xref: /linux/mm/migrate.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/gfp.h>
36 
37 #include "internal.h"
38 
39 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40 
41 /*
42  * migrate_prep() needs to be called before we start compiling a list of pages
43  * to be migrated using isolate_lru_page().
44  */
45 int migrate_prep(void)
46 {
47 	/*
48 	 * Clear the LRU lists so pages can be isolated.
49 	 * Note that pages may be moved off the LRU after we have
50 	 * drained them. Those pages will fail to migrate like other
51 	 * pages that may be busy.
52 	 */
53 	lru_add_drain_all();
54 
55 	return 0;
56 }
57 
58 /*
59  * Add isolated pages on the list back to the LRU under page lock
60  * to avoid leaking evictable pages back onto unevictable list.
61  *
62  * returns the number of pages put back.
63  */
64 int putback_lru_pages(struct list_head *l)
65 {
66 	struct page *page;
67 	struct page *page2;
68 	int count = 0;
69 
70 	list_for_each_entry_safe(page, page2, l, lru) {
71 		list_del(&page->lru);
72 		dec_zone_page_state(page, NR_ISOLATED_ANON +
73 				page_is_file_cache(page));
74 		putback_lru_page(page);
75 		count++;
76 	}
77 	return count;
78 }
79 
80 /*
81  * Restore a potential migration pte to a working pte entry
82  */
83 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
84 				 unsigned long addr, void *old)
85 {
86 	struct mm_struct *mm = vma->vm_mm;
87 	swp_entry_t entry;
88  	pgd_t *pgd;
89  	pud_t *pud;
90  	pmd_t *pmd;
91 	pte_t *ptep, pte;
92  	spinlock_t *ptl;
93 
94  	pgd = pgd_offset(mm, addr);
95 	if (!pgd_present(*pgd))
96 		goto out;
97 
98 	pud = pud_offset(pgd, addr);
99 	if (!pud_present(*pud))
100 		goto out;
101 
102 	pmd = pmd_offset(pud, addr);
103 	if (!pmd_present(*pmd))
104 		goto out;
105 
106 	ptep = pte_offset_map(pmd, addr);
107 
108 	if (!is_swap_pte(*ptep)) {
109 		pte_unmap(ptep);
110 		goto out;
111  	}
112 
113  	ptl = pte_lockptr(mm, pmd);
114  	spin_lock(ptl);
115 	pte = *ptep;
116 	if (!is_swap_pte(pte))
117 		goto unlock;
118 
119 	entry = pte_to_swp_entry(pte);
120 
121 	if (!is_migration_entry(entry) ||
122 	    migration_entry_to_page(entry) != old)
123 		goto unlock;
124 
125 	get_page(new);
126 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
127 	if (is_write_migration_entry(entry))
128 		pte = pte_mkwrite(pte);
129 	flush_cache_page(vma, addr, pte_pfn(pte));
130 	set_pte_at(mm, addr, ptep, pte);
131 
132 	if (PageAnon(new))
133 		page_add_anon_rmap(new, vma, addr);
134 	else
135 		page_add_file_rmap(new);
136 
137 	/* No need to invalidate - it was non-present before */
138 	update_mmu_cache(vma, addr, ptep);
139 unlock:
140 	pte_unmap_unlock(ptep, ptl);
141 out:
142 	return SWAP_AGAIN;
143 }
144 
145 /*
146  * Get rid of all migration entries and replace them by
147  * references to the indicated page.
148  */
149 static void remove_migration_ptes(struct page *old, struct page *new)
150 {
151 	rmap_walk(new, remove_migration_pte, old);
152 }
153 
154 /*
155  * Something used the pte of a page under migration. We need to
156  * get to the page and wait until migration is finished.
157  * When we return from this function the fault will be retried.
158  *
159  * This function is called from do_swap_page().
160  */
161 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
162 				unsigned long address)
163 {
164 	pte_t *ptep, pte;
165 	spinlock_t *ptl;
166 	swp_entry_t entry;
167 	struct page *page;
168 
169 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
170 	pte = *ptep;
171 	if (!is_swap_pte(pte))
172 		goto out;
173 
174 	entry = pte_to_swp_entry(pte);
175 	if (!is_migration_entry(entry))
176 		goto out;
177 
178 	page = migration_entry_to_page(entry);
179 
180 	/*
181 	 * Once radix-tree replacement of page migration started, page_count
182 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
183 	 * against a page without get_page().
184 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
185 	 * will occur again.
186 	 */
187 	if (!get_page_unless_zero(page))
188 		goto out;
189 	pte_unmap_unlock(ptep, ptl);
190 	wait_on_page_locked(page);
191 	put_page(page);
192 	return;
193 out:
194 	pte_unmap_unlock(ptep, ptl);
195 }
196 
197 /*
198  * Replace the page in the mapping.
199  *
200  * The number of remaining references must be:
201  * 1 for anonymous pages without a mapping
202  * 2 for pages with a mapping
203  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
204  */
205 static int migrate_page_move_mapping(struct address_space *mapping,
206 		struct page *newpage, struct page *page)
207 {
208 	int expected_count;
209 	void **pslot;
210 
211 	if (!mapping) {
212 		/* Anonymous page without mapping */
213 		if (page_count(page) != 1)
214 			return -EAGAIN;
215 		return 0;
216 	}
217 
218 	spin_lock_irq(&mapping->tree_lock);
219 
220 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
221  					page_index(page));
222 
223 	expected_count = 2 + page_has_private(page);
224 	if (page_count(page) != expected_count ||
225 			(struct page *)radix_tree_deref_slot(pslot) != page) {
226 		spin_unlock_irq(&mapping->tree_lock);
227 		return -EAGAIN;
228 	}
229 
230 	if (!page_freeze_refs(page, expected_count)) {
231 		spin_unlock_irq(&mapping->tree_lock);
232 		return -EAGAIN;
233 	}
234 
235 	/*
236 	 * Now we know that no one else is looking at the page.
237 	 */
238 	get_page(newpage);	/* add cache reference */
239 	if (PageSwapCache(page)) {
240 		SetPageSwapCache(newpage);
241 		set_page_private(newpage, page_private(page));
242 	}
243 
244 	radix_tree_replace_slot(pslot, newpage);
245 
246 	page_unfreeze_refs(page, expected_count);
247 	/*
248 	 * Drop cache reference from old page.
249 	 * We know this isn't the last reference.
250 	 */
251 	__put_page(page);
252 
253 	/*
254 	 * If moved to a different zone then also account
255 	 * the page for that zone. Other VM counters will be
256 	 * taken care of when we establish references to the
257 	 * new page and drop references to the old page.
258 	 *
259 	 * Note that anonymous pages are accounted for
260 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
261 	 * are mapped to swap space.
262 	 */
263 	__dec_zone_page_state(page, NR_FILE_PAGES);
264 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
265 	if (PageSwapBacked(page)) {
266 		__dec_zone_page_state(page, NR_SHMEM);
267 		__inc_zone_page_state(newpage, NR_SHMEM);
268 	}
269 	spin_unlock_irq(&mapping->tree_lock);
270 
271 	return 0;
272 }
273 
274 /*
275  * Copy the page to its new location
276  */
277 static void migrate_page_copy(struct page *newpage, struct page *page)
278 {
279 	copy_highpage(newpage, page);
280 
281 	if (PageError(page))
282 		SetPageError(newpage);
283 	if (PageReferenced(page))
284 		SetPageReferenced(newpage);
285 	if (PageUptodate(page))
286 		SetPageUptodate(newpage);
287 	if (TestClearPageActive(page)) {
288 		VM_BUG_ON(PageUnevictable(page));
289 		SetPageActive(newpage);
290 	} else if (TestClearPageUnevictable(page))
291 		SetPageUnevictable(newpage);
292 	if (PageChecked(page))
293 		SetPageChecked(newpage);
294 	if (PageMappedToDisk(page))
295 		SetPageMappedToDisk(newpage);
296 
297 	if (PageDirty(page)) {
298 		clear_page_dirty_for_io(page);
299 		/*
300 		 * Want to mark the page and the radix tree as dirty, and
301 		 * redo the accounting that clear_page_dirty_for_io undid,
302 		 * but we can't use set_page_dirty because that function
303 		 * is actually a signal that all of the page has become dirty.
304 		 * Wheras only part of our page may be dirty.
305 		 */
306 		__set_page_dirty_nobuffers(newpage);
307  	}
308 
309 	mlock_migrate_page(newpage, page);
310 	ksm_migrate_page(newpage, page);
311 
312 	ClearPageSwapCache(page);
313 	ClearPagePrivate(page);
314 	set_page_private(page, 0);
315 	page->mapping = NULL;
316 
317 	/*
318 	 * If any waiters have accumulated on the new page then
319 	 * wake them up.
320 	 */
321 	if (PageWriteback(newpage))
322 		end_page_writeback(newpage);
323 }
324 
325 /************************************************************
326  *                    Migration functions
327  ***********************************************************/
328 
329 /* Always fail migration. Used for mappings that are not movable */
330 int fail_migrate_page(struct address_space *mapping,
331 			struct page *newpage, struct page *page)
332 {
333 	return -EIO;
334 }
335 EXPORT_SYMBOL(fail_migrate_page);
336 
337 /*
338  * Common logic to directly migrate a single page suitable for
339  * pages that do not use PagePrivate/PagePrivate2.
340  *
341  * Pages are locked upon entry and exit.
342  */
343 int migrate_page(struct address_space *mapping,
344 		struct page *newpage, struct page *page)
345 {
346 	int rc;
347 
348 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
349 
350 	rc = migrate_page_move_mapping(mapping, newpage, page);
351 
352 	if (rc)
353 		return rc;
354 
355 	migrate_page_copy(newpage, page);
356 	return 0;
357 }
358 EXPORT_SYMBOL(migrate_page);
359 
360 #ifdef CONFIG_BLOCK
361 /*
362  * Migration function for pages with buffers. This function can only be used
363  * if the underlying filesystem guarantees that no other references to "page"
364  * exist.
365  */
366 int buffer_migrate_page(struct address_space *mapping,
367 		struct page *newpage, struct page *page)
368 {
369 	struct buffer_head *bh, *head;
370 	int rc;
371 
372 	if (!page_has_buffers(page))
373 		return migrate_page(mapping, newpage, page);
374 
375 	head = page_buffers(page);
376 
377 	rc = migrate_page_move_mapping(mapping, newpage, page);
378 
379 	if (rc)
380 		return rc;
381 
382 	bh = head;
383 	do {
384 		get_bh(bh);
385 		lock_buffer(bh);
386 		bh = bh->b_this_page;
387 
388 	} while (bh != head);
389 
390 	ClearPagePrivate(page);
391 	set_page_private(newpage, page_private(page));
392 	set_page_private(page, 0);
393 	put_page(page);
394 	get_page(newpage);
395 
396 	bh = head;
397 	do {
398 		set_bh_page(bh, newpage, bh_offset(bh));
399 		bh = bh->b_this_page;
400 
401 	} while (bh != head);
402 
403 	SetPagePrivate(newpage);
404 
405 	migrate_page_copy(newpage, page);
406 
407 	bh = head;
408 	do {
409 		unlock_buffer(bh);
410  		put_bh(bh);
411 		bh = bh->b_this_page;
412 
413 	} while (bh != head);
414 
415 	return 0;
416 }
417 EXPORT_SYMBOL(buffer_migrate_page);
418 #endif
419 
420 /*
421  * Writeback a page to clean the dirty state
422  */
423 static int writeout(struct address_space *mapping, struct page *page)
424 {
425 	struct writeback_control wbc = {
426 		.sync_mode = WB_SYNC_NONE,
427 		.nr_to_write = 1,
428 		.range_start = 0,
429 		.range_end = LLONG_MAX,
430 		.nonblocking = 1,
431 		.for_reclaim = 1
432 	};
433 	int rc;
434 
435 	if (!mapping->a_ops->writepage)
436 		/* No write method for the address space */
437 		return -EINVAL;
438 
439 	if (!clear_page_dirty_for_io(page))
440 		/* Someone else already triggered a write */
441 		return -EAGAIN;
442 
443 	/*
444 	 * A dirty page may imply that the underlying filesystem has
445 	 * the page on some queue. So the page must be clean for
446 	 * migration. Writeout may mean we loose the lock and the
447 	 * page state is no longer what we checked for earlier.
448 	 * At this point we know that the migration attempt cannot
449 	 * be successful.
450 	 */
451 	remove_migration_ptes(page, page);
452 
453 	rc = mapping->a_ops->writepage(page, &wbc);
454 
455 	if (rc != AOP_WRITEPAGE_ACTIVATE)
456 		/* unlocked. Relock */
457 		lock_page(page);
458 
459 	return (rc < 0) ? -EIO : -EAGAIN;
460 }
461 
462 /*
463  * Default handling if a filesystem does not provide a migration function.
464  */
465 static int fallback_migrate_page(struct address_space *mapping,
466 	struct page *newpage, struct page *page)
467 {
468 	if (PageDirty(page))
469 		return writeout(mapping, page);
470 
471 	/*
472 	 * Buffers may be managed in a filesystem specific way.
473 	 * We must have no buffers or drop them.
474 	 */
475 	if (page_has_private(page) &&
476 	    !try_to_release_page(page, GFP_KERNEL))
477 		return -EAGAIN;
478 
479 	return migrate_page(mapping, newpage, page);
480 }
481 
482 /*
483  * Move a page to a newly allocated page
484  * The page is locked and all ptes have been successfully removed.
485  *
486  * The new page will have replaced the old page if this function
487  * is successful.
488  *
489  * Return value:
490  *   < 0 - error code
491  *  == 0 - success
492  */
493 static int move_to_new_page(struct page *newpage, struct page *page)
494 {
495 	struct address_space *mapping;
496 	int rc;
497 
498 	/*
499 	 * Block others from accessing the page when we get around to
500 	 * establishing additional references. We are the only one
501 	 * holding a reference to the new page at this point.
502 	 */
503 	if (!trylock_page(newpage))
504 		BUG();
505 
506 	/* Prepare mapping for the new page.*/
507 	newpage->index = page->index;
508 	newpage->mapping = page->mapping;
509 	if (PageSwapBacked(page))
510 		SetPageSwapBacked(newpage);
511 
512 	mapping = page_mapping(page);
513 	if (!mapping)
514 		rc = migrate_page(mapping, newpage, page);
515 	else if (mapping->a_ops->migratepage)
516 		/*
517 		 * Most pages have a mapping and most filesystems
518 		 * should provide a migration function. Anonymous
519 		 * pages are part of swap space which also has its
520 		 * own migration function. This is the most common
521 		 * path for page migration.
522 		 */
523 		rc = mapping->a_ops->migratepage(mapping,
524 						newpage, page);
525 	else
526 		rc = fallback_migrate_page(mapping, newpage, page);
527 
528 	if (!rc)
529 		remove_migration_ptes(page, newpage);
530 	else
531 		newpage->mapping = NULL;
532 
533 	unlock_page(newpage);
534 
535 	return rc;
536 }
537 
538 /*
539  * Obtain the lock on page, remove all ptes and migrate the page
540  * to the newly allocated page in newpage.
541  */
542 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
543 			struct page *page, int force, int offlining)
544 {
545 	int rc = 0;
546 	int *result = NULL;
547 	struct page *newpage = get_new_page(page, private, &result);
548 	int rcu_locked = 0;
549 	int charge = 0;
550 	struct mem_cgroup *mem = NULL;
551 
552 	if (!newpage)
553 		return -ENOMEM;
554 
555 	if (page_count(page) == 1) {
556 		/* page was freed from under us. So we are done. */
557 		goto move_newpage;
558 	}
559 
560 	/* prepare cgroup just returns 0 or -ENOMEM */
561 	rc = -EAGAIN;
562 
563 	if (!trylock_page(page)) {
564 		if (!force)
565 			goto move_newpage;
566 		lock_page(page);
567 	}
568 
569 	/*
570 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
571 	 * and can safely migrate a KSM page.  The other cases have skipped
572 	 * PageKsm along with PageReserved - but it is only now when we have
573 	 * the page lock that we can be certain it will not go KSM beneath us
574 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
575 	 * its pagecount raised, but only here do we take the page lock which
576 	 * serializes that).
577 	 */
578 	if (PageKsm(page) && !offlining) {
579 		rc = -EBUSY;
580 		goto unlock;
581 	}
582 
583 	/* charge against new page */
584 	charge = mem_cgroup_prepare_migration(page, &mem);
585 	if (charge == -ENOMEM) {
586 		rc = -ENOMEM;
587 		goto unlock;
588 	}
589 	BUG_ON(charge);
590 
591 	if (PageWriteback(page)) {
592 		if (!force)
593 			goto uncharge;
594 		wait_on_page_writeback(page);
595 	}
596 	/*
597 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
598 	 * we cannot notice that anon_vma is freed while we migrates a page.
599 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
600 	 * of migration. File cache pages are no problem because of page_lock()
601 	 * File Caches may use write_page() or lock_page() in migration, then,
602 	 * just care Anon page here.
603 	 */
604 	if (PageAnon(page)) {
605 		rcu_read_lock();
606 		rcu_locked = 1;
607 	}
608 
609 	/*
610 	 * Corner case handling:
611 	 * 1. When a new swap-cache page is read into, it is added to the LRU
612 	 * and treated as swapcache but it has no rmap yet.
613 	 * Calling try_to_unmap() against a page->mapping==NULL page will
614 	 * trigger a BUG.  So handle it here.
615 	 * 2. An orphaned page (see truncate_complete_page) might have
616 	 * fs-private metadata. The page can be picked up due to memory
617 	 * offlining.  Everywhere else except page reclaim, the page is
618 	 * invisible to the vm, so the page can not be migrated.  So try to
619 	 * free the metadata, so the page can be freed.
620 	 */
621 	if (!page->mapping) {
622 		if (!PageAnon(page) && page_has_private(page)) {
623 			/*
624 			 * Go direct to try_to_free_buffers() here because
625 			 * a) that's what try_to_release_page() would do anyway
626 			 * b) we may be under rcu_read_lock() here, so we can't
627 			 *    use GFP_KERNEL which is what try_to_release_page()
628 			 *    needs to be effective.
629 			 */
630 			try_to_free_buffers(page);
631 			goto rcu_unlock;
632 		}
633 		goto skip_unmap;
634 	}
635 
636 	/* Establish migration ptes or remove ptes */
637 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
638 
639 skip_unmap:
640 	if (!page_mapped(page))
641 		rc = move_to_new_page(newpage, page);
642 
643 	if (rc)
644 		remove_migration_ptes(page, page);
645 rcu_unlock:
646 	if (rcu_locked)
647 		rcu_read_unlock();
648 uncharge:
649 	if (!charge)
650 		mem_cgroup_end_migration(mem, page, newpage);
651 unlock:
652 	unlock_page(page);
653 
654 	if (rc != -EAGAIN) {
655  		/*
656  		 * A page that has been migrated has all references
657  		 * removed and will be freed. A page that has not been
658  		 * migrated will have kepts its references and be
659  		 * restored.
660  		 */
661  		list_del(&page->lru);
662 		dec_zone_page_state(page, NR_ISOLATED_ANON +
663 				page_is_file_cache(page));
664 		putback_lru_page(page);
665 	}
666 
667 move_newpage:
668 
669 	/*
670 	 * Move the new page to the LRU. If migration was not successful
671 	 * then this will free the page.
672 	 */
673 	putback_lru_page(newpage);
674 
675 	if (result) {
676 		if (rc)
677 			*result = rc;
678 		else
679 			*result = page_to_nid(newpage);
680 	}
681 	return rc;
682 }
683 
684 /*
685  * migrate_pages
686  *
687  * The function takes one list of pages to migrate and a function
688  * that determines from the page to be migrated and the private data
689  * the target of the move and allocates the page.
690  *
691  * The function returns after 10 attempts or if no pages
692  * are movable anymore because to has become empty
693  * or no retryable pages exist anymore. All pages will be
694  * returned to the LRU or freed.
695  *
696  * Return: Number of pages not migrated or error code.
697  */
698 int migrate_pages(struct list_head *from,
699 		new_page_t get_new_page, unsigned long private, int offlining)
700 {
701 	int retry = 1;
702 	int nr_failed = 0;
703 	int pass = 0;
704 	struct page *page;
705 	struct page *page2;
706 	int swapwrite = current->flags & PF_SWAPWRITE;
707 	int rc;
708 
709 	if (!swapwrite)
710 		current->flags |= PF_SWAPWRITE;
711 
712 	for(pass = 0; pass < 10 && retry; pass++) {
713 		retry = 0;
714 
715 		list_for_each_entry_safe(page, page2, from, lru) {
716 			cond_resched();
717 
718 			rc = unmap_and_move(get_new_page, private,
719 						page, pass > 2, offlining);
720 
721 			switch(rc) {
722 			case -ENOMEM:
723 				goto out;
724 			case -EAGAIN:
725 				retry++;
726 				break;
727 			case 0:
728 				break;
729 			default:
730 				/* Permanent failure */
731 				nr_failed++;
732 				break;
733 			}
734 		}
735 	}
736 	rc = 0;
737 out:
738 	if (!swapwrite)
739 		current->flags &= ~PF_SWAPWRITE;
740 
741 	putback_lru_pages(from);
742 
743 	if (rc)
744 		return rc;
745 
746 	return nr_failed + retry;
747 }
748 
749 #ifdef CONFIG_NUMA
750 /*
751  * Move a list of individual pages
752  */
753 struct page_to_node {
754 	unsigned long addr;
755 	struct page *page;
756 	int node;
757 	int status;
758 };
759 
760 static struct page *new_page_node(struct page *p, unsigned long private,
761 		int **result)
762 {
763 	struct page_to_node *pm = (struct page_to_node *)private;
764 
765 	while (pm->node != MAX_NUMNODES && pm->page != p)
766 		pm++;
767 
768 	if (pm->node == MAX_NUMNODES)
769 		return NULL;
770 
771 	*result = &pm->status;
772 
773 	return alloc_pages_exact_node(pm->node,
774 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
775 }
776 
777 /*
778  * Move a set of pages as indicated in the pm array. The addr
779  * field must be set to the virtual address of the page to be moved
780  * and the node number must contain a valid target node.
781  * The pm array ends with node = MAX_NUMNODES.
782  */
783 static int do_move_page_to_node_array(struct mm_struct *mm,
784 				      struct page_to_node *pm,
785 				      int migrate_all)
786 {
787 	int err;
788 	struct page_to_node *pp;
789 	LIST_HEAD(pagelist);
790 
791 	down_read(&mm->mmap_sem);
792 
793 	/*
794 	 * Build a list of pages to migrate
795 	 */
796 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
797 		struct vm_area_struct *vma;
798 		struct page *page;
799 
800 		err = -EFAULT;
801 		vma = find_vma(mm, pp->addr);
802 		if (!vma || !vma_migratable(vma))
803 			goto set_status;
804 
805 		page = follow_page(vma, pp->addr, FOLL_GET);
806 
807 		err = PTR_ERR(page);
808 		if (IS_ERR(page))
809 			goto set_status;
810 
811 		err = -ENOENT;
812 		if (!page)
813 			goto set_status;
814 
815 		/* Use PageReserved to check for zero page */
816 		if (PageReserved(page) || PageKsm(page))
817 			goto put_and_set;
818 
819 		pp->page = page;
820 		err = page_to_nid(page);
821 
822 		if (err == pp->node)
823 			/*
824 			 * Node already in the right place
825 			 */
826 			goto put_and_set;
827 
828 		err = -EACCES;
829 		if (page_mapcount(page) > 1 &&
830 				!migrate_all)
831 			goto put_and_set;
832 
833 		err = isolate_lru_page(page);
834 		if (!err) {
835 			list_add_tail(&page->lru, &pagelist);
836 			inc_zone_page_state(page, NR_ISOLATED_ANON +
837 					    page_is_file_cache(page));
838 		}
839 put_and_set:
840 		/*
841 		 * Either remove the duplicate refcount from
842 		 * isolate_lru_page() or drop the page ref if it was
843 		 * not isolated.
844 		 */
845 		put_page(page);
846 set_status:
847 		pp->status = err;
848 	}
849 
850 	err = 0;
851 	if (!list_empty(&pagelist))
852 		err = migrate_pages(&pagelist, new_page_node,
853 				(unsigned long)pm, 0);
854 
855 	up_read(&mm->mmap_sem);
856 	return err;
857 }
858 
859 /*
860  * Migrate an array of page address onto an array of nodes and fill
861  * the corresponding array of status.
862  */
863 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
864 			 unsigned long nr_pages,
865 			 const void __user * __user *pages,
866 			 const int __user *nodes,
867 			 int __user *status, int flags)
868 {
869 	struct page_to_node *pm;
870 	nodemask_t task_nodes;
871 	unsigned long chunk_nr_pages;
872 	unsigned long chunk_start;
873 	int err;
874 
875 	task_nodes = cpuset_mems_allowed(task);
876 
877 	err = -ENOMEM;
878 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
879 	if (!pm)
880 		goto out;
881 
882 	migrate_prep();
883 
884 	/*
885 	 * Store a chunk of page_to_node array in a page,
886 	 * but keep the last one as a marker
887 	 */
888 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
889 
890 	for (chunk_start = 0;
891 	     chunk_start < nr_pages;
892 	     chunk_start += chunk_nr_pages) {
893 		int j;
894 
895 		if (chunk_start + chunk_nr_pages > nr_pages)
896 			chunk_nr_pages = nr_pages - chunk_start;
897 
898 		/* fill the chunk pm with addrs and nodes from user-space */
899 		for (j = 0; j < chunk_nr_pages; j++) {
900 			const void __user *p;
901 			int node;
902 
903 			err = -EFAULT;
904 			if (get_user(p, pages + j + chunk_start))
905 				goto out_pm;
906 			pm[j].addr = (unsigned long) p;
907 
908 			if (get_user(node, nodes + j + chunk_start))
909 				goto out_pm;
910 
911 			err = -ENODEV;
912 			if (node < 0 || node >= MAX_NUMNODES)
913 				goto out_pm;
914 
915 			if (!node_state(node, N_HIGH_MEMORY))
916 				goto out_pm;
917 
918 			err = -EACCES;
919 			if (!node_isset(node, task_nodes))
920 				goto out_pm;
921 
922 			pm[j].node = node;
923 		}
924 
925 		/* End marker for this chunk */
926 		pm[chunk_nr_pages].node = MAX_NUMNODES;
927 
928 		/* Migrate this chunk */
929 		err = do_move_page_to_node_array(mm, pm,
930 						 flags & MPOL_MF_MOVE_ALL);
931 		if (err < 0)
932 			goto out_pm;
933 
934 		/* Return status information */
935 		for (j = 0; j < chunk_nr_pages; j++)
936 			if (put_user(pm[j].status, status + j + chunk_start)) {
937 				err = -EFAULT;
938 				goto out_pm;
939 			}
940 	}
941 	err = 0;
942 
943 out_pm:
944 	free_page((unsigned long)pm);
945 out:
946 	return err;
947 }
948 
949 /*
950  * Determine the nodes of an array of pages and store it in an array of status.
951  */
952 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
953 				const void __user **pages, int *status)
954 {
955 	unsigned long i;
956 
957 	down_read(&mm->mmap_sem);
958 
959 	for (i = 0; i < nr_pages; i++) {
960 		unsigned long addr = (unsigned long)(*pages);
961 		struct vm_area_struct *vma;
962 		struct page *page;
963 		int err = -EFAULT;
964 
965 		vma = find_vma(mm, addr);
966 		if (!vma)
967 			goto set_status;
968 
969 		page = follow_page(vma, addr, 0);
970 
971 		err = PTR_ERR(page);
972 		if (IS_ERR(page))
973 			goto set_status;
974 
975 		err = -ENOENT;
976 		/* Use PageReserved to check for zero page */
977 		if (!page || PageReserved(page) || PageKsm(page))
978 			goto set_status;
979 
980 		err = page_to_nid(page);
981 set_status:
982 		*status = err;
983 
984 		pages++;
985 		status++;
986 	}
987 
988 	up_read(&mm->mmap_sem);
989 }
990 
991 /*
992  * Determine the nodes of a user array of pages and store it in
993  * a user array of status.
994  */
995 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
996 			 const void __user * __user *pages,
997 			 int __user *status)
998 {
999 #define DO_PAGES_STAT_CHUNK_NR 16
1000 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1001 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1002 
1003 	while (nr_pages) {
1004 		unsigned long chunk_nr;
1005 
1006 		chunk_nr = nr_pages;
1007 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1008 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1009 
1010 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1011 			break;
1012 
1013 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1014 
1015 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1016 			break;
1017 
1018 		pages += chunk_nr;
1019 		status += chunk_nr;
1020 		nr_pages -= chunk_nr;
1021 	}
1022 	return nr_pages ? -EFAULT : 0;
1023 }
1024 
1025 /*
1026  * Move a list of pages in the address space of the currently executing
1027  * process.
1028  */
1029 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1030 		const void __user * __user *, pages,
1031 		const int __user *, nodes,
1032 		int __user *, status, int, flags)
1033 {
1034 	const struct cred *cred = current_cred(), *tcred;
1035 	struct task_struct *task;
1036 	struct mm_struct *mm;
1037 	int err;
1038 
1039 	/* Check flags */
1040 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1041 		return -EINVAL;
1042 
1043 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1044 		return -EPERM;
1045 
1046 	/* Find the mm_struct */
1047 	read_lock(&tasklist_lock);
1048 	task = pid ? find_task_by_vpid(pid) : current;
1049 	if (!task) {
1050 		read_unlock(&tasklist_lock);
1051 		return -ESRCH;
1052 	}
1053 	mm = get_task_mm(task);
1054 	read_unlock(&tasklist_lock);
1055 
1056 	if (!mm)
1057 		return -EINVAL;
1058 
1059 	/*
1060 	 * Check if this process has the right to modify the specified
1061 	 * process. The right exists if the process has administrative
1062 	 * capabilities, superuser privileges or the same
1063 	 * userid as the target process.
1064 	 */
1065 	rcu_read_lock();
1066 	tcred = __task_cred(task);
1067 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1068 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1069 	    !capable(CAP_SYS_NICE)) {
1070 		rcu_read_unlock();
1071 		err = -EPERM;
1072 		goto out;
1073 	}
1074 	rcu_read_unlock();
1075 
1076  	err = security_task_movememory(task);
1077  	if (err)
1078 		goto out;
1079 
1080 	if (nodes) {
1081 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1082 				    flags);
1083 	} else {
1084 		err = do_pages_stat(mm, nr_pages, pages, status);
1085 	}
1086 
1087 out:
1088 	mmput(mm);
1089 	return err;
1090 }
1091 
1092 /*
1093  * Call migration functions in the vma_ops that may prepare
1094  * memory in a vm for migration. migration functions may perform
1095  * the migration for vmas that do not have an underlying page struct.
1096  */
1097 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1098 	const nodemask_t *from, unsigned long flags)
1099 {
1100  	struct vm_area_struct *vma;
1101  	int err = 0;
1102 
1103 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1104  		if (vma->vm_ops && vma->vm_ops->migrate) {
1105  			err = vma->vm_ops->migrate(vma, to, from, flags);
1106  			if (err)
1107  				break;
1108  		}
1109  	}
1110  	return err;
1111 }
1112 #endif
1113