put_page(page); 2536 } 2537 2538 if (!migrate_vma_check_page(page)) { 2539 if (remap) { 2540 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2541 migrate->cpages--; 2542 restore++; 2543 2544 if (!is_zone_device_page(page)) { 2545 get_page(page); 2546 putback_lru_page(page); 2547 } 2548 } else { 2549 migrate->src[i] = 0; 2550 unlock_page(page); 2551 migrate->cpages--; 2552 2553 if (!is_zone_device_page(page)) 2554 putback_lru_page(page); 2555 else 2556 put_page(page); 2557 } 2558 } 2559 } 2560 2561 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2562 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2563 2564 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2565 continue; 2566 2567 remove_migration_pte(page, migrate->vma, addr, page); 2568 2569 migrate->src[i] = 0; 2570 unlock_page(page); 2571 put_page(page); 2572 restore--; 2573 } 2574 } 2575 2576 /* 2577 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2578 * @migrate: migrate struct containing all migration information 2579 * 2580 * Replace page mapping (CPU page table pte) with a special migration pte entry 2581 * and check again if it has been pinned. Pinned pages are restored because we 2582 * cannot migrate them. 2583 * 2584 * This is the last step before we call the device driver callback to allocate 2585 * destination memory and copy contents of original page over to new page. 2586 */ 2587 static void migrate_vma_unmap(struct migrate_vma *migrate) 2588 { 2589 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2590 const unsigned long npages = migrate->npages; 2591 const unsigned long start = migrate->start; 2592 unsigned long addr, i, restore = 0; 2593 2594 for (i = 0; i < npages; i++) { 2595 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2596 2597 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2598 continue; 2599 2600 if (page_mapped(page)) { 2601 try_to_unmap(page, flags); 2602 if (page_mapped(page)) 2603 goto restore; 2604 } 2605 2606 if (migrate_vma_check_page(page)) 2607 continue; 2608 2609 restore: 2610 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2611 migrate->cpages--; 2612 restore++; 2613 } 2614 2615 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2616 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2617 2618 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2619 continue; 2620 2621 remove_migration_ptes(page, page, false); 2622 2623 migrate->src[i] = 0; 2624 unlock_page(page); 2625 restore--; 2626 2627 if (is_zone_device_page(page)) 2628 put_page(page); 2629 else 2630 putback_lru_page(page); 2631 } 2632 } 2633 2634 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2635 unsigned long addr, 2636 struct page *page, 2637 unsigned long *src, 2638 unsigned long *dst) 2639 { 2640 struct vm_area_struct *vma = migrate->vma; 2641 struct mm_struct *mm = vma->vm_mm; 2642 struct mem_cgroup *memcg; 2643 bool flush = false; 2644 spinlock_t *ptl; 2645 pte_t entry; 2646 pgd_t *pgdp; 2647 p4d_t *p4dp; 2648 pud_t *pudp; 2649 pmd_t *pmdp; 2650 pte_t *ptep; 2651 2652 /* Only allow populating anonymous memory */ 2653 if (!vma_is_anonymous(vma)) 2654 goto abort; 2655 2656 pgdp = pgd_offset(mm, addr); 2657 p4dp = p4d_alloc(mm, pgdp, addr); 2658 if (!p4dp) 2659 goto abort; 2660 pudp = pud_alloc(mm, p4dp, addr); 2661 if (!pudp) 2662 goto abort; 2663 pmdp = pmd_alloc(mm, pudp, addr); 2664 if (!pmdp) 2665 goto abort; 2666 2667 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2668 goto abort; 2669 2670 /* 2671 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2672 * pte_offset_map() on pmds where a huge pmd might be created 2673 * from a different thread. 2674 * 2675 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2676 * parallel threads are excluded by other means. 2677 * 2678 * Here we only have down_read(mmap_sem). 2679 */ 2680 if (pte_alloc(mm, pmdp, addr)) 2681 goto abort; 2682 2683 /* See the comment in pte_alloc_one_map() */ 2684 if (unlikely(pmd_trans_unstable(pmdp))) 2685 goto abort; 2686 2687 if (unlikely(anon_vma_prepare(vma))) 2688 goto abort; 2689 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2690 goto abort; 2691 2692 /* 2693 * The memory barrier inside __SetPageUptodate makes sure that 2694 * preceding stores to the page contents become visible before 2695 * the set_pte_at() write. 2696 */ 2697 __SetPageUptodate(page); 2698 2699 if (is_zone_device_page(page)) { 2700 if (is_device_private_page(page)) { 2701 swp_entry_t swp_entry; 2702 2703 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2704 entry = swp_entry_to_pte(swp_entry); 2705 } else if (is_device_public_page(page)) { 2706 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2707 if (vma->vm_flags & VM_WRITE) 2708 entry = pte_mkwrite(pte_mkdirty(entry)); 2709 entry = pte_mkdevmap(entry); 2710 } 2711 } else { 2712 entry = mk_pte(page, vma->vm_page_prot); 2713 if (vma->vm_flags & VM_WRITE) 2714 entry = pte_mkwrite(pte_mkdirty(entry)); 2715 } 2716 2717 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2718 2719 if (pte_present(*ptep)) { 2720 unsigned long pfn = pte_pfn(*ptep); 2721 2722 if (!is_zero_pfn(pfn)) { 2723 pte_unmap_unlock(ptep, ptl); 2724 mem_cgroup_cancel_charge(page, memcg, false); 2725 goto abort; 2726 } 2727 flush = true; 2728 } else if (!pte_none(*ptep)) { 2729 pte_unmap_unlock(ptep, ptl); 2730 mem_cgroup_cancel_charge(page, memcg, false); 2731 goto abort; 2732 } 2733 2734 /* 2735 * Check for usefaultfd but do not deliver the fault. Instead, 2736 * just back off. 2737 */ 2738 if (userfaultfd_missing(vma)) { 2739 pte_unmap_unlock(ptep, ptl); 2740 mem_cgroup_cancel_charge(page, memcg, false); 2741 goto abort; 2742 } 2743 2744 inc_mm_counter(mm, MM_ANONPAGES); 2745 page_add_new_anon_rmap(page, vma, addr, false); 2746 mem_cgroup_commit_charge(page, memcg, false, false); 2747 if (!is_zone_device_page(page)) 2748 lru_cache_add_active_or_unevictable(page, vma); 2749 get_page(page); 2750 2751 if (flush) { 2752 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2753 ptep_clear_flush_notify(vma, addr, ptep); 2754 set_pte_at_notify(mm, addr, ptep, entry); 2755 update_mmu_cache(vma, addr, ptep); 2756 } else { 2757 /* No need to invalidate - it was non-present before */ 2758 set_pte_at(mm, addr, ptep, entry); 2759 update_mmu_cache(vma, addr, ptep); 2760 } 2761 2762 pte_unmap_unlock(ptep, ptl); 2763 *src = MIGRATE_PFN_MIGRATE; 2764 return; 2765 2766 abort: 2767 *src &= ~MIGRATE_PFN_MIGRATE; 2768 } 2769 2770 /* 2771 * migrate_vma_pages() - migrate meta-data from src page to dst page 2772 * @migrate: migrate struct containing all migration information 2773 * 2774 * This migrates struct page meta-data from source struct page to destination 2775 * struct page. This effectively finishes the migration from source page to the 2776 * destination page. 2777 */ 2778 static void migrate_vma_pages(struct migrate_vma *migrate) 2779 { 2780 const unsigned long npages = migrate->npages; 2781 const unsigned long start = migrate->start; 2782 struct vm_area_struct *vma = migrate->vma; 2783 struct mm_struct *mm = vma->vm_mm; 2784 unsigned long addr, i, mmu_start; 2785 bool notified = false; 2786 2787 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2788 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2789 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2790 struct address_space *mapping; 2791 int r; 2792 2793 if (!newpage) { 2794 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2795 continue; 2796 } 2797 2798 if (!page) { 2799 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2800 continue; 2801 } 2802 if (!notified) { 2803 mmu_start = addr; 2804 notified = true; 2805 mmu_notifier_invalidate_range_start(mm, 2806 mmu_start, 2807 migrate->end); 2808 } 2809 migrate_vma_insert_page(migrate, addr, newpage, 2810 &migrate->src[i], 2811 &migrate->dst[i]); 2812 continue; 2813 } 2814 2815 mapping = page_mapping(page); 2816 2817 if (is_zone_device_page(newpage)) { 2818 if (is_device_private_page(newpage)) { 2819 /* 2820 * For now only support private anonymous when 2821 * migrating to un-addressable device memory. 2822 */ 2823 if (mapping) { 2824 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2825 continue; 2826 } 2827 } else if (!is_device_public_page(newpage)) { 2828 /* 2829 * Other types of ZONE_DEVICE page are not 2830 * supported. 2831 */ 2832 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2833 continue; 2834 } 2835 } 2836 2837 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2838 if (r != MIGRATEPAGE_SUCCESS) 2839 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2840 } 2841 2842 /* 2843 * No need to double call mmu_notifier->invalidate_range() callback as 2844 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2845 * did already call it. 2846 */ 2847 if (notified) 2848 mmu_notifier_invalidate_range_only_end(mm, mmu_start, 2849 migrate->end); 2850 } 2851 2852 /* 2853 * migrate_vma_finalize() - restore CPU page table entry 2854 * @migrate: migrate struct containing all migration information 2855 * 2856 * This replaces the special migration pte entry with either a mapping to the 2857 * new page if migration was successful for that page, or to the original page 2858 * otherwise. 2859 * 2860 * This also unlocks the pages and puts them back on the lru, or drops the extra 2861 * refcount, for device pages. 2862 */ 2863 static void migrate_vma_finalize(struct migrate_vma *migrate) 2864 { 2865 const unsigned long npages = migrate->npages; 2866 unsigned long i; 2867 2868 for (i = 0; i < npages; i++) { 2869 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2870 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2871 2872 if (!page) { 2873 if (newpage) { 2874 unlock_page(newpage); 2875 put_page(newpage); 2876 } 2877 continue; 2878 } 2879 2880 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2881 if (newpage) { 2882 unlock_page(newpage); 2883 put_page(newpage); 2884 } 2885 newpage = page; 2886 } 2887 2888 remove_migration_ptes(page, newpage, false); 2889 unlock_page(page); 2890 migrate->cpages--; 2891 2892 if (is_zone_device_page(page)) 2893 put_page(page); 2894 else 2895 putback_lru_page(page); 2896 2897 if (newpage != page) { 2898 unlock_page(newpage); 2899 if (is_zone_device_page(newpage)) 2900 put_page(newpage); 2901 else 2902 putback_lru_page(newpage); 2903 } 2904 } 2905 } 2906 2907 /* 2908 * migrate_vma() - migrate a range of memory inside vma 2909 * 2910 * @ops: migration callback for allocating destination memory and copying 2911 * @vma: virtual memory area containing the range to be migrated 2912 * @start: start address of the range to migrate (inclusive) 2913 * @end: end address of the range to migrate (exclusive) 2914 * @src: array of hmm_pfn_t containing source pfns 2915 * @dst: array of hmm_pfn_t containing destination pfns 2916 * @private: pointer passed back to each of the callback 2917 * Returns: 0 on success, error code otherwise 2918 * 2919 * This function tries to migrate a range of memory virtual address range, using 2920 * callbacks to allocate and copy memory from source to destination. First it 2921 * collects all the pages backing each virtual address in the range, saving this 2922 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2923 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2924 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2925 * in the corresponding src array entry. It then restores any pages that are 2926 * pinned, by remapping and unlocking those pages. 2927 * 2928 * At this point it calls the alloc_and_copy() callback. For documentation on 2929 * what is expected from that callback, see struct migrate_vma_ops comments in 2930 * include/linux/migrate.h 2931 * 2932 * After the alloc_and_copy() callback, this function goes over each entry in 2933 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2934 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2935 * then the function tries to migrate struct page information from the source 2936 * struct page to the destination struct page. If it fails to migrate the struct 2937 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2938 * array. 2939 * 2940 * At this point all successfully migrated pages have an entry in the src 2941 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2942 * array entry with MIGRATE_PFN_VALID flag set. 2943 * 2944 * It then calls the finalize_and_map() callback. See comments for "struct 2945 * migrate_vma_ops", in include/linux/migrate.h for details about 2946 * finalize_and_map() behavior. 2947 * 2948 * After the finalize_and_map() callback, for successfully migrated pages, this 2949 * function updates the CPU page table to point to new pages, otherwise it 2950 * restores the CPU page table to point to the original source pages. 2951 * 2952 * Function returns 0 after the above steps, even if no pages were migrated 2953 * (The function only returns an error if any of the arguments are invalid.) 2954 * 2955 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2956 * unsigned long entries. 2957 */ 2958 int migrate_vma(const struct migrate_vma_ops *ops, 2959 struct vm_area_struct *vma, 2960 unsigned long start, 2961 unsigned long end, 2962 unsigned long *src, 2963 unsigned long *dst, 2964 void *private) 2965 { 2966 struct migrate_vma migrate; 2967 2968 /* Sanity check the arguments */ 2969 start &= PAGE_MASK; 2970 end &= PAGE_MASK; 2971 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) 2972 return -EINVAL; 2973 if (start < vma->vm_start || start >= vma->vm_end) 2974 return -EINVAL; 2975 if (end <= vma->vm_start || end > vma->vm_end) 2976 return -EINVAL; 2977 if (!ops || !src || !dst || start >= end) 2978 return -EINVAL; 2979 2980 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2981 migrate.src = src; 2982 migrate.dst = dst; 2983 migrate.start = start; 2984 migrate.npages = 0; 2985 migrate.cpages = 0; 2986 migrate.end = end; 2987 migrate.vma = vma; 2988 2989 /* Collect, and try to unmap source pages */ 2990 migrate_vma_collect(&migrate); 2991 if (!migrate.cpages) 2992 return 0; 2993 2994 /* Lock and isolate page */ 2995 migrate_vma_prepare(&migrate); 2996 if (!migrate.cpages) 2997 return 0; 2998 2999 /* Unmap pages */ 3000 migrate_vma_unmap(&migrate); 3001 if (!migrate.cpages) 3002 return 0; 3003 3004 /* 3005 * At this point pages are locked and unmapped, and thus they have 3006 * stable content and can safely be copied to destination memory that 3007 * is allocated by the callback. 3008 * 3009 * Note that migration can fail in migrate_vma_struct_page() for each 3010 * individual page. 3011 */ 3012 ops->alloc_and_copy(vma, src, dst, start, end, private); 3013 3014 /* This does the real migration of struct page */ 3015 migrate_vma_pages(&migrate); 3016 3017 ops->finalize_and_map(vma, src, dst, start, end, private); 3018 3019 /* Unlock and remap pages */ 3020 migrate_vma_finalize(&migrate); 3021 3022 return 0; 3023 } 3024 EXPORT_SYMBOL(migrate_vma); 3025 #endif /* defined(MIGRATE_VMA_HELPER) */ 3026