xref: /linux/mm/migrate.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		if (PageTransHuge(page) && PageMlocked(page))
279 			clear_page_mlock(page);
280 
281 		/* No need to invalidate - it was non-present before */
282 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 	}
284 
285 	return true;
286 }
287 
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294 	struct rmap_walk_control rwc = {
295 		.rmap_one = remove_migration_pte,
296 		.arg = old,
297 	};
298 
299 	if (locked)
300 		rmap_walk_locked(new, &rwc);
301 	else
302 		rmap_walk(new, &rwc);
303 }
304 
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 				spinlock_t *ptl)
312 {
313 	pte_t pte;
314 	swp_entry_t entry;
315 	struct page *page;
316 
317 	spin_lock(ptl);
318 	pte = *ptep;
319 	if (!is_swap_pte(pte))
320 		goto out;
321 
322 	entry = pte_to_swp_entry(pte);
323 	if (!is_migration_entry(entry))
324 		goto out;
325 
326 	page = migration_entry_to_page(entry);
327 
328 	/*
329 	 * Once page cache replacement of page migration started, page_count
330 	 * is zero; but we must not call put_and_wait_on_page_locked() without
331 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
332 	 */
333 	if (!get_page_unless_zero(page))
334 		goto out;
335 	pte_unmap_unlock(ptep, ptl);
336 	put_and_wait_on_page_locked(page);
337 	return;
338 out:
339 	pte_unmap_unlock(ptep, ptl);
340 }
341 
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 				unsigned long address)
344 {
345 	spinlock_t *ptl = pte_lockptr(mm, pmd);
346 	pte_t *ptep = pte_offset_map(pmd, address);
347 	__migration_entry_wait(mm, ptep, ptl);
348 }
349 
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 		struct mm_struct *mm, pte_t *pte)
352 {
353 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 	__migration_entry_wait(mm, pte, ptl);
355 }
356 
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 	spinlock_t *ptl;
361 	struct page *page;
362 
363 	ptl = pmd_lock(mm, pmd);
364 	if (!is_pmd_migration_entry(*pmd))
365 		goto unlock;
366 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 	if (!get_page_unless_zero(page))
368 		goto unlock;
369 	spin_unlock(ptl);
370 	put_and_wait_on_page_locked(page);
371 	return;
372 unlock:
373 	spin_unlock(ptl);
374 }
375 #endif
376 
377 static int expected_page_refs(struct page *page)
378 {
379 	int expected_count = 1;
380 
381 	/*
382 	 * Device public or private pages have an extra refcount as they are
383 	 * ZONE_DEVICE pages.
384 	 */
385 	expected_count += is_device_private_page(page);
386 	expected_count += is_device_public_page(page);
387 	if (page_mapping(page))
388 		expected_count += hpage_nr_pages(page) + page_has_private(page);
389 
390 	return expected_count;
391 }
392 
393 /*
394  * Replace the page in the mapping.
395  *
396  * The number of remaining references must be:
397  * 1 for anonymous pages without a mapping
398  * 2 for pages with a mapping
399  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
400  */
401 int migrate_page_move_mapping(struct address_space *mapping,
402 		struct page *newpage, struct page *page, enum migrate_mode mode,
403 		int extra_count)
404 {
405 	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 	struct zone *oldzone, *newzone;
407 	int dirty;
408 	int expected_count = expected_page_refs(page) + extra_count;
409 
410 	if (!mapping) {
411 		/* Anonymous page without mapping */
412 		if (page_count(page) != expected_count)
413 			return -EAGAIN;
414 
415 		/* No turning back from here */
416 		newpage->index = page->index;
417 		newpage->mapping = page->mapping;
418 		if (PageSwapBacked(page))
419 			__SetPageSwapBacked(newpage);
420 
421 		return MIGRATEPAGE_SUCCESS;
422 	}
423 
424 	oldzone = page_zone(page);
425 	newzone = page_zone(newpage);
426 
427 	xas_lock_irq(&xas);
428 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	if (!page_ref_freeze(page, expected_count)) {
434 		xas_unlock_irq(&xas);
435 		return -EAGAIN;
436 	}
437 
438 	/*
439 	 * Now we know that no one else is looking at the page:
440 	 * no turning back from here.
441 	 */
442 	newpage->index = page->index;
443 	newpage->mapping = page->mapping;
444 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 	if (PageSwapBacked(page)) {
446 		__SetPageSwapBacked(newpage);
447 		if (PageSwapCache(page)) {
448 			SetPageSwapCache(newpage);
449 			set_page_private(newpage, page_private(page));
450 		}
451 	} else {
452 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = PageDirty(page);
457 	if (dirty) {
458 		ClearPageDirty(page);
459 		SetPageDirty(newpage);
460 	}
461 
462 	xas_store(&xas, newpage);
463 	if (PageTransHuge(page)) {
464 		int i;
465 
466 		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 			xas_next(&xas);
468 			xas_store(&xas, newpage + i);
469 		}
470 	}
471 
472 	/*
473 	 * Drop cache reference from old page by unfreezing
474 	 * to one less reference.
475 	 * We know this isn't the last reference.
476 	 */
477 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478 
479 	xas_unlock(&xas);
480 	/* Leave irq disabled to prevent preemption while updating stats */
481 
482 	/*
483 	 * If moved to a different zone then also account
484 	 * the page for that zone. Other VM counters will be
485 	 * taken care of when we establish references to the
486 	 * new page and drop references to the old page.
487 	 *
488 	 * Note that anonymous pages are accounted for
489 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 	 * are mapped to swap space.
491 	 */
492 	if (newzone != oldzone) {
493 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
496 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498 		}
499 		if (dirty && mapping_cap_account_dirty(mapping)) {
500 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504 		}
505 	}
506 	local_irq_enable();
507 
508 	return MIGRATEPAGE_SUCCESS;
509 }
510 EXPORT_SYMBOL(migrate_page_move_mapping);
511 
512 /*
513  * The expected number of remaining references is the same as that
514  * of migrate_page_move_mapping().
515  */
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517 				   struct page *newpage, struct page *page)
518 {
519 	XA_STATE(xas, &mapping->i_pages, page_index(page));
520 	int expected_count;
521 
522 	xas_lock_irq(&xas);
523 	expected_count = 2 + page_has_private(page);
524 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 		xas_unlock_irq(&xas);
526 		return -EAGAIN;
527 	}
528 
529 	if (!page_ref_freeze(page, expected_count)) {
530 		xas_unlock_irq(&xas);
531 		return -EAGAIN;
532 	}
533 
534 	newpage->index = page->index;
535 	newpage->mapping = page->mapping;
536 
537 	get_page(newpage);
538 
539 	xas_store(&xas, newpage);
540 
541 	page_ref_unfreeze(page, expected_count - 1);
542 
543 	xas_unlock_irq(&xas);
544 
545 	return MIGRATEPAGE_SUCCESS;
546 }
547 
548 /*
549  * Gigantic pages are so large that we do not guarantee that page++ pointer
550  * arithmetic will work across the entire page.  We need something more
551  * specialized.
552  */
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554 				int nr_pages)
555 {
556 	int i;
557 	struct page *dst_base = dst;
558 	struct page *src_base = src;
559 
560 	for (i = 0; i < nr_pages; ) {
561 		cond_resched();
562 		copy_highpage(dst, src);
563 
564 		i++;
565 		dst = mem_map_next(dst, dst_base, i);
566 		src = mem_map_next(src, src_base, i);
567 	}
568 }
569 
570 static void copy_huge_page(struct page *dst, struct page *src)
571 {
572 	int i;
573 	int nr_pages;
574 
575 	if (PageHuge(src)) {
576 		/* hugetlbfs page */
577 		struct hstate *h = page_hstate(src);
578 		nr_pages = pages_per_huge_page(h);
579 
580 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 			__copy_gigantic_page(dst, src, nr_pages);
582 			return;
583 		}
584 	} else {
585 		/* thp page */
586 		BUG_ON(!PageTransHuge(src));
587 		nr_pages = hpage_nr_pages(src);
588 	}
589 
590 	for (i = 0; i < nr_pages; i++) {
591 		cond_resched();
592 		copy_highpage(dst + i, src + i);
593 	}
594 }
595 
596 /*
597  * Copy the page to its new location
598  */
599 void migrate_page_states(struct page *newpage, struct page *page)
600 {
601 	int cpupid;
602 
603 	if (PageError(page))
604 		SetPageError(newpage);
605 	if (PageReferenced(page))
606 		SetPageReferenced(newpage);
607 	if (PageUptodate(page))
608 		SetPageUptodate(newpage);
609 	if (TestClearPageActive(page)) {
610 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
611 		SetPageActive(newpage);
612 	} else if (TestClearPageUnevictable(page))
613 		SetPageUnevictable(newpage);
614 	if (PageWorkingset(page))
615 		SetPageWorkingset(newpage);
616 	if (PageChecked(page))
617 		SetPageChecked(newpage);
618 	if (PageMappedToDisk(page))
619 		SetPageMappedToDisk(newpage);
620 
621 	/* Move dirty on pages not done by migrate_page_move_mapping() */
622 	if (PageDirty(page))
623 		SetPageDirty(newpage);
624 
625 	if (page_is_young(page))
626 		set_page_young(newpage);
627 	if (page_is_idle(page))
628 		set_page_idle(newpage);
629 
630 	/*
631 	 * Copy NUMA information to the new page, to prevent over-eager
632 	 * future migrations of this same page.
633 	 */
634 	cpupid = page_cpupid_xchg_last(page, -1);
635 	page_cpupid_xchg_last(newpage, cpupid);
636 
637 	ksm_migrate_page(newpage, page);
638 	/*
639 	 * Please do not reorder this without considering how mm/ksm.c's
640 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641 	 */
642 	if (PageSwapCache(page))
643 		ClearPageSwapCache(page);
644 	ClearPagePrivate(page);
645 	set_page_private(page, 0);
646 
647 	/*
648 	 * If any waiters have accumulated on the new page then
649 	 * wake them up.
650 	 */
651 	if (PageWriteback(newpage))
652 		end_page_writeback(newpage);
653 
654 	copy_page_owner(page, newpage);
655 
656 	mem_cgroup_migrate(page, newpage);
657 }
658 EXPORT_SYMBOL(migrate_page_states);
659 
660 void migrate_page_copy(struct page *newpage, struct page *page)
661 {
662 	if (PageHuge(page) || PageTransHuge(page))
663 		copy_huge_page(newpage, page);
664 	else
665 		copy_highpage(newpage, page);
666 
667 	migrate_page_states(newpage, page);
668 }
669 EXPORT_SYMBOL(migrate_page_copy);
670 
671 /************************************************************
672  *                    Migration functions
673  ***********************************************************/
674 
675 /*
676  * Common logic to directly migrate a single LRU page suitable for
677  * pages that do not use PagePrivate/PagePrivate2.
678  *
679  * Pages are locked upon entry and exit.
680  */
681 int migrate_page(struct address_space *mapping,
682 		struct page *newpage, struct page *page,
683 		enum migrate_mode mode)
684 {
685 	int rc;
686 
687 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
688 
689 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
690 
691 	if (rc != MIGRATEPAGE_SUCCESS)
692 		return rc;
693 
694 	if (mode != MIGRATE_SYNC_NO_COPY)
695 		migrate_page_copy(newpage, page);
696 	else
697 		migrate_page_states(newpage, page);
698 	return MIGRATEPAGE_SUCCESS;
699 }
700 EXPORT_SYMBOL(migrate_page);
701 
702 #ifdef CONFIG_BLOCK
703 /* Returns true if all buffers are successfully locked */
704 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705 							enum migrate_mode mode)
706 {
707 	struct buffer_head *bh = head;
708 
709 	/* Simple case, sync compaction */
710 	if (mode != MIGRATE_ASYNC) {
711 		do {
712 			lock_buffer(bh);
713 			bh = bh->b_this_page;
714 
715 		} while (bh != head);
716 
717 		return true;
718 	}
719 
720 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
721 	do {
722 		if (!trylock_buffer(bh)) {
723 			/*
724 			 * We failed to lock the buffer and cannot stall in
725 			 * async migration. Release the taken locks
726 			 */
727 			struct buffer_head *failed_bh = bh;
728 			bh = head;
729 			while (bh != failed_bh) {
730 				unlock_buffer(bh);
731 				bh = bh->b_this_page;
732 			}
733 			return false;
734 		}
735 
736 		bh = bh->b_this_page;
737 	} while (bh != head);
738 	return true;
739 }
740 
741 static int __buffer_migrate_page(struct address_space *mapping,
742 		struct page *newpage, struct page *page, enum migrate_mode mode,
743 		bool check_refs)
744 {
745 	struct buffer_head *bh, *head;
746 	int rc;
747 	int expected_count;
748 
749 	if (!page_has_buffers(page))
750 		return migrate_page(mapping, newpage, page, mode);
751 
752 	/* Check whether page does not have extra refs before we do more work */
753 	expected_count = expected_page_refs(page);
754 	if (page_count(page) != expected_count)
755 		return -EAGAIN;
756 
757 	head = page_buffers(page);
758 	if (!buffer_migrate_lock_buffers(head, mode))
759 		return -EAGAIN;
760 
761 	if (check_refs) {
762 		bool busy;
763 		bool invalidated = false;
764 
765 recheck_buffers:
766 		busy = false;
767 		spin_lock(&mapping->private_lock);
768 		bh = head;
769 		do {
770 			if (atomic_read(&bh->b_count)) {
771 				busy = true;
772 				break;
773 			}
774 			bh = bh->b_this_page;
775 		} while (bh != head);
776 		spin_unlock(&mapping->private_lock);
777 		if (busy) {
778 			if (invalidated) {
779 				rc = -EAGAIN;
780 				goto unlock_buffers;
781 			}
782 			invalidate_bh_lrus();
783 			invalidated = true;
784 			goto recheck_buffers;
785 		}
786 	}
787 
788 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
789 	if (rc != MIGRATEPAGE_SUCCESS)
790 		goto unlock_buffers;
791 
792 	ClearPagePrivate(page);
793 	set_page_private(newpage, page_private(page));
794 	set_page_private(page, 0);
795 	put_page(page);
796 	get_page(newpage);
797 
798 	bh = head;
799 	do {
800 		set_bh_page(bh, newpage, bh_offset(bh));
801 		bh = bh->b_this_page;
802 
803 	} while (bh != head);
804 
805 	SetPagePrivate(newpage);
806 
807 	if (mode != MIGRATE_SYNC_NO_COPY)
808 		migrate_page_copy(newpage, page);
809 	else
810 		migrate_page_states(newpage, page);
811 
812 	rc = MIGRATEPAGE_SUCCESS;
813 unlock_buffers:
814 	bh = head;
815 	do {
816 		unlock_buffer(bh);
817 		bh = bh->b_this_page;
818 
819 	} while (bh != head);
820 
821 	return rc;
822 }
823 
824 /*
825  * Migration function for pages with buffers. This function can only be used
826  * if the underlying filesystem guarantees that no other references to "page"
827  * exist. For example attached buffer heads are accessed only under page lock.
828  */
829 int buffer_migrate_page(struct address_space *mapping,
830 		struct page *newpage, struct page *page, enum migrate_mode mode)
831 {
832 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
833 }
834 EXPORT_SYMBOL(buffer_migrate_page);
835 
836 /*
837  * Same as above except that this variant is more careful and checks that there
838  * are also no buffer head references. This function is the right one for
839  * mappings where buffer heads are directly looked up and referenced (such as
840  * block device mappings).
841  */
842 int buffer_migrate_page_norefs(struct address_space *mapping,
843 		struct page *newpage, struct page *page, enum migrate_mode mode)
844 {
845 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
846 }
847 #endif
848 
849 /*
850  * Writeback a page to clean the dirty state
851  */
852 static int writeout(struct address_space *mapping, struct page *page)
853 {
854 	struct writeback_control wbc = {
855 		.sync_mode = WB_SYNC_NONE,
856 		.nr_to_write = 1,
857 		.range_start = 0,
858 		.range_end = LLONG_MAX,
859 		.for_reclaim = 1
860 	};
861 	int rc;
862 
863 	if (!mapping->a_ops->writepage)
864 		/* No write method for the address space */
865 		return -EINVAL;
866 
867 	if (!clear_page_dirty_for_io(page))
868 		/* Someone else already triggered a write */
869 		return -EAGAIN;
870 
871 	/*
872 	 * A dirty page may imply that the underlying filesystem has
873 	 * the page on some queue. So the page must be clean for
874 	 * migration. Writeout may mean we loose the lock and the
875 	 * page state is no longer what we checked for earlier.
876 	 * At this point we know that the migration attempt cannot
877 	 * be successful.
878 	 */
879 	remove_migration_ptes(page, page, false);
880 
881 	rc = mapping->a_ops->writepage(page, &wbc);
882 
883 	if (rc != AOP_WRITEPAGE_ACTIVATE)
884 		/* unlocked. Relock */
885 		lock_page(page);
886 
887 	return (rc < 0) ? -EIO : -EAGAIN;
888 }
889 
890 /*
891  * Default handling if a filesystem does not provide a migration function.
892  */
893 static int fallback_migrate_page(struct address_space *mapping,
894 	struct page *newpage, struct page *page, enum migrate_mode mode)
895 {
896 	if (PageDirty(page)) {
897 		/* Only writeback pages in full synchronous migration */
898 		switch (mode) {
899 		case MIGRATE_SYNC:
900 		case MIGRATE_SYNC_NO_COPY:
901 			break;
902 		default:
903 			return -EBUSY;
904 		}
905 		return writeout(mapping, page);
906 	}
907 
908 	/*
909 	 * Buffers may be managed in a filesystem specific way.
910 	 * We must have no buffers or drop them.
911 	 */
912 	if (page_has_private(page) &&
913 	    !try_to_release_page(page, GFP_KERNEL))
914 		return -EAGAIN;
915 
916 	return migrate_page(mapping, newpage, page, mode);
917 }
918 
919 /*
920  * Move a page to a newly allocated page
921  * The page is locked and all ptes have been successfully removed.
922  *
923  * The new page will have replaced the old page if this function
924  * is successful.
925  *
926  * Return value:
927  *   < 0 - error code
928  *  MIGRATEPAGE_SUCCESS - success
929  */
930 static int move_to_new_page(struct page *newpage, struct page *page,
931 				enum migrate_mode mode)
932 {
933 	struct address_space *mapping;
934 	int rc = -EAGAIN;
935 	bool is_lru = !__PageMovable(page);
936 
937 	VM_BUG_ON_PAGE(!PageLocked(page), page);
938 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
939 
940 	mapping = page_mapping(page);
941 
942 	if (likely(is_lru)) {
943 		if (!mapping)
944 			rc = migrate_page(mapping, newpage, page, mode);
945 		else if (mapping->a_ops->migratepage)
946 			/*
947 			 * Most pages have a mapping and most filesystems
948 			 * provide a migratepage callback. Anonymous pages
949 			 * are part of swap space which also has its own
950 			 * migratepage callback. This is the most common path
951 			 * for page migration.
952 			 */
953 			rc = mapping->a_ops->migratepage(mapping, newpage,
954 							page, mode);
955 		else
956 			rc = fallback_migrate_page(mapping, newpage,
957 							page, mode);
958 	} else {
959 		/*
960 		 * In case of non-lru page, it could be released after
961 		 * isolation step. In that case, we shouldn't try migration.
962 		 */
963 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
964 		if (!PageMovable(page)) {
965 			rc = MIGRATEPAGE_SUCCESS;
966 			__ClearPageIsolated(page);
967 			goto out;
968 		}
969 
970 		rc = mapping->a_ops->migratepage(mapping, newpage,
971 						page, mode);
972 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
973 			!PageIsolated(page));
974 	}
975 
976 	/*
977 	 * When successful, old pagecache page->mapping must be cleared before
978 	 * page is freed; but stats require that PageAnon be left as PageAnon.
979 	 */
980 	if (rc == MIGRATEPAGE_SUCCESS) {
981 		if (__PageMovable(page)) {
982 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
983 
984 			/*
985 			 * We clear PG_movable under page_lock so any compactor
986 			 * cannot try to migrate this page.
987 			 */
988 			__ClearPageIsolated(page);
989 		}
990 
991 		/*
992 		 * Anonymous and movable page->mapping will be cleard by
993 		 * free_pages_prepare so don't reset it here for keeping
994 		 * the type to work PageAnon, for example.
995 		 */
996 		if (!PageMappingFlags(page))
997 			page->mapping = NULL;
998 	}
999 out:
1000 	return rc;
1001 }
1002 
1003 static int __unmap_and_move(struct page *page, struct page *newpage,
1004 				int force, enum migrate_mode mode)
1005 {
1006 	int rc = -EAGAIN;
1007 	int page_was_mapped = 0;
1008 	struct anon_vma *anon_vma = NULL;
1009 	bool is_lru = !__PageMovable(page);
1010 
1011 	if (!trylock_page(page)) {
1012 		if (!force || mode == MIGRATE_ASYNC)
1013 			goto out;
1014 
1015 		/*
1016 		 * It's not safe for direct compaction to call lock_page.
1017 		 * For example, during page readahead pages are added locked
1018 		 * to the LRU. Later, when the IO completes the pages are
1019 		 * marked uptodate and unlocked. However, the queueing
1020 		 * could be merging multiple pages for one bio (e.g.
1021 		 * mpage_readpages). If an allocation happens for the
1022 		 * second or third page, the process can end up locking
1023 		 * the same page twice and deadlocking. Rather than
1024 		 * trying to be clever about what pages can be locked,
1025 		 * avoid the use of lock_page for direct compaction
1026 		 * altogether.
1027 		 */
1028 		if (current->flags & PF_MEMALLOC)
1029 			goto out;
1030 
1031 		lock_page(page);
1032 	}
1033 
1034 	if (PageWriteback(page)) {
1035 		/*
1036 		 * Only in the case of a full synchronous migration is it
1037 		 * necessary to wait for PageWriteback. In the async case,
1038 		 * the retry loop is too short and in the sync-light case,
1039 		 * the overhead of stalling is too much
1040 		 */
1041 		switch (mode) {
1042 		case MIGRATE_SYNC:
1043 		case MIGRATE_SYNC_NO_COPY:
1044 			break;
1045 		default:
1046 			rc = -EBUSY;
1047 			goto out_unlock;
1048 		}
1049 		if (!force)
1050 			goto out_unlock;
1051 		wait_on_page_writeback(page);
1052 	}
1053 
1054 	/*
1055 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1056 	 * we cannot notice that anon_vma is freed while we migrates a page.
1057 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1058 	 * of migration. File cache pages are no problem because of page_lock()
1059 	 * File Caches may use write_page() or lock_page() in migration, then,
1060 	 * just care Anon page here.
1061 	 *
1062 	 * Only page_get_anon_vma() understands the subtleties of
1063 	 * getting a hold on an anon_vma from outside one of its mms.
1064 	 * But if we cannot get anon_vma, then we won't need it anyway,
1065 	 * because that implies that the anon page is no longer mapped
1066 	 * (and cannot be remapped so long as we hold the page lock).
1067 	 */
1068 	if (PageAnon(page) && !PageKsm(page))
1069 		anon_vma = page_get_anon_vma(page);
1070 
1071 	/*
1072 	 * Block others from accessing the new page when we get around to
1073 	 * establishing additional references. We are usually the only one
1074 	 * holding a reference to newpage at this point. We used to have a BUG
1075 	 * here if trylock_page(newpage) fails, but would like to allow for
1076 	 * cases where there might be a race with the previous use of newpage.
1077 	 * This is much like races on refcount of oldpage: just don't BUG().
1078 	 */
1079 	if (unlikely(!trylock_page(newpage)))
1080 		goto out_unlock;
1081 
1082 	if (unlikely(!is_lru)) {
1083 		rc = move_to_new_page(newpage, page, mode);
1084 		goto out_unlock_both;
1085 	}
1086 
1087 	/*
1088 	 * Corner case handling:
1089 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1090 	 * and treated as swapcache but it has no rmap yet.
1091 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1092 	 * trigger a BUG.  So handle it here.
1093 	 * 2. An orphaned page (see truncate_complete_page) might have
1094 	 * fs-private metadata. The page can be picked up due to memory
1095 	 * offlining.  Everywhere else except page reclaim, the page is
1096 	 * invisible to the vm, so the page can not be migrated.  So try to
1097 	 * free the metadata, so the page can be freed.
1098 	 */
1099 	if (!page->mapping) {
1100 		VM_BUG_ON_PAGE(PageAnon(page), page);
1101 		if (page_has_private(page)) {
1102 			try_to_free_buffers(page);
1103 			goto out_unlock_both;
1104 		}
1105 	} else if (page_mapped(page)) {
1106 		/* Establish migration ptes */
1107 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1108 				page);
1109 		try_to_unmap(page,
1110 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1111 		page_was_mapped = 1;
1112 	}
1113 
1114 	if (!page_mapped(page))
1115 		rc = move_to_new_page(newpage, page, mode);
1116 
1117 	if (page_was_mapped)
1118 		remove_migration_ptes(page,
1119 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1120 
1121 out_unlock_both:
1122 	unlock_page(newpage);
1123 out_unlock:
1124 	/* Drop an anon_vma reference if we took one */
1125 	if (anon_vma)
1126 		put_anon_vma(anon_vma);
1127 	unlock_page(page);
1128 out:
1129 	/*
1130 	 * If migration is successful, decrease refcount of the newpage
1131 	 * which will not free the page because new page owner increased
1132 	 * refcounter. As well, if it is LRU page, add the page to LRU
1133 	 * list in here. Use the old state of the isolated source page to
1134 	 * determine if we migrated a LRU page. newpage was already unlocked
1135 	 * and possibly modified by its owner - don't rely on the page
1136 	 * state.
1137 	 */
1138 	if (rc == MIGRATEPAGE_SUCCESS) {
1139 		if (unlikely(!is_lru))
1140 			put_page(newpage);
1141 		else
1142 			putback_lru_page(newpage);
1143 	}
1144 
1145 	return rc;
1146 }
1147 
1148 /*
1149  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1150  * around it.
1151  */
1152 #if defined(CONFIG_ARM) && \
1153 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1154 #define ICE_noinline noinline
1155 #else
1156 #define ICE_noinline
1157 #endif
1158 
1159 /*
1160  * Obtain the lock on page, remove all ptes and migrate the page
1161  * to the newly allocated page in newpage.
1162  */
1163 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1164 				   free_page_t put_new_page,
1165 				   unsigned long private, struct page *page,
1166 				   int force, enum migrate_mode mode,
1167 				   enum migrate_reason reason)
1168 {
1169 	int rc = MIGRATEPAGE_SUCCESS;
1170 	struct page *newpage;
1171 
1172 	if (!thp_migration_supported() && PageTransHuge(page))
1173 		return -ENOMEM;
1174 
1175 	newpage = get_new_page(page, private);
1176 	if (!newpage)
1177 		return -ENOMEM;
1178 
1179 	if (page_count(page) == 1) {
1180 		/* page was freed from under us. So we are done. */
1181 		ClearPageActive(page);
1182 		ClearPageUnevictable(page);
1183 		if (unlikely(__PageMovable(page))) {
1184 			lock_page(page);
1185 			if (!PageMovable(page))
1186 				__ClearPageIsolated(page);
1187 			unlock_page(page);
1188 		}
1189 		if (put_new_page)
1190 			put_new_page(newpage, private);
1191 		else
1192 			put_page(newpage);
1193 		goto out;
1194 	}
1195 
1196 	rc = __unmap_and_move(page, newpage, force, mode);
1197 	if (rc == MIGRATEPAGE_SUCCESS)
1198 		set_page_owner_migrate_reason(newpage, reason);
1199 
1200 out:
1201 	if (rc != -EAGAIN) {
1202 		/*
1203 		 * A page that has been migrated has all references
1204 		 * removed and will be freed. A page that has not been
1205 		 * migrated will have kepts its references and be
1206 		 * restored.
1207 		 */
1208 		list_del(&page->lru);
1209 
1210 		/*
1211 		 * Compaction can migrate also non-LRU pages which are
1212 		 * not accounted to NR_ISOLATED_*. They can be recognized
1213 		 * as __PageMovable
1214 		 */
1215 		if (likely(!__PageMovable(page)))
1216 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217 					page_is_file_cache(page), -hpage_nr_pages(page));
1218 	}
1219 
1220 	/*
1221 	 * If migration is successful, releases reference grabbed during
1222 	 * isolation. Otherwise, restore the page to right list unless
1223 	 * we want to retry.
1224 	 */
1225 	if (rc == MIGRATEPAGE_SUCCESS) {
1226 		put_page(page);
1227 		if (reason == MR_MEMORY_FAILURE) {
1228 			/*
1229 			 * Set PG_HWPoison on just freed page
1230 			 * intentionally. Although it's rather weird,
1231 			 * it's how HWPoison flag works at the moment.
1232 			 */
1233 			if (set_hwpoison_free_buddy_page(page))
1234 				num_poisoned_pages_inc();
1235 		}
1236 	} else {
1237 		if (rc != -EAGAIN) {
1238 			if (likely(!__PageMovable(page))) {
1239 				putback_lru_page(page);
1240 				goto put_new;
1241 			}
1242 
1243 			lock_page(page);
1244 			if (PageMovable(page))
1245 				putback_movable_page(page);
1246 			else
1247 				__ClearPageIsolated(page);
1248 			unlock_page(page);
1249 			put_page(page);
1250 		}
1251 put_new:
1252 		if (put_new_page)
1253 			put_new_page(newpage, private);
1254 		else
1255 			put_page(newpage);
1256 	}
1257 
1258 	return rc;
1259 }
1260 
1261 /*
1262  * Counterpart of unmap_and_move_page() for hugepage migration.
1263  *
1264  * This function doesn't wait the completion of hugepage I/O
1265  * because there is no race between I/O and migration for hugepage.
1266  * Note that currently hugepage I/O occurs only in direct I/O
1267  * where no lock is held and PG_writeback is irrelevant,
1268  * and writeback status of all subpages are counted in the reference
1269  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1270  * under direct I/O, the reference of the head page is 512 and a bit more.)
1271  * This means that when we try to migrate hugepage whose subpages are
1272  * doing direct I/O, some references remain after try_to_unmap() and
1273  * hugepage migration fails without data corruption.
1274  *
1275  * There is also no race when direct I/O is issued on the page under migration,
1276  * because then pte is replaced with migration swap entry and direct I/O code
1277  * will wait in the page fault for migration to complete.
1278  */
1279 static int unmap_and_move_huge_page(new_page_t get_new_page,
1280 				free_page_t put_new_page, unsigned long private,
1281 				struct page *hpage, int force,
1282 				enum migrate_mode mode, int reason)
1283 {
1284 	int rc = -EAGAIN;
1285 	int page_was_mapped = 0;
1286 	struct page *new_hpage;
1287 	struct anon_vma *anon_vma = NULL;
1288 
1289 	/*
1290 	 * Movability of hugepages depends on architectures and hugepage size.
1291 	 * This check is necessary because some callers of hugepage migration
1292 	 * like soft offline and memory hotremove don't walk through page
1293 	 * tables or check whether the hugepage is pmd-based or not before
1294 	 * kicking migration.
1295 	 */
1296 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1297 		putback_active_hugepage(hpage);
1298 		return -ENOSYS;
1299 	}
1300 
1301 	new_hpage = get_new_page(hpage, private);
1302 	if (!new_hpage)
1303 		return -ENOMEM;
1304 
1305 	if (!trylock_page(hpage)) {
1306 		if (!force)
1307 			goto out;
1308 		switch (mode) {
1309 		case MIGRATE_SYNC:
1310 		case MIGRATE_SYNC_NO_COPY:
1311 			break;
1312 		default:
1313 			goto out;
1314 		}
1315 		lock_page(hpage);
1316 	}
1317 
1318 	if (PageAnon(hpage))
1319 		anon_vma = page_get_anon_vma(hpage);
1320 
1321 	if (unlikely(!trylock_page(new_hpage)))
1322 		goto put_anon;
1323 
1324 	if (page_mapped(hpage)) {
1325 		try_to_unmap(hpage,
1326 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1327 		page_was_mapped = 1;
1328 	}
1329 
1330 	if (!page_mapped(hpage))
1331 		rc = move_to_new_page(new_hpage, hpage, mode);
1332 
1333 	if (page_was_mapped)
1334 		remove_migration_ptes(hpage,
1335 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1336 
1337 	unlock_page(new_hpage);
1338 
1339 put_anon:
1340 	if (anon_vma)
1341 		put_anon_vma(anon_vma);
1342 
1343 	if (rc == MIGRATEPAGE_SUCCESS) {
1344 		move_hugetlb_state(hpage, new_hpage, reason);
1345 		put_new_page = NULL;
1346 	}
1347 
1348 	unlock_page(hpage);
1349 out:
1350 	if (rc != -EAGAIN)
1351 		putback_active_hugepage(hpage);
1352 
1353 	/*
1354 	 * If migration was not successful and there's a freeing callback, use
1355 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1356 	 * isolation.
1357 	 */
1358 	if (put_new_page)
1359 		put_new_page(new_hpage, private);
1360 	else
1361 		putback_active_hugepage(new_hpage);
1362 
1363 	return rc;
1364 }
1365 
1366 /*
1367  * migrate_pages - migrate the pages specified in a list, to the free pages
1368  *		   supplied as the target for the page migration
1369  *
1370  * @from:		The list of pages to be migrated.
1371  * @get_new_page:	The function used to allocate free pages to be used
1372  *			as the target of the page migration.
1373  * @put_new_page:	The function used to free target pages if migration
1374  *			fails, or NULL if no special handling is necessary.
1375  * @private:		Private data to be passed on to get_new_page()
1376  * @mode:		The migration mode that specifies the constraints for
1377  *			page migration, if any.
1378  * @reason:		The reason for page migration.
1379  *
1380  * The function returns after 10 attempts or if no pages are movable any more
1381  * because the list has become empty or no retryable pages exist any more.
1382  * The caller should call putback_movable_pages() to return pages to the LRU
1383  * or free list only if ret != 0.
1384  *
1385  * Returns the number of pages that were not migrated, or an error code.
1386  */
1387 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1388 		free_page_t put_new_page, unsigned long private,
1389 		enum migrate_mode mode, int reason)
1390 {
1391 	int retry = 1;
1392 	int nr_failed = 0;
1393 	int nr_succeeded = 0;
1394 	int pass = 0;
1395 	struct page *page;
1396 	struct page *page2;
1397 	int swapwrite = current->flags & PF_SWAPWRITE;
1398 	int rc;
1399 
1400 	if (!swapwrite)
1401 		current->flags |= PF_SWAPWRITE;
1402 
1403 	for(pass = 0; pass < 10 && retry; pass++) {
1404 		retry = 0;
1405 
1406 		list_for_each_entry_safe(page, page2, from, lru) {
1407 retry:
1408 			cond_resched();
1409 
1410 			if (PageHuge(page))
1411 				rc = unmap_and_move_huge_page(get_new_page,
1412 						put_new_page, private, page,
1413 						pass > 2, mode, reason);
1414 			else
1415 				rc = unmap_and_move(get_new_page, put_new_page,
1416 						private, page, pass > 2, mode,
1417 						reason);
1418 
1419 			switch(rc) {
1420 			case -ENOMEM:
1421 				/*
1422 				 * THP migration might be unsupported or the
1423 				 * allocation could've failed so we should
1424 				 * retry on the same page with the THP split
1425 				 * to base pages.
1426 				 *
1427 				 * Head page is retried immediately and tail
1428 				 * pages are added to the tail of the list so
1429 				 * we encounter them after the rest of the list
1430 				 * is processed.
1431 				 */
1432 				if (PageTransHuge(page) && !PageHuge(page)) {
1433 					lock_page(page);
1434 					rc = split_huge_page_to_list(page, from);
1435 					unlock_page(page);
1436 					if (!rc) {
1437 						list_safe_reset_next(page, page2, lru);
1438 						goto retry;
1439 					}
1440 				}
1441 				nr_failed++;
1442 				goto out;
1443 			case -EAGAIN:
1444 				retry++;
1445 				break;
1446 			case MIGRATEPAGE_SUCCESS:
1447 				nr_succeeded++;
1448 				break;
1449 			default:
1450 				/*
1451 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1452 				 * unlike -EAGAIN case, the failed page is
1453 				 * removed from migration page list and not
1454 				 * retried in the next outer loop.
1455 				 */
1456 				nr_failed++;
1457 				break;
1458 			}
1459 		}
1460 	}
1461 	nr_failed += retry;
1462 	rc = nr_failed;
1463 out:
1464 	if (nr_succeeded)
1465 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1466 	if (nr_failed)
1467 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1468 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1469 
1470 	if (!swapwrite)
1471 		current->flags &= ~PF_SWAPWRITE;
1472 
1473 	return rc;
1474 }
1475 
1476 #ifdef CONFIG_NUMA
1477 
1478 static int store_status(int __user *status, int start, int value, int nr)
1479 {
1480 	while (nr-- > 0) {
1481 		if (put_user(value, status + start))
1482 			return -EFAULT;
1483 		start++;
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 static int do_move_pages_to_node(struct mm_struct *mm,
1490 		struct list_head *pagelist, int node)
1491 {
1492 	int err;
1493 
1494 	if (list_empty(pagelist))
1495 		return 0;
1496 
1497 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1498 			MIGRATE_SYNC, MR_SYSCALL);
1499 	if (err)
1500 		putback_movable_pages(pagelist);
1501 	return err;
1502 }
1503 
1504 /*
1505  * Resolves the given address to a struct page, isolates it from the LRU and
1506  * puts it to the given pagelist.
1507  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1508  * queued or the page doesn't need to be migrated because it is already on
1509  * the target node
1510  */
1511 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1512 		int node, struct list_head *pagelist, bool migrate_all)
1513 {
1514 	struct vm_area_struct *vma;
1515 	struct page *page;
1516 	unsigned int follflags;
1517 	int err;
1518 
1519 	down_read(&mm->mmap_sem);
1520 	err = -EFAULT;
1521 	vma = find_vma(mm, addr);
1522 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1523 		goto out;
1524 
1525 	/* FOLL_DUMP to ignore special (like zero) pages */
1526 	follflags = FOLL_GET | FOLL_DUMP;
1527 	page = follow_page(vma, addr, follflags);
1528 
1529 	err = PTR_ERR(page);
1530 	if (IS_ERR(page))
1531 		goto out;
1532 
1533 	err = -ENOENT;
1534 	if (!page)
1535 		goto out;
1536 
1537 	err = 0;
1538 	if (page_to_nid(page) == node)
1539 		goto out_putpage;
1540 
1541 	err = -EACCES;
1542 	if (page_mapcount(page) > 1 && !migrate_all)
1543 		goto out_putpage;
1544 
1545 	if (PageHuge(page)) {
1546 		if (PageHead(page)) {
1547 			isolate_huge_page(page, pagelist);
1548 			err = 0;
1549 		}
1550 	} else {
1551 		struct page *head;
1552 
1553 		head = compound_head(page);
1554 		err = isolate_lru_page(head);
1555 		if (err)
1556 			goto out_putpage;
1557 
1558 		err = 0;
1559 		list_add_tail(&head->lru, pagelist);
1560 		mod_node_page_state(page_pgdat(head),
1561 			NR_ISOLATED_ANON + page_is_file_cache(head),
1562 			hpage_nr_pages(head));
1563 	}
1564 out_putpage:
1565 	/*
1566 	 * Either remove the duplicate refcount from
1567 	 * isolate_lru_page() or drop the page ref if it was
1568 	 * not isolated.
1569 	 */
1570 	put_page(page);
1571 out:
1572 	up_read(&mm->mmap_sem);
1573 	return err;
1574 }
1575 
1576 /*
1577  * Migrate an array of page address onto an array of nodes and fill
1578  * the corresponding array of status.
1579  */
1580 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1581 			 unsigned long nr_pages,
1582 			 const void __user * __user *pages,
1583 			 const int __user *nodes,
1584 			 int __user *status, int flags)
1585 {
1586 	int current_node = NUMA_NO_NODE;
1587 	LIST_HEAD(pagelist);
1588 	int start, i;
1589 	int err = 0, err1;
1590 
1591 	migrate_prep();
1592 
1593 	for (i = start = 0; i < nr_pages; i++) {
1594 		const void __user *p;
1595 		unsigned long addr;
1596 		int node;
1597 
1598 		err = -EFAULT;
1599 		if (get_user(p, pages + i))
1600 			goto out_flush;
1601 		if (get_user(node, nodes + i))
1602 			goto out_flush;
1603 		addr = (unsigned long)p;
1604 
1605 		err = -ENODEV;
1606 		if (node < 0 || node >= MAX_NUMNODES)
1607 			goto out_flush;
1608 		if (!node_state(node, N_MEMORY))
1609 			goto out_flush;
1610 
1611 		err = -EACCES;
1612 		if (!node_isset(node, task_nodes))
1613 			goto out_flush;
1614 
1615 		if (current_node == NUMA_NO_NODE) {
1616 			current_node = node;
1617 			start = i;
1618 		} else if (node != current_node) {
1619 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1620 			if (err)
1621 				goto out;
1622 			err = store_status(status, start, current_node, i - start);
1623 			if (err)
1624 				goto out;
1625 			start = i;
1626 			current_node = node;
1627 		}
1628 
1629 		/*
1630 		 * Errors in the page lookup or isolation are not fatal and we simply
1631 		 * report them via status
1632 		 */
1633 		err = add_page_for_migration(mm, addr, current_node,
1634 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1635 		if (!err)
1636 			continue;
1637 
1638 		err = store_status(status, i, err, 1);
1639 		if (err)
1640 			goto out_flush;
1641 
1642 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1643 		if (err)
1644 			goto out;
1645 		if (i > start) {
1646 			err = store_status(status, start, current_node, i - start);
1647 			if (err)
1648 				goto out;
1649 		}
1650 		current_node = NUMA_NO_NODE;
1651 	}
1652 out_flush:
1653 	if (list_empty(&pagelist))
1654 		return err;
1655 
1656 	/* Make sure we do not overwrite the existing error */
1657 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1658 	if (!err1)
1659 		err1 = store_status(status, start, current_node, i - start);
1660 	if (!err)
1661 		err = err1;
1662 out:
1663 	return err;
1664 }
1665 
1666 /*
1667  * Determine the nodes of an array of pages and store it in an array of status.
1668  */
1669 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1670 				const void __user **pages, int *status)
1671 {
1672 	unsigned long i;
1673 
1674 	down_read(&mm->mmap_sem);
1675 
1676 	for (i = 0; i < nr_pages; i++) {
1677 		unsigned long addr = (unsigned long)(*pages);
1678 		struct vm_area_struct *vma;
1679 		struct page *page;
1680 		int err = -EFAULT;
1681 
1682 		vma = find_vma(mm, addr);
1683 		if (!vma || addr < vma->vm_start)
1684 			goto set_status;
1685 
1686 		/* FOLL_DUMP to ignore special (like zero) pages */
1687 		page = follow_page(vma, addr, FOLL_DUMP);
1688 
1689 		err = PTR_ERR(page);
1690 		if (IS_ERR(page))
1691 			goto set_status;
1692 
1693 		err = page ? page_to_nid(page) : -ENOENT;
1694 set_status:
1695 		*status = err;
1696 
1697 		pages++;
1698 		status++;
1699 	}
1700 
1701 	up_read(&mm->mmap_sem);
1702 }
1703 
1704 /*
1705  * Determine the nodes of a user array of pages and store it in
1706  * a user array of status.
1707  */
1708 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1709 			 const void __user * __user *pages,
1710 			 int __user *status)
1711 {
1712 #define DO_PAGES_STAT_CHUNK_NR 16
1713 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1714 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1715 
1716 	while (nr_pages) {
1717 		unsigned long chunk_nr;
1718 
1719 		chunk_nr = nr_pages;
1720 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1721 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1722 
1723 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1724 			break;
1725 
1726 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1727 
1728 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1729 			break;
1730 
1731 		pages += chunk_nr;
1732 		status += chunk_nr;
1733 		nr_pages -= chunk_nr;
1734 	}
1735 	return nr_pages ? -EFAULT : 0;
1736 }
1737 
1738 /*
1739  * Move a list of pages in the address space of the currently executing
1740  * process.
1741  */
1742 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1743 			     const void __user * __user *pages,
1744 			     const int __user *nodes,
1745 			     int __user *status, int flags)
1746 {
1747 	struct task_struct *task;
1748 	struct mm_struct *mm;
1749 	int err;
1750 	nodemask_t task_nodes;
1751 
1752 	/* Check flags */
1753 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1754 		return -EINVAL;
1755 
1756 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1757 		return -EPERM;
1758 
1759 	/* Find the mm_struct */
1760 	rcu_read_lock();
1761 	task = pid ? find_task_by_vpid(pid) : current;
1762 	if (!task) {
1763 		rcu_read_unlock();
1764 		return -ESRCH;
1765 	}
1766 	get_task_struct(task);
1767 
1768 	/*
1769 	 * Check if this process has the right to modify the specified
1770 	 * process. Use the regular "ptrace_may_access()" checks.
1771 	 */
1772 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1773 		rcu_read_unlock();
1774 		err = -EPERM;
1775 		goto out;
1776 	}
1777 	rcu_read_unlock();
1778 
1779  	err = security_task_movememory(task);
1780  	if (err)
1781 		goto out;
1782 
1783 	task_nodes = cpuset_mems_allowed(task);
1784 	mm = get_task_mm(task);
1785 	put_task_struct(task);
1786 
1787 	if (!mm)
1788 		return -EINVAL;
1789 
1790 	if (nodes)
1791 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1792 				    nodes, status, flags);
1793 	else
1794 		err = do_pages_stat(mm, nr_pages, pages, status);
1795 
1796 	mmput(mm);
1797 	return err;
1798 
1799 out:
1800 	put_task_struct(task);
1801 	return err;
1802 }
1803 
1804 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1805 		const void __user * __user *, pages,
1806 		const int __user *, nodes,
1807 		int __user *, status, int, flags)
1808 {
1809 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1810 }
1811 
1812 #ifdef CONFIG_COMPAT
1813 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1814 		       compat_uptr_t __user *, pages32,
1815 		       const int __user *, nodes,
1816 		       int __user *, status,
1817 		       int, flags)
1818 {
1819 	const void __user * __user *pages;
1820 	int i;
1821 
1822 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1823 	for (i = 0; i < nr_pages; i++) {
1824 		compat_uptr_t p;
1825 
1826 		if (get_user(p, pages32 + i) ||
1827 			put_user(compat_ptr(p), pages + i))
1828 			return -EFAULT;
1829 	}
1830 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1831 }
1832 #endif /* CONFIG_COMPAT */
1833 
1834 #ifdef CONFIG_NUMA_BALANCING
1835 /*
1836  * Returns true if this is a safe migration target node for misplaced NUMA
1837  * pages. Currently it only checks the watermarks which crude
1838  */
1839 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1840 				   unsigned long nr_migrate_pages)
1841 {
1842 	int z;
1843 
1844 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1845 		struct zone *zone = pgdat->node_zones + z;
1846 
1847 		if (!populated_zone(zone))
1848 			continue;
1849 
1850 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1851 		if (!zone_watermark_ok(zone, 0,
1852 				       high_wmark_pages(zone) +
1853 				       nr_migrate_pages,
1854 				       0, 0))
1855 			continue;
1856 		return true;
1857 	}
1858 	return false;
1859 }
1860 
1861 static struct page *alloc_misplaced_dst_page(struct page *page,
1862 					   unsigned long data)
1863 {
1864 	int nid = (int) data;
1865 	struct page *newpage;
1866 
1867 	newpage = __alloc_pages_node(nid,
1868 					 (GFP_HIGHUSER_MOVABLE |
1869 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1870 					  __GFP_NORETRY | __GFP_NOWARN) &
1871 					 ~__GFP_RECLAIM, 0);
1872 
1873 	return newpage;
1874 }
1875 
1876 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1877 {
1878 	int page_lru;
1879 
1880 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1881 
1882 	/* Avoid migrating to a node that is nearly full */
1883 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1884 		return 0;
1885 
1886 	if (isolate_lru_page(page))
1887 		return 0;
1888 
1889 	/*
1890 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1891 	 * check on page_count(), so we must do it here, now that the page
1892 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1893 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1894 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1895 	 */
1896 	if (PageTransHuge(page) && page_count(page) != 3) {
1897 		putback_lru_page(page);
1898 		return 0;
1899 	}
1900 
1901 	page_lru = page_is_file_cache(page);
1902 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1903 				hpage_nr_pages(page));
1904 
1905 	/*
1906 	 * Isolating the page has taken another reference, so the
1907 	 * caller's reference can be safely dropped without the page
1908 	 * disappearing underneath us during migration.
1909 	 */
1910 	put_page(page);
1911 	return 1;
1912 }
1913 
1914 bool pmd_trans_migrating(pmd_t pmd)
1915 {
1916 	struct page *page = pmd_page(pmd);
1917 	return PageLocked(page);
1918 }
1919 
1920 /*
1921  * Attempt to migrate a misplaced page to the specified destination
1922  * node. Caller is expected to have an elevated reference count on
1923  * the page that will be dropped by this function before returning.
1924  */
1925 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1926 			   int node)
1927 {
1928 	pg_data_t *pgdat = NODE_DATA(node);
1929 	int isolated;
1930 	int nr_remaining;
1931 	LIST_HEAD(migratepages);
1932 
1933 	/*
1934 	 * Don't migrate file pages that are mapped in multiple processes
1935 	 * with execute permissions as they are probably shared libraries.
1936 	 */
1937 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1938 	    (vma->vm_flags & VM_EXEC))
1939 		goto out;
1940 
1941 	/*
1942 	 * Also do not migrate dirty pages as not all filesystems can move
1943 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1944 	 */
1945 	if (page_is_file_cache(page) && PageDirty(page))
1946 		goto out;
1947 
1948 	isolated = numamigrate_isolate_page(pgdat, page);
1949 	if (!isolated)
1950 		goto out;
1951 
1952 	list_add(&page->lru, &migratepages);
1953 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1954 				     NULL, node, MIGRATE_ASYNC,
1955 				     MR_NUMA_MISPLACED);
1956 	if (nr_remaining) {
1957 		if (!list_empty(&migratepages)) {
1958 			list_del(&page->lru);
1959 			dec_node_page_state(page, NR_ISOLATED_ANON +
1960 					page_is_file_cache(page));
1961 			putback_lru_page(page);
1962 		}
1963 		isolated = 0;
1964 	} else
1965 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1966 	BUG_ON(!list_empty(&migratepages));
1967 	return isolated;
1968 
1969 out:
1970 	put_page(page);
1971 	return 0;
1972 }
1973 #endif /* CONFIG_NUMA_BALANCING */
1974 
1975 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1976 /*
1977  * Migrates a THP to a given target node. page must be locked and is unlocked
1978  * before returning.
1979  */
1980 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1981 				struct vm_area_struct *vma,
1982 				pmd_t *pmd, pmd_t entry,
1983 				unsigned long address,
1984 				struct page *page, int node)
1985 {
1986 	spinlock_t *ptl;
1987 	pg_data_t *pgdat = NODE_DATA(node);
1988 	int isolated = 0;
1989 	struct page *new_page = NULL;
1990 	int page_lru = page_is_file_cache(page);
1991 	unsigned long start = address & HPAGE_PMD_MASK;
1992 
1993 	new_page = alloc_pages_node(node,
1994 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1995 		HPAGE_PMD_ORDER);
1996 	if (!new_page)
1997 		goto out_fail;
1998 	prep_transhuge_page(new_page);
1999 
2000 	isolated = numamigrate_isolate_page(pgdat, page);
2001 	if (!isolated) {
2002 		put_page(new_page);
2003 		goto out_fail;
2004 	}
2005 
2006 	/* Prepare a page as a migration target */
2007 	__SetPageLocked(new_page);
2008 	if (PageSwapBacked(page))
2009 		__SetPageSwapBacked(new_page);
2010 
2011 	/* anon mapping, we can simply copy page->mapping to the new page: */
2012 	new_page->mapping = page->mapping;
2013 	new_page->index = page->index;
2014 	/* flush the cache before copying using the kernel virtual address */
2015 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2016 	migrate_page_copy(new_page, page);
2017 	WARN_ON(PageLRU(new_page));
2018 
2019 	/* Recheck the target PMD */
2020 	ptl = pmd_lock(mm, pmd);
2021 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2022 		spin_unlock(ptl);
2023 
2024 		/* Reverse changes made by migrate_page_copy() */
2025 		if (TestClearPageActive(new_page))
2026 			SetPageActive(page);
2027 		if (TestClearPageUnevictable(new_page))
2028 			SetPageUnevictable(page);
2029 
2030 		unlock_page(new_page);
2031 		put_page(new_page);		/* Free it */
2032 
2033 		/* Retake the callers reference and putback on LRU */
2034 		get_page(page);
2035 		putback_lru_page(page);
2036 		mod_node_page_state(page_pgdat(page),
2037 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2038 
2039 		goto out_unlock;
2040 	}
2041 
2042 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2043 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2044 
2045 	/*
2046 	 * Overwrite the old entry under pagetable lock and establish
2047 	 * the new PTE. Any parallel GUP will either observe the old
2048 	 * page blocking on the page lock, block on the page table
2049 	 * lock or observe the new page. The SetPageUptodate on the
2050 	 * new page and page_add_new_anon_rmap guarantee the copy is
2051 	 * visible before the pagetable update.
2052 	 */
2053 	page_add_anon_rmap(new_page, vma, start, true);
2054 	/*
2055 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2056 	 * has already been flushed globally.  So no TLB can be currently
2057 	 * caching this non present pmd mapping.  There's no need to clear the
2058 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2059 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2060 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2061 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2062 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2063 	 * pmd.
2064 	 */
2065 	set_pmd_at(mm, start, pmd, entry);
2066 	update_mmu_cache_pmd(vma, address, &entry);
2067 
2068 	page_ref_unfreeze(page, 2);
2069 	mlock_migrate_page(new_page, page);
2070 	page_remove_rmap(page, true);
2071 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2072 
2073 	spin_unlock(ptl);
2074 
2075 	/* Take an "isolate" reference and put new page on the LRU. */
2076 	get_page(new_page);
2077 	putback_lru_page(new_page);
2078 
2079 	unlock_page(new_page);
2080 	unlock_page(page);
2081 	put_page(page);			/* Drop the rmap reference */
2082 	put_page(page);			/* Drop the LRU isolation reference */
2083 
2084 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2085 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2086 
2087 	mod_node_page_state(page_pgdat(page),
2088 			NR_ISOLATED_ANON + page_lru,
2089 			-HPAGE_PMD_NR);
2090 	return isolated;
2091 
2092 out_fail:
2093 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2094 	ptl = pmd_lock(mm, pmd);
2095 	if (pmd_same(*pmd, entry)) {
2096 		entry = pmd_modify(entry, vma->vm_page_prot);
2097 		set_pmd_at(mm, start, pmd, entry);
2098 		update_mmu_cache_pmd(vma, address, &entry);
2099 	}
2100 	spin_unlock(ptl);
2101 
2102 out_unlock:
2103 	unlock_page(page);
2104 	put_page(page);
2105 	return 0;
2106 }
2107 #endif /* CONFIG_NUMA_BALANCING */
2108 
2109 #endif /* CONFIG_NUMA */
2110 
2111 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2112 struct migrate_vma {
2113 	struct vm_area_struct	*vma;
2114 	unsigned long		*dst;
2115 	unsigned long		*src;
2116 	unsigned long		cpages;
2117 	unsigned long		npages;
2118 	unsigned long		start;
2119 	unsigned long		end;
2120 };
2121 
2122 static int migrate_vma_collect_hole(unsigned long start,
2123 				    unsigned long end,
2124 				    struct mm_walk *walk)
2125 {
2126 	struct migrate_vma *migrate = walk->private;
2127 	unsigned long addr;
2128 
2129 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2130 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2131 		migrate->dst[migrate->npages] = 0;
2132 		migrate->npages++;
2133 		migrate->cpages++;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 static int migrate_vma_collect_skip(unsigned long start,
2140 				    unsigned long end,
2141 				    struct mm_walk *walk)
2142 {
2143 	struct migrate_vma *migrate = walk->private;
2144 	unsigned long addr;
2145 
2146 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2147 		migrate->dst[migrate->npages] = 0;
2148 		migrate->src[migrate->npages++] = 0;
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2155 				   unsigned long start,
2156 				   unsigned long end,
2157 				   struct mm_walk *walk)
2158 {
2159 	struct migrate_vma *migrate = walk->private;
2160 	struct vm_area_struct *vma = walk->vma;
2161 	struct mm_struct *mm = vma->vm_mm;
2162 	unsigned long addr = start, unmapped = 0;
2163 	spinlock_t *ptl;
2164 	pte_t *ptep;
2165 
2166 again:
2167 	if (pmd_none(*pmdp))
2168 		return migrate_vma_collect_hole(start, end, walk);
2169 
2170 	if (pmd_trans_huge(*pmdp)) {
2171 		struct page *page;
2172 
2173 		ptl = pmd_lock(mm, pmdp);
2174 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2175 			spin_unlock(ptl);
2176 			goto again;
2177 		}
2178 
2179 		page = pmd_page(*pmdp);
2180 		if (is_huge_zero_page(page)) {
2181 			spin_unlock(ptl);
2182 			split_huge_pmd(vma, pmdp, addr);
2183 			if (pmd_trans_unstable(pmdp))
2184 				return migrate_vma_collect_skip(start, end,
2185 								walk);
2186 		} else {
2187 			int ret;
2188 
2189 			get_page(page);
2190 			spin_unlock(ptl);
2191 			if (unlikely(!trylock_page(page)))
2192 				return migrate_vma_collect_skip(start, end,
2193 								walk);
2194 			ret = split_huge_page(page);
2195 			unlock_page(page);
2196 			put_page(page);
2197 			if (ret)
2198 				return migrate_vma_collect_skip(start, end,
2199 								walk);
2200 			if (pmd_none(*pmdp))
2201 				return migrate_vma_collect_hole(start, end,
2202 								walk);
2203 		}
2204 	}
2205 
2206 	if (unlikely(pmd_bad(*pmdp)))
2207 		return migrate_vma_collect_skip(start, end, walk);
2208 
2209 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2210 	arch_enter_lazy_mmu_mode();
2211 
2212 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2213 		unsigned long mpfn, pfn;
2214 		struct page *page;
2215 		swp_entry_t entry;
2216 		pte_t pte;
2217 
2218 		pte = *ptep;
2219 		pfn = pte_pfn(pte);
2220 
2221 		if (pte_none(pte)) {
2222 			mpfn = MIGRATE_PFN_MIGRATE;
2223 			migrate->cpages++;
2224 			pfn = 0;
2225 			goto next;
2226 		}
2227 
2228 		if (!pte_present(pte)) {
2229 			mpfn = pfn = 0;
2230 
2231 			/*
2232 			 * Only care about unaddressable device page special
2233 			 * page table entry. Other special swap entries are not
2234 			 * migratable, and we ignore regular swapped page.
2235 			 */
2236 			entry = pte_to_swp_entry(pte);
2237 			if (!is_device_private_entry(entry))
2238 				goto next;
2239 
2240 			page = device_private_entry_to_page(entry);
2241 			mpfn = migrate_pfn(page_to_pfn(page))|
2242 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2243 			if (is_write_device_private_entry(entry))
2244 				mpfn |= MIGRATE_PFN_WRITE;
2245 		} else {
2246 			if (is_zero_pfn(pfn)) {
2247 				mpfn = MIGRATE_PFN_MIGRATE;
2248 				migrate->cpages++;
2249 				pfn = 0;
2250 				goto next;
2251 			}
2252 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2253 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2254 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2255 		}
2256 
2257 		/* FIXME support THP */
2258 		if (!page || !page->mapping || PageTransCompound(page)) {
2259 			mpfn = pfn = 0;
2260 			goto next;
2261 		}
2262 		pfn = page_to_pfn(page);
2263 
2264 		/*
2265 		 * By getting a reference on the page we pin it and that blocks
2266 		 * any kind of migration. Side effect is that it "freezes" the
2267 		 * pte.
2268 		 *
2269 		 * We drop this reference after isolating the page from the lru
2270 		 * for non device page (device page are not on the lru and thus
2271 		 * can't be dropped from it).
2272 		 */
2273 		get_page(page);
2274 		migrate->cpages++;
2275 
2276 		/*
2277 		 * Optimize for the common case where page is only mapped once
2278 		 * in one process. If we can lock the page, then we can safely
2279 		 * set up a special migration page table entry now.
2280 		 */
2281 		if (trylock_page(page)) {
2282 			pte_t swp_pte;
2283 
2284 			mpfn |= MIGRATE_PFN_LOCKED;
2285 			ptep_get_and_clear(mm, addr, ptep);
2286 
2287 			/* Setup special migration page table entry */
2288 			entry = make_migration_entry(page, mpfn &
2289 						     MIGRATE_PFN_WRITE);
2290 			swp_pte = swp_entry_to_pte(entry);
2291 			if (pte_soft_dirty(pte))
2292 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2293 			set_pte_at(mm, addr, ptep, swp_pte);
2294 
2295 			/*
2296 			 * This is like regular unmap: we remove the rmap and
2297 			 * drop page refcount. Page won't be freed, as we took
2298 			 * a reference just above.
2299 			 */
2300 			page_remove_rmap(page, false);
2301 			put_page(page);
2302 
2303 			if (pte_present(pte))
2304 				unmapped++;
2305 		}
2306 
2307 next:
2308 		migrate->dst[migrate->npages] = 0;
2309 		migrate->src[migrate->npages++] = mpfn;
2310 	}
2311 	arch_leave_lazy_mmu_mode();
2312 	pte_unmap_unlock(ptep - 1, ptl);
2313 
2314 	/* Only flush the TLB if we actually modified any entries */
2315 	if (unmapped)
2316 		flush_tlb_range(walk->vma, start, end);
2317 
2318 	return 0;
2319 }
2320 
2321 /*
2322  * migrate_vma_collect() - collect pages over a range of virtual addresses
2323  * @migrate: migrate struct containing all migration information
2324  *
2325  * This will walk the CPU page table. For each virtual address backed by a
2326  * valid page, it updates the src array and takes a reference on the page, in
2327  * order to pin the page until we lock it and unmap it.
2328  */
2329 static void migrate_vma_collect(struct migrate_vma *migrate)
2330 {
2331 	struct mmu_notifier_range range;
2332 	struct mm_walk mm_walk;
2333 
2334 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2335 	mm_walk.pte_entry = NULL;
2336 	mm_walk.pte_hole = migrate_vma_collect_hole;
2337 	mm_walk.hugetlb_entry = NULL;
2338 	mm_walk.test_walk = NULL;
2339 	mm_walk.vma = migrate->vma;
2340 	mm_walk.mm = migrate->vma->vm_mm;
2341 	mm_walk.private = migrate;
2342 
2343 	mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2344 				migrate->end);
2345 	mmu_notifier_invalidate_range_start(&range);
2346 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2347 	mmu_notifier_invalidate_range_end(&range);
2348 
2349 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2350 }
2351 
2352 /*
2353  * migrate_vma_check_page() - check if page is pinned or not
2354  * @page: struct page to check
2355  *
2356  * Pinned pages cannot be migrated. This is the same test as in
2357  * migrate_page_move_mapping(), except that here we allow migration of a
2358  * ZONE_DEVICE page.
2359  */
2360 static bool migrate_vma_check_page(struct page *page)
2361 {
2362 	/*
2363 	 * One extra ref because caller holds an extra reference, either from
2364 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2365 	 * a device page.
2366 	 */
2367 	int extra = 1;
2368 
2369 	/*
2370 	 * FIXME support THP (transparent huge page), it is bit more complex to
2371 	 * check them than regular pages, because they can be mapped with a pmd
2372 	 * or with a pte (split pte mapping).
2373 	 */
2374 	if (PageCompound(page))
2375 		return false;
2376 
2377 	/* Page from ZONE_DEVICE have one extra reference */
2378 	if (is_zone_device_page(page)) {
2379 		/*
2380 		 * Private page can never be pin as they have no valid pte and
2381 		 * GUP will fail for those. Yet if there is a pending migration
2382 		 * a thread might try to wait on the pte migration entry and
2383 		 * will bump the page reference count. Sadly there is no way to
2384 		 * differentiate a regular pin from migration wait. Hence to
2385 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2386 		 * infinite loop (one stoping migration because the other is
2387 		 * waiting on pte migration entry). We always return true here.
2388 		 *
2389 		 * FIXME proper solution is to rework migration_entry_wait() so
2390 		 * it does not need to take a reference on page.
2391 		 */
2392 		if (is_device_private_page(page))
2393 			return true;
2394 
2395 		/*
2396 		 * Only allow device public page to be migrated and account for
2397 		 * the extra reference count imply by ZONE_DEVICE pages.
2398 		 */
2399 		if (!is_device_public_page(page))
2400 			return false;
2401 		extra++;
2402 	}
2403 
2404 	/* For file back page */
2405 	if (page_mapping(page))
2406 		extra += 1 + page_has_private(page);
2407 
2408 	if ((page_count(page) - extra) > page_mapcount(page))
2409 		return false;
2410 
2411 	return true;
2412 }
2413 
2414 /*
2415  * migrate_vma_prepare() - lock pages and isolate them from the lru
2416  * @migrate: migrate struct containing all migration information
2417  *
2418  * This locks pages that have been collected by migrate_vma_collect(). Once each
2419  * page is locked it is isolated from the lru (for non-device pages). Finally,
2420  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2421  * migrated by concurrent kernel threads.
2422  */
2423 static void migrate_vma_prepare(struct migrate_vma *migrate)
2424 {
2425 	const unsigned long npages = migrate->npages;
2426 	const unsigned long start = migrate->start;
2427 	unsigned long addr, i, restore = 0;
2428 	bool allow_drain = true;
2429 
2430 	lru_add_drain();
2431 
2432 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2433 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2434 		bool remap = true;
2435 
2436 		if (!page)
2437 			continue;
2438 
2439 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2440 			/*
2441 			 * Because we are migrating several pages there can be
2442 			 * a deadlock between 2 concurrent migration where each
2443 			 * are waiting on each other page lock.
2444 			 *
2445 			 * Make migrate_vma() a best effort thing and backoff
2446 			 * for any page we can not lock right away.
2447 			 */
2448 			if (!trylock_page(page)) {
2449 				migrate->src[i] = 0;
2450 				migrate->cpages--;
2451 				put_page(page);
2452 				continue;
2453 			}
2454 			remap = false;
2455 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2456 		}
2457 
2458 		/* ZONE_DEVICE pages are not on LRU */
2459 		if (!is_zone_device_page(page)) {
2460 			if (!PageLRU(page) && allow_drain) {
2461 				/* Drain CPU's pagevec */
2462 				lru_add_drain_all();
2463 				allow_drain = false;
2464 			}
2465 
2466 			if (isolate_lru_page(page)) {
2467 				if (remap) {
2468 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2469 					migrate->cpages--;
2470 					restore++;
2471 				} else {
2472 					migrate->src[i] = 0;
2473 					unlock_page(page);
2474 					migrate->cpages--;
2475 					put_page(page);
2476 				}
2477 				continue;
2478 			}
2479 
2480 			/* Drop the reference we took in collect */
2481 			put_page(page);
2482 		}
2483 
2484 		if (!migrate_vma_check_page(page)) {
2485 			if (remap) {
2486 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2487 				migrate->cpages--;
2488 				restore++;
2489 
2490 				if (!is_zone_device_page(page)) {
2491 					get_page(page);
2492 					putback_lru_page(page);
2493 				}
2494 			} else {
2495 				migrate->src[i] = 0;
2496 				unlock_page(page);
2497 				migrate->cpages--;
2498 
2499 				if (!is_zone_device_page(page))
2500 					putback_lru_page(page);
2501 				else
2502 					put_page(page);
2503 			}
2504 		}
2505 	}
2506 
2507 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2508 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2509 
2510 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2511 			continue;
2512 
2513 		remove_migration_pte(page, migrate->vma, addr, page);
2514 
2515 		migrate->src[i] = 0;
2516 		unlock_page(page);
2517 		put_page(page);
2518 		restore--;
2519 	}
2520 }
2521 
2522 /*
2523  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2524  * @migrate: migrate struct containing all migration information
2525  *
2526  * Replace page mapping (CPU page table pte) with a special migration pte entry
2527  * and check again if it has been pinned. Pinned pages are restored because we
2528  * cannot migrate them.
2529  *
2530  * This is the last step before we call the device driver callback to allocate
2531  * destination memory and copy contents of original page over to new page.
2532  */
2533 static void migrate_vma_unmap(struct migrate_vma *migrate)
2534 {
2535 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2536 	const unsigned long npages = migrate->npages;
2537 	const unsigned long start = migrate->start;
2538 	unsigned long addr, i, restore = 0;
2539 
2540 	for (i = 0; i < npages; i++) {
2541 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2542 
2543 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2544 			continue;
2545 
2546 		if (page_mapped(page)) {
2547 			try_to_unmap(page, flags);
2548 			if (page_mapped(page))
2549 				goto restore;
2550 		}
2551 
2552 		if (migrate_vma_check_page(page))
2553 			continue;
2554 
2555 restore:
2556 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2557 		migrate->cpages--;
2558 		restore++;
2559 	}
2560 
2561 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2562 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563 
2564 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565 			continue;
2566 
2567 		remove_migration_ptes(page, page, false);
2568 
2569 		migrate->src[i] = 0;
2570 		unlock_page(page);
2571 		restore--;
2572 
2573 		if (is_zone_device_page(page))
2574 			put_page(page);
2575 		else
2576 			putback_lru_page(page);
2577 	}
2578 }
2579 
2580 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2581 				    unsigned long addr,
2582 				    struct page *page,
2583 				    unsigned long *src,
2584 				    unsigned long *dst)
2585 {
2586 	struct vm_area_struct *vma = migrate->vma;
2587 	struct mm_struct *mm = vma->vm_mm;
2588 	struct mem_cgroup *memcg;
2589 	bool flush = false;
2590 	spinlock_t *ptl;
2591 	pte_t entry;
2592 	pgd_t *pgdp;
2593 	p4d_t *p4dp;
2594 	pud_t *pudp;
2595 	pmd_t *pmdp;
2596 	pte_t *ptep;
2597 
2598 	/* Only allow populating anonymous memory */
2599 	if (!vma_is_anonymous(vma))
2600 		goto abort;
2601 
2602 	pgdp = pgd_offset(mm, addr);
2603 	p4dp = p4d_alloc(mm, pgdp, addr);
2604 	if (!p4dp)
2605 		goto abort;
2606 	pudp = pud_alloc(mm, p4dp, addr);
2607 	if (!pudp)
2608 		goto abort;
2609 	pmdp = pmd_alloc(mm, pudp, addr);
2610 	if (!pmdp)
2611 		goto abort;
2612 
2613 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2614 		goto abort;
2615 
2616 	/*
2617 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2618 	 * pte_offset_map() on pmds where a huge pmd might be created
2619 	 * from a different thread.
2620 	 *
2621 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2622 	 * parallel threads are excluded by other means.
2623 	 *
2624 	 * Here we only have down_read(mmap_sem).
2625 	 */
2626 	if (pte_alloc(mm, pmdp))
2627 		goto abort;
2628 
2629 	/* See the comment in pte_alloc_one_map() */
2630 	if (unlikely(pmd_trans_unstable(pmdp)))
2631 		goto abort;
2632 
2633 	if (unlikely(anon_vma_prepare(vma)))
2634 		goto abort;
2635 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2636 		goto abort;
2637 
2638 	/*
2639 	 * The memory barrier inside __SetPageUptodate makes sure that
2640 	 * preceding stores to the page contents become visible before
2641 	 * the set_pte_at() write.
2642 	 */
2643 	__SetPageUptodate(page);
2644 
2645 	if (is_zone_device_page(page)) {
2646 		if (is_device_private_page(page)) {
2647 			swp_entry_t swp_entry;
2648 
2649 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2650 			entry = swp_entry_to_pte(swp_entry);
2651 		} else if (is_device_public_page(page)) {
2652 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2653 			if (vma->vm_flags & VM_WRITE)
2654 				entry = pte_mkwrite(pte_mkdirty(entry));
2655 			entry = pte_mkdevmap(entry);
2656 		}
2657 	} else {
2658 		entry = mk_pte(page, vma->vm_page_prot);
2659 		if (vma->vm_flags & VM_WRITE)
2660 			entry = pte_mkwrite(pte_mkdirty(entry));
2661 	}
2662 
2663 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2664 
2665 	if (pte_present(*ptep)) {
2666 		unsigned long pfn = pte_pfn(*ptep);
2667 
2668 		if (!is_zero_pfn(pfn)) {
2669 			pte_unmap_unlock(ptep, ptl);
2670 			mem_cgroup_cancel_charge(page, memcg, false);
2671 			goto abort;
2672 		}
2673 		flush = true;
2674 	} else if (!pte_none(*ptep)) {
2675 		pte_unmap_unlock(ptep, ptl);
2676 		mem_cgroup_cancel_charge(page, memcg, false);
2677 		goto abort;
2678 	}
2679 
2680 	/*
2681 	 * Check for usefaultfd but do not deliver the fault. Instead,
2682 	 * just back off.
2683 	 */
2684 	if (userfaultfd_missing(vma)) {
2685 		pte_unmap_unlock(ptep, ptl);
2686 		mem_cgroup_cancel_charge(page, memcg, false);
2687 		goto abort;
2688 	}
2689 
2690 	inc_mm_counter(mm, MM_ANONPAGES);
2691 	page_add_new_anon_rmap(page, vma, addr, false);
2692 	mem_cgroup_commit_charge(page, memcg, false, false);
2693 	if (!is_zone_device_page(page))
2694 		lru_cache_add_active_or_unevictable(page, vma);
2695 	get_page(page);
2696 
2697 	if (flush) {
2698 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2699 		ptep_clear_flush_notify(vma, addr, ptep);
2700 		set_pte_at_notify(mm, addr, ptep, entry);
2701 		update_mmu_cache(vma, addr, ptep);
2702 	} else {
2703 		/* No need to invalidate - it was non-present before */
2704 		set_pte_at(mm, addr, ptep, entry);
2705 		update_mmu_cache(vma, addr, ptep);
2706 	}
2707 
2708 	pte_unmap_unlock(ptep, ptl);
2709 	*src = MIGRATE_PFN_MIGRATE;
2710 	return;
2711 
2712 abort:
2713 	*src &= ~MIGRATE_PFN_MIGRATE;
2714 }
2715 
2716 /*
2717  * migrate_vma_pages() - migrate meta-data from src page to dst page
2718  * @migrate: migrate struct containing all migration information
2719  *
2720  * This migrates struct page meta-data from source struct page to destination
2721  * struct page. This effectively finishes the migration from source page to the
2722  * destination page.
2723  */
2724 static void migrate_vma_pages(struct migrate_vma *migrate)
2725 {
2726 	const unsigned long npages = migrate->npages;
2727 	const unsigned long start = migrate->start;
2728 	struct mmu_notifier_range range;
2729 	unsigned long addr, i;
2730 	bool notified = false;
2731 
2732 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2733 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2734 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2735 		struct address_space *mapping;
2736 		int r;
2737 
2738 		if (!newpage) {
2739 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2740 			continue;
2741 		}
2742 
2743 		if (!page) {
2744 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2745 				continue;
2746 			}
2747 			if (!notified) {
2748 				notified = true;
2749 
2750 				mmu_notifier_range_init(&range,
2751 							migrate->vma->vm_mm,
2752 							addr, migrate->end);
2753 				mmu_notifier_invalidate_range_start(&range);
2754 			}
2755 			migrate_vma_insert_page(migrate, addr, newpage,
2756 						&migrate->src[i],
2757 						&migrate->dst[i]);
2758 			continue;
2759 		}
2760 
2761 		mapping = page_mapping(page);
2762 
2763 		if (is_zone_device_page(newpage)) {
2764 			if (is_device_private_page(newpage)) {
2765 				/*
2766 				 * For now only support private anonymous when
2767 				 * migrating to un-addressable device memory.
2768 				 */
2769 				if (mapping) {
2770 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2771 					continue;
2772 				}
2773 			} else if (!is_device_public_page(newpage)) {
2774 				/*
2775 				 * Other types of ZONE_DEVICE page are not
2776 				 * supported.
2777 				 */
2778 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2779 				continue;
2780 			}
2781 		}
2782 
2783 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2784 		if (r != MIGRATEPAGE_SUCCESS)
2785 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2786 	}
2787 
2788 	/*
2789 	 * No need to double call mmu_notifier->invalidate_range() callback as
2790 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2791 	 * did already call it.
2792 	 */
2793 	if (notified)
2794 		mmu_notifier_invalidate_range_only_end(&range);
2795 }
2796 
2797 /*
2798  * migrate_vma_finalize() - restore CPU page table entry
2799  * @migrate: migrate struct containing all migration information
2800  *
2801  * This replaces the special migration pte entry with either a mapping to the
2802  * new page if migration was successful for that page, or to the original page
2803  * otherwise.
2804  *
2805  * This also unlocks the pages and puts them back on the lru, or drops the extra
2806  * refcount, for device pages.
2807  */
2808 static void migrate_vma_finalize(struct migrate_vma *migrate)
2809 {
2810 	const unsigned long npages = migrate->npages;
2811 	unsigned long i;
2812 
2813 	for (i = 0; i < npages; i++) {
2814 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2815 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2816 
2817 		if (!page) {
2818 			if (newpage) {
2819 				unlock_page(newpage);
2820 				put_page(newpage);
2821 			}
2822 			continue;
2823 		}
2824 
2825 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2826 			if (newpage) {
2827 				unlock_page(newpage);
2828 				put_page(newpage);
2829 			}
2830 			newpage = page;
2831 		}
2832 
2833 		remove_migration_ptes(page, newpage, false);
2834 		unlock_page(page);
2835 		migrate->cpages--;
2836 
2837 		if (is_zone_device_page(page))
2838 			put_page(page);
2839 		else
2840 			putback_lru_page(page);
2841 
2842 		if (newpage != page) {
2843 			unlock_page(newpage);
2844 			if (is_zone_device_page(newpage))
2845 				put_page(newpage);
2846 			else
2847 				putback_lru_page(newpage);
2848 		}
2849 	}
2850 }
2851 
2852 /*
2853  * migrate_vma() - migrate a range of memory inside vma
2854  *
2855  * @ops: migration callback for allocating destination memory and copying
2856  * @vma: virtual memory area containing the range to be migrated
2857  * @start: start address of the range to migrate (inclusive)
2858  * @end: end address of the range to migrate (exclusive)
2859  * @src: array of hmm_pfn_t containing source pfns
2860  * @dst: array of hmm_pfn_t containing destination pfns
2861  * @private: pointer passed back to each of the callback
2862  * Returns: 0 on success, error code otherwise
2863  *
2864  * This function tries to migrate a range of memory virtual address range, using
2865  * callbacks to allocate and copy memory from source to destination. First it
2866  * collects all the pages backing each virtual address in the range, saving this
2867  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2868  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2869  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2870  * in the corresponding src array entry. It then restores any pages that are
2871  * pinned, by remapping and unlocking those pages.
2872  *
2873  * At this point it calls the alloc_and_copy() callback. For documentation on
2874  * what is expected from that callback, see struct migrate_vma_ops comments in
2875  * include/linux/migrate.h
2876  *
2877  * After the alloc_and_copy() callback, this function goes over each entry in
2878  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2879  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2880  * then the function tries to migrate struct page information from the source
2881  * struct page to the destination struct page. If it fails to migrate the struct
2882  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2883  * array.
2884  *
2885  * At this point all successfully migrated pages have an entry in the src
2886  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2887  * array entry with MIGRATE_PFN_VALID flag set.
2888  *
2889  * It then calls the finalize_and_map() callback. See comments for "struct
2890  * migrate_vma_ops", in include/linux/migrate.h for details about
2891  * finalize_and_map() behavior.
2892  *
2893  * After the finalize_and_map() callback, for successfully migrated pages, this
2894  * function updates the CPU page table to point to new pages, otherwise it
2895  * restores the CPU page table to point to the original source pages.
2896  *
2897  * Function returns 0 after the above steps, even if no pages were migrated
2898  * (The function only returns an error if any of the arguments are invalid.)
2899  *
2900  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2901  * unsigned long entries.
2902  */
2903 int migrate_vma(const struct migrate_vma_ops *ops,
2904 		struct vm_area_struct *vma,
2905 		unsigned long start,
2906 		unsigned long end,
2907 		unsigned long *src,
2908 		unsigned long *dst,
2909 		void *private)
2910 {
2911 	struct migrate_vma migrate;
2912 
2913 	/* Sanity check the arguments */
2914 	start &= PAGE_MASK;
2915 	end &= PAGE_MASK;
2916 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2917 			vma_is_dax(vma))
2918 		return -EINVAL;
2919 	if (start < vma->vm_start || start >= vma->vm_end)
2920 		return -EINVAL;
2921 	if (end <= vma->vm_start || end > vma->vm_end)
2922 		return -EINVAL;
2923 	if (!ops || !src || !dst || start >= end)
2924 		return -EINVAL;
2925 
2926 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2927 	migrate.src = src;
2928 	migrate.dst = dst;
2929 	migrate.start = start;
2930 	migrate.npages = 0;
2931 	migrate.cpages = 0;
2932 	migrate.end = end;
2933 	migrate.vma = vma;
2934 
2935 	/* Collect, and try to unmap source pages */
2936 	migrate_vma_collect(&migrate);
2937 	if (!migrate.cpages)
2938 		return 0;
2939 
2940 	/* Lock and isolate page */
2941 	migrate_vma_prepare(&migrate);
2942 	if (!migrate.cpages)
2943 		return 0;
2944 
2945 	/* Unmap pages */
2946 	migrate_vma_unmap(&migrate);
2947 	if (!migrate.cpages)
2948 		return 0;
2949 
2950 	/*
2951 	 * At this point pages are locked and unmapped, and thus they have
2952 	 * stable content and can safely be copied to destination memory that
2953 	 * is allocated by the callback.
2954 	 *
2955 	 * Note that migration can fail in migrate_vma_struct_page() for each
2956 	 * individual page.
2957 	 */
2958 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2959 
2960 	/* This does the real migration of struct page */
2961 	migrate_vma_pages(&migrate);
2962 
2963 	ops->finalize_and_map(vma, src, dst, start, end, private);
2964 
2965 	/* Unlock and remap pages */
2966 	migrate_vma_finalize(&migrate);
2967 
2968 	return 0;
2969 }
2970 EXPORT_SYMBOL(migrate_vma);
2971 #endif /* defined(MIGRATE_VMA_HELPER) */
2972