xref: /linux/mm/migrate.c (revision a64917bc2e9b1e0aa716b783c4ec879fdd280300)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 #include <linux/memory.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/migrate.h>
58 
59 #include "internal.h"
60 
61 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 {
63 	struct address_space *mapping;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (unlikely(!get_page_unless_zero(page)))
75 		goto out;
76 
77 	/*
78 	 * Check PageMovable before holding a PG_lock because page's owner
79 	 * assumes anybody doesn't touch PG_lock of newly allocated page
80 	 * so unconditionally grabbing the lock ruins page's owner side.
81 	 */
82 	if (unlikely(!__PageMovable(page)))
83 		goto out_putpage;
84 	/*
85 	 * As movable pages are not isolated from LRU lists, concurrent
86 	 * compaction threads can race against page migration functions
87 	 * as well as race against the releasing a page.
88 	 *
89 	 * In order to avoid having an already isolated movable page
90 	 * being (wrongly) re-isolated while it is under migration,
91 	 * or to avoid attempting to isolate pages being released,
92 	 * lets be sure we have the page lock
93 	 * before proceeding with the movable page isolation steps.
94 	 */
95 	if (unlikely(!trylock_page(page)))
96 		goto out_putpage;
97 
98 	if (!PageMovable(page) || PageIsolated(page))
99 		goto out_no_isolated;
100 
101 	mapping = page_mapping(page);
102 	VM_BUG_ON_PAGE(!mapping, page);
103 
104 	if (!mapping->a_ops->isolate_page(page, mode))
105 		goto out_no_isolated;
106 
107 	/* Driver shouldn't use PG_isolated bit of page->flags */
108 	WARN_ON_ONCE(PageIsolated(page));
109 	__SetPageIsolated(page);
110 	unlock_page(page);
111 
112 	return 0;
113 
114 out_no_isolated:
115 	unlock_page(page);
116 out_putpage:
117 	put_page(page);
118 out:
119 	return -EBUSY;
120 }
121 
122 static void putback_movable_page(struct page *page)
123 {
124 	struct address_space *mapping;
125 
126 	mapping = page_mapping(page);
127 	mapping->a_ops->putback_page(page);
128 	__ClearPageIsolated(page);
129 }
130 
131 /*
132  * Put previously isolated pages back onto the appropriate lists
133  * from where they were once taken off for compaction/migration.
134  *
135  * This function shall be used whenever the isolated pageset has been
136  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
137  * and isolate_huge_page().
138  */
139 void putback_movable_pages(struct list_head *l)
140 {
141 	struct page *page;
142 	struct page *page2;
143 
144 	list_for_each_entry_safe(page, page2, l, lru) {
145 		if (unlikely(PageHuge(page))) {
146 			putback_active_hugepage(page);
147 			continue;
148 		}
149 		list_del(&page->lru);
150 		/*
151 		 * We isolated non-lru movable page so here we can use
152 		 * __PageMovable because LRU page's mapping cannot have
153 		 * PAGE_MAPPING_MOVABLE.
154 		 */
155 		if (unlikely(__PageMovable(page))) {
156 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
157 			lock_page(page);
158 			if (PageMovable(page))
159 				putback_movable_page(page);
160 			else
161 				__ClearPageIsolated(page);
162 			unlock_page(page);
163 			put_page(page);
164 		} else {
165 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
166 					page_is_file_lru(page), -thp_nr_pages(page));
167 			putback_lru_page(page);
168 		}
169 	}
170 }
171 
172 /*
173  * Restore a potential migration pte to a working pte entry
174  */
175 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
176 				 unsigned long addr, void *old)
177 {
178 	struct page_vma_mapped_walk pvmw = {
179 		.page = old,
180 		.vma = vma,
181 		.address = addr,
182 		.flags = PVMW_SYNC | PVMW_MIGRATION,
183 	};
184 	struct page *new;
185 	pte_t pte;
186 	swp_entry_t entry;
187 
188 	VM_BUG_ON_PAGE(PageTail(page), page);
189 	while (page_vma_mapped_walk(&pvmw)) {
190 		if (PageKsm(page))
191 			new = page;
192 		else
193 			new = page - pvmw.page->index +
194 				linear_page_index(vma, pvmw.address);
195 
196 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
197 		/* PMD-mapped THP migration entry */
198 		if (!pvmw.pte) {
199 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
200 			remove_migration_pmd(&pvmw, new);
201 			continue;
202 		}
203 #endif
204 
205 		get_page(new);
206 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
207 		if (pte_swp_soft_dirty(*pvmw.pte))
208 			pte = pte_mksoft_dirty(pte);
209 
210 		/*
211 		 * Recheck VMA as permissions can change since migration started
212 		 */
213 		entry = pte_to_swp_entry(*pvmw.pte);
214 		if (is_writable_migration_entry(entry))
215 			pte = maybe_mkwrite(pte, vma);
216 		else if (pte_swp_uffd_wp(*pvmw.pte))
217 			pte = pte_mkuffd_wp(pte);
218 
219 		if (unlikely(is_device_private_page(new))) {
220 			if (pte_write(pte))
221 				entry = make_writable_device_private_entry(
222 							page_to_pfn(new));
223 			else
224 				entry = make_readable_device_private_entry(
225 							page_to_pfn(new));
226 			pte = swp_entry_to_pte(entry);
227 			if (pte_swp_soft_dirty(*pvmw.pte))
228 				pte = pte_swp_mksoft_dirty(pte);
229 			if (pte_swp_uffd_wp(*pvmw.pte))
230 				pte = pte_swp_mkuffd_wp(pte);
231 		}
232 
233 #ifdef CONFIG_HUGETLB_PAGE
234 		if (PageHuge(new)) {
235 			unsigned int shift = huge_page_shift(hstate_vma(vma));
236 
237 			pte = pte_mkhuge(pte);
238 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
239 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240 			if (PageAnon(new))
241 				hugepage_add_anon_rmap(new, vma, pvmw.address);
242 			else
243 				page_dup_rmap(new, true);
244 		} else
245 #endif
246 		{
247 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
248 
249 			if (PageAnon(new))
250 				page_add_anon_rmap(new, vma, pvmw.address, false);
251 			else
252 				page_add_file_rmap(new, false);
253 		}
254 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
255 			mlock_vma_page(new);
256 
257 		if (PageTransHuge(page) && PageMlocked(page))
258 			clear_page_mlock(page);
259 
260 		/* No need to invalidate - it was non-present before */
261 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
262 	}
263 
264 	return true;
265 }
266 
267 /*
268  * Get rid of all migration entries and replace them by
269  * references to the indicated page.
270  */
271 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
272 {
273 	struct rmap_walk_control rwc = {
274 		.rmap_one = remove_migration_pte,
275 		.arg = old,
276 	};
277 
278 	if (locked)
279 		rmap_walk_locked(new, &rwc);
280 	else
281 		rmap_walk(new, &rwc);
282 }
283 
284 /*
285  * Something used the pte of a page under migration. We need to
286  * get to the page and wait until migration is finished.
287  * When we return from this function the fault will be retried.
288  */
289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 				spinlock_t *ptl)
291 {
292 	pte_t pte;
293 	swp_entry_t entry;
294 	struct page *page;
295 
296 	spin_lock(ptl);
297 	pte = *ptep;
298 	if (!is_swap_pte(pte))
299 		goto out;
300 
301 	entry = pte_to_swp_entry(pte);
302 	if (!is_migration_entry(entry))
303 		goto out;
304 
305 	page = pfn_swap_entry_to_page(entry);
306 	page = compound_head(page);
307 
308 	/*
309 	 * Once page cache replacement of page migration started, page_count
310 	 * is zero; but we must not call put_and_wait_on_page_locked() without
311 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
312 	 */
313 	if (!get_page_unless_zero(page))
314 		goto out;
315 	pte_unmap_unlock(ptep, ptl);
316 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
317 	return;
318 out:
319 	pte_unmap_unlock(ptep, ptl);
320 }
321 
322 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
323 				unsigned long address)
324 {
325 	spinlock_t *ptl = pte_lockptr(mm, pmd);
326 	pte_t *ptep = pte_offset_map(pmd, address);
327 	__migration_entry_wait(mm, ptep, ptl);
328 }
329 
330 void migration_entry_wait_huge(struct vm_area_struct *vma,
331 		struct mm_struct *mm, pte_t *pte)
332 {
333 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
334 	__migration_entry_wait(mm, pte, ptl);
335 }
336 
337 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
338 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
339 {
340 	spinlock_t *ptl;
341 	struct page *page;
342 
343 	ptl = pmd_lock(mm, pmd);
344 	if (!is_pmd_migration_entry(*pmd))
345 		goto unlock;
346 	page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
347 	if (!get_page_unless_zero(page))
348 		goto unlock;
349 	spin_unlock(ptl);
350 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
351 	return;
352 unlock:
353 	spin_unlock(ptl);
354 }
355 #endif
356 
357 static int expected_page_refs(struct address_space *mapping, struct page *page)
358 {
359 	int expected_count = 1;
360 
361 	/*
362 	 * Device private pages have an extra refcount as they are
363 	 * ZONE_DEVICE pages.
364 	 */
365 	expected_count += is_device_private_page(page);
366 	if (mapping)
367 		expected_count += compound_nr(page) + page_has_private(page);
368 
369 	return expected_count;
370 }
371 
372 /*
373  * Replace the page in the mapping.
374  *
375  * The number of remaining references must be:
376  * 1 for anonymous pages without a mapping
377  * 2 for pages with a mapping
378  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
379  */
380 int folio_migrate_mapping(struct address_space *mapping,
381 		struct folio *newfolio, struct folio *folio, int extra_count)
382 {
383 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
384 	struct zone *oldzone, *newzone;
385 	int dirty;
386 	int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
387 	long nr = folio_nr_pages(folio);
388 
389 	if (!mapping) {
390 		/* Anonymous page without mapping */
391 		if (folio_ref_count(folio) != expected_count)
392 			return -EAGAIN;
393 
394 		/* No turning back from here */
395 		newfolio->index = folio->index;
396 		newfolio->mapping = folio->mapping;
397 		if (folio_test_swapbacked(folio))
398 			__folio_set_swapbacked(newfolio);
399 
400 		return MIGRATEPAGE_SUCCESS;
401 	}
402 
403 	oldzone = folio_zone(folio);
404 	newzone = folio_zone(newfolio);
405 
406 	xas_lock_irq(&xas);
407 	if (!folio_ref_freeze(folio, expected_count)) {
408 		xas_unlock_irq(&xas);
409 		return -EAGAIN;
410 	}
411 
412 	/*
413 	 * Now we know that no one else is looking at the folio:
414 	 * no turning back from here.
415 	 */
416 	newfolio->index = folio->index;
417 	newfolio->mapping = folio->mapping;
418 	folio_ref_add(newfolio, nr); /* add cache reference */
419 	if (folio_test_swapbacked(folio)) {
420 		__folio_set_swapbacked(newfolio);
421 		if (folio_test_swapcache(folio)) {
422 			folio_set_swapcache(newfolio);
423 			newfolio->private = folio_get_private(folio);
424 		}
425 	} else {
426 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
427 	}
428 
429 	/* Move dirty while page refs frozen and newpage not yet exposed */
430 	dirty = folio_test_dirty(folio);
431 	if (dirty) {
432 		folio_clear_dirty(folio);
433 		folio_set_dirty(newfolio);
434 	}
435 
436 	xas_store(&xas, newfolio);
437 	if (nr > 1) {
438 		int i;
439 
440 		for (i = 1; i < nr; i++) {
441 			xas_next(&xas);
442 			xas_store(&xas, newfolio);
443 		}
444 	}
445 
446 	/*
447 	 * Drop cache reference from old page by unfreezing
448 	 * to one less reference.
449 	 * We know this isn't the last reference.
450 	 */
451 	folio_ref_unfreeze(folio, expected_count - nr);
452 
453 	xas_unlock(&xas);
454 	/* Leave irq disabled to prevent preemption while updating stats */
455 
456 	/*
457 	 * If moved to a different zone then also account
458 	 * the page for that zone. Other VM counters will be
459 	 * taken care of when we establish references to the
460 	 * new page and drop references to the old page.
461 	 *
462 	 * Note that anonymous pages are accounted for
463 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
464 	 * are mapped to swap space.
465 	 */
466 	if (newzone != oldzone) {
467 		struct lruvec *old_lruvec, *new_lruvec;
468 		struct mem_cgroup *memcg;
469 
470 		memcg = folio_memcg(folio);
471 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
472 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
473 
474 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
475 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
476 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
477 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
478 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
479 		}
480 #ifdef CONFIG_SWAP
481 		if (folio_test_swapcache(folio)) {
482 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
483 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
484 		}
485 #endif
486 		if (dirty && mapping_can_writeback(mapping)) {
487 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
488 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
489 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
490 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
491 		}
492 	}
493 	local_irq_enable();
494 
495 	return MIGRATEPAGE_SUCCESS;
496 }
497 EXPORT_SYMBOL(folio_migrate_mapping);
498 
499 /*
500  * The expected number of remaining references is the same as that
501  * of folio_migrate_mapping().
502  */
503 int migrate_huge_page_move_mapping(struct address_space *mapping,
504 				   struct page *newpage, struct page *page)
505 {
506 	XA_STATE(xas, &mapping->i_pages, page_index(page));
507 	int expected_count;
508 
509 	xas_lock_irq(&xas);
510 	expected_count = 2 + page_has_private(page);
511 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
512 		xas_unlock_irq(&xas);
513 		return -EAGAIN;
514 	}
515 
516 	if (!page_ref_freeze(page, expected_count)) {
517 		xas_unlock_irq(&xas);
518 		return -EAGAIN;
519 	}
520 
521 	newpage->index = page->index;
522 	newpage->mapping = page->mapping;
523 
524 	get_page(newpage);
525 
526 	xas_store(&xas, newpage);
527 
528 	page_ref_unfreeze(page, expected_count - 1);
529 
530 	xas_unlock_irq(&xas);
531 
532 	return MIGRATEPAGE_SUCCESS;
533 }
534 
535 /*
536  * Copy the flags and some other ancillary information
537  */
538 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
539 {
540 	int cpupid;
541 
542 	if (folio_test_error(folio))
543 		folio_set_error(newfolio);
544 	if (folio_test_referenced(folio))
545 		folio_set_referenced(newfolio);
546 	if (folio_test_uptodate(folio))
547 		folio_mark_uptodate(newfolio);
548 	if (folio_test_clear_active(folio)) {
549 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
550 		folio_set_active(newfolio);
551 	} else if (folio_test_clear_unevictable(folio))
552 		folio_set_unevictable(newfolio);
553 	if (folio_test_workingset(folio))
554 		folio_set_workingset(newfolio);
555 	if (folio_test_checked(folio))
556 		folio_set_checked(newfolio);
557 	if (folio_test_mappedtodisk(folio))
558 		folio_set_mappedtodisk(newfolio);
559 
560 	/* Move dirty on pages not done by folio_migrate_mapping() */
561 	if (folio_test_dirty(folio))
562 		folio_set_dirty(newfolio);
563 
564 	if (folio_test_young(folio))
565 		folio_set_young(newfolio);
566 	if (folio_test_idle(folio))
567 		folio_set_idle(newfolio);
568 
569 	/*
570 	 * Copy NUMA information to the new page, to prevent over-eager
571 	 * future migrations of this same page.
572 	 */
573 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
574 	page_cpupid_xchg_last(&newfolio->page, cpupid);
575 
576 	folio_migrate_ksm(newfolio, folio);
577 	/*
578 	 * Please do not reorder this without considering how mm/ksm.c's
579 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
580 	 */
581 	if (folio_test_swapcache(folio))
582 		folio_clear_swapcache(folio);
583 	folio_clear_private(folio);
584 
585 	/* page->private contains hugetlb specific flags */
586 	if (!folio_test_hugetlb(folio))
587 		folio->private = NULL;
588 
589 	/*
590 	 * If any waiters have accumulated on the new page then
591 	 * wake them up.
592 	 */
593 	if (folio_test_writeback(newfolio))
594 		folio_end_writeback(newfolio);
595 
596 	/*
597 	 * PG_readahead shares the same bit with PG_reclaim.  The above
598 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
599 	 * bit after that.
600 	 */
601 	if (folio_test_readahead(folio))
602 		folio_set_readahead(newfolio);
603 
604 	folio_copy_owner(newfolio, folio);
605 
606 	if (!folio_test_hugetlb(folio))
607 		mem_cgroup_migrate(folio, newfolio);
608 }
609 EXPORT_SYMBOL(folio_migrate_flags);
610 
611 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
612 {
613 	folio_copy(newfolio, folio);
614 	folio_migrate_flags(newfolio, folio);
615 }
616 EXPORT_SYMBOL(folio_migrate_copy);
617 
618 /************************************************************
619  *                    Migration functions
620  ***********************************************************/
621 
622 /*
623  * Common logic to directly migrate a single LRU page suitable for
624  * pages that do not use PagePrivate/PagePrivate2.
625  *
626  * Pages are locked upon entry and exit.
627  */
628 int migrate_page(struct address_space *mapping,
629 		struct page *newpage, struct page *page,
630 		enum migrate_mode mode)
631 {
632 	struct folio *newfolio = page_folio(newpage);
633 	struct folio *folio = page_folio(page);
634 	int rc;
635 
636 	BUG_ON(folio_test_writeback(folio));	/* Writeback must be complete */
637 
638 	rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
639 
640 	if (rc != MIGRATEPAGE_SUCCESS)
641 		return rc;
642 
643 	if (mode != MIGRATE_SYNC_NO_COPY)
644 		folio_migrate_copy(newfolio, folio);
645 	else
646 		folio_migrate_flags(newfolio, folio);
647 	return MIGRATEPAGE_SUCCESS;
648 }
649 EXPORT_SYMBOL(migrate_page);
650 
651 #ifdef CONFIG_BLOCK
652 /* Returns true if all buffers are successfully locked */
653 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
654 							enum migrate_mode mode)
655 {
656 	struct buffer_head *bh = head;
657 
658 	/* Simple case, sync compaction */
659 	if (mode != MIGRATE_ASYNC) {
660 		do {
661 			lock_buffer(bh);
662 			bh = bh->b_this_page;
663 
664 		} while (bh != head);
665 
666 		return true;
667 	}
668 
669 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
670 	do {
671 		if (!trylock_buffer(bh)) {
672 			/*
673 			 * We failed to lock the buffer and cannot stall in
674 			 * async migration. Release the taken locks
675 			 */
676 			struct buffer_head *failed_bh = bh;
677 			bh = head;
678 			while (bh != failed_bh) {
679 				unlock_buffer(bh);
680 				bh = bh->b_this_page;
681 			}
682 			return false;
683 		}
684 
685 		bh = bh->b_this_page;
686 	} while (bh != head);
687 	return true;
688 }
689 
690 static int __buffer_migrate_page(struct address_space *mapping,
691 		struct page *newpage, struct page *page, enum migrate_mode mode,
692 		bool check_refs)
693 {
694 	struct buffer_head *bh, *head;
695 	int rc;
696 	int expected_count;
697 
698 	if (!page_has_buffers(page))
699 		return migrate_page(mapping, newpage, page, mode);
700 
701 	/* Check whether page does not have extra refs before we do more work */
702 	expected_count = expected_page_refs(mapping, page);
703 	if (page_count(page) != expected_count)
704 		return -EAGAIN;
705 
706 	head = page_buffers(page);
707 	if (!buffer_migrate_lock_buffers(head, mode))
708 		return -EAGAIN;
709 
710 	if (check_refs) {
711 		bool busy;
712 		bool invalidated = false;
713 
714 recheck_buffers:
715 		busy = false;
716 		spin_lock(&mapping->private_lock);
717 		bh = head;
718 		do {
719 			if (atomic_read(&bh->b_count)) {
720 				busy = true;
721 				break;
722 			}
723 			bh = bh->b_this_page;
724 		} while (bh != head);
725 		if (busy) {
726 			if (invalidated) {
727 				rc = -EAGAIN;
728 				goto unlock_buffers;
729 			}
730 			spin_unlock(&mapping->private_lock);
731 			invalidate_bh_lrus();
732 			invalidated = true;
733 			goto recheck_buffers;
734 		}
735 	}
736 
737 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
738 	if (rc != MIGRATEPAGE_SUCCESS)
739 		goto unlock_buffers;
740 
741 	attach_page_private(newpage, detach_page_private(page));
742 
743 	bh = head;
744 	do {
745 		set_bh_page(bh, newpage, bh_offset(bh));
746 		bh = bh->b_this_page;
747 
748 	} while (bh != head);
749 
750 	if (mode != MIGRATE_SYNC_NO_COPY)
751 		migrate_page_copy(newpage, page);
752 	else
753 		migrate_page_states(newpage, page);
754 
755 	rc = MIGRATEPAGE_SUCCESS;
756 unlock_buffers:
757 	if (check_refs)
758 		spin_unlock(&mapping->private_lock);
759 	bh = head;
760 	do {
761 		unlock_buffer(bh);
762 		bh = bh->b_this_page;
763 
764 	} while (bh != head);
765 
766 	return rc;
767 }
768 
769 /*
770  * Migration function for pages with buffers. This function can only be used
771  * if the underlying filesystem guarantees that no other references to "page"
772  * exist. For example attached buffer heads are accessed only under page lock.
773  */
774 int buffer_migrate_page(struct address_space *mapping,
775 		struct page *newpage, struct page *page, enum migrate_mode mode)
776 {
777 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
778 }
779 EXPORT_SYMBOL(buffer_migrate_page);
780 
781 /*
782  * Same as above except that this variant is more careful and checks that there
783  * are also no buffer head references. This function is the right one for
784  * mappings where buffer heads are directly looked up and referenced (such as
785  * block device mappings).
786  */
787 int buffer_migrate_page_norefs(struct address_space *mapping,
788 		struct page *newpage, struct page *page, enum migrate_mode mode)
789 {
790 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
791 }
792 #endif
793 
794 /*
795  * Writeback a page to clean the dirty state
796  */
797 static int writeout(struct address_space *mapping, struct page *page)
798 {
799 	struct writeback_control wbc = {
800 		.sync_mode = WB_SYNC_NONE,
801 		.nr_to_write = 1,
802 		.range_start = 0,
803 		.range_end = LLONG_MAX,
804 		.for_reclaim = 1
805 	};
806 	int rc;
807 
808 	if (!mapping->a_ops->writepage)
809 		/* No write method for the address space */
810 		return -EINVAL;
811 
812 	if (!clear_page_dirty_for_io(page))
813 		/* Someone else already triggered a write */
814 		return -EAGAIN;
815 
816 	/*
817 	 * A dirty page may imply that the underlying filesystem has
818 	 * the page on some queue. So the page must be clean for
819 	 * migration. Writeout may mean we loose the lock and the
820 	 * page state is no longer what we checked for earlier.
821 	 * At this point we know that the migration attempt cannot
822 	 * be successful.
823 	 */
824 	remove_migration_ptes(page, page, false);
825 
826 	rc = mapping->a_ops->writepage(page, &wbc);
827 
828 	if (rc != AOP_WRITEPAGE_ACTIVATE)
829 		/* unlocked. Relock */
830 		lock_page(page);
831 
832 	return (rc < 0) ? -EIO : -EAGAIN;
833 }
834 
835 /*
836  * Default handling if a filesystem does not provide a migration function.
837  */
838 static int fallback_migrate_page(struct address_space *mapping,
839 	struct page *newpage, struct page *page, enum migrate_mode mode)
840 {
841 	if (PageDirty(page)) {
842 		/* Only writeback pages in full synchronous migration */
843 		switch (mode) {
844 		case MIGRATE_SYNC:
845 		case MIGRATE_SYNC_NO_COPY:
846 			break;
847 		default:
848 			return -EBUSY;
849 		}
850 		return writeout(mapping, page);
851 	}
852 
853 	/*
854 	 * Buffers may be managed in a filesystem specific way.
855 	 * We must have no buffers or drop them.
856 	 */
857 	if (page_has_private(page) &&
858 	    !try_to_release_page(page, GFP_KERNEL))
859 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
860 
861 	return migrate_page(mapping, newpage, page, mode);
862 }
863 
864 /*
865  * Move a page to a newly allocated page
866  * The page is locked and all ptes have been successfully removed.
867  *
868  * The new page will have replaced the old page if this function
869  * is successful.
870  *
871  * Return value:
872  *   < 0 - error code
873  *  MIGRATEPAGE_SUCCESS - success
874  */
875 static int move_to_new_page(struct page *newpage, struct page *page,
876 				enum migrate_mode mode)
877 {
878 	struct address_space *mapping;
879 	int rc = -EAGAIN;
880 	bool is_lru = !__PageMovable(page);
881 
882 	VM_BUG_ON_PAGE(!PageLocked(page), page);
883 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
884 
885 	mapping = page_mapping(page);
886 
887 	if (likely(is_lru)) {
888 		if (!mapping)
889 			rc = migrate_page(mapping, newpage, page, mode);
890 		else if (mapping->a_ops->migratepage)
891 			/*
892 			 * Most pages have a mapping and most filesystems
893 			 * provide a migratepage callback. Anonymous pages
894 			 * are part of swap space which also has its own
895 			 * migratepage callback. This is the most common path
896 			 * for page migration.
897 			 */
898 			rc = mapping->a_ops->migratepage(mapping, newpage,
899 							page, mode);
900 		else
901 			rc = fallback_migrate_page(mapping, newpage,
902 							page, mode);
903 	} else {
904 		/*
905 		 * In case of non-lru page, it could be released after
906 		 * isolation step. In that case, we shouldn't try migration.
907 		 */
908 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
909 		if (!PageMovable(page)) {
910 			rc = MIGRATEPAGE_SUCCESS;
911 			__ClearPageIsolated(page);
912 			goto out;
913 		}
914 
915 		rc = mapping->a_ops->migratepage(mapping, newpage,
916 						page, mode);
917 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
918 			!PageIsolated(page));
919 	}
920 
921 	/*
922 	 * When successful, old pagecache page->mapping must be cleared before
923 	 * page is freed; but stats require that PageAnon be left as PageAnon.
924 	 */
925 	if (rc == MIGRATEPAGE_SUCCESS) {
926 		if (__PageMovable(page)) {
927 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
928 
929 			/*
930 			 * We clear PG_movable under page_lock so any compactor
931 			 * cannot try to migrate this page.
932 			 */
933 			__ClearPageIsolated(page);
934 		}
935 
936 		/*
937 		 * Anonymous and movable page->mapping will be cleared by
938 		 * free_pages_prepare so don't reset it here for keeping
939 		 * the type to work PageAnon, for example.
940 		 */
941 		if (!PageMappingFlags(page))
942 			page->mapping = NULL;
943 
944 		if (likely(!is_zone_device_page(newpage)))
945 			flush_dcache_page(newpage);
946 
947 	}
948 out:
949 	return rc;
950 }
951 
952 static int __unmap_and_move(struct page *page, struct page *newpage,
953 				int force, enum migrate_mode mode)
954 {
955 	int rc = -EAGAIN;
956 	bool page_was_mapped = false;
957 	struct anon_vma *anon_vma = NULL;
958 	bool is_lru = !__PageMovable(page);
959 
960 	if (!trylock_page(page)) {
961 		if (!force || mode == MIGRATE_ASYNC)
962 			goto out;
963 
964 		/*
965 		 * It's not safe for direct compaction to call lock_page.
966 		 * For example, during page readahead pages are added locked
967 		 * to the LRU. Later, when the IO completes the pages are
968 		 * marked uptodate and unlocked. However, the queueing
969 		 * could be merging multiple pages for one bio (e.g.
970 		 * mpage_readahead). If an allocation happens for the
971 		 * second or third page, the process can end up locking
972 		 * the same page twice and deadlocking. Rather than
973 		 * trying to be clever about what pages can be locked,
974 		 * avoid the use of lock_page for direct compaction
975 		 * altogether.
976 		 */
977 		if (current->flags & PF_MEMALLOC)
978 			goto out;
979 
980 		lock_page(page);
981 	}
982 
983 	if (PageWriteback(page)) {
984 		/*
985 		 * Only in the case of a full synchronous migration is it
986 		 * necessary to wait for PageWriteback. In the async case,
987 		 * the retry loop is too short and in the sync-light case,
988 		 * the overhead of stalling is too much
989 		 */
990 		switch (mode) {
991 		case MIGRATE_SYNC:
992 		case MIGRATE_SYNC_NO_COPY:
993 			break;
994 		default:
995 			rc = -EBUSY;
996 			goto out_unlock;
997 		}
998 		if (!force)
999 			goto out_unlock;
1000 		wait_on_page_writeback(page);
1001 	}
1002 
1003 	/*
1004 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1005 	 * we cannot notice that anon_vma is freed while we migrates a page.
1006 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1007 	 * of migration. File cache pages are no problem because of page_lock()
1008 	 * File Caches may use write_page() or lock_page() in migration, then,
1009 	 * just care Anon page here.
1010 	 *
1011 	 * Only page_get_anon_vma() understands the subtleties of
1012 	 * getting a hold on an anon_vma from outside one of its mms.
1013 	 * But if we cannot get anon_vma, then we won't need it anyway,
1014 	 * because that implies that the anon page is no longer mapped
1015 	 * (and cannot be remapped so long as we hold the page lock).
1016 	 */
1017 	if (PageAnon(page) && !PageKsm(page))
1018 		anon_vma = page_get_anon_vma(page);
1019 
1020 	/*
1021 	 * Block others from accessing the new page when we get around to
1022 	 * establishing additional references. We are usually the only one
1023 	 * holding a reference to newpage at this point. We used to have a BUG
1024 	 * here if trylock_page(newpage) fails, but would like to allow for
1025 	 * cases where there might be a race with the previous use of newpage.
1026 	 * This is much like races on refcount of oldpage: just don't BUG().
1027 	 */
1028 	if (unlikely(!trylock_page(newpage)))
1029 		goto out_unlock;
1030 
1031 	if (unlikely(!is_lru)) {
1032 		rc = move_to_new_page(newpage, page, mode);
1033 		goto out_unlock_both;
1034 	}
1035 
1036 	/*
1037 	 * Corner case handling:
1038 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1039 	 * and treated as swapcache but it has no rmap yet.
1040 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1041 	 * trigger a BUG.  So handle it here.
1042 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1043 	 * fs-private metadata. The page can be picked up due to memory
1044 	 * offlining.  Everywhere else except page reclaim, the page is
1045 	 * invisible to the vm, so the page can not be migrated.  So try to
1046 	 * free the metadata, so the page can be freed.
1047 	 */
1048 	if (!page->mapping) {
1049 		VM_BUG_ON_PAGE(PageAnon(page), page);
1050 		if (page_has_private(page)) {
1051 			try_to_free_buffers(page);
1052 			goto out_unlock_both;
1053 		}
1054 	} else if (page_mapped(page)) {
1055 		/* Establish migration ptes */
1056 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1057 				page);
1058 		try_to_migrate(page, 0);
1059 		page_was_mapped = true;
1060 	}
1061 
1062 	if (!page_mapped(page))
1063 		rc = move_to_new_page(newpage, page, mode);
1064 
1065 	if (page_was_mapped)
1066 		remove_migration_ptes(page,
1067 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1068 
1069 out_unlock_both:
1070 	unlock_page(newpage);
1071 out_unlock:
1072 	/* Drop an anon_vma reference if we took one */
1073 	if (anon_vma)
1074 		put_anon_vma(anon_vma);
1075 	unlock_page(page);
1076 out:
1077 	/*
1078 	 * If migration is successful, decrease refcount of the newpage
1079 	 * which will not free the page because new page owner increased
1080 	 * refcounter. As well, if it is LRU page, add the page to LRU
1081 	 * list in here. Use the old state of the isolated source page to
1082 	 * determine if we migrated a LRU page. newpage was already unlocked
1083 	 * and possibly modified by its owner - don't rely on the page
1084 	 * state.
1085 	 */
1086 	if (rc == MIGRATEPAGE_SUCCESS) {
1087 		if (unlikely(!is_lru))
1088 			put_page(newpage);
1089 		else
1090 			putback_lru_page(newpage);
1091 	}
1092 
1093 	return rc;
1094 }
1095 
1096 
1097 /*
1098  * node_demotion[] example:
1099  *
1100  * Consider a system with two sockets.  Each socket has
1101  * three classes of memory attached: fast, medium and slow.
1102  * Each memory class is placed in its own NUMA node.  The
1103  * CPUs are placed in the node with the "fast" memory.  The
1104  * 6 NUMA nodes (0-5) might be split among the sockets like
1105  * this:
1106  *
1107  *	Socket A: 0, 1, 2
1108  *	Socket B: 3, 4, 5
1109  *
1110  * When Node 0 fills up, its memory should be migrated to
1111  * Node 1.  When Node 1 fills up, it should be migrated to
1112  * Node 2.  The migration path start on the nodes with the
1113  * processors (since allocations default to this node) and
1114  * fast memory, progress through medium and end with the
1115  * slow memory:
1116  *
1117  *	0 -> 1 -> 2 -> stop
1118  *	3 -> 4 -> 5 -> stop
1119  *
1120  * This is represented in the node_demotion[] like this:
1121  *
1122  *	{  1, // Node 0 migrates to 1
1123  *	   2, // Node 1 migrates to 2
1124  *	  -1, // Node 2 does not migrate
1125  *	   4, // Node 3 migrates to 4
1126  *	   5, // Node 4 migrates to 5
1127  *	  -1} // Node 5 does not migrate
1128  */
1129 
1130 /*
1131  * Writes to this array occur without locking.  Cycles are
1132  * not allowed: Node X demotes to Y which demotes to X...
1133  *
1134  * If multiple reads are performed, a single rcu_read_lock()
1135  * must be held over all reads to ensure that no cycles are
1136  * observed.
1137  */
1138 static int node_demotion[MAX_NUMNODES] __read_mostly =
1139 	{[0 ...  MAX_NUMNODES - 1] = NUMA_NO_NODE};
1140 
1141 /**
1142  * next_demotion_node() - Get the next node in the demotion path
1143  * @node: The starting node to lookup the next node
1144  *
1145  * Return: node id for next memory node in the demotion path hierarchy
1146  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
1147  * @node online or guarantee that it *continues* to be the next demotion
1148  * target.
1149  */
1150 int next_demotion_node(int node)
1151 {
1152 	int target;
1153 
1154 	/*
1155 	 * node_demotion[] is updated without excluding this
1156 	 * function from running.  RCU doesn't provide any
1157 	 * compiler barriers, so the READ_ONCE() is required
1158 	 * to avoid compiler reordering or read merging.
1159 	 *
1160 	 * Make sure to use RCU over entire code blocks if
1161 	 * node_demotion[] reads need to be consistent.
1162 	 */
1163 	rcu_read_lock();
1164 	target = READ_ONCE(node_demotion[node]);
1165 	rcu_read_unlock();
1166 
1167 	return target;
1168 }
1169 
1170 /*
1171  * Obtain the lock on page, remove all ptes and migrate the page
1172  * to the newly allocated page in newpage.
1173  */
1174 static int unmap_and_move(new_page_t get_new_page,
1175 				   free_page_t put_new_page,
1176 				   unsigned long private, struct page *page,
1177 				   int force, enum migrate_mode mode,
1178 				   enum migrate_reason reason,
1179 				   struct list_head *ret)
1180 {
1181 	int rc = MIGRATEPAGE_SUCCESS;
1182 	struct page *newpage = NULL;
1183 
1184 	if (!thp_migration_supported() && PageTransHuge(page))
1185 		return -ENOSYS;
1186 
1187 	if (page_count(page) == 1) {
1188 		/* page was freed from under us. So we are done. */
1189 		ClearPageActive(page);
1190 		ClearPageUnevictable(page);
1191 		if (unlikely(__PageMovable(page))) {
1192 			lock_page(page);
1193 			if (!PageMovable(page))
1194 				__ClearPageIsolated(page);
1195 			unlock_page(page);
1196 		}
1197 		goto out;
1198 	}
1199 
1200 	newpage = get_new_page(page, private);
1201 	if (!newpage)
1202 		return -ENOMEM;
1203 
1204 	rc = __unmap_and_move(page, newpage, force, mode);
1205 	if (rc == MIGRATEPAGE_SUCCESS)
1206 		set_page_owner_migrate_reason(newpage, reason);
1207 
1208 out:
1209 	if (rc != -EAGAIN) {
1210 		/*
1211 		 * A page that has been migrated has all references
1212 		 * removed and will be freed. A page that has not been
1213 		 * migrated will have kept its references and be restored.
1214 		 */
1215 		list_del(&page->lru);
1216 	}
1217 
1218 	/*
1219 	 * If migration is successful, releases reference grabbed during
1220 	 * isolation. Otherwise, restore the page to right list unless
1221 	 * we want to retry.
1222 	 */
1223 	if (rc == MIGRATEPAGE_SUCCESS) {
1224 		/*
1225 		 * Compaction can migrate also non-LRU pages which are
1226 		 * not accounted to NR_ISOLATED_*. They can be recognized
1227 		 * as __PageMovable
1228 		 */
1229 		if (likely(!__PageMovable(page)))
1230 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1231 					page_is_file_lru(page), -thp_nr_pages(page));
1232 
1233 		if (reason != MR_MEMORY_FAILURE)
1234 			/*
1235 			 * We release the page in page_handle_poison.
1236 			 */
1237 			put_page(page);
1238 	} else {
1239 		if (rc != -EAGAIN)
1240 			list_add_tail(&page->lru, ret);
1241 
1242 		if (put_new_page)
1243 			put_new_page(newpage, private);
1244 		else
1245 			put_page(newpage);
1246 	}
1247 
1248 	return rc;
1249 }
1250 
1251 /*
1252  * Counterpart of unmap_and_move_page() for hugepage migration.
1253  *
1254  * This function doesn't wait the completion of hugepage I/O
1255  * because there is no race between I/O and migration for hugepage.
1256  * Note that currently hugepage I/O occurs only in direct I/O
1257  * where no lock is held and PG_writeback is irrelevant,
1258  * and writeback status of all subpages are counted in the reference
1259  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1260  * under direct I/O, the reference of the head page is 512 and a bit more.)
1261  * This means that when we try to migrate hugepage whose subpages are
1262  * doing direct I/O, some references remain after try_to_unmap() and
1263  * hugepage migration fails without data corruption.
1264  *
1265  * There is also no race when direct I/O is issued on the page under migration,
1266  * because then pte is replaced with migration swap entry and direct I/O code
1267  * will wait in the page fault for migration to complete.
1268  */
1269 static int unmap_and_move_huge_page(new_page_t get_new_page,
1270 				free_page_t put_new_page, unsigned long private,
1271 				struct page *hpage, int force,
1272 				enum migrate_mode mode, int reason,
1273 				struct list_head *ret)
1274 {
1275 	int rc = -EAGAIN;
1276 	int page_was_mapped = 0;
1277 	struct page *new_hpage;
1278 	struct anon_vma *anon_vma = NULL;
1279 	struct address_space *mapping = NULL;
1280 
1281 	/*
1282 	 * Migratability of hugepages depends on architectures and their size.
1283 	 * This check is necessary because some callers of hugepage migration
1284 	 * like soft offline and memory hotremove don't walk through page
1285 	 * tables or check whether the hugepage is pmd-based or not before
1286 	 * kicking migration.
1287 	 */
1288 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1289 		list_move_tail(&hpage->lru, ret);
1290 		return -ENOSYS;
1291 	}
1292 
1293 	if (page_count(hpage) == 1) {
1294 		/* page was freed from under us. So we are done. */
1295 		putback_active_hugepage(hpage);
1296 		return MIGRATEPAGE_SUCCESS;
1297 	}
1298 
1299 	new_hpage = get_new_page(hpage, private);
1300 	if (!new_hpage)
1301 		return -ENOMEM;
1302 
1303 	if (!trylock_page(hpage)) {
1304 		if (!force)
1305 			goto out;
1306 		switch (mode) {
1307 		case MIGRATE_SYNC:
1308 		case MIGRATE_SYNC_NO_COPY:
1309 			break;
1310 		default:
1311 			goto out;
1312 		}
1313 		lock_page(hpage);
1314 	}
1315 
1316 	/*
1317 	 * Check for pages which are in the process of being freed.  Without
1318 	 * page_mapping() set, hugetlbfs specific move page routine will not
1319 	 * be called and we could leak usage counts for subpools.
1320 	 */
1321 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1322 		rc = -EBUSY;
1323 		goto out_unlock;
1324 	}
1325 
1326 	if (PageAnon(hpage))
1327 		anon_vma = page_get_anon_vma(hpage);
1328 
1329 	if (unlikely(!trylock_page(new_hpage)))
1330 		goto put_anon;
1331 
1332 	if (page_mapped(hpage)) {
1333 		bool mapping_locked = false;
1334 		enum ttu_flags ttu = 0;
1335 
1336 		if (!PageAnon(hpage)) {
1337 			/*
1338 			 * In shared mappings, try_to_unmap could potentially
1339 			 * call huge_pmd_unshare.  Because of this, take
1340 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1341 			 * to let lower levels know we have taken the lock.
1342 			 */
1343 			mapping = hugetlb_page_mapping_lock_write(hpage);
1344 			if (unlikely(!mapping))
1345 				goto unlock_put_anon;
1346 
1347 			mapping_locked = true;
1348 			ttu |= TTU_RMAP_LOCKED;
1349 		}
1350 
1351 		try_to_migrate(hpage, ttu);
1352 		page_was_mapped = 1;
1353 
1354 		if (mapping_locked)
1355 			i_mmap_unlock_write(mapping);
1356 	}
1357 
1358 	if (!page_mapped(hpage))
1359 		rc = move_to_new_page(new_hpage, hpage, mode);
1360 
1361 	if (page_was_mapped)
1362 		remove_migration_ptes(hpage,
1363 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1364 
1365 unlock_put_anon:
1366 	unlock_page(new_hpage);
1367 
1368 put_anon:
1369 	if (anon_vma)
1370 		put_anon_vma(anon_vma);
1371 
1372 	if (rc == MIGRATEPAGE_SUCCESS) {
1373 		move_hugetlb_state(hpage, new_hpage, reason);
1374 		put_new_page = NULL;
1375 	}
1376 
1377 out_unlock:
1378 	unlock_page(hpage);
1379 out:
1380 	if (rc == MIGRATEPAGE_SUCCESS)
1381 		putback_active_hugepage(hpage);
1382 	else if (rc != -EAGAIN)
1383 		list_move_tail(&hpage->lru, ret);
1384 
1385 	/*
1386 	 * If migration was not successful and there's a freeing callback, use
1387 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1388 	 * isolation.
1389 	 */
1390 	if (put_new_page)
1391 		put_new_page(new_hpage, private);
1392 	else
1393 		putback_active_hugepage(new_hpage);
1394 
1395 	return rc;
1396 }
1397 
1398 static inline int try_split_thp(struct page *page, struct page **page2,
1399 				struct list_head *from)
1400 {
1401 	int rc = 0;
1402 
1403 	lock_page(page);
1404 	rc = split_huge_page_to_list(page, from);
1405 	unlock_page(page);
1406 	if (!rc)
1407 		list_safe_reset_next(page, *page2, lru);
1408 
1409 	return rc;
1410 }
1411 
1412 /*
1413  * migrate_pages - migrate the pages specified in a list, to the free pages
1414  *		   supplied as the target for the page migration
1415  *
1416  * @from:		The list of pages to be migrated.
1417  * @get_new_page:	The function used to allocate free pages to be used
1418  *			as the target of the page migration.
1419  * @put_new_page:	The function used to free target pages if migration
1420  *			fails, or NULL if no special handling is necessary.
1421  * @private:		Private data to be passed on to get_new_page()
1422  * @mode:		The migration mode that specifies the constraints for
1423  *			page migration, if any.
1424  * @reason:		The reason for page migration.
1425  * @ret_succeeded:	Set to the number of pages migrated successfully if
1426  *			the caller passes a non-NULL pointer.
1427  *
1428  * The function returns after 10 attempts or if no pages are movable any more
1429  * because the list has become empty or no retryable pages exist any more.
1430  * It is caller's responsibility to call putback_movable_pages() to return pages
1431  * to the LRU or free list only if ret != 0.
1432  *
1433  * Returns the number of pages that were not migrated, or an error code.
1434  */
1435 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1436 		free_page_t put_new_page, unsigned long private,
1437 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1438 {
1439 	int retry = 1;
1440 	int thp_retry = 1;
1441 	int nr_failed = 0;
1442 	int nr_succeeded = 0;
1443 	int nr_thp_succeeded = 0;
1444 	int nr_thp_failed = 0;
1445 	int nr_thp_split = 0;
1446 	int pass = 0;
1447 	bool is_thp = false;
1448 	struct page *page;
1449 	struct page *page2;
1450 	int swapwrite = current->flags & PF_SWAPWRITE;
1451 	int rc, nr_subpages;
1452 	LIST_HEAD(ret_pages);
1453 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1454 
1455 	trace_mm_migrate_pages_start(mode, reason);
1456 
1457 	if (!swapwrite)
1458 		current->flags |= PF_SWAPWRITE;
1459 
1460 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1461 		retry = 0;
1462 		thp_retry = 0;
1463 
1464 		list_for_each_entry_safe(page, page2, from, lru) {
1465 retry:
1466 			/*
1467 			 * THP statistics is based on the source huge page.
1468 			 * Capture required information that might get lost
1469 			 * during migration.
1470 			 */
1471 			is_thp = PageTransHuge(page) && !PageHuge(page);
1472 			nr_subpages = thp_nr_pages(page);
1473 			cond_resched();
1474 
1475 			if (PageHuge(page))
1476 				rc = unmap_and_move_huge_page(get_new_page,
1477 						put_new_page, private, page,
1478 						pass > 2, mode, reason,
1479 						&ret_pages);
1480 			else
1481 				rc = unmap_and_move(get_new_page, put_new_page,
1482 						private, page, pass > 2, mode,
1483 						reason, &ret_pages);
1484 			/*
1485 			 * The rules are:
1486 			 *	Success: non hugetlb page will be freed, hugetlb
1487 			 *		 page will be put back
1488 			 *	-EAGAIN: stay on the from list
1489 			 *	-ENOMEM: stay on the from list
1490 			 *	Other errno: put on ret_pages list then splice to
1491 			 *		     from list
1492 			 */
1493 			switch(rc) {
1494 			/*
1495 			 * THP migration might be unsupported or the
1496 			 * allocation could've failed so we should
1497 			 * retry on the same page with the THP split
1498 			 * to base pages.
1499 			 *
1500 			 * Head page is retried immediately and tail
1501 			 * pages are added to the tail of the list so
1502 			 * we encounter them after the rest of the list
1503 			 * is processed.
1504 			 */
1505 			case -ENOSYS:
1506 				/* THP migration is unsupported */
1507 				if (is_thp) {
1508 					if (!try_split_thp(page, &page2, from)) {
1509 						nr_thp_split++;
1510 						goto retry;
1511 					}
1512 
1513 					nr_thp_failed++;
1514 					nr_failed += nr_subpages;
1515 					break;
1516 				}
1517 
1518 				/* Hugetlb migration is unsupported */
1519 				nr_failed++;
1520 				break;
1521 			case -ENOMEM:
1522 				/*
1523 				 * When memory is low, don't bother to try to migrate
1524 				 * other pages, just exit.
1525 				 * THP NUMA faulting doesn't split THP to retry.
1526 				 */
1527 				if (is_thp && !nosplit) {
1528 					if (!try_split_thp(page, &page2, from)) {
1529 						nr_thp_split++;
1530 						goto retry;
1531 					}
1532 
1533 					nr_thp_failed++;
1534 					nr_failed += nr_subpages;
1535 					goto out;
1536 				}
1537 				nr_failed++;
1538 				goto out;
1539 			case -EAGAIN:
1540 				if (is_thp) {
1541 					thp_retry++;
1542 					break;
1543 				}
1544 				retry++;
1545 				break;
1546 			case MIGRATEPAGE_SUCCESS:
1547 				if (is_thp) {
1548 					nr_thp_succeeded++;
1549 					nr_succeeded += nr_subpages;
1550 					break;
1551 				}
1552 				nr_succeeded++;
1553 				break;
1554 			default:
1555 				/*
1556 				 * Permanent failure (-EBUSY, etc.):
1557 				 * unlike -EAGAIN case, the failed page is
1558 				 * removed from migration page list and not
1559 				 * retried in the next outer loop.
1560 				 */
1561 				if (is_thp) {
1562 					nr_thp_failed++;
1563 					nr_failed += nr_subpages;
1564 					break;
1565 				}
1566 				nr_failed++;
1567 				break;
1568 			}
1569 		}
1570 	}
1571 	nr_failed += retry + thp_retry;
1572 	nr_thp_failed += thp_retry;
1573 	rc = nr_failed;
1574 out:
1575 	/*
1576 	 * Put the permanent failure page back to migration list, they
1577 	 * will be put back to the right list by the caller.
1578 	 */
1579 	list_splice(&ret_pages, from);
1580 
1581 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1582 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1583 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1584 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1585 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1586 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1587 			       nr_thp_failed, nr_thp_split, mode, reason);
1588 
1589 	if (!swapwrite)
1590 		current->flags &= ~PF_SWAPWRITE;
1591 
1592 	if (ret_succeeded)
1593 		*ret_succeeded = nr_succeeded;
1594 
1595 	return rc;
1596 }
1597 
1598 struct page *alloc_migration_target(struct page *page, unsigned long private)
1599 {
1600 	struct migration_target_control *mtc;
1601 	gfp_t gfp_mask;
1602 	unsigned int order = 0;
1603 	struct page *new_page = NULL;
1604 	int nid;
1605 	int zidx;
1606 
1607 	mtc = (struct migration_target_control *)private;
1608 	gfp_mask = mtc->gfp_mask;
1609 	nid = mtc->nid;
1610 	if (nid == NUMA_NO_NODE)
1611 		nid = page_to_nid(page);
1612 
1613 	if (PageHuge(page)) {
1614 		struct hstate *h = page_hstate(compound_head(page));
1615 
1616 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1617 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1618 	}
1619 
1620 	if (PageTransHuge(page)) {
1621 		/*
1622 		 * clear __GFP_RECLAIM to make the migration callback
1623 		 * consistent with regular THP allocations.
1624 		 */
1625 		gfp_mask &= ~__GFP_RECLAIM;
1626 		gfp_mask |= GFP_TRANSHUGE;
1627 		order = HPAGE_PMD_ORDER;
1628 	}
1629 	zidx = zone_idx(page_zone(page));
1630 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1631 		gfp_mask |= __GFP_HIGHMEM;
1632 
1633 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1634 
1635 	if (new_page && PageTransHuge(new_page))
1636 		prep_transhuge_page(new_page);
1637 
1638 	return new_page;
1639 }
1640 
1641 #ifdef CONFIG_NUMA
1642 
1643 static int store_status(int __user *status, int start, int value, int nr)
1644 {
1645 	while (nr-- > 0) {
1646 		if (put_user(value, status + start))
1647 			return -EFAULT;
1648 		start++;
1649 	}
1650 
1651 	return 0;
1652 }
1653 
1654 static int do_move_pages_to_node(struct mm_struct *mm,
1655 		struct list_head *pagelist, int node)
1656 {
1657 	int err;
1658 	struct migration_target_control mtc = {
1659 		.nid = node,
1660 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1661 	};
1662 
1663 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1664 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1665 	if (err)
1666 		putback_movable_pages(pagelist);
1667 	return err;
1668 }
1669 
1670 /*
1671  * Resolves the given address to a struct page, isolates it from the LRU and
1672  * puts it to the given pagelist.
1673  * Returns:
1674  *     errno - if the page cannot be found/isolated
1675  *     0 - when it doesn't have to be migrated because it is already on the
1676  *         target node
1677  *     1 - when it has been queued
1678  */
1679 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1680 		int node, struct list_head *pagelist, bool migrate_all)
1681 {
1682 	struct vm_area_struct *vma;
1683 	struct page *page;
1684 	unsigned int follflags;
1685 	int err;
1686 
1687 	mmap_read_lock(mm);
1688 	err = -EFAULT;
1689 	vma = find_vma(mm, addr);
1690 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1691 		goto out;
1692 
1693 	/* FOLL_DUMP to ignore special (like zero) pages */
1694 	follflags = FOLL_GET | FOLL_DUMP;
1695 	page = follow_page(vma, addr, follflags);
1696 
1697 	err = PTR_ERR(page);
1698 	if (IS_ERR(page))
1699 		goto out;
1700 
1701 	err = -ENOENT;
1702 	if (!page)
1703 		goto out;
1704 
1705 	err = 0;
1706 	if (page_to_nid(page) == node)
1707 		goto out_putpage;
1708 
1709 	err = -EACCES;
1710 	if (page_mapcount(page) > 1 && !migrate_all)
1711 		goto out_putpage;
1712 
1713 	if (PageHuge(page)) {
1714 		if (PageHead(page)) {
1715 			isolate_huge_page(page, pagelist);
1716 			err = 1;
1717 		}
1718 	} else {
1719 		struct page *head;
1720 
1721 		head = compound_head(page);
1722 		err = isolate_lru_page(head);
1723 		if (err)
1724 			goto out_putpage;
1725 
1726 		err = 1;
1727 		list_add_tail(&head->lru, pagelist);
1728 		mod_node_page_state(page_pgdat(head),
1729 			NR_ISOLATED_ANON + page_is_file_lru(head),
1730 			thp_nr_pages(head));
1731 	}
1732 out_putpage:
1733 	/*
1734 	 * Either remove the duplicate refcount from
1735 	 * isolate_lru_page() or drop the page ref if it was
1736 	 * not isolated.
1737 	 */
1738 	put_page(page);
1739 out:
1740 	mmap_read_unlock(mm);
1741 	return err;
1742 }
1743 
1744 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1745 		struct list_head *pagelist, int __user *status,
1746 		int start, int i, unsigned long nr_pages)
1747 {
1748 	int err;
1749 
1750 	if (list_empty(pagelist))
1751 		return 0;
1752 
1753 	err = do_move_pages_to_node(mm, pagelist, node);
1754 	if (err) {
1755 		/*
1756 		 * Positive err means the number of failed
1757 		 * pages to migrate.  Since we are going to
1758 		 * abort and return the number of non-migrated
1759 		 * pages, so need to include the rest of the
1760 		 * nr_pages that have not been attempted as
1761 		 * well.
1762 		 */
1763 		if (err > 0)
1764 			err += nr_pages - i - 1;
1765 		return err;
1766 	}
1767 	return store_status(status, start, node, i - start);
1768 }
1769 
1770 /*
1771  * Migrate an array of page address onto an array of nodes and fill
1772  * the corresponding array of status.
1773  */
1774 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1775 			 unsigned long nr_pages,
1776 			 const void __user * __user *pages,
1777 			 const int __user *nodes,
1778 			 int __user *status, int flags)
1779 {
1780 	int current_node = NUMA_NO_NODE;
1781 	LIST_HEAD(pagelist);
1782 	int start, i;
1783 	int err = 0, err1;
1784 
1785 	lru_cache_disable();
1786 
1787 	for (i = start = 0; i < nr_pages; i++) {
1788 		const void __user *p;
1789 		unsigned long addr;
1790 		int node;
1791 
1792 		err = -EFAULT;
1793 		if (get_user(p, pages + i))
1794 			goto out_flush;
1795 		if (get_user(node, nodes + i))
1796 			goto out_flush;
1797 		addr = (unsigned long)untagged_addr(p);
1798 
1799 		err = -ENODEV;
1800 		if (node < 0 || node >= MAX_NUMNODES)
1801 			goto out_flush;
1802 		if (!node_state(node, N_MEMORY))
1803 			goto out_flush;
1804 
1805 		err = -EACCES;
1806 		if (!node_isset(node, task_nodes))
1807 			goto out_flush;
1808 
1809 		if (current_node == NUMA_NO_NODE) {
1810 			current_node = node;
1811 			start = i;
1812 		} else if (node != current_node) {
1813 			err = move_pages_and_store_status(mm, current_node,
1814 					&pagelist, status, start, i, nr_pages);
1815 			if (err)
1816 				goto out;
1817 			start = i;
1818 			current_node = node;
1819 		}
1820 
1821 		/*
1822 		 * Errors in the page lookup or isolation are not fatal and we simply
1823 		 * report them via status
1824 		 */
1825 		err = add_page_for_migration(mm, addr, current_node,
1826 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1827 
1828 		if (err > 0) {
1829 			/* The page is successfully queued for migration */
1830 			continue;
1831 		}
1832 
1833 		/*
1834 		 * If the page is already on the target node (!err), store the
1835 		 * node, otherwise, store the err.
1836 		 */
1837 		err = store_status(status, i, err ? : current_node, 1);
1838 		if (err)
1839 			goto out_flush;
1840 
1841 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1842 				status, start, i, nr_pages);
1843 		if (err)
1844 			goto out;
1845 		current_node = NUMA_NO_NODE;
1846 	}
1847 out_flush:
1848 	/* Make sure we do not overwrite the existing error */
1849 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1850 				status, start, i, nr_pages);
1851 	if (err >= 0)
1852 		err = err1;
1853 out:
1854 	lru_cache_enable();
1855 	return err;
1856 }
1857 
1858 /*
1859  * Determine the nodes of an array of pages and store it in an array of status.
1860  */
1861 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1862 				const void __user **pages, int *status)
1863 {
1864 	unsigned long i;
1865 
1866 	mmap_read_lock(mm);
1867 
1868 	for (i = 0; i < nr_pages; i++) {
1869 		unsigned long addr = (unsigned long)(*pages);
1870 		struct vm_area_struct *vma;
1871 		struct page *page;
1872 		int err = -EFAULT;
1873 
1874 		vma = vma_lookup(mm, addr);
1875 		if (!vma)
1876 			goto set_status;
1877 
1878 		/* FOLL_DUMP to ignore special (like zero) pages */
1879 		page = follow_page(vma, addr, FOLL_DUMP);
1880 
1881 		err = PTR_ERR(page);
1882 		if (IS_ERR(page))
1883 			goto set_status;
1884 
1885 		err = page ? page_to_nid(page) : -ENOENT;
1886 set_status:
1887 		*status = err;
1888 
1889 		pages++;
1890 		status++;
1891 	}
1892 
1893 	mmap_read_unlock(mm);
1894 }
1895 
1896 static int get_compat_pages_array(const void __user *chunk_pages[],
1897 				  const void __user * __user *pages,
1898 				  unsigned long chunk_nr)
1899 {
1900 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1901 	compat_uptr_t p;
1902 	int i;
1903 
1904 	for (i = 0; i < chunk_nr; i++) {
1905 		if (get_user(p, pages32 + i))
1906 			return -EFAULT;
1907 		chunk_pages[i] = compat_ptr(p);
1908 	}
1909 
1910 	return 0;
1911 }
1912 
1913 /*
1914  * Determine the nodes of a user array of pages and store it in
1915  * a user array of status.
1916  */
1917 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1918 			 const void __user * __user *pages,
1919 			 int __user *status)
1920 {
1921 #define DO_PAGES_STAT_CHUNK_NR 16
1922 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1923 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1924 
1925 	while (nr_pages) {
1926 		unsigned long chunk_nr;
1927 
1928 		chunk_nr = nr_pages;
1929 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1930 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1931 
1932 		if (in_compat_syscall()) {
1933 			if (get_compat_pages_array(chunk_pages, pages,
1934 						   chunk_nr))
1935 				break;
1936 		} else {
1937 			if (copy_from_user(chunk_pages, pages,
1938 				      chunk_nr * sizeof(*chunk_pages)))
1939 				break;
1940 		}
1941 
1942 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1943 
1944 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1945 			break;
1946 
1947 		pages += chunk_nr;
1948 		status += chunk_nr;
1949 		nr_pages -= chunk_nr;
1950 	}
1951 	return nr_pages ? -EFAULT : 0;
1952 }
1953 
1954 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1955 {
1956 	struct task_struct *task;
1957 	struct mm_struct *mm;
1958 
1959 	/*
1960 	 * There is no need to check if current process has the right to modify
1961 	 * the specified process when they are same.
1962 	 */
1963 	if (!pid) {
1964 		mmget(current->mm);
1965 		*mem_nodes = cpuset_mems_allowed(current);
1966 		return current->mm;
1967 	}
1968 
1969 	/* Find the mm_struct */
1970 	rcu_read_lock();
1971 	task = find_task_by_vpid(pid);
1972 	if (!task) {
1973 		rcu_read_unlock();
1974 		return ERR_PTR(-ESRCH);
1975 	}
1976 	get_task_struct(task);
1977 
1978 	/*
1979 	 * Check if this process has the right to modify the specified
1980 	 * process. Use the regular "ptrace_may_access()" checks.
1981 	 */
1982 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1983 		rcu_read_unlock();
1984 		mm = ERR_PTR(-EPERM);
1985 		goto out;
1986 	}
1987 	rcu_read_unlock();
1988 
1989 	mm = ERR_PTR(security_task_movememory(task));
1990 	if (IS_ERR(mm))
1991 		goto out;
1992 	*mem_nodes = cpuset_mems_allowed(task);
1993 	mm = get_task_mm(task);
1994 out:
1995 	put_task_struct(task);
1996 	if (!mm)
1997 		mm = ERR_PTR(-EINVAL);
1998 	return mm;
1999 }
2000 
2001 /*
2002  * Move a list of pages in the address space of the currently executing
2003  * process.
2004  */
2005 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2006 			     const void __user * __user *pages,
2007 			     const int __user *nodes,
2008 			     int __user *status, int flags)
2009 {
2010 	struct mm_struct *mm;
2011 	int err;
2012 	nodemask_t task_nodes;
2013 
2014 	/* Check flags */
2015 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2016 		return -EINVAL;
2017 
2018 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2019 		return -EPERM;
2020 
2021 	mm = find_mm_struct(pid, &task_nodes);
2022 	if (IS_ERR(mm))
2023 		return PTR_ERR(mm);
2024 
2025 	if (nodes)
2026 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2027 				    nodes, status, flags);
2028 	else
2029 		err = do_pages_stat(mm, nr_pages, pages, status);
2030 
2031 	mmput(mm);
2032 	return err;
2033 }
2034 
2035 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2036 		const void __user * __user *, pages,
2037 		const int __user *, nodes,
2038 		int __user *, status, int, flags)
2039 {
2040 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2041 }
2042 
2043 #ifdef CONFIG_NUMA_BALANCING
2044 /*
2045  * Returns true if this is a safe migration target node for misplaced NUMA
2046  * pages. Currently it only checks the watermarks which crude
2047  */
2048 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2049 				   unsigned long nr_migrate_pages)
2050 {
2051 	int z;
2052 
2053 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2054 		struct zone *zone = pgdat->node_zones + z;
2055 
2056 		if (!populated_zone(zone))
2057 			continue;
2058 
2059 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2060 		if (!zone_watermark_ok(zone, 0,
2061 				       high_wmark_pages(zone) +
2062 				       nr_migrate_pages,
2063 				       ZONE_MOVABLE, 0))
2064 			continue;
2065 		return true;
2066 	}
2067 	return false;
2068 }
2069 
2070 static struct page *alloc_misplaced_dst_page(struct page *page,
2071 					   unsigned long data)
2072 {
2073 	int nid = (int) data;
2074 	struct page *newpage;
2075 
2076 	newpage = __alloc_pages_node(nid,
2077 					 (GFP_HIGHUSER_MOVABLE |
2078 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2079 					  __GFP_NORETRY | __GFP_NOWARN) &
2080 					 ~__GFP_RECLAIM, 0);
2081 
2082 	return newpage;
2083 }
2084 
2085 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2086 						 unsigned long data)
2087 {
2088 	int nid = (int) data;
2089 	struct page *newpage;
2090 
2091 	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2092 				   HPAGE_PMD_ORDER);
2093 	if (!newpage)
2094 		goto out;
2095 
2096 	prep_transhuge_page(newpage);
2097 
2098 out:
2099 	return newpage;
2100 }
2101 
2102 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2103 {
2104 	int page_lru;
2105 	int nr_pages = thp_nr_pages(page);
2106 
2107 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2108 
2109 	/* Do not migrate THP mapped by multiple processes */
2110 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2111 		return 0;
2112 
2113 	/* Avoid migrating to a node that is nearly full */
2114 	if (!migrate_balanced_pgdat(pgdat, nr_pages))
2115 		return 0;
2116 
2117 	if (isolate_lru_page(page))
2118 		return 0;
2119 
2120 	page_lru = page_is_file_lru(page);
2121 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2122 			    nr_pages);
2123 
2124 	/*
2125 	 * Isolating the page has taken another reference, so the
2126 	 * caller's reference can be safely dropped without the page
2127 	 * disappearing underneath us during migration.
2128 	 */
2129 	put_page(page);
2130 	return 1;
2131 }
2132 
2133 /*
2134  * Attempt to migrate a misplaced page to the specified destination
2135  * node. Caller is expected to have an elevated reference count on
2136  * the page that will be dropped by this function before returning.
2137  */
2138 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2139 			   int node)
2140 {
2141 	pg_data_t *pgdat = NODE_DATA(node);
2142 	int isolated;
2143 	int nr_remaining;
2144 	LIST_HEAD(migratepages);
2145 	new_page_t *new;
2146 	bool compound;
2147 	int nr_pages = thp_nr_pages(page);
2148 
2149 	/*
2150 	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2151 	 * be either base page or THP.  And it must be head page if it is
2152 	 * THP.
2153 	 */
2154 	compound = PageTransHuge(page);
2155 
2156 	if (compound)
2157 		new = alloc_misplaced_dst_page_thp;
2158 	else
2159 		new = alloc_misplaced_dst_page;
2160 
2161 	/*
2162 	 * Don't migrate file pages that are mapped in multiple processes
2163 	 * with execute permissions as they are probably shared libraries.
2164 	 */
2165 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2166 	    (vma->vm_flags & VM_EXEC))
2167 		goto out;
2168 
2169 	/*
2170 	 * Also do not migrate dirty pages as not all filesystems can move
2171 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2172 	 */
2173 	if (page_is_file_lru(page) && PageDirty(page))
2174 		goto out;
2175 
2176 	isolated = numamigrate_isolate_page(pgdat, page);
2177 	if (!isolated)
2178 		goto out;
2179 
2180 	list_add(&page->lru, &migratepages);
2181 	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2182 				     MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL);
2183 	if (nr_remaining) {
2184 		if (!list_empty(&migratepages)) {
2185 			list_del(&page->lru);
2186 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2187 					page_is_file_lru(page), -nr_pages);
2188 			putback_lru_page(page);
2189 		}
2190 		isolated = 0;
2191 	} else
2192 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2193 	BUG_ON(!list_empty(&migratepages));
2194 	return isolated;
2195 
2196 out:
2197 	put_page(page);
2198 	return 0;
2199 }
2200 #endif /* CONFIG_NUMA_BALANCING */
2201 #endif /* CONFIG_NUMA */
2202 
2203 #ifdef CONFIG_DEVICE_PRIVATE
2204 static int migrate_vma_collect_skip(unsigned long start,
2205 				    unsigned long end,
2206 				    struct mm_walk *walk)
2207 {
2208 	struct migrate_vma *migrate = walk->private;
2209 	unsigned long addr;
2210 
2211 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2212 		migrate->dst[migrate->npages] = 0;
2213 		migrate->src[migrate->npages++] = 0;
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 static int migrate_vma_collect_hole(unsigned long start,
2220 				    unsigned long end,
2221 				    __always_unused int depth,
2222 				    struct mm_walk *walk)
2223 {
2224 	struct migrate_vma *migrate = walk->private;
2225 	unsigned long addr;
2226 
2227 	/* Only allow populating anonymous memory. */
2228 	if (!vma_is_anonymous(walk->vma))
2229 		return migrate_vma_collect_skip(start, end, walk);
2230 
2231 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2232 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2233 		migrate->dst[migrate->npages] = 0;
2234 		migrate->npages++;
2235 		migrate->cpages++;
2236 	}
2237 
2238 	return 0;
2239 }
2240 
2241 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2242 				   unsigned long start,
2243 				   unsigned long end,
2244 				   struct mm_walk *walk)
2245 {
2246 	struct migrate_vma *migrate = walk->private;
2247 	struct vm_area_struct *vma = walk->vma;
2248 	struct mm_struct *mm = vma->vm_mm;
2249 	unsigned long addr = start, unmapped = 0;
2250 	spinlock_t *ptl;
2251 	pte_t *ptep;
2252 
2253 again:
2254 	if (pmd_none(*pmdp))
2255 		return migrate_vma_collect_hole(start, end, -1, walk);
2256 
2257 	if (pmd_trans_huge(*pmdp)) {
2258 		struct page *page;
2259 
2260 		ptl = pmd_lock(mm, pmdp);
2261 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2262 			spin_unlock(ptl);
2263 			goto again;
2264 		}
2265 
2266 		page = pmd_page(*pmdp);
2267 		if (is_huge_zero_page(page)) {
2268 			spin_unlock(ptl);
2269 			split_huge_pmd(vma, pmdp, addr);
2270 			if (pmd_trans_unstable(pmdp))
2271 				return migrate_vma_collect_skip(start, end,
2272 								walk);
2273 		} else {
2274 			int ret;
2275 
2276 			get_page(page);
2277 			spin_unlock(ptl);
2278 			if (unlikely(!trylock_page(page)))
2279 				return migrate_vma_collect_skip(start, end,
2280 								walk);
2281 			ret = split_huge_page(page);
2282 			unlock_page(page);
2283 			put_page(page);
2284 			if (ret)
2285 				return migrate_vma_collect_skip(start, end,
2286 								walk);
2287 			if (pmd_none(*pmdp))
2288 				return migrate_vma_collect_hole(start, end, -1,
2289 								walk);
2290 		}
2291 	}
2292 
2293 	if (unlikely(pmd_bad(*pmdp)))
2294 		return migrate_vma_collect_skip(start, end, walk);
2295 
2296 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2297 	arch_enter_lazy_mmu_mode();
2298 
2299 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2300 		unsigned long mpfn = 0, pfn;
2301 		struct page *page;
2302 		swp_entry_t entry;
2303 		pte_t pte;
2304 
2305 		pte = *ptep;
2306 
2307 		if (pte_none(pte)) {
2308 			if (vma_is_anonymous(vma)) {
2309 				mpfn = MIGRATE_PFN_MIGRATE;
2310 				migrate->cpages++;
2311 			}
2312 			goto next;
2313 		}
2314 
2315 		if (!pte_present(pte)) {
2316 			/*
2317 			 * Only care about unaddressable device page special
2318 			 * page table entry. Other special swap entries are not
2319 			 * migratable, and we ignore regular swapped page.
2320 			 */
2321 			entry = pte_to_swp_entry(pte);
2322 			if (!is_device_private_entry(entry))
2323 				goto next;
2324 
2325 			page = pfn_swap_entry_to_page(entry);
2326 			if (!(migrate->flags &
2327 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2328 			    page->pgmap->owner != migrate->pgmap_owner)
2329 				goto next;
2330 
2331 			mpfn = migrate_pfn(page_to_pfn(page)) |
2332 					MIGRATE_PFN_MIGRATE;
2333 			if (is_writable_device_private_entry(entry))
2334 				mpfn |= MIGRATE_PFN_WRITE;
2335 		} else {
2336 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2337 				goto next;
2338 			pfn = pte_pfn(pte);
2339 			if (is_zero_pfn(pfn)) {
2340 				mpfn = MIGRATE_PFN_MIGRATE;
2341 				migrate->cpages++;
2342 				goto next;
2343 			}
2344 			page = vm_normal_page(migrate->vma, addr, pte);
2345 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2346 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2347 		}
2348 
2349 		/* FIXME support THP */
2350 		if (!page || !page->mapping || PageTransCompound(page)) {
2351 			mpfn = 0;
2352 			goto next;
2353 		}
2354 
2355 		/*
2356 		 * By getting a reference on the page we pin it and that blocks
2357 		 * any kind of migration. Side effect is that it "freezes" the
2358 		 * pte.
2359 		 *
2360 		 * We drop this reference after isolating the page from the lru
2361 		 * for non device page (device page are not on the lru and thus
2362 		 * can't be dropped from it).
2363 		 */
2364 		get_page(page);
2365 
2366 		/*
2367 		 * Optimize for the common case where page is only mapped once
2368 		 * in one process. If we can lock the page, then we can safely
2369 		 * set up a special migration page table entry now.
2370 		 */
2371 		if (trylock_page(page)) {
2372 			pte_t swp_pte;
2373 
2374 			migrate->cpages++;
2375 			ptep_get_and_clear(mm, addr, ptep);
2376 
2377 			/* Setup special migration page table entry */
2378 			if (mpfn & MIGRATE_PFN_WRITE)
2379 				entry = make_writable_migration_entry(
2380 							page_to_pfn(page));
2381 			else
2382 				entry = make_readable_migration_entry(
2383 							page_to_pfn(page));
2384 			swp_pte = swp_entry_to_pte(entry);
2385 			if (pte_present(pte)) {
2386 				if (pte_soft_dirty(pte))
2387 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2388 				if (pte_uffd_wp(pte))
2389 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2390 			} else {
2391 				if (pte_swp_soft_dirty(pte))
2392 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2393 				if (pte_swp_uffd_wp(pte))
2394 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2395 			}
2396 			set_pte_at(mm, addr, ptep, swp_pte);
2397 
2398 			/*
2399 			 * This is like regular unmap: we remove the rmap and
2400 			 * drop page refcount. Page won't be freed, as we took
2401 			 * a reference just above.
2402 			 */
2403 			page_remove_rmap(page, false);
2404 			put_page(page);
2405 
2406 			if (pte_present(pte))
2407 				unmapped++;
2408 		} else {
2409 			put_page(page);
2410 			mpfn = 0;
2411 		}
2412 
2413 next:
2414 		migrate->dst[migrate->npages] = 0;
2415 		migrate->src[migrate->npages++] = mpfn;
2416 	}
2417 	arch_leave_lazy_mmu_mode();
2418 	pte_unmap_unlock(ptep - 1, ptl);
2419 
2420 	/* Only flush the TLB if we actually modified any entries */
2421 	if (unmapped)
2422 		flush_tlb_range(walk->vma, start, end);
2423 
2424 	return 0;
2425 }
2426 
2427 static const struct mm_walk_ops migrate_vma_walk_ops = {
2428 	.pmd_entry		= migrate_vma_collect_pmd,
2429 	.pte_hole		= migrate_vma_collect_hole,
2430 };
2431 
2432 /*
2433  * migrate_vma_collect() - collect pages over a range of virtual addresses
2434  * @migrate: migrate struct containing all migration information
2435  *
2436  * This will walk the CPU page table. For each virtual address backed by a
2437  * valid page, it updates the src array and takes a reference on the page, in
2438  * order to pin the page until we lock it and unmap it.
2439  */
2440 static void migrate_vma_collect(struct migrate_vma *migrate)
2441 {
2442 	struct mmu_notifier_range range;
2443 
2444 	/*
2445 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2446 	 * that the registered device driver can skip invalidating device
2447 	 * private page mappings that won't be migrated.
2448 	 */
2449 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2450 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2451 		migrate->pgmap_owner);
2452 	mmu_notifier_invalidate_range_start(&range);
2453 
2454 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2455 			&migrate_vma_walk_ops, migrate);
2456 
2457 	mmu_notifier_invalidate_range_end(&range);
2458 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2459 }
2460 
2461 /*
2462  * migrate_vma_check_page() - check if page is pinned or not
2463  * @page: struct page to check
2464  *
2465  * Pinned pages cannot be migrated. This is the same test as in
2466  * folio_migrate_mapping(), except that here we allow migration of a
2467  * ZONE_DEVICE page.
2468  */
2469 static bool migrate_vma_check_page(struct page *page)
2470 {
2471 	/*
2472 	 * One extra ref because caller holds an extra reference, either from
2473 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2474 	 * a device page.
2475 	 */
2476 	int extra = 1;
2477 
2478 	/*
2479 	 * FIXME support THP (transparent huge page), it is bit more complex to
2480 	 * check them than regular pages, because they can be mapped with a pmd
2481 	 * or with a pte (split pte mapping).
2482 	 */
2483 	if (PageCompound(page))
2484 		return false;
2485 
2486 	/* Page from ZONE_DEVICE have one extra reference */
2487 	if (is_zone_device_page(page)) {
2488 		/*
2489 		 * Private page can never be pin as they have no valid pte and
2490 		 * GUP will fail for those. Yet if there is a pending migration
2491 		 * a thread might try to wait on the pte migration entry and
2492 		 * will bump the page reference count. Sadly there is no way to
2493 		 * differentiate a regular pin from migration wait. Hence to
2494 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2495 		 * infinite loop (one stopping migration because the other is
2496 		 * waiting on pte migration entry). We always return true here.
2497 		 *
2498 		 * FIXME proper solution is to rework migration_entry_wait() so
2499 		 * it does not need to take a reference on page.
2500 		 */
2501 		return is_device_private_page(page);
2502 	}
2503 
2504 	/* For file back page */
2505 	if (page_mapping(page))
2506 		extra += 1 + page_has_private(page);
2507 
2508 	if ((page_count(page) - extra) > page_mapcount(page))
2509 		return false;
2510 
2511 	return true;
2512 }
2513 
2514 /*
2515  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2516  * @migrate: migrate struct containing all migration information
2517  *
2518  * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
2519  * special migration pte entry and check if it has been pinned. Pinned pages are
2520  * restored because we cannot migrate them.
2521  *
2522  * This is the last step before we call the device driver callback to allocate
2523  * destination memory and copy contents of original page over to new page.
2524  */
2525 static void migrate_vma_unmap(struct migrate_vma *migrate)
2526 {
2527 	const unsigned long npages = migrate->npages;
2528 	const unsigned long start = migrate->start;
2529 	unsigned long addr, i, restore = 0;
2530 	bool allow_drain = true;
2531 
2532 	lru_add_drain();
2533 
2534 	for (i = 0; i < npages; i++) {
2535 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2536 
2537 		if (!page)
2538 			continue;
2539 
2540 		/* ZONE_DEVICE pages are not on LRU */
2541 		if (!is_zone_device_page(page)) {
2542 			if (!PageLRU(page) && allow_drain) {
2543 				/* Drain CPU's pagevec */
2544 				lru_add_drain_all();
2545 				allow_drain = false;
2546 			}
2547 
2548 			if (isolate_lru_page(page)) {
2549 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2550 				migrate->cpages--;
2551 				restore++;
2552 				continue;
2553 			}
2554 
2555 			/* Drop the reference we took in collect */
2556 			put_page(page);
2557 		}
2558 
2559 		if (page_mapped(page))
2560 			try_to_migrate(page, 0);
2561 
2562 		if (page_mapped(page) || !migrate_vma_check_page(page)) {
2563 			if (!is_zone_device_page(page)) {
2564 				get_page(page);
2565 				putback_lru_page(page);
2566 			}
2567 
2568 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2569 			migrate->cpages--;
2570 			restore++;
2571 			continue;
2572 		}
2573 	}
2574 
2575 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2576 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2577 
2578 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2579 			continue;
2580 
2581 		remove_migration_ptes(page, page, false);
2582 
2583 		migrate->src[i] = 0;
2584 		unlock_page(page);
2585 		put_page(page);
2586 		restore--;
2587 	}
2588 }
2589 
2590 /**
2591  * migrate_vma_setup() - prepare to migrate a range of memory
2592  * @args: contains the vma, start, and pfns arrays for the migration
2593  *
2594  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2595  * without an error.
2596  *
2597  * Prepare to migrate a range of memory virtual address range by collecting all
2598  * the pages backing each virtual address in the range, saving them inside the
2599  * src array.  Then lock those pages and unmap them. Once the pages are locked
2600  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2601  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2602  * corresponding src array entry.  Then restores any pages that are pinned, by
2603  * remapping and unlocking those pages.
2604  *
2605  * The caller should then allocate destination memory and copy source memory to
2606  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2607  * flag set).  Once these are allocated and copied, the caller must update each
2608  * corresponding entry in the dst array with the pfn value of the destination
2609  * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
2610  * lock_page().
2611  *
2612  * Note that the caller does not have to migrate all the pages that are marked
2613  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2614  * device memory to system memory.  If the caller cannot migrate a device page
2615  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2616  * consequences for the userspace process, so it must be avoided if at all
2617  * possible.
2618  *
2619  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2620  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2621  * allowing the caller to allocate device memory for those unbacked virtual
2622  * addresses.  For this the caller simply has to allocate device memory and
2623  * properly set the destination entry like for regular migration.  Note that
2624  * this can still fail, and thus inside the device driver you must check if the
2625  * migration was successful for those entries after calling migrate_vma_pages(),
2626  * just like for regular migration.
2627  *
2628  * After that, the callers must call migrate_vma_pages() to go over each entry
2629  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2630  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2631  * then migrate_vma_pages() to migrate struct page information from the source
2632  * struct page to the destination struct page.  If it fails to migrate the
2633  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2634  * src array.
2635  *
2636  * At this point all successfully migrated pages have an entry in the src
2637  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2638  * array entry with MIGRATE_PFN_VALID flag set.
2639  *
2640  * Once migrate_vma_pages() returns the caller may inspect which pages were
2641  * successfully migrated, and which were not.  Successfully migrated pages will
2642  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2643  *
2644  * It is safe to update device page table after migrate_vma_pages() because
2645  * both destination and source page are still locked, and the mmap_lock is held
2646  * in read mode (hence no one can unmap the range being migrated).
2647  *
2648  * Once the caller is done cleaning up things and updating its page table (if it
2649  * chose to do so, this is not an obligation) it finally calls
2650  * migrate_vma_finalize() to update the CPU page table to point to new pages
2651  * for successfully migrated pages or otherwise restore the CPU page table to
2652  * point to the original source pages.
2653  */
2654 int migrate_vma_setup(struct migrate_vma *args)
2655 {
2656 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2657 
2658 	args->start &= PAGE_MASK;
2659 	args->end &= PAGE_MASK;
2660 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2661 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2662 		return -EINVAL;
2663 	if (nr_pages <= 0)
2664 		return -EINVAL;
2665 	if (args->start < args->vma->vm_start ||
2666 	    args->start >= args->vma->vm_end)
2667 		return -EINVAL;
2668 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2669 		return -EINVAL;
2670 	if (!args->src || !args->dst)
2671 		return -EINVAL;
2672 
2673 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2674 	args->cpages = 0;
2675 	args->npages = 0;
2676 
2677 	migrate_vma_collect(args);
2678 
2679 	if (args->cpages)
2680 		migrate_vma_unmap(args);
2681 
2682 	/*
2683 	 * At this point pages are locked and unmapped, and thus they have
2684 	 * stable content and can safely be copied to destination memory that
2685 	 * is allocated by the drivers.
2686 	 */
2687 	return 0;
2688 
2689 }
2690 EXPORT_SYMBOL(migrate_vma_setup);
2691 
2692 /*
2693  * This code closely matches the code in:
2694  *   __handle_mm_fault()
2695  *     handle_pte_fault()
2696  *       do_anonymous_page()
2697  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2698  * private page.
2699  */
2700 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2701 				    unsigned long addr,
2702 				    struct page *page,
2703 				    unsigned long *src)
2704 {
2705 	struct vm_area_struct *vma = migrate->vma;
2706 	struct mm_struct *mm = vma->vm_mm;
2707 	bool flush = false;
2708 	spinlock_t *ptl;
2709 	pte_t entry;
2710 	pgd_t *pgdp;
2711 	p4d_t *p4dp;
2712 	pud_t *pudp;
2713 	pmd_t *pmdp;
2714 	pte_t *ptep;
2715 
2716 	/* Only allow populating anonymous memory */
2717 	if (!vma_is_anonymous(vma))
2718 		goto abort;
2719 
2720 	pgdp = pgd_offset(mm, addr);
2721 	p4dp = p4d_alloc(mm, pgdp, addr);
2722 	if (!p4dp)
2723 		goto abort;
2724 	pudp = pud_alloc(mm, p4dp, addr);
2725 	if (!pudp)
2726 		goto abort;
2727 	pmdp = pmd_alloc(mm, pudp, addr);
2728 	if (!pmdp)
2729 		goto abort;
2730 
2731 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2732 		goto abort;
2733 
2734 	/*
2735 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2736 	 * pte_offset_map() on pmds where a huge pmd might be created
2737 	 * from a different thread.
2738 	 *
2739 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2740 	 * parallel threads are excluded by other means.
2741 	 *
2742 	 * Here we only have mmap_read_lock(mm).
2743 	 */
2744 	if (pte_alloc(mm, pmdp))
2745 		goto abort;
2746 
2747 	/* See the comment in pte_alloc_one_map() */
2748 	if (unlikely(pmd_trans_unstable(pmdp)))
2749 		goto abort;
2750 
2751 	if (unlikely(anon_vma_prepare(vma)))
2752 		goto abort;
2753 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
2754 		goto abort;
2755 
2756 	/*
2757 	 * The memory barrier inside __SetPageUptodate makes sure that
2758 	 * preceding stores to the page contents become visible before
2759 	 * the set_pte_at() write.
2760 	 */
2761 	__SetPageUptodate(page);
2762 
2763 	if (is_zone_device_page(page)) {
2764 		if (is_device_private_page(page)) {
2765 			swp_entry_t swp_entry;
2766 
2767 			if (vma->vm_flags & VM_WRITE)
2768 				swp_entry = make_writable_device_private_entry(
2769 							page_to_pfn(page));
2770 			else
2771 				swp_entry = make_readable_device_private_entry(
2772 							page_to_pfn(page));
2773 			entry = swp_entry_to_pte(swp_entry);
2774 		} else {
2775 			/*
2776 			 * For now we only support migrating to un-addressable
2777 			 * device memory.
2778 			 */
2779 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2780 			goto abort;
2781 		}
2782 	} else {
2783 		entry = mk_pte(page, vma->vm_page_prot);
2784 		if (vma->vm_flags & VM_WRITE)
2785 			entry = pte_mkwrite(pte_mkdirty(entry));
2786 	}
2787 
2788 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2789 
2790 	if (check_stable_address_space(mm))
2791 		goto unlock_abort;
2792 
2793 	if (pte_present(*ptep)) {
2794 		unsigned long pfn = pte_pfn(*ptep);
2795 
2796 		if (!is_zero_pfn(pfn))
2797 			goto unlock_abort;
2798 		flush = true;
2799 	} else if (!pte_none(*ptep))
2800 		goto unlock_abort;
2801 
2802 	/*
2803 	 * Check for userfaultfd but do not deliver the fault. Instead,
2804 	 * just back off.
2805 	 */
2806 	if (userfaultfd_missing(vma))
2807 		goto unlock_abort;
2808 
2809 	inc_mm_counter(mm, MM_ANONPAGES);
2810 	page_add_new_anon_rmap(page, vma, addr, false);
2811 	if (!is_zone_device_page(page))
2812 		lru_cache_add_inactive_or_unevictable(page, vma);
2813 	get_page(page);
2814 
2815 	if (flush) {
2816 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2817 		ptep_clear_flush_notify(vma, addr, ptep);
2818 		set_pte_at_notify(mm, addr, ptep, entry);
2819 		update_mmu_cache(vma, addr, ptep);
2820 	} else {
2821 		/* No need to invalidate - it was non-present before */
2822 		set_pte_at(mm, addr, ptep, entry);
2823 		update_mmu_cache(vma, addr, ptep);
2824 	}
2825 
2826 	pte_unmap_unlock(ptep, ptl);
2827 	*src = MIGRATE_PFN_MIGRATE;
2828 	return;
2829 
2830 unlock_abort:
2831 	pte_unmap_unlock(ptep, ptl);
2832 abort:
2833 	*src &= ~MIGRATE_PFN_MIGRATE;
2834 }
2835 
2836 /**
2837  * migrate_vma_pages() - migrate meta-data from src page to dst page
2838  * @migrate: migrate struct containing all migration information
2839  *
2840  * This migrates struct page meta-data from source struct page to destination
2841  * struct page. This effectively finishes the migration from source page to the
2842  * destination page.
2843  */
2844 void migrate_vma_pages(struct migrate_vma *migrate)
2845 {
2846 	const unsigned long npages = migrate->npages;
2847 	const unsigned long start = migrate->start;
2848 	struct mmu_notifier_range range;
2849 	unsigned long addr, i;
2850 	bool notified = false;
2851 
2852 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2853 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2854 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2855 		struct address_space *mapping;
2856 		int r;
2857 
2858 		if (!newpage) {
2859 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2860 			continue;
2861 		}
2862 
2863 		if (!page) {
2864 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2865 				continue;
2866 			if (!notified) {
2867 				notified = true;
2868 
2869 				mmu_notifier_range_init_owner(&range,
2870 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2871 					migrate->vma->vm_mm, addr, migrate->end,
2872 					migrate->pgmap_owner);
2873 				mmu_notifier_invalidate_range_start(&range);
2874 			}
2875 			migrate_vma_insert_page(migrate, addr, newpage,
2876 						&migrate->src[i]);
2877 			continue;
2878 		}
2879 
2880 		mapping = page_mapping(page);
2881 
2882 		if (is_zone_device_page(newpage)) {
2883 			if (is_device_private_page(newpage)) {
2884 				/*
2885 				 * For now only support private anonymous when
2886 				 * migrating to un-addressable device memory.
2887 				 */
2888 				if (mapping) {
2889 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2890 					continue;
2891 				}
2892 			} else {
2893 				/*
2894 				 * Other types of ZONE_DEVICE page are not
2895 				 * supported.
2896 				 */
2897 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2898 				continue;
2899 			}
2900 		}
2901 
2902 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2903 		if (r != MIGRATEPAGE_SUCCESS)
2904 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2905 	}
2906 
2907 	/*
2908 	 * No need to double call mmu_notifier->invalidate_range() callback as
2909 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2910 	 * did already call it.
2911 	 */
2912 	if (notified)
2913 		mmu_notifier_invalidate_range_only_end(&range);
2914 }
2915 EXPORT_SYMBOL(migrate_vma_pages);
2916 
2917 /**
2918  * migrate_vma_finalize() - restore CPU page table entry
2919  * @migrate: migrate struct containing all migration information
2920  *
2921  * This replaces the special migration pte entry with either a mapping to the
2922  * new page if migration was successful for that page, or to the original page
2923  * otherwise.
2924  *
2925  * This also unlocks the pages and puts them back on the lru, or drops the extra
2926  * refcount, for device pages.
2927  */
2928 void migrate_vma_finalize(struct migrate_vma *migrate)
2929 {
2930 	const unsigned long npages = migrate->npages;
2931 	unsigned long i;
2932 
2933 	for (i = 0; i < npages; i++) {
2934 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2935 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2936 
2937 		if (!page) {
2938 			if (newpage) {
2939 				unlock_page(newpage);
2940 				put_page(newpage);
2941 			}
2942 			continue;
2943 		}
2944 
2945 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2946 			if (newpage) {
2947 				unlock_page(newpage);
2948 				put_page(newpage);
2949 			}
2950 			newpage = page;
2951 		}
2952 
2953 		remove_migration_ptes(page, newpage, false);
2954 		unlock_page(page);
2955 
2956 		if (is_zone_device_page(page))
2957 			put_page(page);
2958 		else
2959 			putback_lru_page(page);
2960 
2961 		if (newpage != page) {
2962 			unlock_page(newpage);
2963 			if (is_zone_device_page(newpage))
2964 				put_page(newpage);
2965 			else
2966 				putback_lru_page(newpage);
2967 		}
2968 	}
2969 }
2970 EXPORT_SYMBOL(migrate_vma_finalize);
2971 #endif /* CONFIG_DEVICE_PRIVATE */
2972 
2973 #if defined(CONFIG_HOTPLUG_CPU)
2974 /* Disable reclaim-based migration. */
2975 static void __disable_all_migrate_targets(void)
2976 {
2977 	int node;
2978 
2979 	for_each_online_node(node)
2980 		node_demotion[node] = NUMA_NO_NODE;
2981 }
2982 
2983 static void disable_all_migrate_targets(void)
2984 {
2985 	__disable_all_migrate_targets();
2986 
2987 	/*
2988 	 * Ensure that the "disable" is visible across the system.
2989 	 * Readers will see either a combination of before+disable
2990 	 * state or disable+after.  They will never see before and
2991 	 * after state together.
2992 	 *
2993 	 * The before+after state together might have cycles and
2994 	 * could cause readers to do things like loop until this
2995 	 * function finishes.  This ensures they can only see a
2996 	 * single "bad" read and would, for instance, only loop
2997 	 * once.
2998 	 */
2999 	synchronize_rcu();
3000 }
3001 
3002 /*
3003  * Find an automatic demotion target for 'node'.
3004  * Failing here is OK.  It might just indicate
3005  * being at the end of a chain.
3006  */
3007 static int establish_migrate_target(int node, nodemask_t *used)
3008 {
3009 	int migration_target;
3010 
3011 	/*
3012 	 * Can not set a migration target on a
3013 	 * node with it already set.
3014 	 *
3015 	 * No need for READ_ONCE() here since this
3016 	 * in the write path for node_demotion[].
3017 	 * This should be the only thread writing.
3018 	 */
3019 	if (node_demotion[node] != NUMA_NO_NODE)
3020 		return NUMA_NO_NODE;
3021 
3022 	migration_target = find_next_best_node(node, used);
3023 	if (migration_target == NUMA_NO_NODE)
3024 		return NUMA_NO_NODE;
3025 
3026 	node_demotion[node] = migration_target;
3027 
3028 	return migration_target;
3029 }
3030 
3031 /*
3032  * When memory fills up on a node, memory contents can be
3033  * automatically migrated to another node instead of
3034  * discarded at reclaim.
3035  *
3036  * Establish a "migration path" which will start at nodes
3037  * with CPUs and will follow the priorities used to build the
3038  * page allocator zonelists.
3039  *
3040  * The difference here is that cycles must be avoided.  If
3041  * node0 migrates to node1, then neither node1, nor anything
3042  * node1 migrates to can migrate to node0.
3043  *
3044  * This function can run simultaneously with readers of
3045  * node_demotion[].  However, it can not run simultaneously
3046  * with itself.  Exclusion is provided by memory hotplug events
3047  * being single-threaded.
3048  */
3049 static void __set_migration_target_nodes(void)
3050 {
3051 	nodemask_t next_pass	= NODE_MASK_NONE;
3052 	nodemask_t this_pass	= NODE_MASK_NONE;
3053 	nodemask_t used_targets = NODE_MASK_NONE;
3054 	int node;
3055 
3056 	/*
3057 	 * Avoid any oddities like cycles that could occur
3058 	 * from changes in the topology.  This will leave
3059 	 * a momentary gap when migration is disabled.
3060 	 */
3061 	disable_all_migrate_targets();
3062 
3063 	/*
3064 	 * Allocations go close to CPUs, first.  Assume that
3065 	 * the migration path starts at the nodes with CPUs.
3066 	 */
3067 	next_pass = node_states[N_CPU];
3068 again:
3069 	this_pass = next_pass;
3070 	next_pass = NODE_MASK_NONE;
3071 	/*
3072 	 * To avoid cycles in the migration "graph", ensure
3073 	 * that migration sources are not future targets by
3074 	 * setting them in 'used_targets'.  Do this only
3075 	 * once per pass so that multiple source nodes can
3076 	 * share a target node.
3077 	 *
3078 	 * 'used_targets' will become unavailable in future
3079 	 * passes.  This limits some opportunities for
3080 	 * multiple source nodes to share a destination.
3081 	 */
3082 	nodes_or(used_targets, used_targets, this_pass);
3083 	for_each_node_mask(node, this_pass) {
3084 		int target_node = establish_migrate_target(node, &used_targets);
3085 
3086 		if (target_node == NUMA_NO_NODE)
3087 			continue;
3088 
3089 		/*
3090 		 * Visit targets from this pass in the next pass.
3091 		 * Eventually, every node will have been part of
3092 		 * a pass, and will become set in 'used_targets'.
3093 		 */
3094 		node_set(target_node, next_pass);
3095 	}
3096 	/*
3097 	 * 'next_pass' contains nodes which became migration
3098 	 * targets in this pass.  Make additional passes until
3099 	 * no more migrations targets are available.
3100 	 */
3101 	if (!nodes_empty(next_pass))
3102 		goto again;
3103 }
3104 
3105 /*
3106  * For callers that do not hold get_online_mems() already.
3107  */
3108 static void set_migration_target_nodes(void)
3109 {
3110 	get_online_mems();
3111 	__set_migration_target_nodes();
3112 	put_online_mems();
3113 }
3114 
3115 /*
3116  * This leaves migrate-on-reclaim transiently disabled between
3117  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
3118  * whether reclaim-based migration is enabled or not, which
3119  * ensures that the user can turn reclaim-based migration at
3120  * any time without needing to recalculate migration targets.
3121  *
3122  * These callbacks already hold get_online_mems().  That is why
3123  * __set_migration_target_nodes() can be used as opposed to
3124  * set_migration_target_nodes().
3125  */
3126 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
3127 						 unsigned long action, void *_arg)
3128 {
3129 	struct memory_notify *arg = _arg;
3130 
3131 	/*
3132 	 * Only update the node migration order when a node is
3133 	 * changing status, like online->offline.  This avoids
3134 	 * the overhead of synchronize_rcu() in most cases.
3135 	 */
3136 	if (arg->status_change_nid < 0)
3137 		return notifier_from_errno(0);
3138 
3139 	switch (action) {
3140 	case MEM_GOING_OFFLINE:
3141 		/*
3142 		 * Make sure there are not transient states where
3143 		 * an offline node is a migration target.  This
3144 		 * will leave migration disabled until the offline
3145 		 * completes and the MEM_OFFLINE case below runs.
3146 		 */
3147 		disable_all_migrate_targets();
3148 		break;
3149 	case MEM_OFFLINE:
3150 	case MEM_ONLINE:
3151 		/*
3152 		 * Recalculate the target nodes once the node
3153 		 * reaches its final state (online or offline).
3154 		 */
3155 		__set_migration_target_nodes();
3156 		break;
3157 	case MEM_CANCEL_OFFLINE:
3158 		/*
3159 		 * MEM_GOING_OFFLINE disabled all the migration
3160 		 * targets.  Reenable them.
3161 		 */
3162 		__set_migration_target_nodes();
3163 		break;
3164 	case MEM_GOING_ONLINE:
3165 	case MEM_CANCEL_ONLINE:
3166 		break;
3167 	}
3168 
3169 	return notifier_from_errno(0);
3170 }
3171 
3172 /*
3173  * React to hotplug events that might affect the migration targets
3174  * like events that online or offline NUMA nodes.
3175  *
3176  * The ordering is also currently dependent on which nodes have
3177  * CPUs.  That means we need CPU on/offline notification too.
3178  */
3179 static int migration_online_cpu(unsigned int cpu)
3180 {
3181 	set_migration_target_nodes();
3182 	return 0;
3183 }
3184 
3185 static int migration_offline_cpu(unsigned int cpu)
3186 {
3187 	set_migration_target_nodes();
3188 	return 0;
3189 }
3190 
3191 static int __init migrate_on_reclaim_init(void)
3192 {
3193 	int ret;
3194 
3195 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline",
3196 					NULL, migration_offline_cpu);
3197 	/*
3198 	 * In the unlikely case that this fails, the automatic
3199 	 * migration targets may become suboptimal for nodes
3200 	 * where N_CPU changes.  With such a small impact in a
3201 	 * rare case, do not bother trying to do anything special.
3202 	 */
3203 	WARN_ON(ret < 0);
3204 	ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online",
3205 				migration_online_cpu, NULL);
3206 	WARN_ON(ret < 0);
3207 
3208 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
3209 	return 0;
3210 }
3211 late_initcall(migrate_on_reclaim_init);
3212 #endif /* CONFIG_HOTPLUG_CPU */
3213 
3214 bool numa_demotion_enabled = false;
3215 
3216 #ifdef CONFIG_SYSFS
3217 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
3218 					  struct kobj_attribute *attr, char *buf)
3219 {
3220 	return sysfs_emit(buf, "%s\n",
3221 			  numa_demotion_enabled ? "true" : "false");
3222 }
3223 
3224 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
3225 					   struct kobj_attribute *attr,
3226 					   const char *buf, size_t count)
3227 {
3228 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
3229 		numa_demotion_enabled = true;
3230 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
3231 		numa_demotion_enabled = false;
3232 	else
3233 		return -EINVAL;
3234 
3235 	return count;
3236 }
3237 
3238 static struct kobj_attribute numa_demotion_enabled_attr =
3239 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3240 	       numa_demotion_enabled_store);
3241 
3242 static struct attribute *numa_attrs[] = {
3243 	&numa_demotion_enabled_attr.attr,
3244 	NULL,
3245 };
3246 
3247 static const struct attribute_group numa_attr_group = {
3248 	.attrs = numa_attrs,
3249 };
3250 
3251 static int __init numa_init_sysfs(void)
3252 {
3253 	int err;
3254 	struct kobject *numa_kobj;
3255 
3256 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
3257 	if (!numa_kobj) {
3258 		pr_err("failed to create numa kobject\n");
3259 		return -ENOMEM;
3260 	}
3261 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
3262 	if (err) {
3263 		pr_err("failed to register numa group\n");
3264 		goto delete_obj;
3265 	}
3266 	return 0;
3267 
3268 delete_obj:
3269 	kobject_put(numa_kobj);
3270 	return err;
3271 }
3272 subsys_initcall(numa_init_sysfs);
3273 #endif
3274