1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 int isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct address_space *mapping; 63 64 /* 65 * Avoid burning cycles with pages that are yet under __free_pages(), 66 * or just got freed under us. 67 * 68 * In case we 'win' a race for a movable page being freed under us and 69 * raise its refcount preventing __free_pages() from doing its job 70 * the put_page() at the end of this block will take care of 71 * release this page, thus avoiding a nasty leakage. 72 */ 73 if (unlikely(!get_page_unless_zero(page))) 74 goto out; 75 76 /* 77 * Check PageMovable before holding a PG_lock because page's owner 78 * assumes anybody doesn't touch PG_lock of newly allocated page 79 * so unconditionally grabbing the lock ruins page's owner side. 80 */ 81 if (unlikely(!__PageMovable(page))) 82 goto out_putpage; 83 /* 84 * As movable pages are not isolated from LRU lists, concurrent 85 * compaction threads can race against page migration functions 86 * as well as race against the releasing a page. 87 * 88 * In order to avoid having an already isolated movable page 89 * being (wrongly) re-isolated while it is under migration, 90 * or to avoid attempting to isolate pages being released, 91 * lets be sure we have the page lock 92 * before proceeding with the movable page isolation steps. 93 */ 94 if (unlikely(!trylock_page(page))) 95 goto out_putpage; 96 97 if (!PageMovable(page) || PageIsolated(page)) 98 goto out_no_isolated; 99 100 mapping = page_mapping(page); 101 VM_BUG_ON_PAGE(!mapping, page); 102 103 if (!mapping->a_ops->isolate_page(page, mode)) 104 goto out_no_isolated; 105 106 /* Driver shouldn't use PG_isolated bit of page->flags */ 107 WARN_ON_ONCE(PageIsolated(page)); 108 SetPageIsolated(page); 109 unlock_page(page); 110 111 return 0; 112 113 out_no_isolated: 114 unlock_page(page); 115 out_putpage: 116 put_page(page); 117 out: 118 return -EBUSY; 119 } 120 121 static void putback_movable_page(struct page *page) 122 { 123 struct address_space *mapping; 124 125 mapping = page_mapping(page); 126 mapping->a_ops->putback_page(page); 127 ClearPageIsolated(page); 128 } 129 130 /* 131 * Put previously isolated pages back onto the appropriate lists 132 * from where they were once taken off for compaction/migration. 133 * 134 * This function shall be used whenever the isolated pageset has been 135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 136 * and isolate_huge_page(). 137 */ 138 void putback_movable_pages(struct list_head *l) 139 { 140 struct page *page; 141 struct page *page2; 142 143 list_for_each_entry_safe(page, page2, l, lru) { 144 if (unlikely(PageHuge(page))) { 145 putback_active_hugepage(page); 146 continue; 147 } 148 list_del(&page->lru); 149 /* 150 * We isolated non-lru movable page so here we can use 151 * __PageMovable because LRU page's mapping cannot have 152 * PAGE_MAPPING_MOVABLE. 153 */ 154 if (unlikely(__PageMovable(page))) { 155 VM_BUG_ON_PAGE(!PageIsolated(page), page); 156 lock_page(page); 157 if (PageMovable(page)) 158 putback_movable_page(page); 159 else 160 ClearPageIsolated(page); 161 unlock_page(page); 162 put_page(page); 163 } else { 164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 165 page_is_file_lru(page), -thp_nr_pages(page)); 166 putback_lru_page(page); 167 } 168 } 169 } 170 171 /* 172 * Restore a potential migration pte to a working pte entry 173 */ 174 static bool remove_migration_pte(struct folio *folio, 175 struct vm_area_struct *vma, unsigned long addr, void *old) 176 { 177 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 178 179 while (page_vma_mapped_walk(&pvmw)) { 180 pte_t pte; 181 swp_entry_t entry; 182 struct page *new; 183 unsigned long idx = 0; 184 185 /* pgoff is invalid for ksm pages, but they are never large */ 186 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 187 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 188 new = folio_page(folio, idx); 189 190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 191 /* PMD-mapped THP migration entry */ 192 if (!pvmw.pte) { 193 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 194 !folio_test_pmd_mappable(folio), folio); 195 remove_migration_pmd(&pvmw, new); 196 continue; 197 } 198 #endif 199 200 folio_get(folio); 201 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 202 if (pte_swp_soft_dirty(*pvmw.pte)) 203 pte = pte_mksoft_dirty(pte); 204 205 /* 206 * Recheck VMA as permissions can change since migration started 207 */ 208 entry = pte_to_swp_entry(*pvmw.pte); 209 if (is_writable_migration_entry(entry)) 210 pte = maybe_mkwrite(pte, vma); 211 else if (pte_swp_uffd_wp(*pvmw.pte)) 212 pte = pte_mkuffd_wp(pte); 213 214 if (unlikely(is_device_private_page(new))) { 215 if (pte_write(pte)) 216 entry = make_writable_device_private_entry( 217 page_to_pfn(new)); 218 else 219 entry = make_readable_device_private_entry( 220 page_to_pfn(new)); 221 pte = swp_entry_to_pte(entry); 222 if (pte_swp_soft_dirty(*pvmw.pte)) 223 pte = pte_swp_mksoft_dirty(pte); 224 if (pte_swp_uffd_wp(*pvmw.pte)) 225 pte = pte_swp_mkuffd_wp(pte); 226 } 227 228 #ifdef CONFIG_HUGETLB_PAGE 229 if (folio_test_hugetlb(folio)) { 230 unsigned int shift = huge_page_shift(hstate_vma(vma)); 231 232 pte = pte_mkhuge(pte); 233 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 234 if (folio_test_anon(folio)) 235 hugepage_add_anon_rmap(new, vma, pvmw.address); 236 else 237 page_dup_rmap(new, true); 238 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 239 } else 240 #endif 241 { 242 if (folio_test_anon(folio)) 243 page_add_anon_rmap(new, vma, pvmw.address, false); 244 else 245 page_add_file_rmap(new, vma, false); 246 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 247 } 248 if (vma->vm_flags & VM_LOCKED) 249 mlock_page_drain_local(); 250 251 trace_remove_migration_pte(pvmw.address, pte_val(pte), 252 compound_order(new)); 253 254 /* No need to invalidate - it was non-present before */ 255 update_mmu_cache(vma, pvmw.address, pvmw.pte); 256 } 257 258 return true; 259 } 260 261 /* 262 * Get rid of all migration entries and replace them by 263 * references to the indicated page. 264 */ 265 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 266 { 267 struct rmap_walk_control rwc = { 268 .rmap_one = remove_migration_pte, 269 .arg = src, 270 }; 271 272 if (locked) 273 rmap_walk_locked(dst, &rwc); 274 else 275 rmap_walk(dst, &rwc); 276 } 277 278 /* 279 * Something used the pte of a page under migration. We need to 280 * get to the page and wait until migration is finished. 281 * When we return from this function the fault will be retried. 282 */ 283 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 284 spinlock_t *ptl) 285 { 286 pte_t pte; 287 swp_entry_t entry; 288 289 spin_lock(ptl); 290 pte = *ptep; 291 if (!is_swap_pte(pte)) 292 goto out; 293 294 entry = pte_to_swp_entry(pte); 295 if (!is_migration_entry(entry)) 296 goto out; 297 298 migration_entry_wait_on_locked(entry, ptep, ptl); 299 return; 300 out: 301 pte_unmap_unlock(ptep, ptl); 302 } 303 304 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 305 unsigned long address) 306 { 307 spinlock_t *ptl = pte_lockptr(mm, pmd); 308 pte_t *ptep = pte_offset_map(pmd, address); 309 __migration_entry_wait(mm, ptep, ptl); 310 } 311 312 void migration_entry_wait_huge(struct vm_area_struct *vma, 313 struct mm_struct *mm, pte_t *pte) 314 { 315 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 316 __migration_entry_wait(mm, pte, ptl); 317 } 318 319 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 320 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 321 { 322 spinlock_t *ptl; 323 324 ptl = pmd_lock(mm, pmd); 325 if (!is_pmd_migration_entry(*pmd)) 326 goto unlock; 327 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); 328 return; 329 unlock: 330 spin_unlock(ptl); 331 } 332 #endif 333 334 static int expected_page_refs(struct address_space *mapping, struct page *page) 335 { 336 int expected_count = 1; 337 338 if (mapping) 339 expected_count += compound_nr(page) + page_has_private(page); 340 return expected_count; 341 } 342 343 /* 344 * Replace the page in the mapping. 345 * 346 * The number of remaining references must be: 347 * 1 for anonymous pages without a mapping 348 * 2 for pages with a mapping 349 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 350 */ 351 int folio_migrate_mapping(struct address_space *mapping, 352 struct folio *newfolio, struct folio *folio, int extra_count) 353 { 354 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 355 struct zone *oldzone, *newzone; 356 int dirty; 357 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count; 358 long nr = folio_nr_pages(folio); 359 360 if (!mapping) { 361 /* Anonymous page without mapping */ 362 if (folio_ref_count(folio) != expected_count) 363 return -EAGAIN; 364 365 /* No turning back from here */ 366 newfolio->index = folio->index; 367 newfolio->mapping = folio->mapping; 368 if (folio_test_swapbacked(folio)) 369 __folio_set_swapbacked(newfolio); 370 371 return MIGRATEPAGE_SUCCESS; 372 } 373 374 oldzone = folio_zone(folio); 375 newzone = folio_zone(newfolio); 376 377 xas_lock_irq(&xas); 378 if (!folio_ref_freeze(folio, expected_count)) { 379 xas_unlock_irq(&xas); 380 return -EAGAIN; 381 } 382 383 /* 384 * Now we know that no one else is looking at the folio: 385 * no turning back from here. 386 */ 387 newfolio->index = folio->index; 388 newfolio->mapping = folio->mapping; 389 folio_ref_add(newfolio, nr); /* add cache reference */ 390 if (folio_test_swapbacked(folio)) { 391 __folio_set_swapbacked(newfolio); 392 if (folio_test_swapcache(folio)) { 393 folio_set_swapcache(newfolio); 394 newfolio->private = folio_get_private(folio); 395 } 396 } else { 397 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 398 } 399 400 /* Move dirty while page refs frozen and newpage not yet exposed */ 401 dirty = folio_test_dirty(folio); 402 if (dirty) { 403 folio_clear_dirty(folio); 404 folio_set_dirty(newfolio); 405 } 406 407 xas_store(&xas, newfolio); 408 409 /* 410 * Drop cache reference from old page by unfreezing 411 * to one less reference. 412 * We know this isn't the last reference. 413 */ 414 folio_ref_unfreeze(folio, expected_count - nr); 415 416 xas_unlock(&xas); 417 /* Leave irq disabled to prevent preemption while updating stats */ 418 419 /* 420 * If moved to a different zone then also account 421 * the page for that zone. Other VM counters will be 422 * taken care of when we establish references to the 423 * new page and drop references to the old page. 424 * 425 * Note that anonymous pages are accounted for 426 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 427 * are mapped to swap space. 428 */ 429 if (newzone != oldzone) { 430 struct lruvec *old_lruvec, *new_lruvec; 431 struct mem_cgroup *memcg; 432 433 memcg = folio_memcg(folio); 434 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 435 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 436 437 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 438 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 439 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 440 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 441 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 442 } 443 #ifdef CONFIG_SWAP 444 if (folio_test_swapcache(folio)) { 445 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 446 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 447 } 448 #endif 449 if (dirty && mapping_can_writeback(mapping)) { 450 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 451 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 452 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 453 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 454 } 455 } 456 local_irq_enable(); 457 458 return MIGRATEPAGE_SUCCESS; 459 } 460 EXPORT_SYMBOL(folio_migrate_mapping); 461 462 /* 463 * The expected number of remaining references is the same as that 464 * of folio_migrate_mapping(). 465 */ 466 int migrate_huge_page_move_mapping(struct address_space *mapping, 467 struct page *newpage, struct page *page) 468 { 469 XA_STATE(xas, &mapping->i_pages, page_index(page)); 470 int expected_count; 471 472 xas_lock_irq(&xas); 473 expected_count = 2 + page_has_private(page); 474 if (page_count(page) != expected_count || xas_load(&xas) != page) { 475 xas_unlock_irq(&xas); 476 return -EAGAIN; 477 } 478 479 if (!page_ref_freeze(page, expected_count)) { 480 xas_unlock_irq(&xas); 481 return -EAGAIN; 482 } 483 484 newpage->index = page->index; 485 newpage->mapping = page->mapping; 486 487 get_page(newpage); 488 489 xas_store(&xas, newpage); 490 491 page_ref_unfreeze(page, expected_count - 1); 492 493 xas_unlock_irq(&xas); 494 495 return MIGRATEPAGE_SUCCESS; 496 } 497 498 /* 499 * Copy the flags and some other ancillary information 500 */ 501 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 502 { 503 int cpupid; 504 505 if (folio_test_error(folio)) 506 folio_set_error(newfolio); 507 if (folio_test_referenced(folio)) 508 folio_set_referenced(newfolio); 509 if (folio_test_uptodate(folio)) 510 folio_mark_uptodate(newfolio); 511 if (folio_test_clear_active(folio)) { 512 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 513 folio_set_active(newfolio); 514 } else if (folio_test_clear_unevictable(folio)) 515 folio_set_unevictable(newfolio); 516 if (folio_test_workingset(folio)) 517 folio_set_workingset(newfolio); 518 if (folio_test_checked(folio)) 519 folio_set_checked(newfolio); 520 if (folio_test_mappedtodisk(folio)) 521 folio_set_mappedtodisk(newfolio); 522 523 /* Move dirty on pages not done by folio_migrate_mapping() */ 524 if (folio_test_dirty(folio)) 525 folio_set_dirty(newfolio); 526 527 if (folio_test_young(folio)) 528 folio_set_young(newfolio); 529 if (folio_test_idle(folio)) 530 folio_set_idle(newfolio); 531 532 /* 533 * Copy NUMA information to the new page, to prevent over-eager 534 * future migrations of this same page. 535 */ 536 cpupid = page_cpupid_xchg_last(&folio->page, -1); 537 page_cpupid_xchg_last(&newfolio->page, cpupid); 538 539 folio_migrate_ksm(newfolio, folio); 540 /* 541 * Please do not reorder this without considering how mm/ksm.c's 542 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 543 */ 544 if (folio_test_swapcache(folio)) 545 folio_clear_swapcache(folio); 546 folio_clear_private(folio); 547 548 /* page->private contains hugetlb specific flags */ 549 if (!folio_test_hugetlb(folio)) 550 folio->private = NULL; 551 552 /* 553 * If any waiters have accumulated on the new page then 554 * wake them up. 555 */ 556 if (folio_test_writeback(newfolio)) 557 folio_end_writeback(newfolio); 558 559 /* 560 * PG_readahead shares the same bit with PG_reclaim. The above 561 * end_page_writeback() may clear PG_readahead mistakenly, so set the 562 * bit after that. 563 */ 564 if (folio_test_readahead(folio)) 565 folio_set_readahead(newfolio); 566 567 folio_copy_owner(newfolio, folio); 568 569 if (!folio_test_hugetlb(folio)) 570 mem_cgroup_migrate(folio, newfolio); 571 } 572 EXPORT_SYMBOL(folio_migrate_flags); 573 574 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 575 { 576 folio_copy(newfolio, folio); 577 folio_migrate_flags(newfolio, folio); 578 } 579 EXPORT_SYMBOL(folio_migrate_copy); 580 581 /************************************************************ 582 * Migration functions 583 ***********************************************************/ 584 585 /* 586 * Common logic to directly migrate a single LRU page suitable for 587 * pages that do not use PagePrivate/PagePrivate2. 588 * 589 * Pages are locked upon entry and exit. 590 */ 591 int migrate_page(struct address_space *mapping, 592 struct page *newpage, struct page *page, 593 enum migrate_mode mode) 594 { 595 struct folio *newfolio = page_folio(newpage); 596 struct folio *folio = page_folio(page); 597 int rc; 598 599 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */ 600 601 rc = folio_migrate_mapping(mapping, newfolio, folio, 0); 602 603 if (rc != MIGRATEPAGE_SUCCESS) 604 return rc; 605 606 if (mode != MIGRATE_SYNC_NO_COPY) 607 folio_migrate_copy(newfolio, folio); 608 else 609 folio_migrate_flags(newfolio, folio); 610 return MIGRATEPAGE_SUCCESS; 611 } 612 EXPORT_SYMBOL(migrate_page); 613 614 #ifdef CONFIG_BLOCK 615 /* Returns true if all buffers are successfully locked */ 616 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 617 enum migrate_mode mode) 618 { 619 struct buffer_head *bh = head; 620 621 /* Simple case, sync compaction */ 622 if (mode != MIGRATE_ASYNC) { 623 do { 624 lock_buffer(bh); 625 bh = bh->b_this_page; 626 627 } while (bh != head); 628 629 return true; 630 } 631 632 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 633 do { 634 if (!trylock_buffer(bh)) { 635 /* 636 * We failed to lock the buffer and cannot stall in 637 * async migration. Release the taken locks 638 */ 639 struct buffer_head *failed_bh = bh; 640 bh = head; 641 while (bh != failed_bh) { 642 unlock_buffer(bh); 643 bh = bh->b_this_page; 644 } 645 return false; 646 } 647 648 bh = bh->b_this_page; 649 } while (bh != head); 650 return true; 651 } 652 653 static int __buffer_migrate_page(struct address_space *mapping, 654 struct page *newpage, struct page *page, enum migrate_mode mode, 655 bool check_refs) 656 { 657 struct buffer_head *bh, *head; 658 int rc; 659 int expected_count; 660 661 if (!page_has_buffers(page)) 662 return migrate_page(mapping, newpage, page, mode); 663 664 /* Check whether page does not have extra refs before we do more work */ 665 expected_count = expected_page_refs(mapping, page); 666 if (page_count(page) != expected_count) 667 return -EAGAIN; 668 669 head = page_buffers(page); 670 if (!buffer_migrate_lock_buffers(head, mode)) 671 return -EAGAIN; 672 673 if (check_refs) { 674 bool busy; 675 bool invalidated = false; 676 677 recheck_buffers: 678 busy = false; 679 spin_lock(&mapping->private_lock); 680 bh = head; 681 do { 682 if (atomic_read(&bh->b_count)) { 683 busy = true; 684 break; 685 } 686 bh = bh->b_this_page; 687 } while (bh != head); 688 if (busy) { 689 if (invalidated) { 690 rc = -EAGAIN; 691 goto unlock_buffers; 692 } 693 spin_unlock(&mapping->private_lock); 694 invalidate_bh_lrus(); 695 invalidated = true; 696 goto recheck_buffers; 697 } 698 } 699 700 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 701 if (rc != MIGRATEPAGE_SUCCESS) 702 goto unlock_buffers; 703 704 attach_page_private(newpage, detach_page_private(page)); 705 706 bh = head; 707 do { 708 set_bh_page(bh, newpage, bh_offset(bh)); 709 bh = bh->b_this_page; 710 711 } while (bh != head); 712 713 if (mode != MIGRATE_SYNC_NO_COPY) 714 migrate_page_copy(newpage, page); 715 else 716 migrate_page_states(newpage, page); 717 718 rc = MIGRATEPAGE_SUCCESS; 719 unlock_buffers: 720 if (check_refs) 721 spin_unlock(&mapping->private_lock); 722 bh = head; 723 do { 724 unlock_buffer(bh); 725 bh = bh->b_this_page; 726 727 } while (bh != head); 728 729 return rc; 730 } 731 732 /* 733 * Migration function for pages with buffers. This function can only be used 734 * if the underlying filesystem guarantees that no other references to "page" 735 * exist. For example attached buffer heads are accessed only under page lock. 736 */ 737 int buffer_migrate_page(struct address_space *mapping, 738 struct page *newpage, struct page *page, enum migrate_mode mode) 739 { 740 return __buffer_migrate_page(mapping, newpage, page, mode, false); 741 } 742 EXPORT_SYMBOL(buffer_migrate_page); 743 744 /* 745 * Same as above except that this variant is more careful and checks that there 746 * are also no buffer head references. This function is the right one for 747 * mappings where buffer heads are directly looked up and referenced (such as 748 * block device mappings). 749 */ 750 int buffer_migrate_page_norefs(struct address_space *mapping, 751 struct page *newpage, struct page *page, enum migrate_mode mode) 752 { 753 return __buffer_migrate_page(mapping, newpage, page, mode, true); 754 } 755 #endif 756 757 /* 758 * Writeback a page to clean the dirty state 759 */ 760 static int writeout(struct address_space *mapping, struct page *page) 761 { 762 struct folio *folio = page_folio(page); 763 struct writeback_control wbc = { 764 .sync_mode = WB_SYNC_NONE, 765 .nr_to_write = 1, 766 .range_start = 0, 767 .range_end = LLONG_MAX, 768 .for_reclaim = 1 769 }; 770 int rc; 771 772 if (!mapping->a_ops->writepage) 773 /* No write method for the address space */ 774 return -EINVAL; 775 776 if (!clear_page_dirty_for_io(page)) 777 /* Someone else already triggered a write */ 778 return -EAGAIN; 779 780 /* 781 * A dirty page may imply that the underlying filesystem has 782 * the page on some queue. So the page must be clean for 783 * migration. Writeout may mean we loose the lock and the 784 * page state is no longer what we checked for earlier. 785 * At this point we know that the migration attempt cannot 786 * be successful. 787 */ 788 remove_migration_ptes(folio, folio, false); 789 790 rc = mapping->a_ops->writepage(page, &wbc); 791 792 if (rc != AOP_WRITEPAGE_ACTIVATE) 793 /* unlocked. Relock */ 794 lock_page(page); 795 796 return (rc < 0) ? -EIO : -EAGAIN; 797 } 798 799 /* 800 * Default handling if a filesystem does not provide a migration function. 801 */ 802 static int fallback_migrate_page(struct address_space *mapping, 803 struct page *newpage, struct page *page, enum migrate_mode mode) 804 { 805 if (PageDirty(page)) { 806 /* Only writeback pages in full synchronous migration */ 807 switch (mode) { 808 case MIGRATE_SYNC: 809 case MIGRATE_SYNC_NO_COPY: 810 break; 811 default: 812 return -EBUSY; 813 } 814 return writeout(mapping, page); 815 } 816 817 /* 818 * Buffers may be managed in a filesystem specific way. 819 * We must have no buffers or drop them. 820 */ 821 if (page_has_private(page) && 822 !try_to_release_page(page, GFP_KERNEL)) 823 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 824 825 return migrate_page(mapping, newpage, page, mode); 826 } 827 828 /* 829 * Move a page to a newly allocated page 830 * The page is locked and all ptes have been successfully removed. 831 * 832 * The new page will have replaced the old page if this function 833 * is successful. 834 * 835 * Return value: 836 * < 0 - error code 837 * MIGRATEPAGE_SUCCESS - success 838 */ 839 static int move_to_new_page(struct page *newpage, struct page *page, 840 enum migrate_mode mode) 841 { 842 struct address_space *mapping; 843 int rc = -EAGAIN; 844 bool is_lru = !__PageMovable(page); 845 846 VM_BUG_ON_PAGE(!PageLocked(page), page); 847 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 848 849 mapping = page_mapping(page); 850 851 if (likely(is_lru)) { 852 if (!mapping) 853 rc = migrate_page(mapping, newpage, page, mode); 854 else if (mapping->a_ops->migratepage) 855 /* 856 * Most pages have a mapping and most filesystems 857 * provide a migratepage callback. Anonymous pages 858 * are part of swap space which also has its own 859 * migratepage callback. This is the most common path 860 * for page migration. 861 */ 862 rc = mapping->a_ops->migratepage(mapping, newpage, 863 page, mode); 864 else 865 rc = fallback_migrate_page(mapping, newpage, 866 page, mode); 867 } else { 868 /* 869 * In case of non-lru page, it could be released after 870 * isolation step. In that case, we shouldn't try migration. 871 */ 872 VM_BUG_ON_PAGE(!PageIsolated(page), page); 873 if (!PageMovable(page)) { 874 rc = MIGRATEPAGE_SUCCESS; 875 ClearPageIsolated(page); 876 goto out; 877 } 878 879 rc = mapping->a_ops->migratepage(mapping, newpage, 880 page, mode); 881 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 882 !PageIsolated(page)); 883 } 884 885 /* 886 * When successful, old pagecache page->mapping must be cleared before 887 * page is freed; but stats require that PageAnon be left as PageAnon. 888 */ 889 if (rc == MIGRATEPAGE_SUCCESS) { 890 if (__PageMovable(page)) { 891 VM_BUG_ON_PAGE(!PageIsolated(page), page); 892 893 /* 894 * We clear PG_movable under page_lock so any compactor 895 * cannot try to migrate this page. 896 */ 897 ClearPageIsolated(page); 898 } 899 900 /* 901 * Anonymous and movable page->mapping will be cleared by 902 * free_pages_prepare so don't reset it here for keeping 903 * the type to work PageAnon, for example. 904 */ 905 if (!PageMappingFlags(page)) 906 page->mapping = NULL; 907 908 if (likely(!is_zone_device_page(newpage))) 909 flush_dcache_folio(page_folio(newpage)); 910 } 911 out: 912 return rc; 913 } 914 915 static int __unmap_and_move(struct page *page, struct page *newpage, 916 int force, enum migrate_mode mode) 917 { 918 struct folio *folio = page_folio(page); 919 struct folio *dst = page_folio(newpage); 920 int rc = -EAGAIN; 921 bool page_was_mapped = false; 922 struct anon_vma *anon_vma = NULL; 923 bool is_lru = !__PageMovable(page); 924 925 if (!trylock_page(page)) { 926 if (!force || mode == MIGRATE_ASYNC) 927 goto out; 928 929 /* 930 * It's not safe for direct compaction to call lock_page. 931 * For example, during page readahead pages are added locked 932 * to the LRU. Later, when the IO completes the pages are 933 * marked uptodate and unlocked. However, the queueing 934 * could be merging multiple pages for one bio (e.g. 935 * mpage_readahead). If an allocation happens for the 936 * second or third page, the process can end up locking 937 * the same page twice and deadlocking. Rather than 938 * trying to be clever about what pages can be locked, 939 * avoid the use of lock_page for direct compaction 940 * altogether. 941 */ 942 if (current->flags & PF_MEMALLOC) 943 goto out; 944 945 lock_page(page); 946 } 947 948 if (PageWriteback(page)) { 949 /* 950 * Only in the case of a full synchronous migration is it 951 * necessary to wait for PageWriteback. In the async case, 952 * the retry loop is too short and in the sync-light case, 953 * the overhead of stalling is too much 954 */ 955 switch (mode) { 956 case MIGRATE_SYNC: 957 case MIGRATE_SYNC_NO_COPY: 958 break; 959 default: 960 rc = -EBUSY; 961 goto out_unlock; 962 } 963 if (!force) 964 goto out_unlock; 965 wait_on_page_writeback(page); 966 } 967 968 /* 969 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, 970 * we cannot notice that anon_vma is freed while we migrates a page. 971 * This get_anon_vma() delays freeing anon_vma pointer until the end 972 * of migration. File cache pages are no problem because of page_lock() 973 * File Caches may use write_page() or lock_page() in migration, then, 974 * just care Anon page here. 975 * 976 * Only page_get_anon_vma() understands the subtleties of 977 * getting a hold on an anon_vma from outside one of its mms. 978 * But if we cannot get anon_vma, then we won't need it anyway, 979 * because that implies that the anon page is no longer mapped 980 * (and cannot be remapped so long as we hold the page lock). 981 */ 982 if (PageAnon(page) && !PageKsm(page)) 983 anon_vma = page_get_anon_vma(page); 984 985 /* 986 * Block others from accessing the new page when we get around to 987 * establishing additional references. We are usually the only one 988 * holding a reference to newpage at this point. We used to have a BUG 989 * here if trylock_page(newpage) fails, but would like to allow for 990 * cases where there might be a race with the previous use of newpage. 991 * This is much like races on refcount of oldpage: just don't BUG(). 992 */ 993 if (unlikely(!trylock_page(newpage))) 994 goto out_unlock; 995 996 if (unlikely(!is_lru)) { 997 rc = move_to_new_page(newpage, page, mode); 998 goto out_unlock_both; 999 } 1000 1001 /* 1002 * Corner case handling: 1003 * 1. When a new swap-cache page is read into, it is added to the LRU 1004 * and treated as swapcache but it has no rmap yet. 1005 * Calling try_to_unmap() against a page->mapping==NULL page will 1006 * trigger a BUG. So handle it here. 1007 * 2. An orphaned page (see truncate_cleanup_page) might have 1008 * fs-private metadata. The page can be picked up due to memory 1009 * offlining. Everywhere else except page reclaim, the page is 1010 * invisible to the vm, so the page can not be migrated. So try to 1011 * free the metadata, so the page can be freed. 1012 */ 1013 if (!page->mapping) { 1014 VM_BUG_ON_PAGE(PageAnon(page), page); 1015 if (page_has_private(page)) { 1016 try_to_free_buffers(page); 1017 goto out_unlock_both; 1018 } 1019 } else if (page_mapped(page)) { 1020 /* Establish migration ptes */ 1021 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1022 page); 1023 try_to_migrate(folio, 0); 1024 page_was_mapped = true; 1025 } 1026 1027 if (!page_mapped(page)) 1028 rc = move_to_new_page(newpage, page, mode); 1029 1030 /* 1031 * When successful, push newpage to LRU immediately: so that if it 1032 * turns out to be an mlocked page, remove_migration_ptes() will 1033 * automatically build up the correct newpage->mlock_count for it. 1034 * 1035 * We would like to do something similar for the old page, when 1036 * unsuccessful, and other cases when a page has been temporarily 1037 * isolated from the unevictable LRU: but this case is the easiest. 1038 */ 1039 if (rc == MIGRATEPAGE_SUCCESS) { 1040 lru_cache_add(newpage); 1041 if (page_was_mapped) 1042 lru_add_drain(); 1043 } 1044 1045 if (page_was_mapped) 1046 remove_migration_ptes(folio, 1047 rc == MIGRATEPAGE_SUCCESS ? dst : folio, false); 1048 1049 out_unlock_both: 1050 unlock_page(newpage); 1051 out_unlock: 1052 /* Drop an anon_vma reference if we took one */ 1053 if (anon_vma) 1054 put_anon_vma(anon_vma); 1055 unlock_page(page); 1056 out: 1057 /* 1058 * If migration is successful, decrease refcount of the newpage, 1059 * which will not free the page because new page owner increased 1060 * refcounter. 1061 */ 1062 if (rc == MIGRATEPAGE_SUCCESS) 1063 put_page(newpage); 1064 1065 return rc; 1066 } 1067 1068 /* 1069 * Obtain the lock on page, remove all ptes and migrate the page 1070 * to the newly allocated page in newpage. 1071 */ 1072 static int unmap_and_move(new_page_t get_new_page, 1073 free_page_t put_new_page, 1074 unsigned long private, struct page *page, 1075 int force, enum migrate_mode mode, 1076 enum migrate_reason reason, 1077 struct list_head *ret) 1078 { 1079 int rc = MIGRATEPAGE_SUCCESS; 1080 struct page *newpage = NULL; 1081 1082 if (!thp_migration_supported() && PageTransHuge(page)) 1083 return -ENOSYS; 1084 1085 if (page_count(page) == 1) { 1086 /* page was freed from under us. So we are done. */ 1087 ClearPageActive(page); 1088 ClearPageUnevictable(page); 1089 if (unlikely(__PageMovable(page))) { 1090 lock_page(page); 1091 if (!PageMovable(page)) 1092 ClearPageIsolated(page); 1093 unlock_page(page); 1094 } 1095 goto out; 1096 } 1097 1098 newpage = get_new_page(page, private); 1099 if (!newpage) 1100 return -ENOMEM; 1101 1102 rc = __unmap_and_move(page, newpage, force, mode); 1103 if (rc == MIGRATEPAGE_SUCCESS) 1104 set_page_owner_migrate_reason(newpage, reason); 1105 1106 out: 1107 if (rc != -EAGAIN) { 1108 /* 1109 * A page that has been migrated has all references 1110 * removed and will be freed. A page that has not been 1111 * migrated will have kept its references and be restored. 1112 */ 1113 list_del(&page->lru); 1114 } 1115 1116 /* 1117 * If migration is successful, releases reference grabbed during 1118 * isolation. Otherwise, restore the page to right list unless 1119 * we want to retry. 1120 */ 1121 if (rc == MIGRATEPAGE_SUCCESS) { 1122 /* 1123 * Compaction can migrate also non-LRU pages which are 1124 * not accounted to NR_ISOLATED_*. They can be recognized 1125 * as __PageMovable 1126 */ 1127 if (likely(!__PageMovable(page))) 1128 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1129 page_is_file_lru(page), -thp_nr_pages(page)); 1130 1131 if (reason != MR_MEMORY_FAILURE) 1132 /* 1133 * We release the page in page_handle_poison. 1134 */ 1135 put_page(page); 1136 } else { 1137 if (rc != -EAGAIN) 1138 list_add_tail(&page->lru, ret); 1139 1140 if (put_new_page) 1141 put_new_page(newpage, private); 1142 else 1143 put_page(newpage); 1144 } 1145 1146 return rc; 1147 } 1148 1149 /* 1150 * Counterpart of unmap_and_move_page() for hugepage migration. 1151 * 1152 * This function doesn't wait the completion of hugepage I/O 1153 * because there is no race between I/O and migration for hugepage. 1154 * Note that currently hugepage I/O occurs only in direct I/O 1155 * where no lock is held and PG_writeback is irrelevant, 1156 * and writeback status of all subpages are counted in the reference 1157 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1158 * under direct I/O, the reference of the head page is 512 and a bit more.) 1159 * This means that when we try to migrate hugepage whose subpages are 1160 * doing direct I/O, some references remain after try_to_unmap() and 1161 * hugepage migration fails without data corruption. 1162 * 1163 * There is also no race when direct I/O is issued on the page under migration, 1164 * because then pte is replaced with migration swap entry and direct I/O code 1165 * will wait in the page fault for migration to complete. 1166 */ 1167 static int unmap_and_move_huge_page(new_page_t get_new_page, 1168 free_page_t put_new_page, unsigned long private, 1169 struct page *hpage, int force, 1170 enum migrate_mode mode, int reason, 1171 struct list_head *ret) 1172 { 1173 struct folio *dst, *src = page_folio(hpage); 1174 int rc = -EAGAIN; 1175 int page_was_mapped = 0; 1176 struct page *new_hpage; 1177 struct anon_vma *anon_vma = NULL; 1178 struct address_space *mapping = NULL; 1179 1180 /* 1181 * Migratability of hugepages depends on architectures and their size. 1182 * This check is necessary because some callers of hugepage migration 1183 * like soft offline and memory hotremove don't walk through page 1184 * tables or check whether the hugepage is pmd-based or not before 1185 * kicking migration. 1186 */ 1187 if (!hugepage_migration_supported(page_hstate(hpage))) { 1188 list_move_tail(&hpage->lru, ret); 1189 return -ENOSYS; 1190 } 1191 1192 if (page_count(hpage) == 1) { 1193 /* page was freed from under us. So we are done. */ 1194 putback_active_hugepage(hpage); 1195 return MIGRATEPAGE_SUCCESS; 1196 } 1197 1198 new_hpage = get_new_page(hpage, private); 1199 if (!new_hpage) 1200 return -ENOMEM; 1201 dst = page_folio(new_hpage); 1202 1203 if (!trylock_page(hpage)) { 1204 if (!force) 1205 goto out; 1206 switch (mode) { 1207 case MIGRATE_SYNC: 1208 case MIGRATE_SYNC_NO_COPY: 1209 break; 1210 default: 1211 goto out; 1212 } 1213 lock_page(hpage); 1214 } 1215 1216 /* 1217 * Check for pages which are in the process of being freed. Without 1218 * page_mapping() set, hugetlbfs specific move page routine will not 1219 * be called and we could leak usage counts for subpools. 1220 */ 1221 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { 1222 rc = -EBUSY; 1223 goto out_unlock; 1224 } 1225 1226 if (PageAnon(hpage)) 1227 anon_vma = page_get_anon_vma(hpage); 1228 1229 if (unlikely(!trylock_page(new_hpage))) 1230 goto put_anon; 1231 1232 if (page_mapped(hpage)) { 1233 bool mapping_locked = false; 1234 enum ttu_flags ttu = 0; 1235 1236 if (!PageAnon(hpage)) { 1237 /* 1238 * In shared mappings, try_to_unmap could potentially 1239 * call huge_pmd_unshare. Because of this, take 1240 * semaphore in write mode here and set TTU_RMAP_LOCKED 1241 * to let lower levels know we have taken the lock. 1242 */ 1243 mapping = hugetlb_page_mapping_lock_write(hpage); 1244 if (unlikely(!mapping)) 1245 goto unlock_put_anon; 1246 1247 mapping_locked = true; 1248 ttu |= TTU_RMAP_LOCKED; 1249 } 1250 1251 try_to_migrate(src, ttu); 1252 page_was_mapped = 1; 1253 1254 if (mapping_locked) 1255 i_mmap_unlock_write(mapping); 1256 } 1257 1258 if (!page_mapped(hpage)) 1259 rc = move_to_new_page(new_hpage, hpage, mode); 1260 1261 if (page_was_mapped) 1262 remove_migration_ptes(src, 1263 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1264 1265 unlock_put_anon: 1266 unlock_page(new_hpage); 1267 1268 put_anon: 1269 if (anon_vma) 1270 put_anon_vma(anon_vma); 1271 1272 if (rc == MIGRATEPAGE_SUCCESS) { 1273 move_hugetlb_state(hpage, new_hpage, reason); 1274 put_new_page = NULL; 1275 } 1276 1277 out_unlock: 1278 unlock_page(hpage); 1279 out: 1280 if (rc == MIGRATEPAGE_SUCCESS) 1281 putback_active_hugepage(hpage); 1282 else if (rc != -EAGAIN) 1283 list_move_tail(&hpage->lru, ret); 1284 1285 /* 1286 * If migration was not successful and there's a freeing callback, use 1287 * it. Otherwise, put_page() will drop the reference grabbed during 1288 * isolation. 1289 */ 1290 if (put_new_page) 1291 put_new_page(new_hpage, private); 1292 else 1293 putback_active_hugepage(new_hpage); 1294 1295 return rc; 1296 } 1297 1298 static inline int try_split_thp(struct page *page, struct page **page2, 1299 struct list_head *from) 1300 { 1301 int rc = 0; 1302 1303 lock_page(page); 1304 rc = split_huge_page_to_list(page, from); 1305 unlock_page(page); 1306 if (!rc) 1307 list_safe_reset_next(page, *page2, lru); 1308 1309 return rc; 1310 } 1311 1312 /* 1313 * migrate_pages - migrate the pages specified in a list, to the free pages 1314 * supplied as the target for the page migration 1315 * 1316 * @from: The list of pages to be migrated. 1317 * @get_new_page: The function used to allocate free pages to be used 1318 * as the target of the page migration. 1319 * @put_new_page: The function used to free target pages if migration 1320 * fails, or NULL if no special handling is necessary. 1321 * @private: Private data to be passed on to get_new_page() 1322 * @mode: The migration mode that specifies the constraints for 1323 * page migration, if any. 1324 * @reason: The reason for page migration. 1325 * @ret_succeeded: Set to the number of normal pages migrated successfully if 1326 * the caller passes a non-NULL pointer. 1327 * 1328 * The function returns after 10 attempts or if no pages are movable any more 1329 * because the list has become empty or no retryable pages exist any more. 1330 * It is caller's responsibility to call putback_movable_pages() to return pages 1331 * to the LRU or free list only if ret != 0. 1332 * 1333 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or 1334 * an error code. The number of THP splits will be considered as the number of 1335 * non-migrated THP, no matter how many subpages of the THP are migrated successfully. 1336 */ 1337 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1338 free_page_t put_new_page, unsigned long private, 1339 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1340 { 1341 int retry = 1; 1342 int thp_retry = 1; 1343 int nr_failed = 0; 1344 int nr_failed_pages = 0; 1345 int nr_succeeded = 0; 1346 int nr_thp_succeeded = 0; 1347 int nr_thp_failed = 0; 1348 int nr_thp_split = 0; 1349 int pass = 0; 1350 bool is_thp = false; 1351 struct page *page; 1352 struct page *page2; 1353 int rc, nr_subpages; 1354 LIST_HEAD(ret_pages); 1355 LIST_HEAD(thp_split_pages); 1356 bool nosplit = (reason == MR_NUMA_MISPLACED); 1357 bool no_subpage_counting = false; 1358 1359 trace_mm_migrate_pages_start(mode, reason); 1360 1361 thp_subpage_migration: 1362 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1363 retry = 0; 1364 thp_retry = 0; 1365 1366 list_for_each_entry_safe(page, page2, from, lru) { 1367 retry: 1368 /* 1369 * THP statistics is based on the source huge page. 1370 * Capture required information that might get lost 1371 * during migration. 1372 */ 1373 is_thp = PageTransHuge(page) && !PageHuge(page); 1374 nr_subpages = compound_nr(page); 1375 cond_resched(); 1376 1377 if (PageHuge(page)) 1378 rc = unmap_and_move_huge_page(get_new_page, 1379 put_new_page, private, page, 1380 pass > 2, mode, reason, 1381 &ret_pages); 1382 else 1383 rc = unmap_and_move(get_new_page, put_new_page, 1384 private, page, pass > 2, mode, 1385 reason, &ret_pages); 1386 /* 1387 * The rules are: 1388 * Success: non hugetlb page will be freed, hugetlb 1389 * page will be put back 1390 * -EAGAIN: stay on the from list 1391 * -ENOMEM: stay on the from list 1392 * Other errno: put on ret_pages list then splice to 1393 * from list 1394 */ 1395 switch(rc) { 1396 /* 1397 * THP migration might be unsupported or the 1398 * allocation could've failed so we should 1399 * retry on the same page with the THP split 1400 * to base pages. 1401 * 1402 * Head page is retried immediately and tail 1403 * pages are added to the tail of the list so 1404 * we encounter them after the rest of the list 1405 * is processed. 1406 */ 1407 case -ENOSYS: 1408 /* THP migration is unsupported */ 1409 if (is_thp) { 1410 nr_thp_failed++; 1411 if (!try_split_thp(page, &page2, &thp_split_pages)) { 1412 nr_thp_split++; 1413 goto retry; 1414 } 1415 1416 nr_failed_pages += nr_subpages; 1417 break; 1418 } 1419 1420 /* Hugetlb migration is unsupported */ 1421 if (!no_subpage_counting) 1422 nr_failed++; 1423 nr_failed_pages += nr_subpages; 1424 break; 1425 case -ENOMEM: 1426 /* 1427 * When memory is low, don't bother to try to migrate 1428 * other pages, just exit. 1429 * THP NUMA faulting doesn't split THP to retry. 1430 */ 1431 if (is_thp && !nosplit) { 1432 nr_thp_failed++; 1433 if (!try_split_thp(page, &page2, &thp_split_pages)) { 1434 nr_thp_split++; 1435 goto retry; 1436 } 1437 1438 nr_failed_pages += nr_subpages; 1439 goto out; 1440 } 1441 1442 if (!no_subpage_counting) 1443 nr_failed++; 1444 nr_failed_pages += nr_subpages; 1445 goto out; 1446 case -EAGAIN: 1447 if (is_thp) { 1448 thp_retry++; 1449 break; 1450 } 1451 retry++; 1452 break; 1453 case MIGRATEPAGE_SUCCESS: 1454 nr_succeeded += nr_subpages; 1455 if (is_thp) { 1456 nr_thp_succeeded++; 1457 break; 1458 } 1459 break; 1460 default: 1461 /* 1462 * Permanent failure (-EBUSY, etc.): 1463 * unlike -EAGAIN case, the failed page is 1464 * removed from migration page list and not 1465 * retried in the next outer loop. 1466 */ 1467 if (is_thp) { 1468 nr_thp_failed++; 1469 nr_failed_pages += nr_subpages; 1470 break; 1471 } 1472 1473 if (!no_subpage_counting) 1474 nr_failed++; 1475 nr_failed_pages += nr_subpages; 1476 break; 1477 } 1478 } 1479 } 1480 nr_failed += retry; 1481 nr_thp_failed += thp_retry; 1482 /* 1483 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed 1484 * counting in this round, since all subpages of a THP is counted 1485 * as 1 failure in the first round. 1486 */ 1487 if (!list_empty(&thp_split_pages)) { 1488 /* 1489 * Move non-migrated pages (after 10 retries) to ret_pages 1490 * to avoid migrating them again. 1491 */ 1492 list_splice_init(from, &ret_pages); 1493 list_splice_init(&thp_split_pages, from); 1494 no_subpage_counting = true; 1495 retry = 1; 1496 goto thp_subpage_migration; 1497 } 1498 1499 rc = nr_failed + nr_thp_failed; 1500 out: 1501 /* 1502 * Put the permanent failure page back to migration list, they 1503 * will be put back to the right list by the caller. 1504 */ 1505 list_splice(&ret_pages, from); 1506 1507 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1508 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); 1509 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1510 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1511 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1512 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, 1513 nr_thp_failed, nr_thp_split, mode, reason); 1514 1515 if (ret_succeeded) 1516 *ret_succeeded = nr_succeeded; 1517 1518 return rc; 1519 } 1520 1521 struct page *alloc_migration_target(struct page *page, unsigned long private) 1522 { 1523 struct migration_target_control *mtc; 1524 gfp_t gfp_mask; 1525 unsigned int order = 0; 1526 struct page *new_page = NULL; 1527 int nid; 1528 int zidx; 1529 1530 mtc = (struct migration_target_control *)private; 1531 gfp_mask = mtc->gfp_mask; 1532 nid = mtc->nid; 1533 if (nid == NUMA_NO_NODE) 1534 nid = page_to_nid(page); 1535 1536 if (PageHuge(page)) { 1537 struct hstate *h = page_hstate(compound_head(page)); 1538 1539 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1540 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1541 } 1542 1543 if (PageTransHuge(page)) { 1544 /* 1545 * clear __GFP_RECLAIM to make the migration callback 1546 * consistent with regular THP allocations. 1547 */ 1548 gfp_mask &= ~__GFP_RECLAIM; 1549 gfp_mask |= GFP_TRANSHUGE; 1550 order = HPAGE_PMD_ORDER; 1551 } 1552 zidx = zone_idx(page_zone(page)); 1553 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1554 gfp_mask |= __GFP_HIGHMEM; 1555 1556 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask); 1557 1558 if (new_page && PageTransHuge(new_page)) 1559 prep_transhuge_page(new_page); 1560 1561 return new_page; 1562 } 1563 1564 #ifdef CONFIG_NUMA 1565 1566 static int store_status(int __user *status, int start, int value, int nr) 1567 { 1568 while (nr-- > 0) { 1569 if (put_user(value, status + start)) 1570 return -EFAULT; 1571 start++; 1572 } 1573 1574 return 0; 1575 } 1576 1577 static int do_move_pages_to_node(struct mm_struct *mm, 1578 struct list_head *pagelist, int node) 1579 { 1580 int err; 1581 struct migration_target_control mtc = { 1582 .nid = node, 1583 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1584 }; 1585 1586 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1587 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1588 if (err) 1589 putback_movable_pages(pagelist); 1590 return err; 1591 } 1592 1593 /* 1594 * Resolves the given address to a struct page, isolates it from the LRU and 1595 * puts it to the given pagelist. 1596 * Returns: 1597 * errno - if the page cannot be found/isolated 1598 * 0 - when it doesn't have to be migrated because it is already on the 1599 * target node 1600 * 1 - when it has been queued 1601 */ 1602 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1603 int node, struct list_head *pagelist, bool migrate_all) 1604 { 1605 struct vm_area_struct *vma; 1606 struct page *page; 1607 int err; 1608 1609 mmap_read_lock(mm); 1610 err = -EFAULT; 1611 vma = find_vma(mm, addr); 1612 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1613 goto out; 1614 1615 /* FOLL_DUMP to ignore special (like zero) pages */ 1616 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1617 1618 err = PTR_ERR(page); 1619 if (IS_ERR(page)) 1620 goto out; 1621 1622 err = -ENOENT; 1623 if (!page) 1624 goto out; 1625 1626 err = 0; 1627 if (page_to_nid(page) == node) 1628 goto out_putpage; 1629 1630 err = -EACCES; 1631 if (page_mapcount(page) > 1 && !migrate_all) 1632 goto out_putpage; 1633 1634 if (PageHuge(page)) { 1635 if (PageHead(page)) { 1636 isolate_huge_page(page, pagelist); 1637 err = 1; 1638 } 1639 } else { 1640 struct page *head; 1641 1642 head = compound_head(page); 1643 err = isolate_lru_page(head); 1644 if (err) 1645 goto out_putpage; 1646 1647 err = 1; 1648 list_add_tail(&head->lru, pagelist); 1649 mod_node_page_state(page_pgdat(head), 1650 NR_ISOLATED_ANON + page_is_file_lru(head), 1651 thp_nr_pages(head)); 1652 } 1653 out_putpage: 1654 /* 1655 * Either remove the duplicate refcount from 1656 * isolate_lru_page() or drop the page ref if it was 1657 * not isolated. 1658 */ 1659 put_page(page); 1660 out: 1661 mmap_read_unlock(mm); 1662 return err; 1663 } 1664 1665 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1666 struct list_head *pagelist, int __user *status, 1667 int start, int i, unsigned long nr_pages) 1668 { 1669 int err; 1670 1671 if (list_empty(pagelist)) 1672 return 0; 1673 1674 err = do_move_pages_to_node(mm, pagelist, node); 1675 if (err) { 1676 /* 1677 * Positive err means the number of failed 1678 * pages to migrate. Since we are going to 1679 * abort and return the number of non-migrated 1680 * pages, so need to include the rest of the 1681 * nr_pages that have not been attempted as 1682 * well. 1683 */ 1684 if (err > 0) 1685 err += nr_pages - i - 1; 1686 return err; 1687 } 1688 return store_status(status, start, node, i - start); 1689 } 1690 1691 /* 1692 * Migrate an array of page address onto an array of nodes and fill 1693 * the corresponding array of status. 1694 */ 1695 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1696 unsigned long nr_pages, 1697 const void __user * __user *pages, 1698 const int __user *nodes, 1699 int __user *status, int flags) 1700 { 1701 int current_node = NUMA_NO_NODE; 1702 LIST_HEAD(pagelist); 1703 int start, i; 1704 int err = 0, err1; 1705 1706 lru_cache_disable(); 1707 1708 for (i = start = 0; i < nr_pages; i++) { 1709 const void __user *p; 1710 unsigned long addr; 1711 int node; 1712 1713 err = -EFAULT; 1714 if (get_user(p, pages + i)) 1715 goto out_flush; 1716 if (get_user(node, nodes + i)) 1717 goto out_flush; 1718 addr = (unsigned long)untagged_addr(p); 1719 1720 err = -ENODEV; 1721 if (node < 0 || node >= MAX_NUMNODES) 1722 goto out_flush; 1723 if (!node_state(node, N_MEMORY)) 1724 goto out_flush; 1725 1726 err = -EACCES; 1727 if (!node_isset(node, task_nodes)) 1728 goto out_flush; 1729 1730 if (current_node == NUMA_NO_NODE) { 1731 current_node = node; 1732 start = i; 1733 } else if (node != current_node) { 1734 err = move_pages_and_store_status(mm, current_node, 1735 &pagelist, status, start, i, nr_pages); 1736 if (err) 1737 goto out; 1738 start = i; 1739 current_node = node; 1740 } 1741 1742 /* 1743 * Errors in the page lookup or isolation are not fatal and we simply 1744 * report them via status 1745 */ 1746 err = add_page_for_migration(mm, addr, current_node, 1747 &pagelist, flags & MPOL_MF_MOVE_ALL); 1748 1749 if (err > 0) { 1750 /* The page is successfully queued for migration */ 1751 continue; 1752 } 1753 1754 /* 1755 * The move_pages() man page does not have an -EEXIST choice, so 1756 * use -EFAULT instead. 1757 */ 1758 if (err == -EEXIST) 1759 err = -EFAULT; 1760 1761 /* 1762 * If the page is already on the target node (!err), store the 1763 * node, otherwise, store the err. 1764 */ 1765 err = store_status(status, i, err ? : current_node, 1); 1766 if (err) 1767 goto out_flush; 1768 1769 err = move_pages_and_store_status(mm, current_node, &pagelist, 1770 status, start, i, nr_pages); 1771 if (err) 1772 goto out; 1773 current_node = NUMA_NO_NODE; 1774 } 1775 out_flush: 1776 /* Make sure we do not overwrite the existing error */ 1777 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1778 status, start, i, nr_pages); 1779 if (err >= 0) 1780 err = err1; 1781 out: 1782 lru_cache_enable(); 1783 return err; 1784 } 1785 1786 /* 1787 * Determine the nodes of an array of pages and store it in an array of status. 1788 */ 1789 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1790 const void __user **pages, int *status) 1791 { 1792 unsigned long i; 1793 1794 mmap_read_lock(mm); 1795 1796 for (i = 0; i < nr_pages; i++) { 1797 unsigned long addr = (unsigned long)(*pages); 1798 struct vm_area_struct *vma; 1799 struct page *page; 1800 int err = -EFAULT; 1801 1802 vma = vma_lookup(mm, addr); 1803 if (!vma) 1804 goto set_status; 1805 1806 /* FOLL_DUMP to ignore special (like zero) pages */ 1807 page = follow_page(vma, addr, FOLL_DUMP); 1808 1809 err = PTR_ERR(page); 1810 if (IS_ERR(page)) 1811 goto set_status; 1812 1813 err = page ? page_to_nid(page) : -ENOENT; 1814 set_status: 1815 *status = err; 1816 1817 pages++; 1818 status++; 1819 } 1820 1821 mmap_read_unlock(mm); 1822 } 1823 1824 static int get_compat_pages_array(const void __user *chunk_pages[], 1825 const void __user * __user *pages, 1826 unsigned long chunk_nr) 1827 { 1828 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1829 compat_uptr_t p; 1830 int i; 1831 1832 for (i = 0; i < chunk_nr; i++) { 1833 if (get_user(p, pages32 + i)) 1834 return -EFAULT; 1835 chunk_pages[i] = compat_ptr(p); 1836 } 1837 1838 return 0; 1839 } 1840 1841 /* 1842 * Determine the nodes of a user array of pages and store it in 1843 * a user array of status. 1844 */ 1845 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1846 const void __user * __user *pages, 1847 int __user *status) 1848 { 1849 #define DO_PAGES_STAT_CHUNK_NR 16 1850 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1851 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1852 1853 while (nr_pages) { 1854 unsigned long chunk_nr; 1855 1856 chunk_nr = nr_pages; 1857 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1858 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1859 1860 if (in_compat_syscall()) { 1861 if (get_compat_pages_array(chunk_pages, pages, 1862 chunk_nr)) 1863 break; 1864 } else { 1865 if (copy_from_user(chunk_pages, pages, 1866 chunk_nr * sizeof(*chunk_pages))) 1867 break; 1868 } 1869 1870 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1871 1872 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1873 break; 1874 1875 pages += chunk_nr; 1876 status += chunk_nr; 1877 nr_pages -= chunk_nr; 1878 } 1879 return nr_pages ? -EFAULT : 0; 1880 } 1881 1882 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1883 { 1884 struct task_struct *task; 1885 struct mm_struct *mm; 1886 1887 /* 1888 * There is no need to check if current process has the right to modify 1889 * the specified process when they are same. 1890 */ 1891 if (!pid) { 1892 mmget(current->mm); 1893 *mem_nodes = cpuset_mems_allowed(current); 1894 return current->mm; 1895 } 1896 1897 /* Find the mm_struct */ 1898 rcu_read_lock(); 1899 task = find_task_by_vpid(pid); 1900 if (!task) { 1901 rcu_read_unlock(); 1902 return ERR_PTR(-ESRCH); 1903 } 1904 get_task_struct(task); 1905 1906 /* 1907 * Check if this process has the right to modify the specified 1908 * process. Use the regular "ptrace_may_access()" checks. 1909 */ 1910 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1911 rcu_read_unlock(); 1912 mm = ERR_PTR(-EPERM); 1913 goto out; 1914 } 1915 rcu_read_unlock(); 1916 1917 mm = ERR_PTR(security_task_movememory(task)); 1918 if (IS_ERR(mm)) 1919 goto out; 1920 *mem_nodes = cpuset_mems_allowed(task); 1921 mm = get_task_mm(task); 1922 out: 1923 put_task_struct(task); 1924 if (!mm) 1925 mm = ERR_PTR(-EINVAL); 1926 return mm; 1927 } 1928 1929 /* 1930 * Move a list of pages in the address space of the currently executing 1931 * process. 1932 */ 1933 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1934 const void __user * __user *pages, 1935 const int __user *nodes, 1936 int __user *status, int flags) 1937 { 1938 struct mm_struct *mm; 1939 int err; 1940 nodemask_t task_nodes; 1941 1942 /* Check flags */ 1943 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1944 return -EINVAL; 1945 1946 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1947 return -EPERM; 1948 1949 mm = find_mm_struct(pid, &task_nodes); 1950 if (IS_ERR(mm)) 1951 return PTR_ERR(mm); 1952 1953 if (nodes) 1954 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1955 nodes, status, flags); 1956 else 1957 err = do_pages_stat(mm, nr_pages, pages, status); 1958 1959 mmput(mm); 1960 return err; 1961 } 1962 1963 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1964 const void __user * __user *, pages, 1965 const int __user *, nodes, 1966 int __user *, status, int, flags) 1967 { 1968 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1969 } 1970 1971 #ifdef CONFIG_NUMA_BALANCING 1972 /* 1973 * Returns true if this is a safe migration target node for misplaced NUMA 1974 * pages. Currently it only checks the watermarks which crude 1975 */ 1976 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1977 unsigned long nr_migrate_pages) 1978 { 1979 int z; 1980 1981 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1982 struct zone *zone = pgdat->node_zones + z; 1983 1984 if (!populated_zone(zone)) 1985 continue; 1986 1987 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1988 if (!zone_watermark_ok(zone, 0, 1989 high_wmark_pages(zone) + 1990 nr_migrate_pages, 1991 ZONE_MOVABLE, 0)) 1992 continue; 1993 return true; 1994 } 1995 return false; 1996 } 1997 1998 static struct page *alloc_misplaced_dst_page(struct page *page, 1999 unsigned long data) 2000 { 2001 int nid = (int) data; 2002 struct page *newpage; 2003 2004 newpage = __alloc_pages_node(nid, 2005 (GFP_HIGHUSER_MOVABLE | 2006 __GFP_THISNODE | __GFP_NOMEMALLOC | 2007 __GFP_NORETRY | __GFP_NOWARN) & 2008 ~__GFP_RECLAIM, 0); 2009 2010 return newpage; 2011 } 2012 2013 static struct page *alloc_misplaced_dst_page_thp(struct page *page, 2014 unsigned long data) 2015 { 2016 int nid = (int) data; 2017 struct page *newpage; 2018 2019 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2020 HPAGE_PMD_ORDER); 2021 if (!newpage) 2022 goto out; 2023 2024 prep_transhuge_page(newpage); 2025 2026 out: 2027 return newpage; 2028 } 2029 2030 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2031 { 2032 int page_lru; 2033 int nr_pages = thp_nr_pages(page); 2034 int order = compound_order(page); 2035 2036 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2037 2038 /* Do not migrate THP mapped by multiple processes */ 2039 if (PageTransHuge(page) && total_mapcount(page) > 1) 2040 return 0; 2041 2042 /* Avoid migrating to a node that is nearly full */ 2043 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2044 int z; 2045 2046 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2047 return 0; 2048 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2049 if (populated_zone(pgdat->node_zones + z)) 2050 break; 2051 } 2052 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2053 return 0; 2054 } 2055 2056 if (isolate_lru_page(page)) 2057 return 0; 2058 2059 page_lru = page_is_file_lru(page); 2060 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2061 nr_pages); 2062 2063 /* 2064 * Isolating the page has taken another reference, so the 2065 * caller's reference can be safely dropped without the page 2066 * disappearing underneath us during migration. 2067 */ 2068 put_page(page); 2069 return 1; 2070 } 2071 2072 /* 2073 * Attempt to migrate a misplaced page to the specified destination 2074 * node. Caller is expected to have an elevated reference count on 2075 * the page that will be dropped by this function before returning. 2076 */ 2077 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2078 int node) 2079 { 2080 pg_data_t *pgdat = NODE_DATA(node); 2081 int isolated; 2082 int nr_remaining; 2083 unsigned int nr_succeeded; 2084 LIST_HEAD(migratepages); 2085 new_page_t *new; 2086 bool compound; 2087 int nr_pages = thp_nr_pages(page); 2088 2089 /* 2090 * PTE mapped THP or HugeTLB page can't reach here so the page could 2091 * be either base page or THP. And it must be head page if it is 2092 * THP. 2093 */ 2094 compound = PageTransHuge(page); 2095 2096 if (compound) 2097 new = alloc_misplaced_dst_page_thp; 2098 else 2099 new = alloc_misplaced_dst_page; 2100 2101 /* 2102 * Don't migrate file pages that are mapped in multiple processes 2103 * with execute permissions as they are probably shared libraries. 2104 */ 2105 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2106 (vma->vm_flags & VM_EXEC)) 2107 goto out; 2108 2109 /* 2110 * Also do not migrate dirty pages as not all filesystems can move 2111 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2112 */ 2113 if (page_is_file_lru(page) && PageDirty(page)) 2114 goto out; 2115 2116 isolated = numamigrate_isolate_page(pgdat, page); 2117 if (!isolated) 2118 goto out; 2119 2120 list_add(&page->lru, &migratepages); 2121 nr_remaining = migrate_pages(&migratepages, *new, NULL, node, 2122 MIGRATE_ASYNC, MR_NUMA_MISPLACED, 2123 &nr_succeeded); 2124 if (nr_remaining) { 2125 if (!list_empty(&migratepages)) { 2126 list_del(&page->lru); 2127 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2128 page_is_file_lru(page), -nr_pages); 2129 putback_lru_page(page); 2130 } 2131 isolated = 0; 2132 } 2133 if (nr_succeeded) { 2134 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2135 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2136 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2137 nr_succeeded); 2138 } 2139 BUG_ON(!list_empty(&migratepages)); 2140 return isolated; 2141 2142 out: 2143 put_page(page); 2144 return 0; 2145 } 2146 #endif /* CONFIG_NUMA_BALANCING */ 2147 #endif /* CONFIG_NUMA */ 2148 2149 /* 2150 * node_demotion[] example: 2151 * 2152 * Consider a system with two sockets. Each socket has 2153 * three classes of memory attached: fast, medium and slow. 2154 * Each memory class is placed in its own NUMA node. The 2155 * CPUs are placed in the node with the "fast" memory. The 2156 * 6 NUMA nodes (0-5) might be split among the sockets like 2157 * this: 2158 * 2159 * Socket A: 0, 1, 2 2160 * Socket B: 3, 4, 5 2161 * 2162 * When Node 0 fills up, its memory should be migrated to 2163 * Node 1. When Node 1 fills up, it should be migrated to 2164 * Node 2. The migration path start on the nodes with the 2165 * processors (since allocations default to this node) and 2166 * fast memory, progress through medium and end with the 2167 * slow memory: 2168 * 2169 * 0 -> 1 -> 2 -> stop 2170 * 3 -> 4 -> 5 -> stop 2171 * 2172 * This is represented in the node_demotion[] like this: 2173 * 2174 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1 2175 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2 2176 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate 2177 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4 2178 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5 2179 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate 2180 * 2181 * Moreover some systems may have multiple slow memory nodes. 2182 * Suppose a system has one socket with 3 memory nodes, node 0 2183 * is fast memory type, and node 1/2 both are slow memory 2184 * type, and the distance between fast memory node and slow 2185 * memory node is same. So the migration path should be: 2186 * 2187 * 0 -> 1/2 -> stop 2188 * 2189 * This is represented in the node_demotion[] like this: 2190 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2 2191 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate 2192 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate 2193 */ 2194 2195 /* 2196 * Writes to this array occur without locking. Cycles are 2197 * not allowed: Node X demotes to Y which demotes to X... 2198 * 2199 * If multiple reads are performed, a single rcu_read_lock() 2200 * must be held over all reads to ensure that no cycles are 2201 * observed. 2202 */ 2203 #define DEFAULT_DEMOTION_TARGET_NODES 15 2204 2205 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES 2206 #define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1) 2207 #else 2208 #define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES 2209 #endif 2210 2211 struct demotion_nodes { 2212 unsigned short nr; 2213 short nodes[DEMOTION_TARGET_NODES]; 2214 }; 2215 2216 static struct demotion_nodes *node_demotion __read_mostly; 2217 2218 /** 2219 * next_demotion_node() - Get the next node in the demotion path 2220 * @node: The starting node to lookup the next node 2221 * 2222 * Return: node id for next memory node in the demotion path hierarchy 2223 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 2224 * @node online or guarantee that it *continues* to be the next demotion 2225 * target. 2226 */ 2227 int next_demotion_node(int node) 2228 { 2229 struct demotion_nodes *nd; 2230 unsigned short target_nr, index; 2231 int target; 2232 2233 if (!node_demotion) 2234 return NUMA_NO_NODE; 2235 2236 nd = &node_demotion[node]; 2237 2238 /* 2239 * node_demotion[] is updated without excluding this 2240 * function from running. RCU doesn't provide any 2241 * compiler barriers, so the READ_ONCE() is required 2242 * to avoid compiler reordering or read merging. 2243 * 2244 * Make sure to use RCU over entire code blocks if 2245 * node_demotion[] reads need to be consistent. 2246 */ 2247 rcu_read_lock(); 2248 target_nr = READ_ONCE(nd->nr); 2249 2250 switch (target_nr) { 2251 case 0: 2252 target = NUMA_NO_NODE; 2253 goto out; 2254 case 1: 2255 index = 0; 2256 break; 2257 default: 2258 /* 2259 * If there are multiple target nodes, just select one 2260 * target node randomly. 2261 * 2262 * In addition, we can also use round-robin to select 2263 * target node, but we should introduce another variable 2264 * for node_demotion[] to record last selected target node, 2265 * that may cause cache ping-pong due to the changing of 2266 * last target node. Or introducing per-cpu data to avoid 2267 * caching issue, which seems more complicated. So selecting 2268 * target node randomly seems better until now. 2269 */ 2270 index = get_random_int() % target_nr; 2271 break; 2272 } 2273 2274 target = READ_ONCE(nd->nodes[index]); 2275 2276 out: 2277 rcu_read_unlock(); 2278 return target; 2279 } 2280 2281 #if defined(CONFIG_HOTPLUG_CPU) 2282 /* Disable reclaim-based migration. */ 2283 static void __disable_all_migrate_targets(void) 2284 { 2285 int node, i; 2286 2287 if (!node_demotion) 2288 return; 2289 2290 for_each_online_node(node) { 2291 node_demotion[node].nr = 0; 2292 for (i = 0; i < DEMOTION_TARGET_NODES; i++) 2293 node_demotion[node].nodes[i] = NUMA_NO_NODE; 2294 } 2295 } 2296 2297 static void disable_all_migrate_targets(void) 2298 { 2299 __disable_all_migrate_targets(); 2300 2301 /* 2302 * Ensure that the "disable" is visible across the system. 2303 * Readers will see either a combination of before+disable 2304 * state or disable+after. They will never see before and 2305 * after state together. 2306 * 2307 * The before+after state together might have cycles and 2308 * could cause readers to do things like loop until this 2309 * function finishes. This ensures they can only see a 2310 * single "bad" read and would, for instance, only loop 2311 * once. 2312 */ 2313 synchronize_rcu(); 2314 } 2315 2316 /* 2317 * Find an automatic demotion target for 'node'. 2318 * Failing here is OK. It might just indicate 2319 * being at the end of a chain. 2320 */ 2321 static int establish_migrate_target(int node, nodemask_t *used, 2322 int best_distance) 2323 { 2324 int migration_target, index, val; 2325 struct demotion_nodes *nd; 2326 2327 if (!node_demotion) 2328 return NUMA_NO_NODE; 2329 2330 nd = &node_demotion[node]; 2331 2332 migration_target = find_next_best_node(node, used); 2333 if (migration_target == NUMA_NO_NODE) 2334 return NUMA_NO_NODE; 2335 2336 /* 2337 * If the node has been set a migration target node before, 2338 * which means it's the best distance between them. Still 2339 * check if this node can be demoted to other target nodes 2340 * if they have a same best distance. 2341 */ 2342 if (best_distance != -1) { 2343 val = node_distance(node, migration_target); 2344 if (val > best_distance) 2345 goto out_clear; 2346 } 2347 2348 index = nd->nr; 2349 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES, 2350 "Exceeds maximum demotion target nodes\n")) 2351 goto out_clear; 2352 2353 nd->nodes[index] = migration_target; 2354 nd->nr++; 2355 2356 return migration_target; 2357 out_clear: 2358 node_clear(migration_target, *used); 2359 return NUMA_NO_NODE; 2360 } 2361 2362 /* 2363 * When memory fills up on a node, memory contents can be 2364 * automatically migrated to another node instead of 2365 * discarded at reclaim. 2366 * 2367 * Establish a "migration path" which will start at nodes 2368 * with CPUs and will follow the priorities used to build the 2369 * page allocator zonelists. 2370 * 2371 * The difference here is that cycles must be avoided. If 2372 * node0 migrates to node1, then neither node1, nor anything 2373 * node1 migrates to can migrate to node0. Also one node can 2374 * be migrated to multiple nodes if the target nodes all have 2375 * a same best-distance against the source node. 2376 * 2377 * This function can run simultaneously with readers of 2378 * node_demotion[]. However, it can not run simultaneously 2379 * with itself. Exclusion is provided by memory hotplug events 2380 * being single-threaded. 2381 */ 2382 static void __set_migration_target_nodes(void) 2383 { 2384 nodemask_t next_pass = NODE_MASK_NONE; 2385 nodemask_t this_pass = NODE_MASK_NONE; 2386 nodemask_t used_targets = NODE_MASK_NONE; 2387 int node, best_distance; 2388 2389 /* 2390 * Avoid any oddities like cycles that could occur 2391 * from changes in the topology. This will leave 2392 * a momentary gap when migration is disabled. 2393 */ 2394 disable_all_migrate_targets(); 2395 2396 /* 2397 * Allocations go close to CPUs, first. Assume that 2398 * the migration path starts at the nodes with CPUs. 2399 */ 2400 next_pass = node_states[N_CPU]; 2401 again: 2402 this_pass = next_pass; 2403 next_pass = NODE_MASK_NONE; 2404 /* 2405 * To avoid cycles in the migration "graph", ensure 2406 * that migration sources are not future targets by 2407 * setting them in 'used_targets'. Do this only 2408 * once per pass so that multiple source nodes can 2409 * share a target node. 2410 * 2411 * 'used_targets' will become unavailable in future 2412 * passes. This limits some opportunities for 2413 * multiple source nodes to share a destination. 2414 */ 2415 nodes_or(used_targets, used_targets, this_pass); 2416 2417 for_each_node_mask(node, this_pass) { 2418 best_distance = -1; 2419 2420 /* 2421 * Try to set up the migration path for the node, and the target 2422 * migration nodes can be multiple, so doing a loop to find all 2423 * the target nodes if they all have a best node distance. 2424 */ 2425 do { 2426 int target_node = 2427 establish_migrate_target(node, &used_targets, 2428 best_distance); 2429 2430 if (target_node == NUMA_NO_NODE) 2431 break; 2432 2433 if (best_distance == -1) 2434 best_distance = node_distance(node, target_node); 2435 2436 /* 2437 * Visit targets from this pass in the next pass. 2438 * Eventually, every node will have been part of 2439 * a pass, and will become set in 'used_targets'. 2440 */ 2441 node_set(target_node, next_pass); 2442 } while (1); 2443 } 2444 /* 2445 * 'next_pass' contains nodes which became migration 2446 * targets in this pass. Make additional passes until 2447 * no more migrations targets are available. 2448 */ 2449 if (!nodes_empty(next_pass)) 2450 goto again; 2451 } 2452 2453 /* 2454 * For callers that do not hold get_online_mems() already. 2455 */ 2456 void set_migration_target_nodes(void) 2457 { 2458 get_online_mems(); 2459 __set_migration_target_nodes(); 2460 put_online_mems(); 2461 } 2462 2463 /* 2464 * This leaves migrate-on-reclaim transiently disabled between 2465 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs 2466 * whether reclaim-based migration is enabled or not, which 2467 * ensures that the user can turn reclaim-based migration at 2468 * any time without needing to recalculate migration targets. 2469 * 2470 * These callbacks already hold get_online_mems(). That is why 2471 * __set_migration_target_nodes() can be used as opposed to 2472 * set_migration_target_nodes(). 2473 */ 2474 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, 2475 unsigned long action, void *_arg) 2476 { 2477 struct memory_notify *arg = _arg; 2478 2479 /* 2480 * Only update the node migration order when a node is 2481 * changing status, like online->offline. This avoids 2482 * the overhead of synchronize_rcu() in most cases. 2483 */ 2484 if (arg->status_change_nid < 0) 2485 return notifier_from_errno(0); 2486 2487 switch (action) { 2488 case MEM_GOING_OFFLINE: 2489 /* 2490 * Make sure there are not transient states where 2491 * an offline node is a migration target. This 2492 * will leave migration disabled until the offline 2493 * completes and the MEM_OFFLINE case below runs. 2494 */ 2495 disable_all_migrate_targets(); 2496 break; 2497 case MEM_OFFLINE: 2498 case MEM_ONLINE: 2499 /* 2500 * Recalculate the target nodes once the node 2501 * reaches its final state (online or offline). 2502 */ 2503 __set_migration_target_nodes(); 2504 break; 2505 case MEM_CANCEL_OFFLINE: 2506 /* 2507 * MEM_GOING_OFFLINE disabled all the migration 2508 * targets. Reenable them. 2509 */ 2510 __set_migration_target_nodes(); 2511 break; 2512 case MEM_GOING_ONLINE: 2513 case MEM_CANCEL_ONLINE: 2514 break; 2515 } 2516 2517 return notifier_from_errno(0); 2518 } 2519 2520 void __init migrate_on_reclaim_init(void) 2521 { 2522 node_demotion = kmalloc_array(nr_node_ids, 2523 sizeof(struct demotion_nodes), 2524 GFP_KERNEL); 2525 WARN_ON(!node_demotion); 2526 2527 hotplug_memory_notifier(migrate_on_reclaim_callback, 100); 2528 /* 2529 * At this point, all numa nodes with memory/CPus have their state 2530 * properly set, so we can build the demotion order now. 2531 * Let us hold the cpu_hotplug lock just, as we could possibily have 2532 * CPU hotplug events during boot. 2533 */ 2534 cpus_read_lock(); 2535 set_migration_target_nodes(); 2536 cpus_read_unlock(); 2537 } 2538 #endif /* CONFIG_HOTPLUG_CPU */ 2539 2540 bool numa_demotion_enabled = false; 2541 2542 #ifdef CONFIG_SYSFS 2543 static ssize_t numa_demotion_enabled_show(struct kobject *kobj, 2544 struct kobj_attribute *attr, char *buf) 2545 { 2546 return sysfs_emit(buf, "%s\n", 2547 numa_demotion_enabled ? "true" : "false"); 2548 } 2549 2550 static ssize_t numa_demotion_enabled_store(struct kobject *kobj, 2551 struct kobj_attribute *attr, 2552 const char *buf, size_t count) 2553 { 2554 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) 2555 numa_demotion_enabled = true; 2556 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) 2557 numa_demotion_enabled = false; 2558 else 2559 return -EINVAL; 2560 2561 return count; 2562 } 2563 2564 static struct kobj_attribute numa_demotion_enabled_attr = 2565 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, 2566 numa_demotion_enabled_store); 2567 2568 static struct attribute *numa_attrs[] = { 2569 &numa_demotion_enabled_attr.attr, 2570 NULL, 2571 }; 2572 2573 static const struct attribute_group numa_attr_group = { 2574 .attrs = numa_attrs, 2575 }; 2576 2577 static int __init numa_init_sysfs(void) 2578 { 2579 int err; 2580 struct kobject *numa_kobj; 2581 2582 numa_kobj = kobject_create_and_add("numa", mm_kobj); 2583 if (!numa_kobj) { 2584 pr_err("failed to create numa kobject\n"); 2585 return -ENOMEM; 2586 } 2587 err = sysfs_create_group(numa_kobj, &numa_attr_group); 2588 if (err) { 2589 pr_err("failed to register numa group\n"); 2590 goto delete_obj; 2591 } 2592 return 0; 2593 2594 delete_obj: 2595 kobject_put(numa_kobj); 2596 return err; 2597 } 2598 subsys_initcall(numa_init_sysfs); 2599 #endif 2600