1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grapping the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } else if (is_device_public_page(new)) { 250 pte = pte_mkdevmap(pte); 251 flush_dcache_page(new); 252 } 253 } else 254 flush_dcache_page(new); 255 256 #ifdef CONFIG_HUGETLB_PAGE 257 if (PageHuge(new)) { 258 pte = pte_mkhuge(pte); 259 pte = arch_make_huge_pte(pte, vma, new, 0); 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 261 if (PageAnon(new)) 262 hugepage_add_anon_rmap(new, vma, pvmw.address); 263 else 264 page_dup_rmap(new, true); 265 } else 266 #endif 267 { 268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 269 270 if (PageAnon(new)) 271 page_add_anon_rmap(new, vma, pvmw.address, false); 272 else 273 page_add_file_rmap(new, false); 274 } 275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 276 mlock_vma_page(new); 277 278 if (PageTransHuge(page) && PageMlocked(page)) 279 clear_page_mlock(page); 280 281 /* No need to invalidate - it was non-present before */ 282 update_mmu_cache(vma, pvmw.address, pvmw.pte); 283 } 284 285 return true; 286 } 287 288 /* 289 * Get rid of all migration entries and replace them by 290 * references to the indicated page. 291 */ 292 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 293 { 294 struct rmap_walk_control rwc = { 295 .rmap_one = remove_migration_pte, 296 .arg = old, 297 }; 298 299 if (locked) 300 rmap_walk_locked(new, &rwc); 301 else 302 rmap_walk(new, &rwc); 303 } 304 305 /* 306 * Something used the pte of a page under migration. We need to 307 * get to the page and wait until migration is finished. 308 * When we return from this function the fault will be retried. 309 */ 310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 311 spinlock_t *ptl) 312 { 313 pte_t pte; 314 swp_entry_t entry; 315 struct page *page; 316 317 spin_lock(ptl); 318 pte = *ptep; 319 if (!is_swap_pte(pte)) 320 goto out; 321 322 entry = pte_to_swp_entry(pte); 323 if (!is_migration_entry(entry)) 324 goto out; 325 326 page = migration_entry_to_page(entry); 327 328 /* 329 * Once page cache replacement of page migration started, page_count 330 * is zero; but we must not call put_and_wait_on_page_locked() without 331 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 332 */ 333 if (!get_page_unless_zero(page)) 334 goto out; 335 pte_unmap_unlock(ptep, ptl); 336 put_and_wait_on_page_locked(page); 337 return; 338 out: 339 pte_unmap_unlock(ptep, ptl); 340 } 341 342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 343 unsigned long address) 344 { 345 spinlock_t *ptl = pte_lockptr(mm, pmd); 346 pte_t *ptep = pte_offset_map(pmd, address); 347 __migration_entry_wait(mm, ptep, ptl); 348 } 349 350 void migration_entry_wait_huge(struct vm_area_struct *vma, 351 struct mm_struct *mm, pte_t *pte) 352 { 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 354 __migration_entry_wait(mm, pte, ptl); 355 } 356 357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 359 { 360 spinlock_t *ptl; 361 struct page *page; 362 363 ptl = pmd_lock(mm, pmd); 364 if (!is_pmd_migration_entry(*pmd)) 365 goto unlock; 366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 367 if (!get_page_unless_zero(page)) 368 goto unlock; 369 spin_unlock(ptl); 370 put_and_wait_on_page_locked(page); 371 return; 372 unlock: 373 spin_unlock(ptl); 374 } 375 #endif 376 377 static int expected_page_refs(struct page *page) 378 { 379 int expected_count = 1; 380 381 /* 382 * Device public or private pages have an extra refcount as they are 383 * ZONE_DEVICE pages. 384 */ 385 expected_count += is_device_private_page(page); 386 expected_count += is_device_public_page(page); 387 if (page_mapping(page)) 388 expected_count += hpage_nr_pages(page) + page_has_private(page); 389 390 return expected_count; 391 } 392 393 /* 394 * Replace the page in the mapping. 395 * 396 * The number of remaining references must be: 397 * 1 for anonymous pages without a mapping 398 * 2 for pages with a mapping 399 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 400 */ 401 int migrate_page_move_mapping(struct address_space *mapping, 402 struct page *newpage, struct page *page, enum migrate_mode mode, 403 int extra_count) 404 { 405 XA_STATE(xas, &mapping->i_pages, page_index(page)); 406 struct zone *oldzone, *newzone; 407 int dirty; 408 int expected_count = expected_page_refs(page) + extra_count; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (page_count(page) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newpage->index = page->index; 417 newpage->mapping = page->mapping; 418 if (PageSwapBacked(page)) 419 __SetPageSwapBacked(newpage); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = page_zone(page); 425 newzone = page_zone(newpage); 426 427 xas_lock_irq(&xas); 428 if (page_count(page) != expected_count || xas_load(&xas) != page) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 if (!page_ref_freeze(page, expected_count)) { 434 xas_unlock_irq(&xas); 435 return -EAGAIN; 436 } 437 438 /* 439 * Now we know that no one else is looking at the page: 440 * no turning back from here. 441 */ 442 newpage->index = page->index; 443 newpage->mapping = page->mapping; 444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 445 if (PageSwapBacked(page)) { 446 __SetPageSwapBacked(newpage); 447 if (PageSwapCache(page)) { 448 SetPageSwapCache(newpage); 449 set_page_private(newpage, page_private(page)); 450 } 451 } else { 452 VM_BUG_ON_PAGE(PageSwapCache(page), page); 453 } 454 455 /* Move dirty while page refs frozen and newpage not yet exposed */ 456 dirty = PageDirty(page); 457 if (dirty) { 458 ClearPageDirty(page); 459 SetPageDirty(newpage); 460 } 461 462 xas_store(&xas, newpage); 463 if (PageTransHuge(page)) { 464 int i; 465 466 for (i = 1; i < HPAGE_PMD_NR; i++) { 467 xas_next(&xas); 468 xas_store(&xas, newpage + i); 469 } 470 } 471 472 /* 473 * Drop cache reference from old page by unfreezing 474 * to one less reference. 475 * We know this isn't the last reference. 476 */ 477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 478 479 xas_unlock(&xas); 480 /* Leave irq disabled to prevent preemption while updating stats */ 481 482 /* 483 * If moved to a different zone then also account 484 * the page for that zone. Other VM counters will be 485 * taken care of when we establish references to the 486 * new page and drop references to the old page. 487 * 488 * Note that anonymous pages are accounted for 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 490 * are mapped to swap space. 491 */ 492 if (newzone != oldzone) { 493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 495 if (PageSwapBacked(page) && !PageSwapCache(page)) { 496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 498 } 499 if (dirty && mapping_cap_account_dirty(mapping)) { 500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 504 } 505 } 506 local_irq_enable(); 507 508 return MIGRATEPAGE_SUCCESS; 509 } 510 EXPORT_SYMBOL(migrate_page_move_mapping); 511 512 /* 513 * The expected number of remaining references is the same as that 514 * of migrate_page_move_mapping(). 515 */ 516 int migrate_huge_page_move_mapping(struct address_space *mapping, 517 struct page *newpage, struct page *page) 518 { 519 XA_STATE(xas, &mapping->i_pages, page_index(page)); 520 int expected_count; 521 522 xas_lock_irq(&xas); 523 expected_count = 2 + page_has_private(page); 524 if (page_count(page) != expected_count || xas_load(&xas) != page) { 525 xas_unlock_irq(&xas); 526 return -EAGAIN; 527 } 528 529 if (!page_ref_freeze(page, expected_count)) { 530 xas_unlock_irq(&xas); 531 return -EAGAIN; 532 } 533 534 newpage->index = page->index; 535 newpage->mapping = page->mapping; 536 537 get_page(newpage); 538 539 xas_store(&xas, newpage); 540 541 page_ref_unfreeze(page, expected_count - 1); 542 543 xas_unlock_irq(&xas); 544 545 return MIGRATEPAGE_SUCCESS; 546 } 547 548 /* 549 * Gigantic pages are so large that we do not guarantee that page++ pointer 550 * arithmetic will work across the entire page. We need something more 551 * specialized. 552 */ 553 static void __copy_gigantic_page(struct page *dst, struct page *src, 554 int nr_pages) 555 { 556 int i; 557 struct page *dst_base = dst; 558 struct page *src_base = src; 559 560 for (i = 0; i < nr_pages; ) { 561 cond_resched(); 562 copy_highpage(dst, src); 563 564 i++; 565 dst = mem_map_next(dst, dst_base, i); 566 src = mem_map_next(src, src_base, i); 567 } 568 } 569 570 static void copy_huge_page(struct page *dst, struct page *src) 571 { 572 int i; 573 int nr_pages; 574 575 if (PageHuge(src)) { 576 /* hugetlbfs page */ 577 struct hstate *h = page_hstate(src); 578 nr_pages = pages_per_huge_page(h); 579 580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 581 __copy_gigantic_page(dst, src, nr_pages); 582 return; 583 } 584 } else { 585 /* thp page */ 586 BUG_ON(!PageTransHuge(src)); 587 nr_pages = hpage_nr_pages(src); 588 } 589 590 for (i = 0; i < nr_pages; i++) { 591 cond_resched(); 592 copy_highpage(dst + i, src + i); 593 } 594 } 595 596 /* 597 * Copy the page to its new location 598 */ 599 void migrate_page_states(struct page *newpage, struct page *page) 600 { 601 int cpupid; 602 603 if (PageError(page)) 604 SetPageError(newpage); 605 if (PageReferenced(page)) 606 SetPageReferenced(newpage); 607 if (PageUptodate(page)) 608 SetPageUptodate(newpage); 609 if (TestClearPageActive(page)) { 610 VM_BUG_ON_PAGE(PageUnevictable(page), page); 611 SetPageActive(newpage); 612 } else if (TestClearPageUnevictable(page)) 613 SetPageUnevictable(newpage); 614 if (PageWorkingset(page)) 615 SetPageWorkingset(newpage); 616 if (PageChecked(page)) 617 SetPageChecked(newpage); 618 if (PageMappedToDisk(page)) 619 SetPageMappedToDisk(newpage); 620 621 /* Move dirty on pages not done by migrate_page_move_mapping() */ 622 if (PageDirty(page)) 623 SetPageDirty(newpage); 624 625 if (page_is_young(page)) 626 set_page_young(newpage); 627 if (page_is_idle(page)) 628 set_page_idle(newpage); 629 630 /* 631 * Copy NUMA information to the new page, to prevent over-eager 632 * future migrations of this same page. 633 */ 634 cpupid = page_cpupid_xchg_last(page, -1); 635 page_cpupid_xchg_last(newpage, cpupid); 636 637 ksm_migrate_page(newpage, page); 638 /* 639 * Please do not reorder this without considering how mm/ksm.c's 640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 641 */ 642 if (PageSwapCache(page)) 643 ClearPageSwapCache(page); 644 ClearPagePrivate(page); 645 set_page_private(page, 0); 646 647 /* 648 * If any waiters have accumulated on the new page then 649 * wake them up. 650 */ 651 if (PageWriteback(newpage)) 652 end_page_writeback(newpage); 653 654 copy_page_owner(page, newpage); 655 656 mem_cgroup_migrate(page, newpage); 657 } 658 EXPORT_SYMBOL(migrate_page_states); 659 660 void migrate_page_copy(struct page *newpage, struct page *page) 661 { 662 if (PageHuge(page) || PageTransHuge(page)) 663 copy_huge_page(newpage, page); 664 else 665 copy_highpage(newpage, page); 666 667 migrate_page_states(newpage, page); 668 } 669 EXPORT_SYMBOL(migrate_page_copy); 670 671 /************************************************************ 672 * Migration functions 673 ***********************************************************/ 674 675 /* 676 * Common logic to directly migrate a single LRU page suitable for 677 * pages that do not use PagePrivate/PagePrivate2. 678 * 679 * Pages are locked upon entry and exit. 680 */ 681 int migrate_page(struct address_space *mapping, 682 struct page *newpage, struct page *page, 683 enum migrate_mode mode) 684 { 685 int rc; 686 687 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 688 689 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0); 690 691 if (rc != MIGRATEPAGE_SUCCESS) 692 return rc; 693 694 if (mode != MIGRATE_SYNC_NO_COPY) 695 migrate_page_copy(newpage, page); 696 else 697 migrate_page_states(newpage, page); 698 return MIGRATEPAGE_SUCCESS; 699 } 700 EXPORT_SYMBOL(migrate_page); 701 702 #ifdef CONFIG_BLOCK 703 /* Returns true if all buffers are successfully locked */ 704 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 705 enum migrate_mode mode) 706 { 707 struct buffer_head *bh = head; 708 709 /* Simple case, sync compaction */ 710 if (mode != MIGRATE_ASYNC) { 711 do { 712 lock_buffer(bh); 713 bh = bh->b_this_page; 714 715 } while (bh != head); 716 717 return true; 718 } 719 720 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 721 do { 722 if (!trylock_buffer(bh)) { 723 /* 724 * We failed to lock the buffer and cannot stall in 725 * async migration. Release the taken locks 726 */ 727 struct buffer_head *failed_bh = bh; 728 bh = head; 729 while (bh != failed_bh) { 730 unlock_buffer(bh); 731 bh = bh->b_this_page; 732 } 733 return false; 734 } 735 736 bh = bh->b_this_page; 737 } while (bh != head); 738 return true; 739 } 740 741 static int __buffer_migrate_page(struct address_space *mapping, 742 struct page *newpage, struct page *page, enum migrate_mode mode, 743 bool check_refs) 744 { 745 struct buffer_head *bh, *head; 746 int rc; 747 int expected_count; 748 749 if (!page_has_buffers(page)) 750 return migrate_page(mapping, newpage, page, mode); 751 752 /* Check whether page does not have extra refs before we do more work */ 753 expected_count = expected_page_refs(page); 754 if (page_count(page) != expected_count) 755 return -EAGAIN; 756 757 head = page_buffers(page); 758 if (!buffer_migrate_lock_buffers(head, mode)) 759 return -EAGAIN; 760 761 if (check_refs) { 762 bool busy; 763 bool invalidated = false; 764 765 recheck_buffers: 766 busy = false; 767 spin_lock(&mapping->private_lock); 768 bh = head; 769 do { 770 if (atomic_read(&bh->b_count)) { 771 busy = true; 772 break; 773 } 774 bh = bh->b_this_page; 775 } while (bh != head); 776 spin_unlock(&mapping->private_lock); 777 if (busy) { 778 if (invalidated) { 779 rc = -EAGAIN; 780 goto unlock_buffers; 781 } 782 invalidate_bh_lrus(); 783 invalidated = true; 784 goto recheck_buffers; 785 } 786 } 787 788 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0); 789 if (rc != MIGRATEPAGE_SUCCESS) 790 goto unlock_buffers; 791 792 ClearPagePrivate(page); 793 set_page_private(newpage, page_private(page)); 794 set_page_private(page, 0); 795 put_page(page); 796 get_page(newpage); 797 798 bh = head; 799 do { 800 set_bh_page(bh, newpage, bh_offset(bh)); 801 bh = bh->b_this_page; 802 803 } while (bh != head); 804 805 SetPagePrivate(newpage); 806 807 if (mode != MIGRATE_SYNC_NO_COPY) 808 migrate_page_copy(newpage, page); 809 else 810 migrate_page_states(newpage, page); 811 812 rc = MIGRATEPAGE_SUCCESS; 813 unlock_buffers: 814 bh = head; 815 do { 816 unlock_buffer(bh); 817 bh = bh->b_this_page; 818 819 } while (bh != head); 820 821 return rc; 822 } 823 824 /* 825 * Migration function for pages with buffers. This function can only be used 826 * if the underlying filesystem guarantees that no other references to "page" 827 * exist. For example attached buffer heads are accessed only under page lock. 828 */ 829 int buffer_migrate_page(struct address_space *mapping, 830 struct page *newpage, struct page *page, enum migrate_mode mode) 831 { 832 return __buffer_migrate_page(mapping, newpage, page, mode, false); 833 } 834 EXPORT_SYMBOL(buffer_migrate_page); 835 836 /* 837 * Same as above except that this variant is more careful and checks that there 838 * are also no buffer head references. This function is the right one for 839 * mappings where buffer heads are directly looked up and referenced (such as 840 * block device mappings). 841 */ 842 int buffer_migrate_page_norefs(struct address_space *mapping, 843 struct page *newpage, struct page *page, enum migrate_mode mode) 844 { 845 return __buffer_migrate_page(mapping, newpage, page, mode, true); 846 } 847 #endif 848 849 /* 850 * Writeback a page to clean the dirty state 851 */ 852 static int writeout(struct address_space *mapping, struct page *page) 853 { 854 struct writeback_control wbc = { 855 .sync_mode = WB_SYNC_NONE, 856 .nr_to_write = 1, 857 .range_start = 0, 858 .range_end = LLONG_MAX, 859 .for_reclaim = 1 860 }; 861 int rc; 862 863 if (!mapping->a_ops->writepage) 864 /* No write method for the address space */ 865 return -EINVAL; 866 867 if (!clear_page_dirty_for_io(page)) 868 /* Someone else already triggered a write */ 869 return -EAGAIN; 870 871 /* 872 * A dirty page may imply that the underlying filesystem has 873 * the page on some queue. So the page must be clean for 874 * migration. Writeout may mean we loose the lock and the 875 * page state is no longer what we checked for earlier. 876 * At this point we know that the migration attempt cannot 877 * be successful. 878 */ 879 remove_migration_ptes(page, page, false); 880 881 rc = mapping->a_ops->writepage(page, &wbc); 882 883 if (rc != AOP_WRITEPAGE_ACTIVATE) 884 /* unlocked. Relock */ 885 lock_page(page); 886 887 return (rc < 0) ? -EIO : -EAGAIN; 888 } 889 890 /* 891 * Default handling if a filesystem does not provide a migration function. 892 */ 893 static int fallback_migrate_page(struct address_space *mapping, 894 struct page *newpage, struct page *page, enum migrate_mode mode) 895 { 896 if (PageDirty(page)) { 897 /* Only writeback pages in full synchronous migration */ 898 switch (mode) { 899 case MIGRATE_SYNC: 900 case MIGRATE_SYNC_NO_COPY: 901 break; 902 default: 903 return -EBUSY; 904 } 905 return writeout(mapping, page); 906 } 907 908 /* 909 * Buffers may be managed in a filesystem specific way. 910 * We must have no buffers or drop them. 911 */ 912 if (page_has_private(page) && 913 !try_to_release_page(page, GFP_KERNEL)) 914 return -EAGAIN; 915 916 return migrate_page(mapping, newpage, page, mode); 917 } 918 919 /* 920 * Move a page to a newly allocated page 921 * The page is locked and all ptes have been successfully removed. 922 * 923 * The new page will have replaced the old page if this function 924 * is successful. 925 * 926 * Return value: 927 * < 0 - error code 928 * MIGRATEPAGE_SUCCESS - success 929 */ 930 static int move_to_new_page(struct page *newpage, struct page *page, 931 enum migrate_mode mode) 932 { 933 struct address_space *mapping; 934 int rc = -EAGAIN; 935 bool is_lru = !__PageMovable(page); 936 937 VM_BUG_ON_PAGE(!PageLocked(page), page); 938 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 939 940 mapping = page_mapping(page); 941 942 if (likely(is_lru)) { 943 if (!mapping) 944 rc = migrate_page(mapping, newpage, page, mode); 945 else if (mapping->a_ops->migratepage) 946 /* 947 * Most pages have a mapping and most filesystems 948 * provide a migratepage callback. Anonymous pages 949 * are part of swap space which also has its own 950 * migratepage callback. This is the most common path 951 * for page migration. 952 */ 953 rc = mapping->a_ops->migratepage(mapping, newpage, 954 page, mode); 955 else 956 rc = fallback_migrate_page(mapping, newpage, 957 page, mode); 958 } else { 959 /* 960 * In case of non-lru page, it could be released after 961 * isolation step. In that case, we shouldn't try migration. 962 */ 963 VM_BUG_ON_PAGE(!PageIsolated(page), page); 964 if (!PageMovable(page)) { 965 rc = MIGRATEPAGE_SUCCESS; 966 __ClearPageIsolated(page); 967 goto out; 968 } 969 970 rc = mapping->a_ops->migratepage(mapping, newpage, 971 page, mode); 972 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 973 !PageIsolated(page)); 974 } 975 976 /* 977 * When successful, old pagecache page->mapping must be cleared before 978 * page is freed; but stats require that PageAnon be left as PageAnon. 979 */ 980 if (rc == MIGRATEPAGE_SUCCESS) { 981 if (__PageMovable(page)) { 982 VM_BUG_ON_PAGE(!PageIsolated(page), page); 983 984 /* 985 * We clear PG_movable under page_lock so any compactor 986 * cannot try to migrate this page. 987 */ 988 __ClearPageIsolated(page); 989 } 990 991 /* 992 * Anonymous and movable page->mapping will be cleard by 993 * free_pages_prepare so don't reset it here for keeping 994 * the type to work PageAnon, for example. 995 */ 996 if (!PageMappingFlags(page)) 997 page->mapping = NULL; 998 } 999 out: 1000 return rc; 1001 } 1002 1003 static int __unmap_and_move(struct page *page, struct page *newpage, 1004 int force, enum migrate_mode mode) 1005 { 1006 int rc = -EAGAIN; 1007 int page_was_mapped = 0; 1008 struct anon_vma *anon_vma = NULL; 1009 bool is_lru = !__PageMovable(page); 1010 1011 if (!trylock_page(page)) { 1012 if (!force || mode == MIGRATE_ASYNC) 1013 goto out; 1014 1015 /* 1016 * It's not safe for direct compaction to call lock_page. 1017 * For example, during page readahead pages are added locked 1018 * to the LRU. Later, when the IO completes the pages are 1019 * marked uptodate and unlocked. However, the queueing 1020 * could be merging multiple pages for one bio (e.g. 1021 * mpage_readpages). If an allocation happens for the 1022 * second or third page, the process can end up locking 1023 * the same page twice and deadlocking. Rather than 1024 * trying to be clever about what pages can be locked, 1025 * avoid the use of lock_page for direct compaction 1026 * altogether. 1027 */ 1028 if (current->flags & PF_MEMALLOC) 1029 goto out; 1030 1031 lock_page(page); 1032 } 1033 1034 if (PageWriteback(page)) { 1035 /* 1036 * Only in the case of a full synchronous migration is it 1037 * necessary to wait for PageWriteback. In the async case, 1038 * the retry loop is too short and in the sync-light case, 1039 * the overhead of stalling is too much 1040 */ 1041 switch (mode) { 1042 case MIGRATE_SYNC: 1043 case MIGRATE_SYNC_NO_COPY: 1044 break; 1045 default: 1046 rc = -EBUSY; 1047 goto out_unlock; 1048 } 1049 if (!force) 1050 goto out_unlock; 1051 wait_on_page_writeback(page); 1052 } 1053 1054 /* 1055 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1056 * we cannot notice that anon_vma is freed while we migrates a page. 1057 * This get_anon_vma() delays freeing anon_vma pointer until the end 1058 * of migration. File cache pages are no problem because of page_lock() 1059 * File Caches may use write_page() or lock_page() in migration, then, 1060 * just care Anon page here. 1061 * 1062 * Only page_get_anon_vma() understands the subtleties of 1063 * getting a hold on an anon_vma from outside one of its mms. 1064 * But if we cannot get anon_vma, then we won't need it anyway, 1065 * because that implies that the anon page is no longer mapped 1066 * (and cannot be remapped so long as we hold the page lock). 1067 */ 1068 if (PageAnon(page) && !PageKsm(page)) 1069 anon_vma = page_get_anon_vma(page); 1070 1071 /* 1072 * Block others from accessing the new page when we get around to 1073 * establishing additional references. We are usually the only one 1074 * holding a reference to newpage at this point. We used to have a BUG 1075 * here if trylock_page(newpage) fails, but would like to allow for 1076 * cases where there might be a race with the previous use of newpage. 1077 * This is much like races on refcount of oldpage: just don't BUG(). 1078 */ 1079 if (unlikely(!trylock_page(newpage))) 1080 goto out_unlock; 1081 1082 if (unlikely(!is_lru)) { 1083 rc = move_to_new_page(newpage, page, mode); 1084 goto out_unlock_both; 1085 } 1086 1087 /* 1088 * Corner case handling: 1089 * 1. When a new swap-cache page is read into, it is added to the LRU 1090 * and treated as swapcache but it has no rmap yet. 1091 * Calling try_to_unmap() against a page->mapping==NULL page will 1092 * trigger a BUG. So handle it here. 1093 * 2. An orphaned page (see truncate_complete_page) might have 1094 * fs-private metadata. The page can be picked up due to memory 1095 * offlining. Everywhere else except page reclaim, the page is 1096 * invisible to the vm, so the page can not be migrated. So try to 1097 * free the metadata, so the page can be freed. 1098 */ 1099 if (!page->mapping) { 1100 VM_BUG_ON_PAGE(PageAnon(page), page); 1101 if (page_has_private(page)) { 1102 try_to_free_buffers(page); 1103 goto out_unlock_both; 1104 } 1105 } else if (page_mapped(page)) { 1106 /* Establish migration ptes */ 1107 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1108 page); 1109 try_to_unmap(page, 1110 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1111 page_was_mapped = 1; 1112 } 1113 1114 if (!page_mapped(page)) 1115 rc = move_to_new_page(newpage, page, mode); 1116 1117 if (page_was_mapped) 1118 remove_migration_ptes(page, 1119 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1120 1121 out_unlock_both: 1122 unlock_page(newpage); 1123 out_unlock: 1124 /* Drop an anon_vma reference if we took one */ 1125 if (anon_vma) 1126 put_anon_vma(anon_vma); 1127 unlock_page(page); 1128 out: 1129 /* 1130 * If migration is successful, decrease refcount of the newpage 1131 * which will not free the page because new page owner increased 1132 * refcounter. As well, if it is LRU page, add the page to LRU 1133 * list in here. Use the old state of the isolated source page to 1134 * determine if we migrated a LRU page. newpage was already unlocked 1135 * and possibly modified by its owner - don't rely on the page 1136 * state. 1137 */ 1138 if (rc == MIGRATEPAGE_SUCCESS) { 1139 if (unlikely(!is_lru)) 1140 put_page(newpage); 1141 else 1142 putback_lru_page(newpage); 1143 } 1144 1145 return rc; 1146 } 1147 1148 /* 1149 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1150 * around it. 1151 */ 1152 #if defined(CONFIG_ARM) && \ 1153 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1154 #define ICE_noinline noinline 1155 #else 1156 #define ICE_noinline 1157 #endif 1158 1159 /* 1160 * Obtain the lock on page, remove all ptes and migrate the page 1161 * to the newly allocated page in newpage. 1162 */ 1163 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1164 free_page_t put_new_page, 1165 unsigned long private, struct page *page, 1166 int force, enum migrate_mode mode, 1167 enum migrate_reason reason) 1168 { 1169 int rc = MIGRATEPAGE_SUCCESS; 1170 struct page *newpage; 1171 1172 if (!thp_migration_supported() && PageTransHuge(page)) 1173 return -ENOMEM; 1174 1175 newpage = get_new_page(page, private); 1176 if (!newpage) 1177 return -ENOMEM; 1178 1179 if (page_count(page) == 1) { 1180 /* page was freed from under us. So we are done. */ 1181 ClearPageActive(page); 1182 ClearPageUnevictable(page); 1183 if (unlikely(__PageMovable(page))) { 1184 lock_page(page); 1185 if (!PageMovable(page)) 1186 __ClearPageIsolated(page); 1187 unlock_page(page); 1188 } 1189 if (put_new_page) 1190 put_new_page(newpage, private); 1191 else 1192 put_page(newpage); 1193 goto out; 1194 } 1195 1196 rc = __unmap_and_move(page, newpage, force, mode); 1197 if (rc == MIGRATEPAGE_SUCCESS) 1198 set_page_owner_migrate_reason(newpage, reason); 1199 1200 out: 1201 if (rc != -EAGAIN) { 1202 /* 1203 * A page that has been migrated has all references 1204 * removed and will be freed. A page that has not been 1205 * migrated will have kepts its references and be 1206 * restored. 1207 */ 1208 list_del(&page->lru); 1209 1210 /* 1211 * Compaction can migrate also non-LRU pages which are 1212 * not accounted to NR_ISOLATED_*. They can be recognized 1213 * as __PageMovable 1214 */ 1215 if (likely(!__PageMovable(page))) 1216 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1217 page_is_file_cache(page), -hpage_nr_pages(page)); 1218 } 1219 1220 /* 1221 * If migration is successful, releases reference grabbed during 1222 * isolation. Otherwise, restore the page to right list unless 1223 * we want to retry. 1224 */ 1225 if (rc == MIGRATEPAGE_SUCCESS) { 1226 put_page(page); 1227 if (reason == MR_MEMORY_FAILURE) { 1228 /* 1229 * Set PG_HWPoison on just freed page 1230 * intentionally. Although it's rather weird, 1231 * it's how HWPoison flag works at the moment. 1232 */ 1233 if (set_hwpoison_free_buddy_page(page)) 1234 num_poisoned_pages_inc(); 1235 } 1236 } else { 1237 if (rc != -EAGAIN) { 1238 if (likely(!__PageMovable(page))) { 1239 putback_lru_page(page); 1240 goto put_new; 1241 } 1242 1243 lock_page(page); 1244 if (PageMovable(page)) 1245 putback_movable_page(page); 1246 else 1247 __ClearPageIsolated(page); 1248 unlock_page(page); 1249 put_page(page); 1250 } 1251 put_new: 1252 if (put_new_page) 1253 put_new_page(newpage, private); 1254 else 1255 put_page(newpage); 1256 } 1257 1258 return rc; 1259 } 1260 1261 /* 1262 * Counterpart of unmap_and_move_page() for hugepage migration. 1263 * 1264 * This function doesn't wait the completion of hugepage I/O 1265 * because there is no race between I/O and migration for hugepage. 1266 * Note that currently hugepage I/O occurs only in direct I/O 1267 * where no lock is held and PG_writeback is irrelevant, 1268 * and writeback status of all subpages are counted in the reference 1269 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1270 * under direct I/O, the reference of the head page is 512 and a bit more.) 1271 * This means that when we try to migrate hugepage whose subpages are 1272 * doing direct I/O, some references remain after try_to_unmap() and 1273 * hugepage migration fails without data corruption. 1274 * 1275 * There is also no race when direct I/O is issued on the page under migration, 1276 * because then pte is replaced with migration swap entry and direct I/O code 1277 * will wait in the page fault for migration to complete. 1278 */ 1279 static int unmap_and_move_huge_page(new_page_t get_new_page, 1280 free_page_t put_new_page, unsigned long private, 1281 struct page *hpage, int force, 1282 enum migrate_mode mode, int reason) 1283 { 1284 int rc = -EAGAIN; 1285 int page_was_mapped = 0; 1286 struct page *new_hpage; 1287 struct anon_vma *anon_vma = NULL; 1288 1289 /* 1290 * Movability of hugepages depends on architectures and hugepage size. 1291 * This check is necessary because some callers of hugepage migration 1292 * like soft offline and memory hotremove don't walk through page 1293 * tables or check whether the hugepage is pmd-based or not before 1294 * kicking migration. 1295 */ 1296 if (!hugepage_migration_supported(page_hstate(hpage))) { 1297 putback_active_hugepage(hpage); 1298 return -ENOSYS; 1299 } 1300 1301 new_hpage = get_new_page(hpage, private); 1302 if (!new_hpage) 1303 return -ENOMEM; 1304 1305 if (!trylock_page(hpage)) { 1306 if (!force) 1307 goto out; 1308 switch (mode) { 1309 case MIGRATE_SYNC: 1310 case MIGRATE_SYNC_NO_COPY: 1311 break; 1312 default: 1313 goto out; 1314 } 1315 lock_page(hpage); 1316 } 1317 1318 if (PageAnon(hpage)) 1319 anon_vma = page_get_anon_vma(hpage); 1320 1321 if (unlikely(!trylock_page(new_hpage))) 1322 goto put_anon; 1323 1324 if (page_mapped(hpage)) { 1325 try_to_unmap(hpage, 1326 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1327 page_was_mapped = 1; 1328 } 1329 1330 if (!page_mapped(hpage)) 1331 rc = move_to_new_page(new_hpage, hpage, mode); 1332 1333 if (page_was_mapped) 1334 remove_migration_ptes(hpage, 1335 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1336 1337 unlock_page(new_hpage); 1338 1339 put_anon: 1340 if (anon_vma) 1341 put_anon_vma(anon_vma); 1342 1343 if (rc == MIGRATEPAGE_SUCCESS) { 1344 move_hugetlb_state(hpage, new_hpage, reason); 1345 put_new_page = NULL; 1346 } 1347 1348 unlock_page(hpage); 1349 out: 1350 if (rc != -EAGAIN) 1351 putback_active_hugepage(hpage); 1352 1353 /* 1354 * If migration was not successful and there's a freeing callback, use 1355 * it. Otherwise, put_page() will drop the reference grabbed during 1356 * isolation. 1357 */ 1358 if (put_new_page) 1359 put_new_page(new_hpage, private); 1360 else 1361 putback_active_hugepage(new_hpage); 1362 1363 return rc; 1364 } 1365 1366 /* 1367 * migrate_pages - migrate the pages specified in a list, to the free pages 1368 * supplied as the target for the page migration 1369 * 1370 * @from: The list of pages to be migrated. 1371 * @get_new_page: The function used to allocate free pages to be used 1372 * as the target of the page migration. 1373 * @put_new_page: The function used to free target pages if migration 1374 * fails, or NULL if no special handling is necessary. 1375 * @private: Private data to be passed on to get_new_page() 1376 * @mode: The migration mode that specifies the constraints for 1377 * page migration, if any. 1378 * @reason: The reason for page migration. 1379 * 1380 * The function returns after 10 attempts or if no pages are movable any more 1381 * because the list has become empty or no retryable pages exist any more. 1382 * The caller should call putback_movable_pages() to return pages to the LRU 1383 * or free list only if ret != 0. 1384 * 1385 * Returns the number of pages that were not migrated, or an error code. 1386 */ 1387 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1388 free_page_t put_new_page, unsigned long private, 1389 enum migrate_mode mode, int reason) 1390 { 1391 int retry = 1; 1392 int nr_failed = 0; 1393 int nr_succeeded = 0; 1394 int pass = 0; 1395 struct page *page; 1396 struct page *page2; 1397 int swapwrite = current->flags & PF_SWAPWRITE; 1398 int rc; 1399 1400 if (!swapwrite) 1401 current->flags |= PF_SWAPWRITE; 1402 1403 for(pass = 0; pass < 10 && retry; pass++) { 1404 retry = 0; 1405 1406 list_for_each_entry_safe(page, page2, from, lru) { 1407 retry: 1408 cond_resched(); 1409 1410 if (PageHuge(page)) 1411 rc = unmap_and_move_huge_page(get_new_page, 1412 put_new_page, private, page, 1413 pass > 2, mode, reason); 1414 else 1415 rc = unmap_and_move(get_new_page, put_new_page, 1416 private, page, pass > 2, mode, 1417 reason); 1418 1419 switch(rc) { 1420 case -ENOMEM: 1421 /* 1422 * THP migration might be unsupported or the 1423 * allocation could've failed so we should 1424 * retry on the same page with the THP split 1425 * to base pages. 1426 * 1427 * Head page is retried immediately and tail 1428 * pages are added to the tail of the list so 1429 * we encounter them after the rest of the list 1430 * is processed. 1431 */ 1432 if (PageTransHuge(page) && !PageHuge(page)) { 1433 lock_page(page); 1434 rc = split_huge_page_to_list(page, from); 1435 unlock_page(page); 1436 if (!rc) { 1437 list_safe_reset_next(page, page2, lru); 1438 goto retry; 1439 } 1440 } 1441 nr_failed++; 1442 goto out; 1443 case -EAGAIN: 1444 retry++; 1445 break; 1446 case MIGRATEPAGE_SUCCESS: 1447 nr_succeeded++; 1448 break; 1449 default: 1450 /* 1451 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1452 * unlike -EAGAIN case, the failed page is 1453 * removed from migration page list and not 1454 * retried in the next outer loop. 1455 */ 1456 nr_failed++; 1457 break; 1458 } 1459 } 1460 } 1461 nr_failed += retry; 1462 rc = nr_failed; 1463 out: 1464 if (nr_succeeded) 1465 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1466 if (nr_failed) 1467 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1468 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1469 1470 if (!swapwrite) 1471 current->flags &= ~PF_SWAPWRITE; 1472 1473 return rc; 1474 } 1475 1476 #ifdef CONFIG_NUMA 1477 1478 static int store_status(int __user *status, int start, int value, int nr) 1479 { 1480 while (nr-- > 0) { 1481 if (put_user(value, status + start)) 1482 return -EFAULT; 1483 start++; 1484 } 1485 1486 return 0; 1487 } 1488 1489 static int do_move_pages_to_node(struct mm_struct *mm, 1490 struct list_head *pagelist, int node) 1491 { 1492 int err; 1493 1494 if (list_empty(pagelist)) 1495 return 0; 1496 1497 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1498 MIGRATE_SYNC, MR_SYSCALL); 1499 if (err) 1500 putback_movable_pages(pagelist); 1501 return err; 1502 } 1503 1504 /* 1505 * Resolves the given address to a struct page, isolates it from the LRU and 1506 * puts it to the given pagelist. 1507 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1508 * queued or the page doesn't need to be migrated because it is already on 1509 * the target node 1510 */ 1511 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1512 int node, struct list_head *pagelist, bool migrate_all) 1513 { 1514 struct vm_area_struct *vma; 1515 struct page *page; 1516 unsigned int follflags; 1517 int err; 1518 1519 down_read(&mm->mmap_sem); 1520 err = -EFAULT; 1521 vma = find_vma(mm, addr); 1522 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1523 goto out; 1524 1525 /* FOLL_DUMP to ignore special (like zero) pages */ 1526 follflags = FOLL_GET | FOLL_DUMP; 1527 page = follow_page(vma, addr, follflags); 1528 1529 err = PTR_ERR(page); 1530 if (IS_ERR(page)) 1531 goto out; 1532 1533 err = -ENOENT; 1534 if (!page) 1535 goto out; 1536 1537 err = 0; 1538 if (page_to_nid(page) == node) 1539 goto out_putpage; 1540 1541 err = -EACCES; 1542 if (page_mapcount(page) > 1 && !migrate_all) 1543 goto out_putpage; 1544 1545 if (PageHuge(page)) { 1546 if (PageHead(page)) { 1547 isolate_huge_page(page, pagelist); 1548 err = 0; 1549 } 1550 } else { 1551 struct page *head; 1552 1553 head = compound_head(page); 1554 err = isolate_lru_page(head); 1555 if (err) 1556 goto out_putpage; 1557 1558 err = 0; 1559 list_add_tail(&head->lru, pagelist); 1560 mod_node_page_state(page_pgdat(head), 1561 NR_ISOLATED_ANON + page_is_file_cache(head), 1562 hpage_nr_pages(head)); 1563 } 1564 out_putpage: 1565 /* 1566 * Either remove the duplicate refcount from 1567 * isolate_lru_page() or drop the page ref if it was 1568 * not isolated. 1569 */ 1570 put_page(page); 1571 out: 1572 up_read(&mm->mmap_sem); 1573 return err; 1574 } 1575 1576 /* 1577 * Migrate an array of page address onto an array of nodes and fill 1578 * the corresponding array of status. 1579 */ 1580 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1581 unsigned long nr_pages, 1582 const void __user * __user *pages, 1583 const int __user *nodes, 1584 int __user *status, int flags) 1585 { 1586 int current_node = NUMA_NO_NODE; 1587 LIST_HEAD(pagelist); 1588 int start, i; 1589 int err = 0, err1; 1590 1591 migrate_prep(); 1592 1593 for (i = start = 0; i < nr_pages; i++) { 1594 const void __user *p; 1595 unsigned long addr; 1596 int node; 1597 1598 err = -EFAULT; 1599 if (get_user(p, pages + i)) 1600 goto out_flush; 1601 if (get_user(node, nodes + i)) 1602 goto out_flush; 1603 addr = (unsigned long)p; 1604 1605 err = -ENODEV; 1606 if (node < 0 || node >= MAX_NUMNODES) 1607 goto out_flush; 1608 if (!node_state(node, N_MEMORY)) 1609 goto out_flush; 1610 1611 err = -EACCES; 1612 if (!node_isset(node, task_nodes)) 1613 goto out_flush; 1614 1615 if (current_node == NUMA_NO_NODE) { 1616 current_node = node; 1617 start = i; 1618 } else if (node != current_node) { 1619 err = do_move_pages_to_node(mm, &pagelist, current_node); 1620 if (err) 1621 goto out; 1622 err = store_status(status, start, current_node, i - start); 1623 if (err) 1624 goto out; 1625 start = i; 1626 current_node = node; 1627 } 1628 1629 /* 1630 * Errors in the page lookup or isolation are not fatal and we simply 1631 * report them via status 1632 */ 1633 err = add_page_for_migration(mm, addr, current_node, 1634 &pagelist, flags & MPOL_MF_MOVE_ALL); 1635 if (!err) 1636 continue; 1637 1638 err = store_status(status, i, err, 1); 1639 if (err) 1640 goto out_flush; 1641 1642 err = do_move_pages_to_node(mm, &pagelist, current_node); 1643 if (err) 1644 goto out; 1645 if (i > start) { 1646 err = store_status(status, start, current_node, i - start); 1647 if (err) 1648 goto out; 1649 } 1650 current_node = NUMA_NO_NODE; 1651 } 1652 out_flush: 1653 if (list_empty(&pagelist)) 1654 return err; 1655 1656 /* Make sure we do not overwrite the existing error */ 1657 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1658 if (!err1) 1659 err1 = store_status(status, start, current_node, i - start); 1660 if (!err) 1661 err = err1; 1662 out: 1663 return err; 1664 } 1665 1666 /* 1667 * Determine the nodes of an array of pages and store it in an array of status. 1668 */ 1669 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1670 const void __user **pages, int *status) 1671 { 1672 unsigned long i; 1673 1674 down_read(&mm->mmap_sem); 1675 1676 for (i = 0; i < nr_pages; i++) { 1677 unsigned long addr = (unsigned long)(*pages); 1678 struct vm_area_struct *vma; 1679 struct page *page; 1680 int err = -EFAULT; 1681 1682 vma = find_vma(mm, addr); 1683 if (!vma || addr < vma->vm_start) 1684 goto set_status; 1685 1686 /* FOLL_DUMP to ignore special (like zero) pages */ 1687 page = follow_page(vma, addr, FOLL_DUMP); 1688 1689 err = PTR_ERR(page); 1690 if (IS_ERR(page)) 1691 goto set_status; 1692 1693 err = page ? page_to_nid(page) : -ENOENT; 1694 set_status: 1695 *status = err; 1696 1697 pages++; 1698 status++; 1699 } 1700 1701 up_read(&mm->mmap_sem); 1702 } 1703 1704 /* 1705 * Determine the nodes of a user array of pages and store it in 1706 * a user array of status. 1707 */ 1708 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1709 const void __user * __user *pages, 1710 int __user *status) 1711 { 1712 #define DO_PAGES_STAT_CHUNK_NR 16 1713 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1714 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1715 1716 while (nr_pages) { 1717 unsigned long chunk_nr; 1718 1719 chunk_nr = nr_pages; 1720 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1721 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1722 1723 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1724 break; 1725 1726 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1727 1728 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1729 break; 1730 1731 pages += chunk_nr; 1732 status += chunk_nr; 1733 nr_pages -= chunk_nr; 1734 } 1735 return nr_pages ? -EFAULT : 0; 1736 } 1737 1738 /* 1739 * Move a list of pages in the address space of the currently executing 1740 * process. 1741 */ 1742 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1743 const void __user * __user *pages, 1744 const int __user *nodes, 1745 int __user *status, int flags) 1746 { 1747 struct task_struct *task; 1748 struct mm_struct *mm; 1749 int err; 1750 nodemask_t task_nodes; 1751 1752 /* Check flags */ 1753 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1754 return -EINVAL; 1755 1756 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1757 return -EPERM; 1758 1759 /* Find the mm_struct */ 1760 rcu_read_lock(); 1761 task = pid ? find_task_by_vpid(pid) : current; 1762 if (!task) { 1763 rcu_read_unlock(); 1764 return -ESRCH; 1765 } 1766 get_task_struct(task); 1767 1768 /* 1769 * Check if this process has the right to modify the specified 1770 * process. Use the regular "ptrace_may_access()" checks. 1771 */ 1772 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1773 rcu_read_unlock(); 1774 err = -EPERM; 1775 goto out; 1776 } 1777 rcu_read_unlock(); 1778 1779 err = security_task_movememory(task); 1780 if (err) 1781 goto out; 1782 1783 task_nodes = cpuset_mems_allowed(task); 1784 mm = get_task_mm(task); 1785 put_task_struct(task); 1786 1787 if (!mm) 1788 return -EINVAL; 1789 1790 if (nodes) 1791 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1792 nodes, status, flags); 1793 else 1794 err = do_pages_stat(mm, nr_pages, pages, status); 1795 1796 mmput(mm); 1797 return err; 1798 1799 out: 1800 put_task_struct(task); 1801 return err; 1802 } 1803 1804 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1805 const void __user * __user *, pages, 1806 const int __user *, nodes, 1807 int __user *, status, int, flags) 1808 { 1809 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1810 } 1811 1812 #ifdef CONFIG_COMPAT 1813 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1814 compat_uptr_t __user *, pages32, 1815 const int __user *, nodes, 1816 int __user *, status, 1817 int, flags) 1818 { 1819 const void __user * __user *pages; 1820 int i; 1821 1822 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1823 for (i = 0; i < nr_pages; i++) { 1824 compat_uptr_t p; 1825 1826 if (get_user(p, pages32 + i) || 1827 put_user(compat_ptr(p), pages + i)) 1828 return -EFAULT; 1829 } 1830 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1831 } 1832 #endif /* CONFIG_COMPAT */ 1833 1834 #ifdef CONFIG_NUMA_BALANCING 1835 /* 1836 * Returns true if this is a safe migration target node for misplaced NUMA 1837 * pages. Currently it only checks the watermarks which crude 1838 */ 1839 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1840 unsigned long nr_migrate_pages) 1841 { 1842 int z; 1843 1844 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1845 struct zone *zone = pgdat->node_zones + z; 1846 1847 if (!populated_zone(zone)) 1848 continue; 1849 1850 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1851 if (!zone_watermark_ok(zone, 0, 1852 high_wmark_pages(zone) + 1853 nr_migrate_pages, 1854 0, 0)) 1855 continue; 1856 return true; 1857 } 1858 return false; 1859 } 1860 1861 static struct page *alloc_misplaced_dst_page(struct page *page, 1862 unsigned long data) 1863 { 1864 int nid = (int) data; 1865 struct page *newpage; 1866 1867 newpage = __alloc_pages_node(nid, 1868 (GFP_HIGHUSER_MOVABLE | 1869 __GFP_THISNODE | __GFP_NOMEMALLOC | 1870 __GFP_NORETRY | __GFP_NOWARN) & 1871 ~__GFP_RECLAIM, 0); 1872 1873 return newpage; 1874 } 1875 1876 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1877 { 1878 int page_lru; 1879 1880 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1881 1882 /* Avoid migrating to a node that is nearly full */ 1883 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1884 return 0; 1885 1886 if (isolate_lru_page(page)) 1887 return 0; 1888 1889 /* 1890 * migrate_misplaced_transhuge_page() skips page migration's usual 1891 * check on page_count(), so we must do it here, now that the page 1892 * has been isolated: a GUP pin, or any other pin, prevents migration. 1893 * The expected page count is 3: 1 for page's mapcount and 1 for the 1894 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1895 */ 1896 if (PageTransHuge(page) && page_count(page) != 3) { 1897 putback_lru_page(page); 1898 return 0; 1899 } 1900 1901 page_lru = page_is_file_cache(page); 1902 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1903 hpage_nr_pages(page)); 1904 1905 /* 1906 * Isolating the page has taken another reference, so the 1907 * caller's reference can be safely dropped without the page 1908 * disappearing underneath us during migration. 1909 */ 1910 put_page(page); 1911 return 1; 1912 } 1913 1914 bool pmd_trans_migrating(pmd_t pmd) 1915 { 1916 struct page *page = pmd_page(pmd); 1917 return PageLocked(page); 1918 } 1919 1920 /* 1921 * Attempt to migrate a misplaced page to the specified destination 1922 * node. Caller is expected to have an elevated reference count on 1923 * the page that will be dropped by this function before returning. 1924 */ 1925 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1926 int node) 1927 { 1928 pg_data_t *pgdat = NODE_DATA(node); 1929 int isolated; 1930 int nr_remaining; 1931 LIST_HEAD(migratepages); 1932 1933 /* 1934 * Don't migrate file pages that are mapped in multiple processes 1935 * with execute permissions as they are probably shared libraries. 1936 */ 1937 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1938 (vma->vm_flags & VM_EXEC)) 1939 goto out; 1940 1941 /* 1942 * Also do not migrate dirty pages as not all filesystems can move 1943 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1944 */ 1945 if (page_is_file_cache(page) && PageDirty(page)) 1946 goto out; 1947 1948 isolated = numamigrate_isolate_page(pgdat, page); 1949 if (!isolated) 1950 goto out; 1951 1952 list_add(&page->lru, &migratepages); 1953 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1954 NULL, node, MIGRATE_ASYNC, 1955 MR_NUMA_MISPLACED); 1956 if (nr_remaining) { 1957 if (!list_empty(&migratepages)) { 1958 list_del(&page->lru); 1959 dec_node_page_state(page, NR_ISOLATED_ANON + 1960 page_is_file_cache(page)); 1961 putback_lru_page(page); 1962 } 1963 isolated = 0; 1964 } else 1965 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1966 BUG_ON(!list_empty(&migratepages)); 1967 return isolated; 1968 1969 out: 1970 put_page(page); 1971 return 0; 1972 } 1973 #endif /* CONFIG_NUMA_BALANCING */ 1974 1975 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1976 /* 1977 * Migrates a THP to a given target node. page must be locked and is unlocked 1978 * before returning. 1979 */ 1980 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1981 struct vm_area_struct *vma, 1982 pmd_t *pmd, pmd_t entry, 1983 unsigned long address, 1984 struct page *page, int node) 1985 { 1986 spinlock_t *ptl; 1987 pg_data_t *pgdat = NODE_DATA(node); 1988 int isolated = 0; 1989 struct page *new_page = NULL; 1990 int page_lru = page_is_file_cache(page); 1991 unsigned long start = address & HPAGE_PMD_MASK; 1992 1993 new_page = alloc_pages_node(node, 1994 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 1995 HPAGE_PMD_ORDER); 1996 if (!new_page) 1997 goto out_fail; 1998 prep_transhuge_page(new_page); 1999 2000 isolated = numamigrate_isolate_page(pgdat, page); 2001 if (!isolated) { 2002 put_page(new_page); 2003 goto out_fail; 2004 } 2005 2006 /* Prepare a page as a migration target */ 2007 __SetPageLocked(new_page); 2008 if (PageSwapBacked(page)) 2009 __SetPageSwapBacked(new_page); 2010 2011 /* anon mapping, we can simply copy page->mapping to the new page: */ 2012 new_page->mapping = page->mapping; 2013 new_page->index = page->index; 2014 /* flush the cache before copying using the kernel virtual address */ 2015 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2016 migrate_page_copy(new_page, page); 2017 WARN_ON(PageLRU(new_page)); 2018 2019 /* Recheck the target PMD */ 2020 ptl = pmd_lock(mm, pmd); 2021 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2022 spin_unlock(ptl); 2023 2024 /* Reverse changes made by migrate_page_copy() */ 2025 if (TestClearPageActive(new_page)) 2026 SetPageActive(page); 2027 if (TestClearPageUnevictable(new_page)) 2028 SetPageUnevictable(page); 2029 2030 unlock_page(new_page); 2031 put_page(new_page); /* Free it */ 2032 2033 /* Retake the callers reference and putback on LRU */ 2034 get_page(page); 2035 putback_lru_page(page); 2036 mod_node_page_state(page_pgdat(page), 2037 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2038 2039 goto out_unlock; 2040 } 2041 2042 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2043 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2044 2045 /* 2046 * Overwrite the old entry under pagetable lock and establish 2047 * the new PTE. Any parallel GUP will either observe the old 2048 * page blocking on the page lock, block on the page table 2049 * lock or observe the new page. The SetPageUptodate on the 2050 * new page and page_add_new_anon_rmap guarantee the copy is 2051 * visible before the pagetable update. 2052 */ 2053 page_add_anon_rmap(new_page, vma, start, true); 2054 /* 2055 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2056 * has already been flushed globally. So no TLB can be currently 2057 * caching this non present pmd mapping. There's no need to clear the 2058 * pmd before doing set_pmd_at(), nor to flush the TLB after 2059 * set_pmd_at(). Clearing the pmd here would introduce a race 2060 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2061 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2062 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2063 * pmd. 2064 */ 2065 set_pmd_at(mm, start, pmd, entry); 2066 update_mmu_cache_pmd(vma, address, &entry); 2067 2068 page_ref_unfreeze(page, 2); 2069 mlock_migrate_page(new_page, page); 2070 page_remove_rmap(page, true); 2071 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2072 2073 spin_unlock(ptl); 2074 2075 /* Take an "isolate" reference and put new page on the LRU. */ 2076 get_page(new_page); 2077 putback_lru_page(new_page); 2078 2079 unlock_page(new_page); 2080 unlock_page(page); 2081 put_page(page); /* Drop the rmap reference */ 2082 put_page(page); /* Drop the LRU isolation reference */ 2083 2084 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2085 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2086 2087 mod_node_page_state(page_pgdat(page), 2088 NR_ISOLATED_ANON + page_lru, 2089 -HPAGE_PMD_NR); 2090 return isolated; 2091 2092 out_fail: 2093 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2094 ptl = pmd_lock(mm, pmd); 2095 if (pmd_same(*pmd, entry)) { 2096 entry = pmd_modify(entry, vma->vm_page_prot); 2097 set_pmd_at(mm, start, pmd, entry); 2098 update_mmu_cache_pmd(vma, address, &entry); 2099 } 2100 spin_unlock(ptl); 2101 2102 out_unlock: 2103 unlock_page(page); 2104 put_page(page); 2105 return 0; 2106 } 2107 #endif /* CONFIG_NUMA_BALANCING */ 2108 2109 #endif /* CONFIG_NUMA */ 2110 2111 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2112 struct migrate_vma { 2113 struct vm_area_struct *vma; 2114 unsigned long *dst; 2115 unsigned long *src; 2116 unsigned long cpages; 2117 unsigned long npages; 2118 unsigned long start; 2119 unsigned long end; 2120 }; 2121 2122 static int migrate_vma_collect_hole(unsigned long start, 2123 unsigned long end, 2124 struct mm_walk *walk) 2125 { 2126 struct migrate_vma *migrate = walk->private; 2127 unsigned long addr; 2128 2129 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2130 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2131 migrate->dst[migrate->npages] = 0; 2132 migrate->npages++; 2133 migrate->cpages++; 2134 } 2135 2136 return 0; 2137 } 2138 2139 static int migrate_vma_collect_skip(unsigned long start, 2140 unsigned long end, 2141 struct mm_walk *walk) 2142 { 2143 struct migrate_vma *migrate = walk->private; 2144 unsigned long addr; 2145 2146 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2147 migrate->dst[migrate->npages] = 0; 2148 migrate->src[migrate->npages++] = 0; 2149 } 2150 2151 return 0; 2152 } 2153 2154 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2155 unsigned long start, 2156 unsigned long end, 2157 struct mm_walk *walk) 2158 { 2159 struct migrate_vma *migrate = walk->private; 2160 struct vm_area_struct *vma = walk->vma; 2161 struct mm_struct *mm = vma->vm_mm; 2162 unsigned long addr = start, unmapped = 0; 2163 spinlock_t *ptl; 2164 pte_t *ptep; 2165 2166 again: 2167 if (pmd_none(*pmdp)) 2168 return migrate_vma_collect_hole(start, end, walk); 2169 2170 if (pmd_trans_huge(*pmdp)) { 2171 struct page *page; 2172 2173 ptl = pmd_lock(mm, pmdp); 2174 if (unlikely(!pmd_trans_huge(*pmdp))) { 2175 spin_unlock(ptl); 2176 goto again; 2177 } 2178 2179 page = pmd_page(*pmdp); 2180 if (is_huge_zero_page(page)) { 2181 spin_unlock(ptl); 2182 split_huge_pmd(vma, pmdp, addr); 2183 if (pmd_trans_unstable(pmdp)) 2184 return migrate_vma_collect_skip(start, end, 2185 walk); 2186 } else { 2187 int ret; 2188 2189 get_page(page); 2190 spin_unlock(ptl); 2191 if (unlikely(!trylock_page(page))) 2192 return migrate_vma_collect_skip(start, end, 2193 walk); 2194 ret = split_huge_page(page); 2195 unlock_page(page); 2196 put_page(page); 2197 if (ret) 2198 return migrate_vma_collect_skip(start, end, 2199 walk); 2200 if (pmd_none(*pmdp)) 2201 return migrate_vma_collect_hole(start, end, 2202 walk); 2203 } 2204 } 2205 2206 if (unlikely(pmd_bad(*pmdp))) 2207 return migrate_vma_collect_skip(start, end, walk); 2208 2209 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2210 arch_enter_lazy_mmu_mode(); 2211 2212 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2213 unsigned long mpfn, pfn; 2214 struct page *page; 2215 swp_entry_t entry; 2216 pte_t pte; 2217 2218 pte = *ptep; 2219 pfn = pte_pfn(pte); 2220 2221 if (pte_none(pte)) { 2222 mpfn = MIGRATE_PFN_MIGRATE; 2223 migrate->cpages++; 2224 pfn = 0; 2225 goto next; 2226 } 2227 2228 if (!pte_present(pte)) { 2229 mpfn = pfn = 0; 2230 2231 /* 2232 * Only care about unaddressable device page special 2233 * page table entry. Other special swap entries are not 2234 * migratable, and we ignore regular swapped page. 2235 */ 2236 entry = pte_to_swp_entry(pte); 2237 if (!is_device_private_entry(entry)) 2238 goto next; 2239 2240 page = device_private_entry_to_page(entry); 2241 mpfn = migrate_pfn(page_to_pfn(page))| 2242 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2243 if (is_write_device_private_entry(entry)) 2244 mpfn |= MIGRATE_PFN_WRITE; 2245 } else { 2246 if (is_zero_pfn(pfn)) { 2247 mpfn = MIGRATE_PFN_MIGRATE; 2248 migrate->cpages++; 2249 pfn = 0; 2250 goto next; 2251 } 2252 page = _vm_normal_page(migrate->vma, addr, pte, true); 2253 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2254 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2255 } 2256 2257 /* FIXME support THP */ 2258 if (!page || !page->mapping || PageTransCompound(page)) { 2259 mpfn = pfn = 0; 2260 goto next; 2261 } 2262 pfn = page_to_pfn(page); 2263 2264 /* 2265 * By getting a reference on the page we pin it and that blocks 2266 * any kind of migration. Side effect is that it "freezes" the 2267 * pte. 2268 * 2269 * We drop this reference after isolating the page from the lru 2270 * for non device page (device page are not on the lru and thus 2271 * can't be dropped from it). 2272 */ 2273 get_page(page); 2274 migrate->cpages++; 2275 2276 /* 2277 * Optimize for the common case where page is only mapped once 2278 * in one process. If we can lock the page, then we can safely 2279 * set up a special migration page table entry now. 2280 */ 2281 if (trylock_page(page)) { 2282 pte_t swp_pte; 2283 2284 mpfn |= MIGRATE_PFN_LOCKED; 2285 ptep_get_and_clear(mm, addr, ptep); 2286 2287 /* Setup special migration page table entry */ 2288 entry = make_migration_entry(page, mpfn & 2289 MIGRATE_PFN_WRITE); 2290 swp_pte = swp_entry_to_pte(entry); 2291 if (pte_soft_dirty(pte)) 2292 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2293 set_pte_at(mm, addr, ptep, swp_pte); 2294 2295 /* 2296 * This is like regular unmap: we remove the rmap and 2297 * drop page refcount. Page won't be freed, as we took 2298 * a reference just above. 2299 */ 2300 page_remove_rmap(page, false); 2301 put_page(page); 2302 2303 if (pte_present(pte)) 2304 unmapped++; 2305 } 2306 2307 next: 2308 migrate->dst[migrate->npages] = 0; 2309 migrate->src[migrate->npages++] = mpfn; 2310 } 2311 arch_leave_lazy_mmu_mode(); 2312 pte_unmap_unlock(ptep - 1, ptl); 2313 2314 /* Only flush the TLB if we actually modified any entries */ 2315 if (unmapped) 2316 flush_tlb_range(walk->vma, start, end); 2317 2318 return 0; 2319 } 2320 2321 /* 2322 * migrate_vma_collect() - collect pages over a range of virtual addresses 2323 * @migrate: migrate struct containing all migration information 2324 * 2325 * This will walk the CPU page table. For each virtual address backed by a 2326 * valid page, it updates the src array and takes a reference on the page, in 2327 * order to pin the page until we lock it and unmap it. 2328 */ 2329 static void migrate_vma_collect(struct migrate_vma *migrate) 2330 { 2331 struct mmu_notifier_range range; 2332 struct mm_walk mm_walk; 2333 2334 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2335 mm_walk.pte_entry = NULL; 2336 mm_walk.pte_hole = migrate_vma_collect_hole; 2337 mm_walk.hugetlb_entry = NULL; 2338 mm_walk.test_walk = NULL; 2339 mm_walk.vma = migrate->vma; 2340 mm_walk.mm = migrate->vma->vm_mm; 2341 mm_walk.private = migrate; 2342 2343 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start, 2344 migrate->end); 2345 mmu_notifier_invalidate_range_start(&range); 2346 walk_page_range(migrate->start, migrate->end, &mm_walk); 2347 mmu_notifier_invalidate_range_end(&range); 2348 2349 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2350 } 2351 2352 /* 2353 * migrate_vma_check_page() - check if page is pinned or not 2354 * @page: struct page to check 2355 * 2356 * Pinned pages cannot be migrated. This is the same test as in 2357 * migrate_page_move_mapping(), except that here we allow migration of a 2358 * ZONE_DEVICE page. 2359 */ 2360 static bool migrate_vma_check_page(struct page *page) 2361 { 2362 /* 2363 * One extra ref because caller holds an extra reference, either from 2364 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2365 * a device page. 2366 */ 2367 int extra = 1; 2368 2369 /* 2370 * FIXME support THP (transparent huge page), it is bit more complex to 2371 * check them than regular pages, because they can be mapped with a pmd 2372 * or with a pte (split pte mapping). 2373 */ 2374 if (PageCompound(page)) 2375 return false; 2376 2377 /* Page from ZONE_DEVICE have one extra reference */ 2378 if (is_zone_device_page(page)) { 2379 /* 2380 * Private page can never be pin as they have no valid pte and 2381 * GUP will fail for those. Yet if there is a pending migration 2382 * a thread might try to wait on the pte migration entry and 2383 * will bump the page reference count. Sadly there is no way to 2384 * differentiate a regular pin from migration wait. Hence to 2385 * avoid 2 racing thread trying to migrate back to CPU to enter 2386 * infinite loop (one stoping migration because the other is 2387 * waiting on pte migration entry). We always return true here. 2388 * 2389 * FIXME proper solution is to rework migration_entry_wait() so 2390 * it does not need to take a reference on page. 2391 */ 2392 if (is_device_private_page(page)) 2393 return true; 2394 2395 /* 2396 * Only allow device public page to be migrated and account for 2397 * the extra reference count imply by ZONE_DEVICE pages. 2398 */ 2399 if (!is_device_public_page(page)) 2400 return false; 2401 extra++; 2402 } 2403 2404 /* For file back page */ 2405 if (page_mapping(page)) 2406 extra += 1 + page_has_private(page); 2407 2408 if ((page_count(page) - extra) > page_mapcount(page)) 2409 return false; 2410 2411 return true; 2412 } 2413 2414 /* 2415 * migrate_vma_prepare() - lock pages and isolate them from the lru 2416 * @migrate: migrate struct containing all migration information 2417 * 2418 * This locks pages that have been collected by migrate_vma_collect(). Once each 2419 * page is locked it is isolated from the lru (for non-device pages). Finally, 2420 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2421 * migrated by concurrent kernel threads. 2422 */ 2423 static void migrate_vma_prepare(struct migrate_vma *migrate) 2424 { 2425 const unsigned long npages = migrate->npages; 2426 const unsigned long start = migrate->start; 2427 unsigned long addr, i, restore = 0; 2428 bool allow_drain = true; 2429 2430 lru_add_drain(); 2431 2432 for (i = 0; (i < npages) && migrate->cpages; i++) { 2433 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2434 bool remap = true; 2435 2436 if (!page) 2437 continue; 2438 2439 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2440 /* 2441 * Because we are migrating several pages there can be 2442 * a deadlock between 2 concurrent migration where each 2443 * are waiting on each other page lock. 2444 * 2445 * Make migrate_vma() a best effort thing and backoff 2446 * for any page we can not lock right away. 2447 */ 2448 if (!trylock_page(page)) { 2449 migrate->src[i] = 0; 2450 migrate->cpages--; 2451 put_page(page); 2452 continue; 2453 } 2454 remap = false; 2455 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2456 } 2457 2458 /* ZONE_DEVICE pages are not on LRU */ 2459 if (!is_zone_device_page(page)) { 2460 if (!PageLRU(page) && allow_drain) { 2461 /* Drain CPU's pagevec */ 2462 lru_add_drain_all(); 2463 allow_drain = false; 2464 } 2465 2466 if (isolate_lru_page(page)) { 2467 if (remap) { 2468 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2469 migrate->cpages--; 2470 restore++; 2471 } else { 2472 migrate->src[i] = 0; 2473 unlock_page(page); 2474 migrate->cpages--; 2475 put_page(page); 2476 } 2477 continue; 2478 } 2479 2480 /* Drop the reference we took in collect */ 2481 put_page(page); 2482 } 2483 2484 if (!migrate_vma_check_page(page)) { 2485 if (remap) { 2486 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2487 migrate->cpages--; 2488 restore++; 2489 2490 if (!is_zone_device_page(page)) { 2491 get_page(page); 2492 putback_lru_page(page); 2493 } 2494 } else { 2495 migrate->src[i] = 0; 2496 unlock_page(page); 2497 migrate->cpages--; 2498 2499 if (!is_zone_device_page(page)) 2500 putback_lru_page(page); 2501 else 2502 put_page(page); 2503 } 2504 } 2505 } 2506 2507 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2508 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2509 2510 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2511 continue; 2512 2513 remove_migration_pte(page, migrate->vma, addr, page); 2514 2515 migrate->src[i] = 0; 2516 unlock_page(page); 2517 put_page(page); 2518 restore--; 2519 } 2520 } 2521 2522 /* 2523 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2524 * @migrate: migrate struct containing all migration information 2525 * 2526 * Replace page mapping (CPU page table pte) with a special migration pte entry 2527 * and check again if it has been pinned. Pinned pages are restored because we 2528 * cannot migrate them. 2529 * 2530 * This is the last step before we call the device driver callback to allocate 2531 * destination memory and copy contents of original page over to new page. 2532 */ 2533 static void migrate_vma_unmap(struct migrate_vma *migrate) 2534 { 2535 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2536 const unsigned long npages = migrate->npages; 2537 const unsigned long start = migrate->start; 2538 unsigned long addr, i, restore = 0; 2539 2540 for (i = 0; i < npages; i++) { 2541 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2542 2543 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2544 continue; 2545 2546 if (page_mapped(page)) { 2547 try_to_unmap(page, flags); 2548 if (page_mapped(page)) 2549 goto restore; 2550 } 2551 2552 if (migrate_vma_check_page(page)) 2553 continue; 2554 2555 restore: 2556 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2557 migrate->cpages--; 2558 restore++; 2559 } 2560 2561 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2562 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2563 2564 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2565 continue; 2566 2567 remove_migration_ptes(page, page, false); 2568 2569 migrate->src[i] = 0; 2570 unlock_page(page); 2571 restore--; 2572 2573 if (is_zone_device_page(page)) 2574 put_page(page); 2575 else 2576 putback_lru_page(page); 2577 } 2578 } 2579 2580 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2581 unsigned long addr, 2582 struct page *page, 2583 unsigned long *src, 2584 unsigned long *dst) 2585 { 2586 struct vm_area_struct *vma = migrate->vma; 2587 struct mm_struct *mm = vma->vm_mm; 2588 struct mem_cgroup *memcg; 2589 bool flush = false; 2590 spinlock_t *ptl; 2591 pte_t entry; 2592 pgd_t *pgdp; 2593 p4d_t *p4dp; 2594 pud_t *pudp; 2595 pmd_t *pmdp; 2596 pte_t *ptep; 2597 2598 /* Only allow populating anonymous memory */ 2599 if (!vma_is_anonymous(vma)) 2600 goto abort; 2601 2602 pgdp = pgd_offset(mm, addr); 2603 p4dp = p4d_alloc(mm, pgdp, addr); 2604 if (!p4dp) 2605 goto abort; 2606 pudp = pud_alloc(mm, p4dp, addr); 2607 if (!pudp) 2608 goto abort; 2609 pmdp = pmd_alloc(mm, pudp, addr); 2610 if (!pmdp) 2611 goto abort; 2612 2613 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2614 goto abort; 2615 2616 /* 2617 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2618 * pte_offset_map() on pmds where a huge pmd might be created 2619 * from a different thread. 2620 * 2621 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2622 * parallel threads are excluded by other means. 2623 * 2624 * Here we only have down_read(mmap_sem). 2625 */ 2626 if (pte_alloc(mm, pmdp)) 2627 goto abort; 2628 2629 /* See the comment in pte_alloc_one_map() */ 2630 if (unlikely(pmd_trans_unstable(pmdp))) 2631 goto abort; 2632 2633 if (unlikely(anon_vma_prepare(vma))) 2634 goto abort; 2635 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2636 goto abort; 2637 2638 /* 2639 * The memory barrier inside __SetPageUptodate makes sure that 2640 * preceding stores to the page contents become visible before 2641 * the set_pte_at() write. 2642 */ 2643 __SetPageUptodate(page); 2644 2645 if (is_zone_device_page(page)) { 2646 if (is_device_private_page(page)) { 2647 swp_entry_t swp_entry; 2648 2649 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2650 entry = swp_entry_to_pte(swp_entry); 2651 } else if (is_device_public_page(page)) { 2652 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2653 if (vma->vm_flags & VM_WRITE) 2654 entry = pte_mkwrite(pte_mkdirty(entry)); 2655 entry = pte_mkdevmap(entry); 2656 } 2657 } else { 2658 entry = mk_pte(page, vma->vm_page_prot); 2659 if (vma->vm_flags & VM_WRITE) 2660 entry = pte_mkwrite(pte_mkdirty(entry)); 2661 } 2662 2663 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2664 2665 if (pte_present(*ptep)) { 2666 unsigned long pfn = pte_pfn(*ptep); 2667 2668 if (!is_zero_pfn(pfn)) { 2669 pte_unmap_unlock(ptep, ptl); 2670 mem_cgroup_cancel_charge(page, memcg, false); 2671 goto abort; 2672 } 2673 flush = true; 2674 } else if (!pte_none(*ptep)) { 2675 pte_unmap_unlock(ptep, ptl); 2676 mem_cgroup_cancel_charge(page, memcg, false); 2677 goto abort; 2678 } 2679 2680 /* 2681 * Check for usefaultfd but do not deliver the fault. Instead, 2682 * just back off. 2683 */ 2684 if (userfaultfd_missing(vma)) { 2685 pte_unmap_unlock(ptep, ptl); 2686 mem_cgroup_cancel_charge(page, memcg, false); 2687 goto abort; 2688 } 2689 2690 inc_mm_counter(mm, MM_ANONPAGES); 2691 page_add_new_anon_rmap(page, vma, addr, false); 2692 mem_cgroup_commit_charge(page, memcg, false, false); 2693 if (!is_zone_device_page(page)) 2694 lru_cache_add_active_or_unevictable(page, vma); 2695 get_page(page); 2696 2697 if (flush) { 2698 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2699 ptep_clear_flush_notify(vma, addr, ptep); 2700 set_pte_at_notify(mm, addr, ptep, entry); 2701 update_mmu_cache(vma, addr, ptep); 2702 } else { 2703 /* No need to invalidate - it was non-present before */ 2704 set_pte_at(mm, addr, ptep, entry); 2705 update_mmu_cache(vma, addr, ptep); 2706 } 2707 2708 pte_unmap_unlock(ptep, ptl); 2709 *src = MIGRATE_PFN_MIGRATE; 2710 return; 2711 2712 abort: 2713 *src &= ~MIGRATE_PFN_MIGRATE; 2714 } 2715 2716 /* 2717 * migrate_vma_pages() - migrate meta-data from src page to dst page 2718 * @migrate: migrate struct containing all migration information 2719 * 2720 * This migrates struct page meta-data from source struct page to destination 2721 * struct page. This effectively finishes the migration from source page to the 2722 * destination page. 2723 */ 2724 static void migrate_vma_pages(struct migrate_vma *migrate) 2725 { 2726 const unsigned long npages = migrate->npages; 2727 const unsigned long start = migrate->start; 2728 struct mmu_notifier_range range; 2729 unsigned long addr, i; 2730 bool notified = false; 2731 2732 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2733 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2734 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2735 struct address_space *mapping; 2736 int r; 2737 2738 if (!newpage) { 2739 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2740 continue; 2741 } 2742 2743 if (!page) { 2744 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2745 continue; 2746 } 2747 if (!notified) { 2748 notified = true; 2749 2750 mmu_notifier_range_init(&range, 2751 migrate->vma->vm_mm, 2752 addr, migrate->end); 2753 mmu_notifier_invalidate_range_start(&range); 2754 } 2755 migrate_vma_insert_page(migrate, addr, newpage, 2756 &migrate->src[i], 2757 &migrate->dst[i]); 2758 continue; 2759 } 2760 2761 mapping = page_mapping(page); 2762 2763 if (is_zone_device_page(newpage)) { 2764 if (is_device_private_page(newpage)) { 2765 /* 2766 * For now only support private anonymous when 2767 * migrating to un-addressable device memory. 2768 */ 2769 if (mapping) { 2770 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2771 continue; 2772 } 2773 } else if (!is_device_public_page(newpage)) { 2774 /* 2775 * Other types of ZONE_DEVICE page are not 2776 * supported. 2777 */ 2778 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2779 continue; 2780 } 2781 } 2782 2783 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2784 if (r != MIGRATEPAGE_SUCCESS) 2785 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2786 } 2787 2788 /* 2789 * No need to double call mmu_notifier->invalidate_range() callback as 2790 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2791 * did already call it. 2792 */ 2793 if (notified) 2794 mmu_notifier_invalidate_range_only_end(&range); 2795 } 2796 2797 /* 2798 * migrate_vma_finalize() - restore CPU page table entry 2799 * @migrate: migrate struct containing all migration information 2800 * 2801 * This replaces the special migration pte entry with either a mapping to the 2802 * new page if migration was successful for that page, or to the original page 2803 * otherwise. 2804 * 2805 * This also unlocks the pages and puts them back on the lru, or drops the extra 2806 * refcount, for device pages. 2807 */ 2808 static void migrate_vma_finalize(struct migrate_vma *migrate) 2809 { 2810 const unsigned long npages = migrate->npages; 2811 unsigned long i; 2812 2813 for (i = 0; i < npages; i++) { 2814 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2815 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2816 2817 if (!page) { 2818 if (newpage) { 2819 unlock_page(newpage); 2820 put_page(newpage); 2821 } 2822 continue; 2823 } 2824 2825 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2826 if (newpage) { 2827 unlock_page(newpage); 2828 put_page(newpage); 2829 } 2830 newpage = page; 2831 } 2832 2833 remove_migration_ptes(page, newpage, false); 2834 unlock_page(page); 2835 migrate->cpages--; 2836 2837 if (is_zone_device_page(page)) 2838 put_page(page); 2839 else 2840 putback_lru_page(page); 2841 2842 if (newpage != page) { 2843 unlock_page(newpage); 2844 if (is_zone_device_page(newpage)) 2845 put_page(newpage); 2846 else 2847 putback_lru_page(newpage); 2848 } 2849 } 2850 } 2851 2852 /* 2853 * migrate_vma() - migrate a range of memory inside vma 2854 * 2855 * @ops: migration callback for allocating destination memory and copying 2856 * @vma: virtual memory area containing the range to be migrated 2857 * @start: start address of the range to migrate (inclusive) 2858 * @end: end address of the range to migrate (exclusive) 2859 * @src: array of hmm_pfn_t containing source pfns 2860 * @dst: array of hmm_pfn_t containing destination pfns 2861 * @private: pointer passed back to each of the callback 2862 * Returns: 0 on success, error code otherwise 2863 * 2864 * This function tries to migrate a range of memory virtual address range, using 2865 * callbacks to allocate and copy memory from source to destination. First it 2866 * collects all the pages backing each virtual address in the range, saving this 2867 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2868 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2869 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2870 * in the corresponding src array entry. It then restores any pages that are 2871 * pinned, by remapping and unlocking those pages. 2872 * 2873 * At this point it calls the alloc_and_copy() callback. For documentation on 2874 * what is expected from that callback, see struct migrate_vma_ops comments in 2875 * include/linux/migrate.h 2876 * 2877 * After the alloc_and_copy() callback, this function goes over each entry in 2878 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2879 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2880 * then the function tries to migrate struct page information from the source 2881 * struct page to the destination struct page. If it fails to migrate the struct 2882 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2883 * array. 2884 * 2885 * At this point all successfully migrated pages have an entry in the src 2886 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2887 * array entry with MIGRATE_PFN_VALID flag set. 2888 * 2889 * It then calls the finalize_and_map() callback. See comments for "struct 2890 * migrate_vma_ops", in include/linux/migrate.h for details about 2891 * finalize_and_map() behavior. 2892 * 2893 * After the finalize_and_map() callback, for successfully migrated pages, this 2894 * function updates the CPU page table to point to new pages, otherwise it 2895 * restores the CPU page table to point to the original source pages. 2896 * 2897 * Function returns 0 after the above steps, even if no pages were migrated 2898 * (The function only returns an error if any of the arguments are invalid.) 2899 * 2900 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2901 * unsigned long entries. 2902 */ 2903 int migrate_vma(const struct migrate_vma_ops *ops, 2904 struct vm_area_struct *vma, 2905 unsigned long start, 2906 unsigned long end, 2907 unsigned long *src, 2908 unsigned long *dst, 2909 void *private) 2910 { 2911 struct migrate_vma migrate; 2912 2913 /* Sanity check the arguments */ 2914 start &= PAGE_MASK; 2915 end &= PAGE_MASK; 2916 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 2917 vma_is_dax(vma)) 2918 return -EINVAL; 2919 if (start < vma->vm_start || start >= vma->vm_end) 2920 return -EINVAL; 2921 if (end <= vma->vm_start || end > vma->vm_end) 2922 return -EINVAL; 2923 if (!ops || !src || !dst || start >= end) 2924 return -EINVAL; 2925 2926 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2927 migrate.src = src; 2928 migrate.dst = dst; 2929 migrate.start = start; 2930 migrate.npages = 0; 2931 migrate.cpages = 0; 2932 migrate.end = end; 2933 migrate.vma = vma; 2934 2935 /* Collect, and try to unmap source pages */ 2936 migrate_vma_collect(&migrate); 2937 if (!migrate.cpages) 2938 return 0; 2939 2940 /* Lock and isolate page */ 2941 migrate_vma_prepare(&migrate); 2942 if (!migrate.cpages) 2943 return 0; 2944 2945 /* Unmap pages */ 2946 migrate_vma_unmap(&migrate); 2947 if (!migrate.cpages) 2948 return 0; 2949 2950 /* 2951 * At this point pages are locked and unmapped, and thus they have 2952 * stable content and can safely be copied to destination memory that 2953 * is allocated by the callback. 2954 * 2955 * Note that migration can fail in migrate_vma_struct_page() for each 2956 * individual page. 2957 */ 2958 ops->alloc_and_copy(vma, src, dst, start, end, private); 2959 2960 /* This does the real migration of struct page */ 2961 migrate_vma_pages(&migrate); 2962 2963 ops->finalize_and_map(vma, src, dst, start, end, private); 2964 2965 /* Unlock and remap pages */ 2966 migrate_vma_finalize(&migrate); 2967 2968 return 0; 2969 } 2970 EXPORT_SYMBOL(migrate_vma); 2971 #endif /* defined(MIGRATE_VMA_HELPER) */ 2972