1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 #include <linux/memory.h> 53 54 #include <asm/tlbflush.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/migrate.h> 58 59 #include "internal.h" 60 61 int isolate_movable_page(struct page *page, isolate_mode_t mode) 62 { 63 struct address_space *mapping; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (unlikely(!get_page_unless_zero(page))) 75 goto out; 76 77 /* 78 * Check PageMovable before holding a PG_lock because page's owner 79 * assumes anybody doesn't touch PG_lock of newly allocated page 80 * so unconditionally grabbing the lock ruins page's owner side. 81 */ 82 if (unlikely(!__PageMovable(page))) 83 goto out_putpage; 84 /* 85 * As movable pages are not isolated from LRU lists, concurrent 86 * compaction threads can race against page migration functions 87 * as well as race against the releasing a page. 88 * 89 * In order to avoid having an already isolated movable page 90 * being (wrongly) re-isolated while it is under migration, 91 * or to avoid attempting to isolate pages being released, 92 * lets be sure we have the page lock 93 * before proceeding with the movable page isolation steps. 94 */ 95 if (unlikely(!trylock_page(page))) 96 goto out_putpage; 97 98 if (!PageMovable(page) || PageIsolated(page)) 99 goto out_no_isolated; 100 101 mapping = page_mapping(page); 102 VM_BUG_ON_PAGE(!mapping, page); 103 104 if (!mapping->a_ops->isolate_page(page, mode)) 105 goto out_no_isolated; 106 107 /* Driver shouldn't use PG_isolated bit of page->flags */ 108 WARN_ON_ONCE(PageIsolated(page)); 109 __SetPageIsolated(page); 110 unlock_page(page); 111 112 return 0; 113 114 out_no_isolated: 115 unlock_page(page); 116 out_putpage: 117 put_page(page); 118 out: 119 return -EBUSY; 120 } 121 122 static void putback_movable_page(struct page *page) 123 { 124 struct address_space *mapping; 125 126 mapping = page_mapping(page); 127 mapping->a_ops->putback_page(page); 128 __ClearPageIsolated(page); 129 } 130 131 /* 132 * Put previously isolated pages back onto the appropriate lists 133 * from where they were once taken off for compaction/migration. 134 * 135 * This function shall be used whenever the isolated pageset has been 136 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 137 * and isolate_huge_page(). 138 */ 139 void putback_movable_pages(struct list_head *l) 140 { 141 struct page *page; 142 struct page *page2; 143 144 list_for_each_entry_safe(page, page2, l, lru) { 145 if (unlikely(PageHuge(page))) { 146 putback_active_hugepage(page); 147 continue; 148 } 149 list_del(&page->lru); 150 /* 151 * We isolated non-lru movable page so here we can use 152 * __PageMovable because LRU page's mapping cannot have 153 * PAGE_MAPPING_MOVABLE. 154 */ 155 if (unlikely(__PageMovable(page))) { 156 VM_BUG_ON_PAGE(!PageIsolated(page), page); 157 lock_page(page); 158 if (PageMovable(page)) 159 putback_movable_page(page); 160 else 161 __ClearPageIsolated(page); 162 unlock_page(page); 163 put_page(page); 164 } else { 165 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 166 page_is_file_lru(page), -thp_nr_pages(page)); 167 putback_lru_page(page); 168 } 169 } 170 } 171 172 /* 173 * Restore a potential migration pte to a working pte entry 174 */ 175 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 176 unsigned long addr, void *old) 177 { 178 struct page_vma_mapped_walk pvmw = { 179 .page = old, 180 .vma = vma, 181 .address = addr, 182 .flags = PVMW_SYNC | PVMW_MIGRATION, 183 }; 184 struct page *new; 185 pte_t pte; 186 swp_entry_t entry; 187 188 VM_BUG_ON_PAGE(PageTail(page), page); 189 while (page_vma_mapped_walk(&pvmw)) { 190 if (PageKsm(page)) 191 new = page; 192 else 193 new = page - pvmw.page->index + 194 linear_page_index(vma, pvmw.address); 195 196 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 197 /* PMD-mapped THP migration entry */ 198 if (!pvmw.pte) { 199 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 200 remove_migration_pmd(&pvmw, new); 201 continue; 202 } 203 #endif 204 205 get_page(new); 206 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 207 if (pte_swp_soft_dirty(*pvmw.pte)) 208 pte = pte_mksoft_dirty(pte); 209 210 /* 211 * Recheck VMA as permissions can change since migration started 212 */ 213 entry = pte_to_swp_entry(*pvmw.pte); 214 if (is_writable_migration_entry(entry)) 215 pte = maybe_mkwrite(pte, vma); 216 else if (pte_swp_uffd_wp(*pvmw.pte)) 217 pte = pte_mkuffd_wp(pte); 218 219 if (unlikely(is_device_private_page(new))) { 220 if (pte_write(pte)) 221 entry = make_writable_device_private_entry( 222 page_to_pfn(new)); 223 else 224 entry = make_readable_device_private_entry( 225 page_to_pfn(new)); 226 pte = swp_entry_to_pte(entry); 227 if (pte_swp_soft_dirty(*pvmw.pte)) 228 pte = pte_swp_mksoft_dirty(pte); 229 if (pte_swp_uffd_wp(*pvmw.pte)) 230 pte = pte_swp_mkuffd_wp(pte); 231 } 232 233 #ifdef CONFIG_HUGETLB_PAGE 234 if (PageHuge(new)) { 235 unsigned int shift = huge_page_shift(hstate_vma(vma)); 236 237 pte = pte_mkhuge(pte); 238 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 239 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 240 if (PageAnon(new)) 241 hugepage_add_anon_rmap(new, vma, pvmw.address); 242 else 243 page_dup_rmap(new, true); 244 } else 245 #endif 246 { 247 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 248 249 if (PageAnon(new)) 250 page_add_anon_rmap(new, vma, pvmw.address, false); 251 else 252 page_add_file_rmap(new, false); 253 } 254 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 255 mlock_vma_page(new); 256 257 if (PageTransHuge(page) && PageMlocked(page)) 258 clear_page_mlock(page); 259 260 /* No need to invalidate - it was non-present before */ 261 update_mmu_cache(vma, pvmw.address, pvmw.pte); 262 } 263 264 return true; 265 } 266 267 /* 268 * Get rid of all migration entries and replace them by 269 * references to the indicated page. 270 */ 271 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 272 { 273 struct rmap_walk_control rwc = { 274 .rmap_one = remove_migration_pte, 275 .arg = old, 276 }; 277 278 if (locked) 279 rmap_walk_locked(new, &rwc); 280 else 281 rmap_walk(new, &rwc); 282 } 283 284 /* 285 * Something used the pte of a page under migration. We need to 286 * get to the page and wait until migration is finished. 287 * When we return from this function the fault will be retried. 288 */ 289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 290 spinlock_t *ptl) 291 { 292 pte_t pte; 293 swp_entry_t entry; 294 struct page *page; 295 296 spin_lock(ptl); 297 pte = *ptep; 298 if (!is_swap_pte(pte)) 299 goto out; 300 301 entry = pte_to_swp_entry(pte); 302 if (!is_migration_entry(entry)) 303 goto out; 304 305 page = pfn_swap_entry_to_page(entry); 306 page = compound_head(page); 307 308 /* 309 * Once page cache replacement of page migration started, page_count 310 * is zero; but we must not call put_and_wait_on_page_locked() without 311 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 312 */ 313 if (!get_page_unless_zero(page)) 314 goto out; 315 pte_unmap_unlock(ptep, ptl); 316 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 317 return; 318 out: 319 pte_unmap_unlock(ptep, ptl); 320 } 321 322 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 323 unsigned long address) 324 { 325 spinlock_t *ptl = pte_lockptr(mm, pmd); 326 pte_t *ptep = pte_offset_map(pmd, address); 327 __migration_entry_wait(mm, ptep, ptl); 328 } 329 330 void migration_entry_wait_huge(struct vm_area_struct *vma, 331 struct mm_struct *mm, pte_t *pte) 332 { 333 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 334 __migration_entry_wait(mm, pte, ptl); 335 } 336 337 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 338 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 339 { 340 spinlock_t *ptl; 341 struct page *page; 342 343 ptl = pmd_lock(mm, pmd); 344 if (!is_pmd_migration_entry(*pmd)) 345 goto unlock; 346 page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd)); 347 if (!get_page_unless_zero(page)) 348 goto unlock; 349 spin_unlock(ptl); 350 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 351 return; 352 unlock: 353 spin_unlock(ptl); 354 } 355 #endif 356 357 static int expected_page_refs(struct address_space *mapping, struct page *page) 358 { 359 int expected_count = 1; 360 361 /* 362 * Device private pages have an extra refcount as they are 363 * ZONE_DEVICE pages. 364 */ 365 expected_count += is_device_private_page(page); 366 if (mapping) 367 expected_count += compound_nr(page) + page_has_private(page); 368 369 return expected_count; 370 } 371 372 /* 373 * Replace the page in the mapping. 374 * 375 * The number of remaining references must be: 376 * 1 for anonymous pages without a mapping 377 * 2 for pages with a mapping 378 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 379 */ 380 int folio_migrate_mapping(struct address_space *mapping, 381 struct folio *newfolio, struct folio *folio, int extra_count) 382 { 383 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 384 struct zone *oldzone, *newzone; 385 int dirty; 386 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count; 387 long nr = folio_nr_pages(folio); 388 389 if (!mapping) { 390 /* Anonymous page without mapping */ 391 if (folio_ref_count(folio) != expected_count) 392 return -EAGAIN; 393 394 /* No turning back from here */ 395 newfolio->index = folio->index; 396 newfolio->mapping = folio->mapping; 397 if (folio_test_swapbacked(folio)) 398 __folio_set_swapbacked(newfolio); 399 400 return MIGRATEPAGE_SUCCESS; 401 } 402 403 oldzone = folio_zone(folio); 404 newzone = folio_zone(newfolio); 405 406 xas_lock_irq(&xas); 407 if (!folio_ref_freeze(folio, expected_count)) { 408 xas_unlock_irq(&xas); 409 return -EAGAIN; 410 } 411 412 /* 413 * Now we know that no one else is looking at the folio: 414 * no turning back from here. 415 */ 416 newfolio->index = folio->index; 417 newfolio->mapping = folio->mapping; 418 folio_ref_add(newfolio, nr); /* add cache reference */ 419 if (folio_test_swapbacked(folio)) { 420 __folio_set_swapbacked(newfolio); 421 if (folio_test_swapcache(folio)) { 422 folio_set_swapcache(newfolio); 423 newfolio->private = folio_get_private(folio); 424 } 425 } else { 426 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 427 } 428 429 /* Move dirty while page refs frozen and newpage not yet exposed */ 430 dirty = folio_test_dirty(folio); 431 if (dirty) { 432 folio_clear_dirty(folio); 433 folio_set_dirty(newfolio); 434 } 435 436 xas_store(&xas, newfolio); 437 if (nr > 1) { 438 int i; 439 440 for (i = 1; i < nr; i++) { 441 xas_next(&xas); 442 xas_store(&xas, newfolio); 443 } 444 } 445 446 /* 447 * Drop cache reference from old page by unfreezing 448 * to one less reference. 449 * We know this isn't the last reference. 450 */ 451 folio_ref_unfreeze(folio, expected_count - nr); 452 453 xas_unlock(&xas); 454 /* Leave irq disabled to prevent preemption while updating stats */ 455 456 /* 457 * If moved to a different zone then also account 458 * the page for that zone. Other VM counters will be 459 * taken care of when we establish references to the 460 * new page and drop references to the old page. 461 * 462 * Note that anonymous pages are accounted for 463 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 464 * are mapped to swap space. 465 */ 466 if (newzone != oldzone) { 467 struct lruvec *old_lruvec, *new_lruvec; 468 struct mem_cgroup *memcg; 469 470 memcg = folio_memcg(folio); 471 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 472 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 473 474 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 475 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 476 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 477 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 478 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 479 } 480 #ifdef CONFIG_SWAP 481 if (folio_test_swapcache(folio)) { 482 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 483 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 484 } 485 #endif 486 if (dirty && mapping_can_writeback(mapping)) { 487 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 488 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 489 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 490 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 491 } 492 } 493 local_irq_enable(); 494 495 return MIGRATEPAGE_SUCCESS; 496 } 497 EXPORT_SYMBOL(folio_migrate_mapping); 498 499 /* 500 * The expected number of remaining references is the same as that 501 * of folio_migrate_mapping(). 502 */ 503 int migrate_huge_page_move_mapping(struct address_space *mapping, 504 struct page *newpage, struct page *page) 505 { 506 XA_STATE(xas, &mapping->i_pages, page_index(page)); 507 int expected_count; 508 509 xas_lock_irq(&xas); 510 expected_count = 2 + page_has_private(page); 511 if (page_count(page) != expected_count || xas_load(&xas) != page) { 512 xas_unlock_irq(&xas); 513 return -EAGAIN; 514 } 515 516 if (!page_ref_freeze(page, expected_count)) { 517 xas_unlock_irq(&xas); 518 return -EAGAIN; 519 } 520 521 newpage->index = page->index; 522 newpage->mapping = page->mapping; 523 524 get_page(newpage); 525 526 xas_store(&xas, newpage); 527 528 page_ref_unfreeze(page, expected_count - 1); 529 530 xas_unlock_irq(&xas); 531 532 return MIGRATEPAGE_SUCCESS; 533 } 534 535 /* 536 * Copy the flags and some other ancillary information 537 */ 538 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 539 { 540 int cpupid; 541 542 if (folio_test_error(folio)) 543 folio_set_error(newfolio); 544 if (folio_test_referenced(folio)) 545 folio_set_referenced(newfolio); 546 if (folio_test_uptodate(folio)) 547 folio_mark_uptodate(newfolio); 548 if (folio_test_clear_active(folio)) { 549 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 550 folio_set_active(newfolio); 551 } else if (folio_test_clear_unevictable(folio)) 552 folio_set_unevictable(newfolio); 553 if (folio_test_workingset(folio)) 554 folio_set_workingset(newfolio); 555 if (folio_test_checked(folio)) 556 folio_set_checked(newfolio); 557 if (folio_test_mappedtodisk(folio)) 558 folio_set_mappedtodisk(newfolio); 559 560 /* Move dirty on pages not done by folio_migrate_mapping() */ 561 if (folio_test_dirty(folio)) 562 folio_set_dirty(newfolio); 563 564 if (folio_test_young(folio)) 565 folio_set_young(newfolio); 566 if (folio_test_idle(folio)) 567 folio_set_idle(newfolio); 568 569 /* 570 * Copy NUMA information to the new page, to prevent over-eager 571 * future migrations of this same page. 572 */ 573 cpupid = page_cpupid_xchg_last(&folio->page, -1); 574 page_cpupid_xchg_last(&newfolio->page, cpupid); 575 576 folio_migrate_ksm(newfolio, folio); 577 /* 578 * Please do not reorder this without considering how mm/ksm.c's 579 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 580 */ 581 if (folio_test_swapcache(folio)) 582 folio_clear_swapcache(folio); 583 folio_clear_private(folio); 584 585 /* page->private contains hugetlb specific flags */ 586 if (!folio_test_hugetlb(folio)) 587 folio->private = NULL; 588 589 /* 590 * If any waiters have accumulated on the new page then 591 * wake them up. 592 */ 593 if (folio_test_writeback(newfolio)) 594 folio_end_writeback(newfolio); 595 596 /* 597 * PG_readahead shares the same bit with PG_reclaim. The above 598 * end_page_writeback() may clear PG_readahead mistakenly, so set the 599 * bit after that. 600 */ 601 if (folio_test_readahead(folio)) 602 folio_set_readahead(newfolio); 603 604 folio_copy_owner(newfolio, folio); 605 606 if (!folio_test_hugetlb(folio)) 607 mem_cgroup_migrate(folio, newfolio); 608 } 609 EXPORT_SYMBOL(folio_migrate_flags); 610 611 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 612 { 613 folio_copy(newfolio, folio); 614 folio_migrate_flags(newfolio, folio); 615 } 616 EXPORT_SYMBOL(folio_migrate_copy); 617 618 /************************************************************ 619 * Migration functions 620 ***********************************************************/ 621 622 /* 623 * Common logic to directly migrate a single LRU page suitable for 624 * pages that do not use PagePrivate/PagePrivate2. 625 * 626 * Pages are locked upon entry and exit. 627 */ 628 int migrate_page(struct address_space *mapping, 629 struct page *newpage, struct page *page, 630 enum migrate_mode mode) 631 { 632 struct folio *newfolio = page_folio(newpage); 633 struct folio *folio = page_folio(page); 634 int rc; 635 636 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */ 637 638 rc = folio_migrate_mapping(mapping, newfolio, folio, 0); 639 640 if (rc != MIGRATEPAGE_SUCCESS) 641 return rc; 642 643 if (mode != MIGRATE_SYNC_NO_COPY) 644 folio_migrate_copy(newfolio, folio); 645 else 646 folio_migrate_flags(newfolio, folio); 647 return MIGRATEPAGE_SUCCESS; 648 } 649 EXPORT_SYMBOL(migrate_page); 650 651 #ifdef CONFIG_BLOCK 652 /* Returns true if all buffers are successfully locked */ 653 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 654 enum migrate_mode mode) 655 { 656 struct buffer_head *bh = head; 657 658 /* Simple case, sync compaction */ 659 if (mode != MIGRATE_ASYNC) { 660 do { 661 lock_buffer(bh); 662 bh = bh->b_this_page; 663 664 } while (bh != head); 665 666 return true; 667 } 668 669 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 670 do { 671 if (!trylock_buffer(bh)) { 672 /* 673 * We failed to lock the buffer and cannot stall in 674 * async migration. Release the taken locks 675 */ 676 struct buffer_head *failed_bh = bh; 677 bh = head; 678 while (bh != failed_bh) { 679 unlock_buffer(bh); 680 bh = bh->b_this_page; 681 } 682 return false; 683 } 684 685 bh = bh->b_this_page; 686 } while (bh != head); 687 return true; 688 } 689 690 static int __buffer_migrate_page(struct address_space *mapping, 691 struct page *newpage, struct page *page, enum migrate_mode mode, 692 bool check_refs) 693 { 694 struct buffer_head *bh, *head; 695 int rc; 696 int expected_count; 697 698 if (!page_has_buffers(page)) 699 return migrate_page(mapping, newpage, page, mode); 700 701 /* Check whether page does not have extra refs before we do more work */ 702 expected_count = expected_page_refs(mapping, page); 703 if (page_count(page) != expected_count) 704 return -EAGAIN; 705 706 head = page_buffers(page); 707 if (!buffer_migrate_lock_buffers(head, mode)) 708 return -EAGAIN; 709 710 if (check_refs) { 711 bool busy; 712 bool invalidated = false; 713 714 recheck_buffers: 715 busy = false; 716 spin_lock(&mapping->private_lock); 717 bh = head; 718 do { 719 if (atomic_read(&bh->b_count)) { 720 busy = true; 721 break; 722 } 723 bh = bh->b_this_page; 724 } while (bh != head); 725 if (busy) { 726 if (invalidated) { 727 rc = -EAGAIN; 728 goto unlock_buffers; 729 } 730 spin_unlock(&mapping->private_lock); 731 invalidate_bh_lrus(); 732 invalidated = true; 733 goto recheck_buffers; 734 } 735 } 736 737 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 738 if (rc != MIGRATEPAGE_SUCCESS) 739 goto unlock_buffers; 740 741 attach_page_private(newpage, detach_page_private(page)); 742 743 bh = head; 744 do { 745 set_bh_page(bh, newpage, bh_offset(bh)); 746 bh = bh->b_this_page; 747 748 } while (bh != head); 749 750 if (mode != MIGRATE_SYNC_NO_COPY) 751 migrate_page_copy(newpage, page); 752 else 753 migrate_page_states(newpage, page); 754 755 rc = MIGRATEPAGE_SUCCESS; 756 unlock_buffers: 757 if (check_refs) 758 spin_unlock(&mapping->private_lock); 759 bh = head; 760 do { 761 unlock_buffer(bh); 762 bh = bh->b_this_page; 763 764 } while (bh != head); 765 766 return rc; 767 } 768 769 /* 770 * Migration function for pages with buffers. This function can only be used 771 * if the underlying filesystem guarantees that no other references to "page" 772 * exist. For example attached buffer heads are accessed only under page lock. 773 */ 774 int buffer_migrate_page(struct address_space *mapping, 775 struct page *newpage, struct page *page, enum migrate_mode mode) 776 { 777 return __buffer_migrate_page(mapping, newpage, page, mode, false); 778 } 779 EXPORT_SYMBOL(buffer_migrate_page); 780 781 /* 782 * Same as above except that this variant is more careful and checks that there 783 * are also no buffer head references. This function is the right one for 784 * mappings where buffer heads are directly looked up and referenced (such as 785 * block device mappings). 786 */ 787 int buffer_migrate_page_norefs(struct address_space *mapping, 788 struct page *newpage, struct page *page, enum migrate_mode mode) 789 { 790 return __buffer_migrate_page(mapping, newpage, page, mode, true); 791 } 792 #endif 793 794 /* 795 * Writeback a page to clean the dirty state 796 */ 797 static int writeout(struct address_space *mapping, struct page *page) 798 { 799 struct writeback_control wbc = { 800 .sync_mode = WB_SYNC_NONE, 801 .nr_to_write = 1, 802 .range_start = 0, 803 .range_end = LLONG_MAX, 804 .for_reclaim = 1 805 }; 806 int rc; 807 808 if (!mapping->a_ops->writepage) 809 /* No write method for the address space */ 810 return -EINVAL; 811 812 if (!clear_page_dirty_for_io(page)) 813 /* Someone else already triggered a write */ 814 return -EAGAIN; 815 816 /* 817 * A dirty page may imply that the underlying filesystem has 818 * the page on some queue. So the page must be clean for 819 * migration. Writeout may mean we loose the lock and the 820 * page state is no longer what we checked for earlier. 821 * At this point we know that the migration attempt cannot 822 * be successful. 823 */ 824 remove_migration_ptes(page, page, false); 825 826 rc = mapping->a_ops->writepage(page, &wbc); 827 828 if (rc != AOP_WRITEPAGE_ACTIVATE) 829 /* unlocked. Relock */ 830 lock_page(page); 831 832 return (rc < 0) ? -EIO : -EAGAIN; 833 } 834 835 /* 836 * Default handling if a filesystem does not provide a migration function. 837 */ 838 static int fallback_migrate_page(struct address_space *mapping, 839 struct page *newpage, struct page *page, enum migrate_mode mode) 840 { 841 if (PageDirty(page)) { 842 /* Only writeback pages in full synchronous migration */ 843 switch (mode) { 844 case MIGRATE_SYNC: 845 case MIGRATE_SYNC_NO_COPY: 846 break; 847 default: 848 return -EBUSY; 849 } 850 return writeout(mapping, page); 851 } 852 853 /* 854 * Buffers may be managed in a filesystem specific way. 855 * We must have no buffers or drop them. 856 */ 857 if (page_has_private(page) && 858 !try_to_release_page(page, GFP_KERNEL)) 859 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 860 861 return migrate_page(mapping, newpage, page, mode); 862 } 863 864 /* 865 * Move a page to a newly allocated page 866 * The page is locked and all ptes have been successfully removed. 867 * 868 * The new page will have replaced the old page if this function 869 * is successful. 870 * 871 * Return value: 872 * < 0 - error code 873 * MIGRATEPAGE_SUCCESS - success 874 */ 875 static int move_to_new_page(struct page *newpage, struct page *page, 876 enum migrate_mode mode) 877 { 878 struct address_space *mapping; 879 int rc = -EAGAIN; 880 bool is_lru = !__PageMovable(page); 881 882 VM_BUG_ON_PAGE(!PageLocked(page), page); 883 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 884 885 mapping = page_mapping(page); 886 887 if (likely(is_lru)) { 888 if (!mapping) 889 rc = migrate_page(mapping, newpage, page, mode); 890 else if (mapping->a_ops->migratepage) 891 /* 892 * Most pages have a mapping and most filesystems 893 * provide a migratepage callback. Anonymous pages 894 * are part of swap space which also has its own 895 * migratepage callback. This is the most common path 896 * for page migration. 897 */ 898 rc = mapping->a_ops->migratepage(mapping, newpage, 899 page, mode); 900 else 901 rc = fallback_migrate_page(mapping, newpage, 902 page, mode); 903 } else { 904 /* 905 * In case of non-lru page, it could be released after 906 * isolation step. In that case, we shouldn't try migration. 907 */ 908 VM_BUG_ON_PAGE(!PageIsolated(page), page); 909 if (!PageMovable(page)) { 910 rc = MIGRATEPAGE_SUCCESS; 911 __ClearPageIsolated(page); 912 goto out; 913 } 914 915 rc = mapping->a_ops->migratepage(mapping, newpage, 916 page, mode); 917 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 918 !PageIsolated(page)); 919 } 920 921 /* 922 * When successful, old pagecache page->mapping must be cleared before 923 * page is freed; but stats require that PageAnon be left as PageAnon. 924 */ 925 if (rc == MIGRATEPAGE_SUCCESS) { 926 if (__PageMovable(page)) { 927 VM_BUG_ON_PAGE(!PageIsolated(page), page); 928 929 /* 930 * We clear PG_movable under page_lock so any compactor 931 * cannot try to migrate this page. 932 */ 933 __ClearPageIsolated(page); 934 } 935 936 /* 937 * Anonymous and movable page->mapping will be cleared by 938 * free_pages_prepare so don't reset it here for keeping 939 * the type to work PageAnon, for example. 940 */ 941 if (!PageMappingFlags(page)) 942 page->mapping = NULL; 943 944 if (likely(!is_zone_device_page(newpage))) 945 flush_dcache_page(newpage); 946 947 } 948 out: 949 return rc; 950 } 951 952 static int __unmap_and_move(struct page *page, struct page *newpage, 953 int force, enum migrate_mode mode) 954 { 955 int rc = -EAGAIN; 956 bool page_was_mapped = false; 957 struct anon_vma *anon_vma = NULL; 958 bool is_lru = !__PageMovable(page); 959 960 if (!trylock_page(page)) { 961 if (!force || mode == MIGRATE_ASYNC) 962 goto out; 963 964 /* 965 * It's not safe for direct compaction to call lock_page. 966 * For example, during page readahead pages are added locked 967 * to the LRU. Later, when the IO completes the pages are 968 * marked uptodate and unlocked. However, the queueing 969 * could be merging multiple pages for one bio (e.g. 970 * mpage_readahead). If an allocation happens for the 971 * second or third page, the process can end up locking 972 * the same page twice and deadlocking. Rather than 973 * trying to be clever about what pages can be locked, 974 * avoid the use of lock_page for direct compaction 975 * altogether. 976 */ 977 if (current->flags & PF_MEMALLOC) 978 goto out; 979 980 lock_page(page); 981 } 982 983 if (PageWriteback(page)) { 984 /* 985 * Only in the case of a full synchronous migration is it 986 * necessary to wait for PageWriteback. In the async case, 987 * the retry loop is too short and in the sync-light case, 988 * the overhead of stalling is too much 989 */ 990 switch (mode) { 991 case MIGRATE_SYNC: 992 case MIGRATE_SYNC_NO_COPY: 993 break; 994 default: 995 rc = -EBUSY; 996 goto out_unlock; 997 } 998 if (!force) 999 goto out_unlock; 1000 wait_on_page_writeback(page); 1001 } 1002 1003 /* 1004 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case, 1005 * we cannot notice that anon_vma is freed while we migrates a page. 1006 * This get_anon_vma() delays freeing anon_vma pointer until the end 1007 * of migration. File cache pages are no problem because of page_lock() 1008 * File Caches may use write_page() or lock_page() in migration, then, 1009 * just care Anon page here. 1010 * 1011 * Only page_get_anon_vma() understands the subtleties of 1012 * getting a hold on an anon_vma from outside one of its mms. 1013 * But if we cannot get anon_vma, then we won't need it anyway, 1014 * because that implies that the anon page is no longer mapped 1015 * (and cannot be remapped so long as we hold the page lock). 1016 */ 1017 if (PageAnon(page) && !PageKsm(page)) 1018 anon_vma = page_get_anon_vma(page); 1019 1020 /* 1021 * Block others from accessing the new page when we get around to 1022 * establishing additional references. We are usually the only one 1023 * holding a reference to newpage at this point. We used to have a BUG 1024 * here if trylock_page(newpage) fails, but would like to allow for 1025 * cases where there might be a race with the previous use of newpage. 1026 * This is much like races on refcount of oldpage: just don't BUG(). 1027 */ 1028 if (unlikely(!trylock_page(newpage))) 1029 goto out_unlock; 1030 1031 if (unlikely(!is_lru)) { 1032 rc = move_to_new_page(newpage, page, mode); 1033 goto out_unlock_both; 1034 } 1035 1036 /* 1037 * Corner case handling: 1038 * 1. When a new swap-cache page is read into, it is added to the LRU 1039 * and treated as swapcache but it has no rmap yet. 1040 * Calling try_to_unmap() against a page->mapping==NULL page will 1041 * trigger a BUG. So handle it here. 1042 * 2. An orphaned page (see truncate_cleanup_page) might have 1043 * fs-private metadata. The page can be picked up due to memory 1044 * offlining. Everywhere else except page reclaim, the page is 1045 * invisible to the vm, so the page can not be migrated. So try to 1046 * free the metadata, so the page can be freed. 1047 */ 1048 if (!page->mapping) { 1049 VM_BUG_ON_PAGE(PageAnon(page), page); 1050 if (page_has_private(page)) { 1051 try_to_free_buffers(page); 1052 goto out_unlock_both; 1053 } 1054 } else if (page_mapped(page)) { 1055 /* Establish migration ptes */ 1056 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1057 page); 1058 try_to_migrate(page, 0); 1059 page_was_mapped = true; 1060 } 1061 1062 if (!page_mapped(page)) 1063 rc = move_to_new_page(newpage, page, mode); 1064 1065 if (page_was_mapped) 1066 remove_migration_ptes(page, 1067 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1068 1069 out_unlock_both: 1070 unlock_page(newpage); 1071 out_unlock: 1072 /* Drop an anon_vma reference if we took one */ 1073 if (anon_vma) 1074 put_anon_vma(anon_vma); 1075 unlock_page(page); 1076 out: 1077 /* 1078 * If migration is successful, decrease refcount of the newpage 1079 * which will not free the page because new page owner increased 1080 * refcounter. As well, if it is LRU page, add the page to LRU 1081 * list in here. Use the old state of the isolated source page to 1082 * determine if we migrated a LRU page. newpage was already unlocked 1083 * and possibly modified by its owner - don't rely on the page 1084 * state. 1085 */ 1086 if (rc == MIGRATEPAGE_SUCCESS) { 1087 if (unlikely(!is_lru)) 1088 put_page(newpage); 1089 else 1090 putback_lru_page(newpage); 1091 } 1092 1093 return rc; 1094 } 1095 1096 1097 /* 1098 * node_demotion[] example: 1099 * 1100 * Consider a system with two sockets. Each socket has 1101 * three classes of memory attached: fast, medium and slow. 1102 * Each memory class is placed in its own NUMA node. The 1103 * CPUs are placed in the node with the "fast" memory. The 1104 * 6 NUMA nodes (0-5) might be split among the sockets like 1105 * this: 1106 * 1107 * Socket A: 0, 1, 2 1108 * Socket B: 3, 4, 5 1109 * 1110 * When Node 0 fills up, its memory should be migrated to 1111 * Node 1. When Node 1 fills up, it should be migrated to 1112 * Node 2. The migration path start on the nodes with the 1113 * processors (since allocations default to this node) and 1114 * fast memory, progress through medium and end with the 1115 * slow memory: 1116 * 1117 * 0 -> 1 -> 2 -> stop 1118 * 3 -> 4 -> 5 -> stop 1119 * 1120 * This is represented in the node_demotion[] like this: 1121 * 1122 * { 1, // Node 0 migrates to 1 1123 * 2, // Node 1 migrates to 2 1124 * -1, // Node 2 does not migrate 1125 * 4, // Node 3 migrates to 4 1126 * 5, // Node 4 migrates to 5 1127 * -1} // Node 5 does not migrate 1128 */ 1129 1130 /* 1131 * Writes to this array occur without locking. Cycles are 1132 * not allowed: Node X demotes to Y which demotes to X... 1133 * 1134 * If multiple reads are performed, a single rcu_read_lock() 1135 * must be held over all reads to ensure that no cycles are 1136 * observed. 1137 */ 1138 static int node_demotion[MAX_NUMNODES] __read_mostly = 1139 {[0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE}; 1140 1141 /** 1142 * next_demotion_node() - Get the next node in the demotion path 1143 * @node: The starting node to lookup the next node 1144 * 1145 * Return: node id for next memory node in the demotion path hierarchy 1146 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 1147 * @node online or guarantee that it *continues* to be the next demotion 1148 * target. 1149 */ 1150 int next_demotion_node(int node) 1151 { 1152 int target; 1153 1154 /* 1155 * node_demotion[] is updated without excluding this 1156 * function from running. RCU doesn't provide any 1157 * compiler barriers, so the READ_ONCE() is required 1158 * to avoid compiler reordering or read merging. 1159 * 1160 * Make sure to use RCU over entire code blocks if 1161 * node_demotion[] reads need to be consistent. 1162 */ 1163 rcu_read_lock(); 1164 target = READ_ONCE(node_demotion[node]); 1165 rcu_read_unlock(); 1166 1167 return target; 1168 } 1169 1170 /* 1171 * Obtain the lock on page, remove all ptes and migrate the page 1172 * to the newly allocated page in newpage. 1173 */ 1174 static int unmap_and_move(new_page_t get_new_page, 1175 free_page_t put_new_page, 1176 unsigned long private, struct page *page, 1177 int force, enum migrate_mode mode, 1178 enum migrate_reason reason, 1179 struct list_head *ret) 1180 { 1181 int rc = MIGRATEPAGE_SUCCESS; 1182 struct page *newpage = NULL; 1183 1184 if (!thp_migration_supported() && PageTransHuge(page)) 1185 return -ENOSYS; 1186 1187 if (page_count(page) == 1) { 1188 /* page was freed from under us. So we are done. */ 1189 ClearPageActive(page); 1190 ClearPageUnevictable(page); 1191 if (unlikely(__PageMovable(page))) { 1192 lock_page(page); 1193 if (!PageMovable(page)) 1194 __ClearPageIsolated(page); 1195 unlock_page(page); 1196 } 1197 goto out; 1198 } 1199 1200 newpage = get_new_page(page, private); 1201 if (!newpage) 1202 return -ENOMEM; 1203 1204 rc = __unmap_and_move(page, newpage, force, mode); 1205 if (rc == MIGRATEPAGE_SUCCESS) 1206 set_page_owner_migrate_reason(newpage, reason); 1207 1208 out: 1209 if (rc != -EAGAIN) { 1210 /* 1211 * A page that has been migrated has all references 1212 * removed and will be freed. A page that has not been 1213 * migrated will have kept its references and be restored. 1214 */ 1215 list_del(&page->lru); 1216 } 1217 1218 /* 1219 * If migration is successful, releases reference grabbed during 1220 * isolation. Otherwise, restore the page to right list unless 1221 * we want to retry. 1222 */ 1223 if (rc == MIGRATEPAGE_SUCCESS) { 1224 /* 1225 * Compaction can migrate also non-LRU pages which are 1226 * not accounted to NR_ISOLATED_*. They can be recognized 1227 * as __PageMovable 1228 */ 1229 if (likely(!__PageMovable(page))) 1230 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1231 page_is_file_lru(page), -thp_nr_pages(page)); 1232 1233 if (reason != MR_MEMORY_FAILURE) 1234 /* 1235 * We release the page in page_handle_poison. 1236 */ 1237 put_page(page); 1238 } else { 1239 if (rc != -EAGAIN) 1240 list_add_tail(&page->lru, ret); 1241 1242 if (put_new_page) 1243 put_new_page(newpage, private); 1244 else 1245 put_page(newpage); 1246 } 1247 1248 return rc; 1249 } 1250 1251 /* 1252 * Counterpart of unmap_and_move_page() for hugepage migration. 1253 * 1254 * This function doesn't wait the completion of hugepage I/O 1255 * because there is no race between I/O and migration for hugepage. 1256 * Note that currently hugepage I/O occurs only in direct I/O 1257 * where no lock is held and PG_writeback is irrelevant, 1258 * and writeback status of all subpages are counted in the reference 1259 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1260 * under direct I/O, the reference of the head page is 512 and a bit more.) 1261 * This means that when we try to migrate hugepage whose subpages are 1262 * doing direct I/O, some references remain after try_to_unmap() and 1263 * hugepage migration fails without data corruption. 1264 * 1265 * There is also no race when direct I/O is issued on the page under migration, 1266 * because then pte is replaced with migration swap entry and direct I/O code 1267 * will wait in the page fault for migration to complete. 1268 */ 1269 static int unmap_and_move_huge_page(new_page_t get_new_page, 1270 free_page_t put_new_page, unsigned long private, 1271 struct page *hpage, int force, 1272 enum migrate_mode mode, int reason, 1273 struct list_head *ret) 1274 { 1275 int rc = -EAGAIN; 1276 int page_was_mapped = 0; 1277 struct page *new_hpage; 1278 struct anon_vma *anon_vma = NULL; 1279 struct address_space *mapping = NULL; 1280 1281 /* 1282 * Migratability of hugepages depends on architectures and their size. 1283 * This check is necessary because some callers of hugepage migration 1284 * like soft offline and memory hotremove don't walk through page 1285 * tables or check whether the hugepage is pmd-based or not before 1286 * kicking migration. 1287 */ 1288 if (!hugepage_migration_supported(page_hstate(hpage))) { 1289 list_move_tail(&hpage->lru, ret); 1290 return -ENOSYS; 1291 } 1292 1293 if (page_count(hpage) == 1) { 1294 /* page was freed from under us. So we are done. */ 1295 putback_active_hugepage(hpage); 1296 return MIGRATEPAGE_SUCCESS; 1297 } 1298 1299 new_hpage = get_new_page(hpage, private); 1300 if (!new_hpage) 1301 return -ENOMEM; 1302 1303 if (!trylock_page(hpage)) { 1304 if (!force) 1305 goto out; 1306 switch (mode) { 1307 case MIGRATE_SYNC: 1308 case MIGRATE_SYNC_NO_COPY: 1309 break; 1310 default: 1311 goto out; 1312 } 1313 lock_page(hpage); 1314 } 1315 1316 /* 1317 * Check for pages which are in the process of being freed. Without 1318 * page_mapping() set, hugetlbfs specific move page routine will not 1319 * be called and we could leak usage counts for subpools. 1320 */ 1321 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { 1322 rc = -EBUSY; 1323 goto out_unlock; 1324 } 1325 1326 if (PageAnon(hpage)) 1327 anon_vma = page_get_anon_vma(hpage); 1328 1329 if (unlikely(!trylock_page(new_hpage))) 1330 goto put_anon; 1331 1332 if (page_mapped(hpage)) { 1333 bool mapping_locked = false; 1334 enum ttu_flags ttu = 0; 1335 1336 if (!PageAnon(hpage)) { 1337 /* 1338 * In shared mappings, try_to_unmap could potentially 1339 * call huge_pmd_unshare. Because of this, take 1340 * semaphore in write mode here and set TTU_RMAP_LOCKED 1341 * to let lower levels know we have taken the lock. 1342 */ 1343 mapping = hugetlb_page_mapping_lock_write(hpage); 1344 if (unlikely(!mapping)) 1345 goto unlock_put_anon; 1346 1347 mapping_locked = true; 1348 ttu |= TTU_RMAP_LOCKED; 1349 } 1350 1351 try_to_migrate(hpage, ttu); 1352 page_was_mapped = 1; 1353 1354 if (mapping_locked) 1355 i_mmap_unlock_write(mapping); 1356 } 1357 1358 if (!page_mapped(hpage)) 1359 rc = move_to_new_page(new_hpage, hpage, mode); 1360 1361 if (page_was_mapped) 1362 remove_migration_ptes(hpage, 1363 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1364 1365 unlock_put_anon: 1366 unlock_page(new_hpage); 1367 1368 put_anon: 1369 if (anon_vma) 1370 put_anon_vma(anon_vma); 1371 1372 if (rc == MIGRATEPAGE_SUCCESS) { 1373 move_hugetlb_state(hpage, new_hpage, reason); 1374 put_new_page = NULL; 1375 } 1376 1377 out_unlock: 1378 unlock_page(hpage); 1379 out: 1380 if (rc == MIGRATEPAGE_SUCCESS) 1381 putback_active_hugepage(hpage); 1382 else if (rc != -EAGAIN) 1383 list_move_tail(&hpage->lru, ret); 1384 1385 /* 1386 * If migration was not successful and there's a freeing callback, use 1387 * it. Otherwise, put_page() will drop the reference grabbed during 1388 * isolation. 1389 */ 1390 if (put_new_page) 1391 put_new_page(new_hpage, private); 1392 else 1393 putback_active_hugepage(new_hpage); 1394 1395 return rc; 1396 } 1397 1398 static inline int try_split_thp(struct page *page, struct page **page2, 1399 struct list_head *from) 1400 { 1401 int rc = 0; 1402 1403 lock_page(page); 1404 rc = split_huge_page_to_list(page, from); 1405 unlock_page(page); 1406 if (!rc) 1407 list_safe_reset_next(page, *page2, lru); 1408 1409 return rc; 1410 } 1411 1412 /* 1413 * migrate_pages - migrate the pages specified in a list, to the free pages 1414 * supplied as the target for the page migration 1415 * 1416 * @from: The list of pages to be migrated. 1417 * @get_new_page: The function used to allocate free pages to be used 1418 * as the target of the page migration. 1419 * @put_new_page: The function used to free target pages if migration 1420 * fails, or NULL if no special handling is necessary. 1421 * @private: Private data to be passed on to get_new_page() 1422 * @mode: The migration mode that specifies the constraints for 1423 * page migration, if any. 1424 * @reason: The reason for page migration. 1425 * @ret_succeeded: Set to the number of pages migrated successfully if 1426 * the caller passes a non-NULL pointer. 1427 * 1428 * The function returns after 10 attempts or if no pages are movable any more 1429 * because the list has become empty or no retryable pages exist any more. 1430 * It is caller's responsibility to call putback_movable_pages() to return pages 1431 * to the LRU or free list only if ret != 0. 1432 * 1433 * Returns the number of pages that were not migrated, or an error code. 1434 */ 1435 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1436 free_page_t put_new_page, unsigned long private, 1437 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1438 { 1439 int retry = 1; 1440 int thp_retry = 1; 1441 int nr_failed = 0; 1442 int nr_succeeded = 0; 1443 int nr_thp_succeeded = 0; 1444 int nr_thp_failed = 0; 1445 int nr_thp_split = 0; 1446 int pass = 0; 1447 bool is_thp = false; 1448 struct page *page; 1449 struct page *page2; 1450 int swapwrite = current->flags & PF_SWAPWRITE; 1451 int rc, nr_subpages; 1452 LIST_HEAD(ret_pages); 1453 bool nosplit = (reason == MR_NUMA_MISPLACED); 1454 1455 trace_mm_migrate_pages_start(mode, reason); 1456 1457 if (!swapwrite) 1458 current->flags |= PF_SWAPWRITE; 1459 1460 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1461 retry = 0; 1462 thp_retry = 0; 1463 1464 list_for_each_entry_safe(page, page2, from, lru) { 1465 retry: 1466 /* 1467 * THP statistics is based on the source huge page. 1468 * Capture required information that might get lost 1469 * during migration. 1470 */ 1471 is_thp = PageTransHuge(page) && !PageHuge(page); 1472 nr_subpages = thp_nr_pages(page); 1473 cond_resched(); 1474 1475 if (PageHuge(page)) 1476 rc = unmap_and_move_huge_page(get_new_page, 1477 put_new_page, private, page, 1478 pass > 2, mode, reason, 1479 &ret_pages); 1480 else 1481 rc = unmap_and_move(get_new_page, put_new_page, 1482 private, page, pass > 2, mode, 1483 reason, &ret_pages); 1484 /* 1485 * The rules are: 1486 * Success: non hugetlb page will be freed, hugetlb 1487 * page will be put back 1488 * -EAGAIN: stay on the from list 1489 * -ENOMEM: stay on the from list 1490 * Other errno: put on ret_pages list then splice to 1491 * from list 1492 */ 1493 switch(rc) { 1494 /* 1495 * THP migration might be unsupported or the 1496 * allocation could've failed so we should 1497 * retry on the same page with the THP split 1498 * to base pages. 1499 * 1500 * Head page is retried immediately and tail 1501 * pages are added to the tail of the list so 1502 * we encounter them after the rest of the list 1503 * is processed. 1504 */ 1505 case -ENOSYS: 1506 /* THP migration is unsupported */ 1507 if (is_thp) { 1508 if (!try_split_thp(page, &page2, from)) { 1509 nr_thp_split++; 1510 goto retry; 1511 } 1512 1513 nr_thp_failed++; 1514 nr_failed += nr_subpages; 1515 break; 1516 } 1517 1518 /* Hugetlb migration is unsupported */ 1519 nr_failed++; 1520 break; 1521 case -ENOMEM: 1522 /* 1523 * When memory is low, don't bother to try to migrate 1524 * other pages, just exit. 1525 * THP NUMA faulting doesn't split THP to retry. 1526 */ 1527 if (is_thp && !nosplit) { 1528 if (!try_split_thp(page, &page2, from)) { 1529 nr_thp_split++; 1530 goto retry; 1531 } 1532 1533 nr_thp_failed++; 1534 nr_failed += nr_subpages; 1535 goto out; 1536 } 1537 nr_failed++; 1538 goto out; 1539 case -EAGAIN: 1540 if (is_thp) { 1541 thp_retry++; 1542 break; 1543 } 1544 retry++; 1545 break; 1546 case MIGRATEPAGE_SUCCESS: 1547 if (is_thp) { 1548 nr_thp_succeeded++; 1549 nr_succeeded += nr_subpages; 1550 break; 1551 } 1552 nr_succeeded++; 1553 break; 1554 default: 1555 /* 1556 * Permanent failure (-EBUSY, etc.): 1557 * unlike -EAGAIN case, the failed page is 1558 * removed from migration page list and not 1559 * retried in the next outer loop. 1560 */ 1561 if (is_thp) { 1562 nr_thp_failed++; 1563 nr_failed += nr_subpages; 1564 break; 1565 } 1566 nr_failed++; 1567 break; 1568 } 1569 } 1570 } 1571 nr_failed += retry + thp_retry; 1572 nr_thp_failed += thp_retry; 1573 rc = nr_failed; 1574 out: 1575 /* 1576 * Put the permanent failure page back to migration list, they 1577 * will be put back to the right list by the caller. 1578 */ 1579 list_splice(&ret_pages, from); 1580 1581 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1582 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1583 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1584 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1585 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1586 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1587 nr_thp_failed, nr_thp_split, mode, reason); 1588 1589 if (!swapwrite) 1590 current->flags &= ~PF_SWAPWRITE; 1591 1592 if (ret_succeeded) 1593 *ret_succeeded = nr_succeeded; 1594 1595 return rc; 1596 } 1597 1598 struct page *alloc_migration_target(struct page *page, unsigned long private) 1599 { 1600 struct migration_target_control *mtc; 1601 gfp_t gfp_mask; 1602 unsigned int order = 0; 1603 struct page *new_page = NULL; 1604 int nid; 1605 int zidx; 1606 1607 mtc = (struct migration_target_control *)private; 1608 gfp_mask = mtc->gfp_mask; 1609 nid = mtc->nid; 1610 if (nid == NUMA_NO_NODE) 1611 nid = page_to_nid(page); 1612 1613 if (PageHuge(page)) { 1614 struct hstate *h = page_hstate(compound_head(page)); 1615 1616 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1617 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1618 } 1619 1620 if (PageTransHuge(page)) { 1621 /* 1622 * clear __GFP_RECLAIM to make the migration callback 1623 * consistent with regular THP allocations. 1624 */ 1625 gfp_mask &= ~__GFP_RECLAIM; 1626 gfp_mask |= GFP_TRANSHUGE; 1627 order = HPAGE_PMD_ORDER; 1628 } 1629 zidx = zone_idx(page_zone(page)); 1630 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1631 gfp_mask |= __GFP_HIGHMEM; 1632 1633 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask); 1634 1635 if (new_page && PageTransHuge(new_page)) 1636 prep_transhuge_page(new_page); 1637 1638 return new_page; 1639 } 1640 1641 #ifdef CONFIG_NUMA 1642 1643 static int store_status(int __user *status, int start, int value, int nr) 1644 { 1645 while (nr-- > 0) { 1646 if (put_user(value, status + start)) 1647 return -EFAULT; 1648 start++; 1649 } 1650 1651 return 0; 1652 } 1653 1654 static int do_move_pages_to_node(struct mm_struct *mm, 1655 struct list_head *pagelist, int node) 1656 { 1657 int err; 1658 struct migration_target_control mtc = { 1659 .nid = node, 1660 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1661 }; 1662 1663 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1664 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1665 if (err) 1666 putback_movable_pages(pagelist); 1667 return err; 1668 } 1669 1670 /* 1671 * Resolves the given address to a struct page, isolates it from the LRU and 1672 * puts it to the given pagelist. 1673 * Returns: 1674 * errno - if the page cannot be found/isolated 1675 * 0 - when it doesn't have to be migrated because it is already on the 1676 * target node 1677 * 1 - when it has been queued 1678 */ 1679 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1680 int node, struct list_head *pagelist, bool migrate_all) 1681 { 1682 struct vm_area_struct *vma; 1683 struct page *page; 1684 unsigned int follflags; 1685 int err; 1686 1687 mmap_read_lock(mm); 1688 err = -EFAULT; 1689 vma = find_vma(mm, addr); 1690 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1691 goto out; 1692 1693 /* FOLL_DUMP to ignore special (like zero) pages */ 1694 follflags = FOLL_GET | FOLL_DUMP; 1695 page = follow_page(vma, addr, follflags); 1696 1697 err = PTR_ERR(page); 1698 if (IS_ERR(page)) 1699 goto out; 1700 1701 err = -ENOENT; 1702 if (!page) 1703 goto out; 1704 1705 err = 0; 1706 if (page_to_nid(page) == node) 1707 goto out_putpage; 1708 1709 err = -EACCES; 1710 if (page_mapcount(page) > 1 && !migrate_all) 1711 goto out_putpage; 1712 1713 if (PageHuge(page)) { 1714 if (PageHead(page)) { 1715 isolate_huge_page(page, pagelist); 1716 err = 1; 1717 } 1718 } else { 1719 struct page *head; 1720 1721 head = compound_head(page); 1722 err = isolate_lru_page(head); 1723 if (err) 1724 goto out_putpage; 1725 1726 err = 1; 1727 list_add_tail(&head->lru, pagelist); 1728 mod_node_page_state(page_pgdat(head), 1729 NR_ISOLATED_ANON + page_is_file_lru(head), 1730 thp_nr_pages(head)); 1731 } 1732 out_putpage: 1733 /* 1734 * Either remove the duplicate refcount from 1735 * isolate_lru_page() or drop the page ref if it was 1736 * not isolated. 1737 */ 1738 put_page(page); 1739 out: 1740 mmap_read_unlock(mm); 1741 return err; 1742 } 1743 1744 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1745 struct list_head *pagelist, int __user *status, 1746 int start, int i, unsigned long nr_pages) 1747 { 1748 int err; 1749 1750 if (list_empty(pagelist)) 1751 return 0; 1752 1753 err = do_move_pages_to_node(mm, pagelist, node); 1754 if (err) { 1755 /* 1756 * Positive err means the number of failed 1757 * pages to migrate. Since we are going to 1758 * abort and return the number of non-migrated 1759 * pages, so need to include the rest of the 1760 * nr_pages that have not been attempted as 1761 * well. 1762 */ 1763 if (err > 0) 1764 err += nr_pages - i - 1; 1765 return err; 1766 } 1767 return store_status(status, start, node, i - start); 1768 } 1769 1770 /* 1771 * Migrate an array of page address onto an array of nodes and fill 1772 * the corresponding array of status. 1773 */ 1774 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1775 unsigned long nr_pages, 1776 const void __user * __user *pages, 1777 const int __user *nodes, 1778 int __user *status, int flags) 1779 { 1780 int current_node = NUMA_NO_NODE; 1781 LIST_HEAD(pagelist); 1782 int start, i; 1783 int err = 0, err1; 1784 1785 lru_cache_disable(); 1786 1787 for (i = start = 0; i < nr_pages; i++) { 1788 const void __user *p; 1789 unsigned long addr; 1790 int node; 1791 1792 err = -EFAULT; 1793 if (get_user(p, pages + i)) 1794 goto out_flush; 1795 if (get_user(node, nodes + i)) 1796 goto out_flush; 1797 addr = (unsigned long)untagged_addr(p); 1798 1799 err = -ENODEV; 1800 if (node < 0 || node >= MAX_NUMNODES) 1801 goto out_flush; 1802 if (!node_state(node, N_MEMORY)) 1803 goto out_flush; 1804 1805 err = -EACCES; 1806 if (!node_isset(node, task_nodes)) 1807 goto out_flush; 1808 1809 if (current_node == NUMA_NO_NODE) { 1810 current_node = node; 1811 start = i; 1812 } else if (node != current_node) { 1813 err = move_pages_and_store_status(mm, current_node, 1814 &pagelist, status, start, i, nr_pages); 1815 if (err) 1816 goto out; 1817 start = i; 1818 current_node = node; 1819 } 1820 1821 /* 1822 * Errors in the page lookup or isolation are not fatal and we simply 1823 * report them via status 1824 */ 1825 err = add_page_for_migration(mm, addr, current_node, 1826 &pagelist, flags & MPOL_MF_MOVE_ALL); 1827 1828 if (err > 0) { 1829 /* The page is successfully queued for migration */ 1830 continue; 1831 } 1832 1833 /* 1834 * If the page is already on the target node (!err), store the 1835 * node, otherwise, store the err. 1836 */ 1837 err = store_status(status, i, err ? : current_node, 1); 1838 if (err) 1839 goto out_flush; 1840 1841 err = move_pages_and_store_status(mm, current_node, &pagelist, 1842 status, start, i, nr_pages); 1843 if (err) 1844 goto out; 1845 current_node = NUMA_NO_NODE; 1846 } 1847 out_flush: 1848 /* Make sure we do not overwrite the existing error */ 1849 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1850 status, start, i, nr_pages); 1851 if (err >= 0) 1852 err = err1; 1853 out: 1854 lru_cache_enable(); 1855 return err; 1856 } 1857 1858 /* 1859 * Determine the nodes of an array of pages and store it in an array of status. 1860 */ 1861 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1862 const void __user **pages, int *status) 1863 { 1864 unsigned long i; 1865 1866 mmap_read_lock(mm); 1867 1868 for (i = 0; i < nr_pages; i++) { 1869 unsigned long addr = (unsigned long)(*pages); 1870 struct vm_area_struct *vma; 1871 struct page *page; 1872 int err = -EFAULT; 1873 1874 vma = vma_lookup(mm, addr); 1875 if (!vma) 1876 goto set_status; 1877 1878 /* FOLL_DUMP to ignore special (like zero) pages */ 1879 page = follow_page(vma, addr, FOLL_DUMP); 1880 1881 err = PTR_ERR(page); 1882 if (IS_ERR(page)) 1883 goto set_status; 1884 1885 err = page ? page_to_nid(page) : -ENOENT; 1886 set_status: 1887 *status = err; 1888 1889 pages++; 1890 status++; 1891 } 1892 1893 mmap_read_unlock(mm); 1894 } 1895 1896 static int get_compat_pages_array(const void __user *chunk_pages[], 1897 const void __user * __user *pages, 1898 unsigned long chunk_nr) 1899 { 1900 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1901 compat_uptr_t p; 1902 int i; 1903 1904 for (i = 0; i < chunk_nr; i++) { 1905 if (get_user(p, pages32 + i)) 1906 return -EFAULT; 1907 chunk_pages[i] = compat_ptr(p); 1908 } 1909 1910 return 0; 1911 } 1912 1913 /* 1914 * Determine the nodes of a user array of pages and store it in 1915 * a user array of status. 1916 */ 1917 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1918 const void __user * __user *pages, 1919 int __user *status) 1920 { 1921 #define DO_PAGES_STAT_CHUNK_NR 16 1922 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1923 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1924 1925 while (nr_pages) { 1926 unsigned long chunk_nr; 1927 1928 chunk_nr = nr_pages; 1929 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1930 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1931 1932 if (in_compat_syscall()) { 1933 if (get_compat_pages_array(chunk_pages, pages, 1934 chunk_nr)) 1935 break; 1936 } else { 1937 if (copy_from_user(chunk_pages, pages, 1938 chunk_nr * sizeof(*chunk_pages))) 1939 break; 1940 } 1941 1942 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1943 1944 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1945 break; 1946 1947 pages += chunk_nr; 1948 status += chunk_nr; 1949 nr_pages -= chunk_nr; 1950 } 1951 return nr_pages ? -EFAULT : 0; 1952 } 1953 1954 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1955 { 1956 struct task_struct *task; 1957 struct mm_struct *mm; 1958 1959 /* 1960 * There is no need to check if current process has the right to modify 1961 * the specified process when they are same. 1962 */ 1963 if (!pid) { 1964 mmget(current->mm); 1965 *mem_nodes = cpuset_mems_allowed(current); 1966 return current->mm; 1967 } 1968 1969 /* Find the mm_struct */ 1970 rcu_read_lock(); 1971 task = find_task_by_vpid(pid); 1972 if (!task) { 1973 rcu_read_unlock(); 1974 return ERR_PTR(-ESRCH); 1975 } 1976 get_task_struct(task); 1977 1978 /* 1979 * Check if this process has the right to modify the specified 1980 * process. Use the regular "ptrace_may_access()" checks. 1981 */ 1982 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1983 rcu_read_unlock(); 1984 mm = ERR_PTR(-EPERM); 1985 goto out; 1986 } 1987 rcu_read_unlock(); 1988 1989 mm = ERR_PTR(security_task_movememory(task)); 1990 if (IS_ERR(mm)) 1991 goto out; 1992 *mem_nodes = cpuset_mems_allowed(task); 1993 mm = get_task_mm(task); 1994 out: 1995 put_task_struct(task); 1996 if (!mm) 1997 mm = ERR_PTR(-EINVAL); 1998 return mm; 1999 } 2000 2001 /* 2002 * Move a list of pages in the address space of the currently executing 2003 * process. 2004 */ 2005 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2006 const void __user * __user *pages, 2007 const int __user *nodes, 2008 int __user *status, int flags) 2009 { 2010 struct mm_struct *mm; 2011 int err; 2012 nodemask_t task_nodes; 2013 2014 /* Check flags */ 2015 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2016 return -EINVAL; 2017 2018 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2019 return -EPERM; 2020 2021 mm = find_mm_struct(pid, &task_nodes); 2022 if (IS_ERR(mm)) 2023 return PTR_ERR(mm); 2024 2025 if (nodes) 2026 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2027 nodes, status, flags); 2028 else 2029 err = do_pages_stat(mm, nr_pages, pages, status); 2030 2031 mmput(mm); 2032 return err; 2033 } 2034 2035 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2036 const void __user * __user *, pages, 2037 const int __user *, nodes, 2038 int __user *, status, int, flags) 2039 { 2040 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2041 } 2042 2043 #ifdef CONFIG_NUMA_BALANCING 2044 /* 2045 * Returns true if this is a safe migration target node for misplaced NUMA 2046 * pages. Currently it only checks the watermarks which crude 2047 */ 2048 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2049 unsigned long nr_migrate_pages) 2050 { 2051 int z; 2052 2053 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2054 struct zone *zone = pgdat->node_zones + z; 2055 2056 if (!populated_zone(zone)) 2057 continue; 2058 2059 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2060 if (!zone_watermark_ok(zone, 0, 2061 high_wmark_pages(zone) + 2062 nr_migrate_pages, 2063 ZONE_MOVABLE, 0)) 2064 continue; 2065 return true; 2066 } 2067 return false; 2068 } 2069 2070 static struct page *alloc_misplaced_dst_page(struct page *page, 2071 unsigned long data) 2072 { 2073 int nid = (int) data; 2074 struct page *newpage; 2075 2076 newpage = __alloc_pages_node(nid, 2077 (GFP_HIGHUSER_MOVABLE | 2078 __GFP_THISNODE | __GFP_NOMEMALLOC | 2079 __GFP_NORETRY | __GFP_NOWARN) & 2080 ~__GFP_RECLAIM, 0); 2081 2082 return newpage; 2083 } 2084 2085 static struct page *alloc_misplaced_dst_page_thp(struct page *page, 2086 unsigned long data) 2087 { 2088 int nid = (int) data; 2089 struct page *newpage; 2090 2091 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2092 HPAGE_PMD_ORDER); 2093 if (!newpage) 2094 goto out; 2095 2096 prep_transhuge_page(newpage); 2097 2098 out: 2099 return newpage; 2100 } 2101 2102 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2103 { 2104 int page_lru; 2105 int nr_pages = thp_nr_pages(page); 2106 2107 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2108 2109 /* Do not migrate THP mapped by multiple processes */ 2110 if (PageTransHuge(page) && total_mapcount(page) > 1) 2111 return 0; 2112 2113 /* Avoid migrating to a node that is nearly full */ 2114 if (!migrate_balanced_pgdat(pgdat, nr_pages)) 2115 return 0; 2116 2117 if (isolate_lru_page(page)) 2118 return 0; 2119 2120 page_lru = page_is_file_lru(page); 2121 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2122 nr_pages); 2123 2124 /* 2125 * Isolating the page has taken another reference, so the 2126 * caller's reference can be safely dropped without the page 2127 * disappearing underneath us during migration. 2128 */ 2129 put_page(page); 2130 return 1; 2131 } 2132 2133 /* 2134 * Attempt to migrate a misplaced page to the specified destination 2135 * node. Caller is expected to have an elevated reference count on 2136 * the page that will be dropped by this function before returning. 2137 */ 2138 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2139 int node) 2140 { 2141 pg_data_t *pgdat = NODE_DATA(node); 2142 int isolated; 2143 int nr_remaining; 2144 LIST_HEAD(migratepages); 2145 new_page_t *new; 2146 bool compound; 2147 int nr_pages = thp_nr_pages(page); 2148 2149 /* 2150 * PTE mapped THP or HugeTLB page can't reach here so the page could 2151 * be either base page or THP. And it must be head page if it is 2152 * THP. 2153 */ 2154 compound = PageTransHuge(page); 2155 2156 if (compound) 2157 new = alloc_misplaced_dst_page_thp; 2158 else 2159 new = alloc_misplaced_dst_page; 2160 2161 /* 2162 * Don't migrate file pages that are mapped in multiple processes 2163 * with execute permissions as they are probably shared libraries. 2164 */ 2165 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2166 (vma->vm_flags & VM_EXEC)) 2167 goto out; 2168 2169 /* 2170 * Also do not migrate dirty pages as not all filesystems can move 2171 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2172 */ 2173 if (page_is_file_lru(page) && PageDirty(page)) 2174 goto out; 2175 2176 isolated = numamigrate_isolate_page(pgdat, page); 2177 if (!isolated) 2178 goto out; 2179 2180 list_add(&page->lru, &migratepages); 2181 nr_remaining = migrate_pages(&migratepages, *new, NULL, node, 2182 MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL); 2183 if (nr_remaining) { 2184 if (!list_empty(&migratepages)) { 2185 list_del(&page->lru); 2186 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2187 page_is_file_lru(page), -nr_pages); 2188 putback_lru_page(page); 2189 } 2190 isolated = 0; 2191 } else 2192 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages); 2193 BUG_ON(!list_empty(&migratepages)); 2194 return isolated; 2195 2196 out: 2197 put_page(page); 2198 return 0; 2199 } 2200 #endif /* CONFIG_NUMA_BALANCING */ 2201 #endif /* CONFIG_NUMA */ 2202 2203 #ifdef CONFIG_DEVICE_PRIVATE 2204 static int migrate_vma_collect_skip(unsigned long start, 2205 unsigned long end, 2206 struct mm_walk *walk) 2207 { 2208 struct migrate_vma *migrate = walk->private; 2209 unsigned long addr; 2210 2211 for (addr = start; addr < end; addr += PAGE_SIZE) { 2212 migrate->dst[migrate->npages] = 0; 2213 migrate->src[migrate->npages++] = 0; 2214 } 2215 2216 return 0; 2217 } 2218 2219 static int migrate_vma_collect_hole(unsigned long start, 2220 unsigned long end, 2221 __always_unused int depth, 2222 struct mm_walk *walk) 2223 { 2224 struct migrate_vma *migrate = walk->private; 2225 unsigned long addr; 2226 2227 /* Only allow populating anonymous memory. */ 2228 if (!vma_is_anonymous(walk->vma)) 2229 return migrate_vma_collect_skip(start, end, walk); 2230 2231 for (addr = start; addr < end; addr += PAGE_SIZE) { 2232 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2233 migrate->dst[migrate->npages] = 0; 2234 migrate->npages++; 2235 migrate->cpages++; 2236 } 2237 2238 return 0; 2239 } 2240 2241 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2242 unsigned long start, 2243 unsigned long end, 2244 struct mm_walk *walk) 2245 { 2246 struct migrate_vma *migrate = walk->private; 2247 struct vm_area_struct *vma = walk->vma; 2248 struct mm_struct *mm = vma->vm_mm; 2249 unsigned long addr = start, unmapped = 0; 2250 spinlock_t *ptl; 2251 pte_t *ptep; 2252 2253 again: 2254 if (pmd_none(*pmdp)) 2255 return migrate_vma_collect_hole(start, end, -1, walk); 2256 2257 if (pmd_trans_huge(*pmdp)) { 2258 struct page *page; 2259 2260 ptl = pmd_lock(mm, pmdp); 2261 if (unlikely(!pmd_trans_huge(*pmdp))) { 2262 spin_unlock(ptl); 2263 goto again; 2264 } 2265 2266 page = pmd_page(*pmdp); 2267 if (is_huge_zero_page(page)) { 2268 spin_unlock(ptl); 2269 split_huge_pmd(vma, pmdp, addr); 2270 if (pmd_trans_unstable(pmdp)) 2271 return migrate_vma_collect_skip(start, end, 2272 walk); 2273 } else { 2274 int ret; 2275 2276 get_page(page); 2277 spin_unlock(ptl); 2278 if (unlikely(!trylock_page(page))) 2279 return migrate_vma_collect_skip(start, end, 2280 walk); 2281 ret = split_huge_page(page); 2282 unlock_page(page); 2283 put_page(page); 2284 if (ret) 2285 return migrate_vma_collect_skip(start, end, 2286 walk); 2287 if (pmd_none(*pmdp)) 2288 return migrate_vma_collect_hole(start, end, -1, 2289 walk); 2290 } 2291 } 2292 2293 if (unlikely(pmd_bad(*pmdp))) 2294 return migrate_vma_collect_skip(start, end, walk); 2295 2296 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2297 arch_enter_lazy_mmu_mode(); 2298 2299 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2300 unsigned long mpfn = 0, pfn; 2301 struct page *page; 2302 swp_entry_t entry; 2303 pte_t pte; 2304 2305 pte = *ptep; 2306 2307 if (pte_none(pte)) { 2308 if (vma_is_anonymous(vma)) { 2309 mpfn = MIGRATE_PFN_MIGRATE; 2310 migrate->cpages++; 2311 } 2312 goto next; 2313 } 2314 2315 if (!pte_present(pte)) { 2316 /* 2317 * Only care about unaddressable device page special 2318 * page table entry. Other special swap entries are not 2319 * migratable, and we ignore regular swapped page. 2320 */ 2321 entry = pte_to_swp_entry(pte); 2322 if (!is_device_private_entry(entry)) 2323 goto next; 2324 2325 page = pfn_swap_entry_to_page(entry); 2326 if (!(migrate->flags & 2327 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2328 page->pgmap->owner != migrate->pgmap_owner) 2329 goto next; 2330 2331 mpfn = migrate_pfn(page_to_pfn(page)) | 2332 MIGRATE_PFN_MIGRATE; 2333 if (is_writable_device_private_entry(entry)) 2334 mpfn |= MIGRATE_PFN_WRITE; 2335 } else { 2336 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2337 goto next; 2338 pfn = pte_pfn(pte); 2339 if (is_zero_pfn(pfn)) { 2340 mpfn = MIGRATE_PFN_MIGRATE; 2341 migrate->cpages++; 2342 goto next; 2343 } 2344 page = vm_normal_page(migrate->vma, addr, pte); 2345 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2346 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2347 } 2348 2349 /* FIXME support THP */ 2350 if (!page || !page->mapping || PageTransCompound(page)) { 2351 mpfn = 0; 2352 goto next; 2353 } 2354 2355 /* 2356 * By getting a reference on the page we pin it and that blocks 2357 * any kind of migration. Side effect is that it "freezes" the 2358 * pte. 2359 * 2360 * We drop this reference after isolating the page from the lru 2361 * for non device page (device page are not on the lru and thus 2362 * can't be dropped from it). 2363 */ 2364 get_page(page); 2365 2366 /* 2367 * Optimize for the common case where page is only mapped once 2368 * in one process. If we can lock the page, then we can safely 2369 * set up a special migration page table entry now. 2370 */ 2371 if (trylock_page(page)) { 2372 pte_t swp_pte; 2373 2374 migrate->cpages++; 2375 ptep_get_and_clear(mm, addr, ptep); 2376 2377 /* Setup special migration page table entry */ 2378 if (mpfn & MIGRATE_PFN_WRITE) 2379 entry = make_writable_migration_entry( 2380 page_to_pfn(page)); 2381 else 2382 entry = make_readable_migration_entry( 2383 page_to_pfn(page)); 2384 swp_pte = swp_entry_to_pte(entry); 2385 if (pte_present(pte)) { 2386 if (pte_soft_dirty(pte)) 2387 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2388 if (pte_uffd_wp(pte)) 2389 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2390 } else { 2391 if (pte_swp_soft_dirty(pte)) 2392 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2393 if (pte_swp_uffd_wp(pte)) 2394 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2395 } 2396 set_pte_at(mm, addr, ptep, swp_pte); 2397 2398 /* 2399 * This is like regular unmap: we remove the rmap and 2400 * drop page refcount. Page won't be freed, as we took 2401 * a reference just above. 2402 */ 2403 page_remove_rmap(page, false); 2404 put_page(page); 2405 2406 if (pte_present(pte)) 2407 unmapped++; 2408 } else { 2409 put_page(page); 2410 mpfn = 0; 2411 } 2412 2413 next: 2414 migrate->dst[migrate->npages] = 0; 2415 migrate->src[migrate->npages++] = mpfn; 2416 } 2417 arch_leave_lazy_mmu_mode(); 2418 pte_unmap_unlock(ptep - 1, ptl); 2419 2420 /* Only flush the TLB if we actually modified any entries */ 2421 if (unmapped) 2422 flush_tlb_range(walk->vma, start, end); 2423 2424 return 0; 2425 } 2426 2427 static const struct mm_walk_ops migrate_vma_walk_ops = { 2428 .pmd_entry = migrate_vma_collect_pmd, 2429 .pte_hole = migrate_vma_collect_hole, 2430 }; 2431 2432 /* 2433 * migrate_vma_collect() - collect pages over a range of virtual addresses 2434 * @migrate: migrate struct containing all migration information 2435 * 2436 * This will walk the CPU page table. For each virtual address backed by a 2437 * valid page, it updates the src array and takes a reference on the page, in 2438 * order to pin the page until we lock it and unmap it. 2439 */ 2440 static void migrate_vma_collect(struct migrate_vma *migrate) 2441 { 2442 struct mmu_notifier_range range; 2443 2444 /* 2445 * Note that the pgmap_owner is passed to the mmu notifier callback so 2446 * that the registered device driver can skip invalidating device 2447 * private page mappings that won't be migrated. 2448 */ 2449 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 2450 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end, 2451 migrate->pgmap_owner); 2452 mmu_notifier_invalidate_range_start(&range); 2453 2454 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2455 &migrate_vma_walk_ops, migrate); 2456 2457 mmu_notifier_invalidate_range_end(&range); 2458 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2459 } 2460 2461 /* 2462 * migrate_vma_check_page() - check if page is pinned or not 2463 * @page: struct page to check 2464 * 2465 * Pinned pages cannot be migrated. This is the same test as in 2466 * folio_migrate_mapping(), except that here we allow migration of a 2467 * ZONE_DEVICE page. 2468 */ 2469 static bool migrate_vma_check_page(struct page *page) 2470 { 2471 /* 2472 * One extra ref because caller holds an extra reference, either from 2473 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2474 * a device page. 2475 */ 2476 int extra = 1; 2477 2478 /* 2479 * FIXME support THP (transparent huge page), it is bit more complex to 2480 * check them than regular pages, because they can be mapped with a pmd 2481 * or with a pte (split pte mapping). 2482 */ 2483 if (PageCompound(page)) 2484 return false; 2485 2486 /* Page from ZONE_DEVICE have one extra reference */ 2487 if (is_zone_device_page(page)) { 2488 /* 2489 * Private page can never be pin as they have no valid pte and 2490 * GUP will fail for those. Yet if there is a pending migration 2491 * a thread might try to wait on the pte migration entry and 2492 * will bump the page reference count. Sadly there is no way to 2493 * differentiate a regular pin from migration wait. Hence to 2494 * avoid 2 racing thread trying to migrate back to CPU to enter 2495 * infinite loop (one stopping migration because the other is 2496 * waiting on pte migration entry). We always return true here. 2497 * 2498 * FIXME proper solution is to rework migration_entry_wait() so 2499 * it does not need to take a reference on page. 2500 */ 2501 return is_device_private_page(page); 2502 } 2503 2504 /* For file back page */ 2505 if (page_mapping(page)) 2506 extra += 1 + page_has_private(page); 2507 2508 if ((page_count(page) - extra) > page_mapcount(page)) 2509 return false; 2510 2511 return true; 2512 } 2513 2514 /* 2515 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2516 * @migrate: migrate struct containing all migration information 2517 * 2518 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a 2519 * special migration pte entry and check if it has been pinned. Pinned pages are 2520 * restored because we cannot migrate them. 2521 * 2522 * This is the last step before we call the device driver callback to allocate 2523 * destination memory and copy contents of original page over to new page. 2524 */ 2525 static void migrate_vma_unmap(struct migrate_vma *migrate) 2526 { 2527 const unsigned long npages = migrate->npages; 2528 const unsigned long start = migrate->start; 2529 unsigned long addr, i, restore = 0; 2530 bool allow_drain = true; 2531 2532 lru_add_drain(); 2533 2534 for (i = 0; i < npages; i++) { 2535 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2536 2537 if (!page) 2538 continue; 2539 2540 /* ZONE_DEVICE pages are not on LRU */ 2541 if (!is_zone_device_page(page)) { 2542 if (!PageLRU(page) && allow_drain) { 2543 /* Drain CPU's pagevec */ 2544 lru_add_drain_all(); 2545 allow_drain = false; 2546 } 2547 2548 if (isolate_lru_page(page)) { 2549 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2550 migrate->cpages--; 2551 restore++; 2552 continue; 2553 } 2554 2555 /* Drop the reference we took in collect */ 2556 put_page(page); 2557 } 2558 2559 if (page_mapped(page)) 2560 try_to_migrate(page, 0); 2561 2562 if (page_mapped(page) || !migrate_vma_check_page(page)) { 2563 if (!is_zone_device_page(page)) { 2564 get_page(page); 2565 putback_lru_page(page); 2566 } 2567 2568 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2569 migrate->cpages--; 2570 restore++; 2571 continue; 2572 } 2573 } 2574 2575 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2576 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2577 2578 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2579 continue; 2580 2581 remove_migration_ptes(page, page, false); 2582 2583 migrate->src[i] = 0; 2584 unlock_page(page); 2585 put_page(page); 2586 restore--; 2587 } 2588 } 2589 2590 /** 2591 * migrate_vma_setup() - prepare to migrate a range of memory 2592 * @args: contains the vma, start, and pfns arrays for the migration 2593 * 2594 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2595 * without an error. 2596 * 2597 * Prepare to migrate a range of memory virtual address range by collecting all 2598 * the pages backing each virtual address in the range, saving them inside the 2599 * src array. Then lock those pages and unmap them. Once the pages are locked 2600 * and unmapped, check whether each page is pinned or not. Pages that aren't 2601 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2602 * corresponding src array entry. Then restores any pages that are pinned, by 2603 * remapping and unlocking those pages. 2604 * 2605 * The caller should then allocate destination memory and copy source memory to 2606 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2607 * flag set). Once these are allocated and copied, the caller must update each 2608 * corresponding entry in the dst array with the pfn value of the destination 2609 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via 2610 * lock_page(). 2611 * 2612 * Note that the caller does not have to migrate all the pages that are marked 2613 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2614 * device memory to system memory. If the caller cannot migrate a device page 2615 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2616 * consequences for the userspace process, so it must be avoided if at all 2617 * possible. 2618 * 2619 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2620 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2621 * allowing the caller to allocate device memory for those unbacked virtual 2622 * addresses. For this the caller simply has to allocate device memory and 2623 * properly set the destination entry like for regular migration. Note that 2624 * this can still fail, and thus inside the device driver you must check if the 2625 * migration was successful for those entries after calling migrate_vma_pages(), 2626 * just like for regular migration. 2627 * 2628 * After that, the callers must call migrate_vma_pages() to go over each entry 2629 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2630 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2631 * then migrate_vma_pages() to migrate struct page information from the source 2632 * struct page to the destination struct page. If it fails to migrate the 2633 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2634 * src array. 2635 * 2636 * At this point all successfully migrated pages have an entry in the src 2637 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2638 * array entry with MIGRATE_PFN_VALID flag set. 2639 * 2640 * Once migrate_vma_pages() returns the caller may inspect which pages were 2641 * successfully migrated, and which were not. Successfully migrated pages will 2642 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2643 * 2644 * It is safe to update device page table after migrate_vma_pages() because 2645 * both destination and source page are still locked, and the mmap_lock is held 2646 * in read mode (hence no one can unmap the range being migrated). 2647 * 2648 * Once the caller is done cleaning up things and updating its page table (if it 2649 * chose to do so, this is not an obligation) it finally calls 2650 * migrate_vma_finalize() to update the CPU page table to point to new pages 2651 * for successfully migrated pages or otherwise restore the CPU page table to 2652 * point to the original source pages. 2653 */ 2654 int migrate_vma_setup(struct migrate_vma *args) 2655 { 2656 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2657 2658 args->start &= PAGE_MASK; 2659 args->end &= PAGE_MASK; 2660 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2661 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2662 return -EINVAL; 2663 if (nr_pages <= 0) 2664 return -EINVAL; 2665 if (args->start < args->vma->vm_start || 2666 args->start >= args->vma->vm_end) 2667 return -EINVAL; 2668 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2669 return -EINVAL; 2670 if (!args->src || !args->dst) 2671 return -EINVAL; 2672 2673 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2674 args->cpages = 0; 2675 args->npages = 0; 2676 2677 migrate_vma_collect(args); 2678 2679 if (args->cpages) 2680 migrate_vma_unmap(args); 2681 2682 /* 2683 * At this point pages are locked and unmapped, and thus they have 2684 * stable content and can safely be copied to destination memory that 2685 * is allocated by the drivers. 2686 */ 2687 return 0; 2688 2689 } 2690 EXPORT_SYMBOL(migrate_vma_setup); 2691 2692 /* 2693 * This code closely matches the code in: 2694 * __handle_mm_fault() 2695 * handle_pte_fault() 2696 * do_anonymous_page() 2697 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2698 * private page. 2699 */ 2700 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2701 unsigned long addr, 2702 struct page *page, 2703 unsigned long *src) 2704 { 2705 struct vm_area_struct *vma = migrate->vma; 2706 struct mm_struct *mm = vma->vm_mm; 2707 bool flush = false; 2708 spinlock_t *ptl; 2709 pte_t entry; 2710 pgd_t *pgdp; 2711 p4d_t *p4dp; 2712 pud_t *pudp; 2713 pmd_t *pmdp; 2714 pte_t *ptep; 2715 2716 /* Only allow populating anonymous memory */ 2717 if (!vma_is_anonymous(vma)) 2718 goto abort; 2719 2720 pgdp = pgd_offset(mm, addr); 2721 p4dp = p4d_alloc(mm, pgdp, addr); 2722 if (!p4dp) 2723 goto abort; 2724 pudp = pud_alloc(mm, p4dp, addr); 2725 if (!pudp) 2726 goto abort; 2727 pmdp = pmd_alloc(mm, pudp, addr); 2728 if (!pmdp) 2729 goto abort; 2730 2731 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2732 goto abort; 2733 2734 /* 2735 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2736 * pte_offset_map() on pmds where a huge pmd might be created 2737 * from a different thread. 2738 * 2739 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2740 * parallel threads are excluded by other means. 2741 * 2742 * Here we only have mmap_read_lock(mm). 2743 */ 2744 if (pte_alloc(mm, pmdp)) 2745 goto abort; 2746 2747 /* See the comment in pte_alloc_one_map() */ 2748 if (unlikely(pmd_trans_unstable(pmdp))) 2749 goto abort; 2750 2751 if (unlikely(anon_vma_prepare(vma))) 2752 goto abort; 2753 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) 2754 goto abort; 2755 2756 /* 2757 * The memory barrier inside __SetPageUptodate makes sure that 2758 * preceding stores to the page contents become visible before 2759 * the set_pte_at() write. 2760 */ 2761 __SetPageUptodate(page); 2762 2763 if (is_zone_device_page(page)) { 2764 if (is_device_private_page(page)) { 2765 swp_entry_t swp_entry; 2766 2767 if (vma->vm_flags & VM_WRITE) 2768 swp_entry = make_writable_device_private_entry( 2769 page_to_pfn(page)); 2770 else 2771 swp_entry = make_readable_device_private_entry( 2772 page_to_pfn(page)); 2773 entry = swp_entry_to_pte(swp_entry); 2774 } else { 2775 /* 2776 * For now we only support migrating to un-addressable 2777 * device memory. 2778 */ 2779 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 2780 goto abort; 2781 } 2782 } else { 2783 entry = mk_pte(page, vma->vm_page_prot); 2784 if (vma->vm_flags & VM_WRITE) 2785 entry = pte_mkwrite(pte_mkdirty(entry)); 2786 } 2787 2788 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2789 2790 if (check_stable_address_space(mm)) 2791 goto unlock_abort; 2792 2793 if (pte_present(*ptep)) { 2794 unsigned long pfn = pte_pfn(*ptep); 2795 2796 if (!is_zero_pfn(pfn)) 2797 goto unlock_abort; 2798 flush = true; 2799 } else if (!pte_none(*ptep)) 2800 goto unlock_abort; 2801 2802 /* 2803 * Check for userfaultfd but do not deliver the fault. Instead, 2804 * just back off. 2805 */ 2806 if (userfaultfd_missing(vma)) 2807 goto unlock_abort; 2808 2809 inc_mm_counter(mm, MM_ANONPAGES); 2810 page_add_new_anon_rmap(page, vma, addr, false); 2811 if (!is_zone_device_page(page)) 2812 lru_cache_add_inactive_or_unevictable(page, vma); 2813 get_page(page); 2814 2815 if (flush) { 2816 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2817 ptep_clear_flush_notify(vma, addr, ptep); 2818 set_pte_at_notify(mm, addr, ptep, entry); 2819 update_mmu_cache(vma, addr, ptep); 2820 } else { 2821 /* No need to invalidate - it was non-present before */ 2822 set_pte_at(mm, addr, ptep, entry); 2823 update_mmu_cache(vma, addr, ptep); 2824 } 2825 2826 pte_unmap_unlock(ptep, ptl); 2827 *src = MIGRATE_PFN_MIGRATE; 2828 return; 2829 2830 unlock_abort: 2831 pte_unmap_unlock(ptep, ptl); 2832 abort: 2833 *src &= ~MIGRATE_PFN_MIGRATE; 2834 } 2835 2836 /** 2837 * migrate_vma_pages() - migrate meta-data from src page to dst page 2838 * @migrate: migrate struct containing all migration information 2839 * 2840 * This migrates struct page meta-data from source struct page to destination 2841 * struct page. This effectively finishes the migration from source page to the 2842 * destination page. 2843 */ 2844 void migrate_vma_pages(struct migrate_vma *migrate) 2845 { 2846 const unsigned long npages = migrate->npages; 2847 const unsigned long start = migrate->start; 2848 struct mmu_notifier_range range; 2849 unsigned long addr, i; 2850 bool notified = false; 2851 2852 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2853 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2854 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2855 struct address_space *mapping; 2856 int r; 2857 2858 if (!newpage) { 2859 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2860 continue; 2861 } 2862 2863 if (!page) { 2864 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2865 continue; 2866 if (!notified) { 2867 notified = true; 2868 2869 mmu_notifier_range_init_owner(&range, 2870 MMU_NOTIFY_MIGRATE, 0, migrate->vma, 2871 migrate->vma->vm_mm, addr, migrate->end, 2872 migrate->pgmap_owner); 2873 mmu_notifier_invalidate_range_start(&range); 2874 } 2875 migrate_vma_insert_page(migrate, addr, newpage, 2876 &migrate->src[i]); 2877 continue; 2878 } 2879 2880 mapping = page_mapping(page); 2881 2882 if (is_zone_device_page(newpage)) { 2883 if (is_device_private_page(newpage)) { 2884 /* 2885 * For now only support private anonymous when 2886 * migrating to un-addressable device memory. 2887 */ 2888 if (mapping) { 2889 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2890 continue; 2891 } 2892 } else { 2893 /* 2894 * Other types of ZONE_DEVICE page are not 2895 * supported. 2896 */ 2897 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2898 continue; 2899 } 2900 } 2901 2902 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2903 if (r != MIGRATEPAGE_SUCCESS) 2904 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2905 } 2906 2907 /* 2908 * No need to double call mmu_notifier->invalidate_range() callback as 2909 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2910 * did already call it. 2911 */ 2912 if (notified) 2913 mmu_notifier_invalidate_range_only_end(&range); 2914 } 2915 EXPORT_SYMBOL(migrate_vma_pages); 2916 2917 /** 2918 * migrate_vma_finalize() - restore CPU page table entry 2919 * @migrate: migrate struct containing all migration information 2920 * 2921 * This replaces the special migration pte entry with either a mapping to the 2922 * new page if migration was successful for that page, or to the original page 2923 * otherwise. 2924 * 2925 * This also unlocks the pages and puts them back on the lru, or drops the extra 2926 * refcount, for device pages. 2927 */ 2928 void migrate_vma_finalize(struct migrate_vma *migrate) 2929 { 2930 const unsigned long npages = migrate->npages; 2931 unsigned long i; 2932 2933 for (i = 0; i < npages; i++) { 2934 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2935 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2936 2937 if (!page) { 2938 if (newpage) { 2939 unlock_page(newpage); 2940 put_page(newpage); 2941 } 2942 continue; 2943 } 2944 2945 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2946 if (newpage) { 2947 unlock_page(newpage); 2948 put_page(newpage); 2949 } 2950 newpage = page; 2951 } 2952 2953 remove_migration_ptes(page, newpage, false); 2954 unlock_page(page); 2955 2956 if (is_zone_device_page(page)) 2957 put_page(page); 2958 else 2959 putback_lru_page(page); 2960 2961 if (newpage != page) { 2962 unlock_page(newpage); 2963 if (is_zone_device_page(newpage)) 2964 put_page(newpage); 2965 else 2966 putback_lru_page(newpage); 2967 } 2968 } 2969 } 2970 EXPORT_SYMBOL(migrate_vma_finalize); 2971 #endif /* CONFIG_DEVICE_PRIVATE */ 2972 2973 #if defined(CONFIG_HOTPLUG_CPU) 2974 /* Disable reclaim-based migration. */ 2975 static void __disable_all_migrate_targets(void) 2976 { 2977 int node; 2978 2979 for_each_online_node(node) 2980 node_demotion[node] = NUMA_NO_NODE; 2981 } 2982 2983 static void disable_all_migrate_targets(void) 2984 { 2985 __disable_all_migrate_targets(); 2986 2987 /* 2988 * Ensure that the "disable" is visible across the system. 2989 * Readers will see either a combination of before+disable 2990 * state or disable+after. They will never see before and 2991 * after state together. 2992 * 2993 * The before+after state together might have cycles and 2994 * could cause readers to do things like loop until this 2995 * function finishes. This ensures they can only see a 2996 * single "bad" read and would, for instance, only loop 2997 * once. 2998 */ 2999 synchronize_rcu(); 3000 } 3001 3002 /* 3003 * Find an automatic demotion target for 'node'. 3004 * Failing here is OK. It might just indicate 3005 * being at the end of a chain. 3006 */ 3007 static int establish_migrate_target(int node, nodemask_t *used) 3008 { 3009 int migration_target; 3010 3011 /* 3012 * Can not set a migration target on a 3013 * node with it already set. 3014 * 3015 * No need for READ_ONCE() here since this 3016 * in the write path for node_demotion[]. 3017 * This should be the only thread writing. 3018 */ 3019 if (node_demotion[node] != NUMA_NO_NODE) 3020 return NUMA_NO_NODE; 3021 3022 migration_target = find_next_best_node(node, used); 3023 if (migration_target == NUMA_NO_NODE) 3024 return NUMA_NO_NODE; 3025 3026 node_demotion[node] = migration_target; 3027 3028 return migration_target; 3029 } 3030 3031 /* 3032 * When memory fills up on a node, memory contents can be 3033 * automatically migrated to another node instead of 3034 * discarded at reclaim. 3035 * 3036 * Establish a "migration path" which will start at nodes 3037 * with CPUs and will follow the priorities used to build the 3038 * page allocator zonelists. 3039 * 3040 * The difference here is that cycles must be avoided. If 3041 * node0 migrates to node1, then neither node1, nor anything 3042 * node1 migrates to can migrate to node0. 3043 * 3044 * This function can run simultaneously with readers of 3045 * node_demotion[]. However, it can not run simultaneously 3046 * with itself. Exclusion is provided by memory hotplug events 3047 * being single-threaded. 3048 */ 3049 static void __set_migration_target_nodes(void) 3050 { 3051 nodemask_t next_pass = NODE_MASK_NONE; 3052 nodemask_t this_pass = NODE_MASK_NONE; 3053 nodemask_t used_targets = NODE_MASK_NONE; 3054 int node; 3055 3056 /* 3057 * Avoid any oddities like cycles that could occur 3058 * from changes in the topology. This will leave 3059 * a momentary gap when migration is disabled. 3060 */ 3061 disable_all_migrate_targets(); 3062 3063 /* 3064 * Allocations go close to CPUs, first. Assume that 3065 * the migration path starts at the nodes with CPUs. 3066 */ 3067 next_pass = node_states[N_CPU]; 3068 again: 3069 this_pass = next_pass; 3070 next_pass = NODE_MASK_NONE; 3071 /* 3072 * To avoid cycles in the migration "graph", ensure 3073 * that migration sources are not future targets by 3074 * setting them in 'used_targets'. Do this only 3075 * once per pass so that multiple source nodes can 3076 * share a target node. 3077 * 3078 * 'used_targets' will become unavailable in future 3079 * passes. This limits some opportunities for 3080 * multiple source nodes to share a destination. 3081 */ 3082 nodes_or(used_targets, used_targets, this_pass); 3083 for_each_node_mask(node, this_pass) { 3084 int target_node = establish_migrate_target(node, &used_targets); 3085 3086 if (target_node == NUMA_NO_NODE) 3087 continue; 3088 3089 /* 3090 * Visit targets from this pass in the next pass. 3091 * Eventually, every node will have been part of 3092 * a pass, and will become set in 'used_targets'. 3093 */ 3094 node_set(target_node, next_pass); 3095 } 3096 /* 3097 * 'next_pass' contains nodes which became migration 3098 * targets in this pass. Make additional passes until 3099 * no more migrations targets are available. 3100 */ 3101 if (!nodes_empty(next_pass)) 3102 goto again; 3103 } 3104 3105 /* 3106 * For callers that do not hold get_online_mems() already. 3107 */ 3108 static void set_migration_target_nodes(void) 3109 { 3110 get_online_mems(); 3111 __set_migration_target_nodes(); 3112 put_online_mems(); 3113 } 3114 3115 /* 3116 * This leaves migrate-on-reclaim transiently disabled between 3117 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs 3118 * whether reclaim-based migration is enabled or not, which 3119 * ensures that the user can turn reclaim-based migration at 3120 * any time without needing to recalculate migration targets. 3121 * 3122 * These callbacks already hold get_online_mems(). That is why 3123 * __set_migration_target_nodes() can be used as opposed to 3124 * set_migration_target_nodes(). 3125 */ 3126 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, 3127 unsigned long action, void *_arg) 3128 { 3129 struct memory_notify *arg = _arg; 3130 3131 /* 3132 * Only update the node migration order when a node is 3133 * changing status, like online->offline. This avoids 3134 * the overhead of synchronize_rcu() in most cases. 3135 */ 3136 if (arg->status_change_nid < 0) 3137 return notifier_from_errno(0); 3138 3139 switch (action) { 3140 case MEM_GOING_OFFLINE: 3141 /* 3142 * Make sure there are not transient states where 3143 * an offline node is a migration target. This 3144 * will leave migration disabled until the offline 3145 * completes and the MEM_OFFLINE case below runs. 3146 */ 3147 disable_all_migrate_targets(); 3148 break; 3149 case MEM_OFFLINE: 3150 case MEM_ONLINE: 3151 /* 3152 * Recalculate the target nodes once the node 3153 * reaches its final state (online or offline). 3154 */ 3155 __set_migration_target_nodes(); 3156 break; 3157 case MEM_CANCEL_OFFLINE: 3158 /* 3159 * MEM_GOING_OFFLINE disabled all the migration 3160 * targets. Reenable them. 3161 */ 3162 __set_migration_target_nodes(); 3163 break; 3164 case MEM_GOING_ONLINE: 3165 case MEM_CANCEL_ONLINE: 3166 break; 3167 } 3168 3169 return notifier_from_errno(0); 3170 } 3171 3172 /* 3173 * React to hotplug events that might affect the migration targets 3174 * like events that online or offline NUMA nodes. 3175 * 3176 * The ordering is also currently dependent on which nodes have 3177 * CPUs. That means we need CPU on/offline notification too. 3178 */ 3179 static int migration_online_cpu(unsigned int cpu) 3180 { 3181 set_migration_target_nodes(); 3182 return 0; 3183 } 3184 3185 static int migration_offline_cpu(unsigned int cpu) 3186 { 3187 set_migration_target_nodes(); 3188 return 0; 3189 } 3190 3191 static int __init migrate_on_reclaim_init(void) 3192 { 3193 int ret; 3194 3195 ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline", 3196 NULL, migration_offline_cpu); 3197 /* 3198 * In the unlikely case that this fails, the automatic 3199 * migration targets may become suboptimal for nodes 3200 * where N_CPU changes. With such a small impact in a 3201 * rare case, do not bother trying to do anything special. 3202 */ 3203 WARN_ON(ret < 0); 3204 ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online", 3205 migration_online_cpu, NULL); 3206 WARN_ON(ret < 0); 3207 3208 hotplug_memory_notifier(migrate_on_reclaim_callback, 100); 3209 return 0; 3210 } 3211 late_initcall(migrate_on_reclaim_init); 3212 #endif /* CONFIG_HOTPLUG_CPU */ 3213 3214 bool numa_demotion_enabled = false; 3215 3216 #ifdef CONFIG_SYSFS 3217 static ssize_t numa_demotion_enabled_show(struct kobject *kobj, 3218 struct kobj_attribute *attr, char *buf) 3219 { 3220 return sysfs_emit(buf, "%s\n", 3221 numa_demotion_enabled ? "true" : "false"); 3222 } 3223 3224 static ssize_t numa_demotion_enabled_store(struct kobject *kobj, 3225 struct kobj_attribute *attr, 3226 const char *buf, size_t count) 3227 { 3228 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) 3229 numa_demotion_enabled = true; 3230 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) 3231 numa_demotion_enabled = false; 3232 else 3233 return -EINVAL; 3234 3235 return count; 3236 } 3237 3238 static struct kobj_attribute numa_demotion_enabled_attr = 3239 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, 3240 numa_demotion_enabled_store); 3241 3242 static struct attribute *numa_attrs[] = { 3243 &numa_demotion_enabled_attr.attr, 3244 NULL, 3245 }; 3246 3247 static const struct attribute_group numa_attr_group = { 3248 .attrs = numa_attrs, 3249 }; 3250 3251 static int __init numa_init_sysfs(void) 3252 { 3253 int err; 3254 struct kobject *numa_kobj; 3255 3256 numa_kobj = kobject_create_and_add("numa", mm_kobj); 3257 if (!numa_kobj) { 3258 pr_err("failed to create numa kobject\n"); 3259 return -ENOMEM; 3260 } 3261 err = sysfs_create_group(numa_kobj, &numa_attr_group); 3262 if (err) { 3263 pr_err("failed to register numa group\n"); 3264 goto delete_obj; 3265 } 3266 return 0; 3267 3268 delete_obj: 3269 kobject_put(numa_kobj); 3270 return err; 3271 } 3272 subsys_initcall(numa_init_sysfs); 3273 #endif 3274