1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/ksm.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/backing-dev.h> 33 #include <linux/compaction.h> 34 #include <linux/syscalls.h> 35 #include <linux/compat.h> 36 #include <linux/hugetlb.h> 37 #include <linux/gfp.h> 38 #include <linux/page_idle.h> 39 #include <linux/page_owner.h> 40 #include <linux/sched/mm.h> 41 #include <linux/ptrace.h> 42 #include <linux/memory.h> 43 #include <linux/sched/sysctl.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/pagewalk.h> 46 47 #include <asm/tlbflush.h> 48 49 #include <trace/events/migrate.h> 50 51 #include "internal.h" 52 #include "swap.h" 53 54 static const struct movable_operations *offline_movable_ops; 55 static const struct movable_operations *zsmalloc_movable_ops; 56 57 int set_movable_ops(const struct movable_operations *ops, enum pagetype type) 58 { 59 /* 60 * We only allow for selected types and don't handle concurrent 61 * registration attempts yet. 62 */ 63 switch (type) { 64 case PGTY_offline: 65 if (offline_movable_ops && ops) 66 return -EBUSY; 67 offline_movable_ops = ops; 68 break; 69 case PGTY_zsmalloc: 70 if (zsmalloc_movable_ops && ops) 71 return -EBUSY; 72 zsmalloc_movable_ops = ops; 73 break; 74 default: 75 return -EINVAL; 76 } 77 return 0; 78 } 79 EXPORT_SYMBOL_GPL(set_movable_ops); 80 81 static const struct movable_operations *page_movable_ops(struct page *page) 82 { 83 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 84 85 /* 86 * If we enable page migration for a page of a certain type by marking 87 * it as movable, the page type must be sticky until the page gets freed 88 * back to the buddy. 89 */ 90 if (PageOffline(page)) 91 /* Only balloon compaction sets PageOffline pages movable. */ 92 return offline_movable_ops; 93 if (PageZsmalloc(page)) 94 return zsmalloc_movable_ops; 95 96 return NULL; 97 } 98 99 /** 100 * isolate_movable_ops_page - isolate a movable_ops page for migration 101 * @page: The page. 102 * @mode: The isolation mode. 103 * 104 * Try to isolate a movable_ops page for migration. Will fail if the page is 105 * not a movable_ops page, if the page is already isolated for migration 106 * or if the page was just was released by its owner. 107 * 108 * Once isolated, the page cannot get freed until it is either putback 109 * or migrated. 110 * 111 * Returns true if isolation succeeded, otherwise false. 112 */ 113 bool isolate_movable_ops_page(struct page *page, isolate_mode_t mode) 114 { 115 /* 116 * TODO: these pages will not be folios in the future. All 117 * folio dependencies will have to be removed. 118 */ 119 struct folio *folio = folio_get_nontail_page(page); 120 const struct movable_operations *mops; 121 122 /* 123 * Avoid burning cycles with pages that are yet under __free_pages(), 124 * or just got freed under us. 125 * 126 * In case we 'win' a race for a movable page being freed under us and 127 * raise its refcount preventing __free_pages() from doing its job 128 * the put_page() at the end of this block will take care of 129 * release this page, thus avoiding a nasty leakage. 130 */ 131 if (!folio) 132 goto out; 133 134 /* 135 * Check for movable_ops pages before taking the page lock because 136 * we use non-atomic bitops on newly allocated page flags so 137 * unconditionally grabbing the lock ruins page's owner side. 138 * 139 * Note that once a page has movable_ops, it will stay that way 140 * until the page was freed. 141 */ 142 if (unlikely(!page_has_movable_ops(page))) 143 goto out_putfolio; 144 145 /* 146 * As movable pages are not isolated from LRU lists, concurrent 147 * compaction threads can race against page migration functions 148 * as well as race against the releasing a page. 149 * 150 * In order to avoid having an already isolated movable page 151 * being (wrongly) re-isolated while it is under migration, 152 * or to avoid attempting to isolate pages being released, 153 * lets be sure we have the page lock 154 * before proceeding with the movable page isolation steps. 155 */ 156 if (unlikely(!folio_trylock(folio))) 157 goto out_putfolio; 158 159 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 160 if (PageMovableOpsIsolated(page)) 161 goto out_no_isolated; 162 163 mops = page_movable_ops(page); 164 if (WARN_ON_ONCE(!mops)) 165 goto out_no_isolated; 166 167 if (!mops->isolate_page(page, mode)) 168 goto out_no_isolated; 169 170 /* Driver shouldn't use the isolated flag */ 171 VM_WARN_ON_ONCE_PAGE(PageMovableOpsIsolated(page), page); 172 SetPageMovableOpsIsolated(page); 173 folio_unlock(folio); 174 175 return true; 176 177 out_no_isolated: 178 folio_unlock(folio); 179 out_putfolio: 180 folio_put(folio); 181 out: 182 return false; 183 } 184 185 /** 186 * putback_movable_ops_page - putback an isolated movable_ops page 187 * @page: The isolated page. 188 * 189 * Putback an isolated movable_ops page. 190 * 191 * After the page was putback, it might get freed instantly. 192 */ 193 static void putback_movable_ops_page(struct page *page) 194 { 195 /* 196 * TODO: these pages will not be folios in the future. All 197 * folio dependencies will have to be removed. 198 */ 199 struct folio *folio = page_folio(page); 200 201 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 202 VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(page), page); 203 folio_lock(folio); 204 page_movable_ops(page)->putback_page(page); 205 ClearPageMovableOpsIsolated(page); 206 folio_unlock(folio); 207 folio_put(folio); 208 } 209 210 /** 211 * migrate_movable_ops_page - migrate an isolated movable_ops page 212 * @dst: The destination page. 213 * @src: The source page. 214 * @mode: The migration mode. 215 * 216 * Migrate an isolated movable_ops page. 217 * 218 * If the src page was already released by its owner, the src page is 219 * un-isolated (putback) and migration succeeds; the migration core will be the 220 * owner of both pages. 221 * 222 * If the src page was not released by its owner and the migration was 223 * successful, the owner of the src page and the dst page are swapped and 224 * the src page is un-isolated. 225 * 226 * If migration fails, the ownership stays unmodified and the src page 227 * remains isolated: migration may be retried later or the page can be putback. 228 * 229 * TODO: migration core will treat both pages as folios and lock them before 230 * this call to unlock them after this call. Further, the folio refcounts on 231 * src and dst are also released by migration core. These pages will not be 232 * folios in the future, so that must be reworked. 233 * 234 * Returns 0 on success, otherwise a negative error code. 235 */ 236 static int migrate_movable_ops_page(struct page *dst, struct page *src, 237 enum migrate_mode mode) 238 { 239 int rc; 240 241 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(src), src); 242 VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(src), src); 243 rc = page_movable_ops(src)->migrate_page(dst, src, mode); 244 if (!rc) 245 ClearPageMovableOpsIsolated(src); 246 return rc; 247 } 248 249 /* 250 * Put previously isolated pages back onto the appropriate lists 251 * from where they were once taken off for compaction/migration. 252 * 253 * This function shall be used whenever the isolated pageset has been 254 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 255 * and folio_isolate_hugetlb(). 256 */ 257 void putback_movable_pages(struct list_head *l) 258 { 259 struct folio *folio; 260 struct folio *folio2; 261 262 list_for_each_entry_safe(folio, folio2, l, lru) { 263 if (unlikely(folio_test_hugetlb(folio))) { 264 folio_putback_hugetlb(folio); 265 continue; 266 } 267 list_del(&folio->lru); 268 if (unlikely(page_has_movable_ops(&folio->page))) { 269 putback_movable_ops_page(&folio->page); 270 } else { 271 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 272 folio_is_file_lru(folio), -folio_nr_pages(folio)); 273 folio_putback_lru(folio); 274 } 275 } 276 } 277 278 /* Must be called with an elevated refcount on the non-hugetlb folio */ 279 bool isolate_folio_to_list(struct folio *folio, struct list_head *list) 280 { 281 if (folio_test_hugetlb(folio)) 282 return folio_isolate_hugetlb(folio, list); 283 284 if (page_has_movable_ops(&folio->page)) { 285 if (!isolate_movable_ops_page(&folio->page, 286 ISOLATE_UNEVICTABLE)) 287 return false; 288 } else { 289 if (!folio_isolate_lru(folio)) 290 return false; 291 node_stat_add_folio(folio, NR_ISOLATED_ANON + 292 folio_is_file_lru(folio)); 293 } 294 list_add(&folio->lru, list); 295 return true; 296 } 297 298 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw, 299 struct folio *folio, 300 unsigned long idx) 301 { 302 struct page *page = folio_page(folio, idx); 303 bool contains_data; 304 pte_t newpte; 305 void *addr; 306 307 if (PageCompound(page)) 308 return false; 309 VM_BUG_ON_PAGE(!PageAnon(page), page); 310 VM_BUG_ON_PAGE(!PageLocked(page), page); 311 VM_BUG_ON_PAGE(pte_present(ptep_get(pvmw->pte)), page); 312 313 if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) || 314 mm_forbids_zeropage(pvmw->vma->vm_mm)) 315 return false; 316 317 /* 318 * The pmd entry mapping the old thp was flushed and the pte mapping 319 * this subpage has been non present. If the subpage is only zero-filled 320 * then map it to the shared zeropage. 321 */ 322 addr = kmap_local_page(page); 323 contains_data = memchr_inv(addr, 0, PAGE_SIZE); 324 kunmap_local(addr); 325 326 if (contains_data) 327 return false; 328 329 newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address), 330 pvmw->vma->vm_page_prot)); 331 set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte); 332 333 dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio)); 334 return true; 335 } 336 337 struct rmap_walk_arg { 338 struct folio *folio; 339 bool map_unused_to_zeropage; 340 }; 341 342 /* 343 * Restore a potential migration pte to a working pte entry 344 */ 345 static bool remove_migration_pte(struct folio *folio, 346 struct vm_area_struct *vma, unsigned long addr, void *arg) 347 { 348 struct rmap_walk_arg *rmap_walk_arg = arg; 349 DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 350 351 while (page_vma_mapped_walk(&pvmw)) { 352 rmap_t rmap_flags = RMAP_NONE; 353 pte_t old_pte; 354 pte_t pte; 355 swp_entry_t entry; 356 struct page *new; 357 unsigned long idx = 0; 358 359 /* pgoff is invalid for ksm pages, but they are never large */ 360 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 361 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 362 new = folio_page(folio, idx); 363 364 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 365 /* PMD-mapped THP migration entry */ 366 if (!pvmw.pte) { 367 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 368 !folio_test_pmd_mappable(folio), folio); 369 remove_migration_pmd(&pvmw, new); 370 continue; 371 } 372 #endif 373 if (rmap_walk_arg->map_unused_to_zeropage && 374 try_to_map_unused_to_zeropage(&pvmw, folio, idx)) 375 continue; 376 377 folio_get(folio); 378 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 379 old_pte = ptep_get(pvmw.pte); 380 381 entry = pte_to_swp_entry(old_pte); 382 if (!is_migration_entry_young(entry)) 383 pte = pte_mkold(pte); 384 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 385 pte = pte_mkdirty(pte); 386 if (pte_swp_soft_dirty(old_pte)) 387 pte = pte_mksoft_dirty(pte); 388 else 389 pte = pte_clear_soft_dirty(pte); 390 391 if (is_writable_migration_entry(entry)) 392 pte = pte_mkwrite(pte, vma); 393 else if (pte_swp_uffd_wp(old_pte)) 394 pte = pte_mkuffd_wp(pte); 395 396 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 397 rmap_flags |= RMAP_EXCLUSIVE; 398 399 if (unlikely(is_device_private_page(new))) { 400 if (pte_write(pte)) 401 entry = make_writable_device_private_entry( 402 page_to_pfn(new)); 403 else 404 entry = make_readable_device_private_entry( 405 page_to_pfn(new)); 406 pte = swp_entry_to_pte(entry); 407 if (pte_swp_soft_dirty(old_pte)) 408 pte = pte_swp_mksoft_dirty(pte); 409 if (pte_swp_uffd_wp(old_pte)) 410 pte = pte_swp_mkuffd_wp(pte); 411 } 412 413 #ifdef CONFIG_HUGETLB_PAGE 414 if (folio_test_hugetlb(folio)) { 415 struct hstate *h = hstate_vma(vma); 416 unsigned int shift = huge_page_shift(h); 417 unsigned long psize = huge_page_size(h); 418 419 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 420 if (folio_test_anon(folio)) 421 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 422 rmap_flags); 423 else 424 hugetlb_add_file_rmap(folio); 425 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 426 psize); 427 } else 428 #endif 429 { 430 if (folio_test_anon(folio)) 431 folio_add_anon_rmap_pte(folio, new, vma, 432 pvmw.address, rmap_flags); 433 else 434 folio_add_file_rmap_pte(folio, new, vma); 435 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 436 } 437 if (READ_ONCE(vma->vm_flags) & VM_LOCKED) 438 mlock_drain_local(); 439 440 trace_remove_migration_pte(pvmw.address, pte_val(pte), 441 compound_order(new)); 442 443 /* No need to invalidate - it was non-present before */ 444 update_mmu_cache(vma, pvmw.address, pvmw.pte); 445 } 446 447 return true; 448 } 449 450 /* 451 * Get rid of all migration entries and replace them by 452 * references to the indicated page. 453 */ 454 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags) 455 { 456 struct rmap_walk_arg rmap_walk_arg = { 457 .folio = src, 458 .map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE, 459 }; 460 461 struct rmap_walk_control rwc = { 462 .rmap_one = remove_migration_pte, 463 .arg = &rmap_walk_arg, 464 }; 465 466 VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src); 467 468 if (flags & RMP_LOCKED) 469 rmap_walk_locked(dst, &rwc); 470 else 471 rmap_walk(dst, &rwc); 472 } 473 474 /* 475 * Something used the pte of a page under migration. We need to 476 * get to the page and wait until migration is finished. 477 * When we return from this function the fault will be retried. 478 */ 479 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 480 unsigned long address) 481 { 482 spinlock_t *ptl; 483 pte_t *ptep; 484 pte_t pte; 485 swp_entry_t entry; 486 487 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 488 if (!ptep) 489 return; 490 491 pte = ptep_get(ptep); 492 pte_unmap(ptep); 493 494 if (!is_swap_pte(pte)) 495 goto out; 496 497 entry = pte_to_swp_entry(pte); 498 if (!is_migration_entry(entry)) 499 goto out; 500 501 migration_entry_wait_on_locked(entry, ptl); 502 return; 503 out: 504 spin_unlock(ptl); 505 } 506 507 #ifdef CONFIG_HUGETLB_PAGE 508 /* 509 * The vma read lock must be held upon entry. Holding that lock prevents either 510 * the pte or the ptl from being freed. 511 * 512 * This function will release the vma lock before returning. 513 */ 514 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 515 { 516 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 517 pte_t pte; 518 519 hugetlb_vma_assert_locked(vma); 520 spin_lock(ptl); 521 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 522 523 if (unlikely(!is_hugetlb_entry_migration(pte))) { 524 spin_unlock(ptl); 525 hugetlb_vma_unlock_read(vma); 526 } else { 527 /* 528 * If migration entry existed, safe to release vma lock 529 * here because the pgtable page won't be freed without the 530 * pgtable lock released. See comment right above pgtable 531 * lock release in migration_entry_wait_on_locked(). 532 */ 533 hugetlb_vma_unlock_read(vma); 534 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 535 } 536 } 537 #endif 538 539 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 540 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 541 { 542 spinlock_t *ptl; 543 544 ptl = pmd_lock(mm, pmd); 545 if (!is_pmd_migration_entry(*pmd)) 546 goto unlock; 547 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 548 return; 549 unlock: 550 spin_unlock(ptl); 551 } 552 #endif 553 554 /* 555 * Replace the folio in the mapping. 556 * 557 * The number of remaining references must be: 558 * 1 for anonymous folios without a mapping 559 * 2 for folios with a mapping 560 * 3 for folios with a mapping and the private flag set. 561 */ 562 static int __folio_migrate_mapping(struct address_space *mapping, 563 struct folio *newfolio, struct folio *folio, int expected_count) 564 { 565 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 566 struct zone *oldzone, *newzone; 567 int dirty; 568 long nr = folio_nr_pages(folio); 569 long entries, i; 570 571 if (!mapping) { 572 /* Take off deferred split queue while frozen and memcg set */ 573 if (folio_test_large(folio) && 574 folio_test_large_rmappable(folio)) { 575 if (!folio_ref_freeze(folio, expected_count)) 576 return -EAGAIN; 577 folio_unqueue_deferred_split(folio); 578 folio_ref_unfreeze(folio, expected_count); 579 } 580 581 /* No turning back from here */ 582 newfolio->index = folio->index; 583 newfolio->mapping = folio->mapping; 584 if (folio_test_anon(folio) && folio_test_large(folio)) 585 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 586 if (folio_test_swapbacked(folio)) 587 __folio_set_swapbacked(newfolio); 588 589 return 0; 590 } 591 592 oldzone = folio_zone(folio); 593 newzone = folio_zone(newfolio); 594 595 xas_lock_irq(&xas); 596 if (!folio_ref_freeze(folio, expected_count)) { 597 xas_unlock_irq(&xas); 598 return -EAGAIN; 599 } 600 601 /* Take off deferred split queue while frozen and memcg set */ 602 folio_unqueue_deferred_split(folio); 603 604 /* 605 * Now we know that no one else is looking at the folio: 606 * no turning back from here. 607 */ 608 newfolio->index = folio->index; 609 newfolio->mapping = folio->mapping; 610 if (folio_test_anon(folio) && folio_test_large(folio)) 611 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 612 folio_ref_add(newfolio, nr); /* add cache reference */ 613 if (folio_test_swapbacked(folio)) 614 __folio_set_swapbacked(newfolio); 615 if (folio_test_swapcache(folio)) { 616 folio_set_swapcache(newfolio); 617 newfolio->private = folio_get_private(folio); 618 entries = nr; 619 } else { 620 entries = 1; 621 } 622 623 /* Move dirty while folio refs frozen and newfolio not yet exposed */ 624 dirty = folio_test_dirty(folio); 625 if (dirty) { 626 folio_clear_dirty(folio); 627 folio_set_dirty(newfolio); 628 } 629 630 /* Swap cache still stores N entries instead of a high-order entry */ 631 for (i = 0; i < entries; i++) { 632 xas_store(&xas, newfolio); 633 xas_next(&xas); 634 } 635 636 /* 637 * Drop cache reference from old folio by unfreezing 638 * to one less reference. 639 * We know this isn't the last reference. 640 */ 641 folio_ref_unfreeze(folio, expected_count - nr); 642 643 xas_unlock(&xas); 644 /* Leave irq disabled to prevent preemption while updating stats */ 645 646 /* 647 * If moved to a different zone then also account 648 * the folio for that zone. Other VM counters will be 649 * taken care of when we establish references to the 650 * new folio and drop references to the old folio. 651 * 652 * Note that anonymous folios are accounted for 653 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 654 * are mapped to swap space. 655 */ 656 if (newzone != oldzone) { 657 struct lruvec *old_lruvec, *new_lruvec; 658 struct mem_cgroup *memcg; 659 660 memcg = folio_memcg(folio); 661 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 662 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 663 664 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 665 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 666 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 667 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 668 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 669 670 if (folio_test_pmd_mappable(folio)) { 671 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 672 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 673 } 674 } 675 #ifdef CONFIG_SWAP 676 if (folio_test_swapcache(folio)) { 677 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 678 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 679 } 680 #endif 681 if (dirty && mapping_can_writeback(mapping)) { 682 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 683 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 684 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 685 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 686 } 687 } 688 local_irq_enable(); 689 690 return 0; 691 } 692 693 int folio_migrate_mapping(struct address_space *mapping, 694 struct folio *newfolio, struct folio *folio, int extra_count) 695 { 696 int expected_count = folio_expected_ref_count(folio) + extra_count + 1; 697 698 if (folio_ref_count(folio) != expected_count) 699 return -EAGAIN; 700 701 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count); 702 } 703 EXPORT_SYMBOL(folio_migrate_mapping); 704 705 /* 706 * The expected number of remaining references is the same as that 707 * of folio_migrate_mapping(). 708 */ 709 int migrate_huge_page_move_mapping(struct address_space *mapping, 710 struct folio *dst, struct folio *src) 711 { 712 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 713 int rc, expected_count = folio_expected_ref_count(src) + 1; 714 715 if (folio_ref_count(src) != expected_count) 716 return -EAGAIN; 717 718 rc = folio_mc_copy(dst, src); 719 if (unlikely(rc)) 720 return rc; 721 722 xas_lock_irq(&xas); 723 if (!folio_ref_freeze(src, expected_count)) { 724 xas_unlock_irq(&xas); 725 return -EAGAIN; 726 } 727 728 dst->index = src->index; 729 dst->mapping = src->mapping; 730 731 folio_ref_add(dst, folio_nr_pages(dst)); 732 733 xas_store(&xas, dst); 734 735 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 736 737 xas_unlock_irq(&xas); 738 739 return 0; 740 } 741 742 /* 743 * Copy the flags and some other ancillary information 744 */ 745 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 746 { 747 int cpupid; 748 749 if (folio_test_referenced(folio)) 750 folio_set_referenced(newfolio); 751 if (folio_test_uptodate(folio)) 752 folio_mark_uptodate(newfolio); 753 if (folio_test_clear_active(folio)) { 754 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 755 folio_set_active(newfolio); 756 } else if (folio_test_clear_unevictable(folio)) 757 folio_set_unevictable(newfolio); 758 if (folio_test_workingset(folio)) 759 folio_set_workingset(newfolio); 760 if (folio_test_checked(folio)) 761 folio_set_checked(newfolio); 762 /* 763 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 764 * migration entries. We can still have PG_anon_exclusive set on an 765 * effectively unmapped and unreferenced first sub-pages of an 766 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 767 */ 768 if (folio_test_mappedtodisk(folio)) 769 folio_set_mappedtodisk(newfolio); 770 771 /* Move dirty on pages not done by folio_migrate_mapping() */ 772 if (folio_test_dirty(folio)) 773 folio_set_dirty(newfolio); 774 775 if (folio_test_young(folio)) 776 folio_set_young(newfolio); 777 if (folio_test_idle(folio)) 778 folio_set_idle(newfolio); 779 780 folio_migrate_refs(newfolio, folio); 781 /* 782 * Copy NUMA information to the new page, to prevent over-eager 783 * future migrations of this same page. 784 */ 785 cpupid = folio_xchg_last_cpupid(folio, -1); 786 /* 787 * For memory tiering mode, when migrate between slow and fast 788 * memory node, reset cpupid, because that is used to record 789 * page access time in slow memory node. 790 */ 791 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 792 bool f_toptier = node_is_toptier(folio_nid(folio)); 793 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 794 795 if (f_toptier != t_toptier) 796 cpupid = -1; 797 } 798 folio_xchg_last_cpupid(newfolio, cpupid); 799 800 folio_migrate_ksm(newfolio, folio); 801 /* 802 * Please do not reorder this without considering how mm/ksm.c's 803 * ksm_get_folio() depends upon ksm_migrate_page() and the 804 * swapcache flag. 805 */ 806 if (folio_test_swapcache(folio)) 807 folio_clear_swapcache(folio); 808 folio_clear_private(folio); 809 810 /* page->private contains hugetlb specific flags */ 811 if (!folio_test_hugetlb(folio)) 812 folio->private = NULL; 813 814 /* 815 * If any waiters have accumulated on the new page then 816 * wake them up. 817 */ 818 if (folio_test_writeback(newfolio)) 819 folio_end_writeback(newfolio); 820 821 /* 822 * PG_readahead shares the same bit with PG_reclaim. The above 823 * end_page_writeback() may clear PG_readahead mistakenly, so set the 824 * bit after that. 825 */ 826 if (folio_test_readahead(folio)) 827 folio_set_readahead(newfolio); 828 829 folio_copy_owner(newfolio, folio); 830 pgalloc_tag_swap(newfolio, folio); 831 832 mem_cgroup_migrate(folio, newfolio); 833 } 834 EXPORT_SYMBOL(folio_migrate_flags); 835 836 /************************************************************ 837 * Migration functions 838 ***********************************************************/ 839 840 static int __migrate_folio(struct address_space *mapping, struct folio *dst, 841 struct folio *src, void *src_private, 842 enum migrate_mode mode) 843 { 844 int rc, expected_count = folio_expected_ref_count(src) + 1; 845 846 /* Check whether src does not have extra refs before we do more work */ 847 if (folio_ref_count(src) != expected_count) 848 return -EAGAIN; 849 850 rc = folio_mc_copy(dst, src); 851 if (unlikely(rc)) 852 return rc; 853 854 rc = __folio_migrate_mapping(mapping, dst, src, expected_count); 855 if (rc) 856 return rc; 857 858 if (src_private) 859 folio_attach_private(dst, folio_detach_private(src)); 860 861 folio_migrate_flags(dst, src); 862 return 0; 863 } 864 865 /** 866 * migrate_folio() - Simple folio migration. 867 * @mapping: The address_space containing the folio. 868 * @dst: The folio to migrate the data to. 869 * @src: The folio containing the current data. 870 * @mode: How to migrate the page. 871 * 872 * Common logic to directly migrate a single LRU folio suitable for 873 * folios that do not have private data. 874 * 875 * Folios are locked upon entry and exit. 876 */ 877 int migrate_folio(struct address_space *mapping, struct folio *dst, 878 struct folio *src, enum migrate_mode mode) 879 { 880 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 881 return __migrate_folio(mapping, dst, src, NULL, mode); 882 } 883 EXPORT_SYMBOL(migrate_folio); 884 885 #ifdef CONFIG_BUFFER_HEAD 886 /* Returns true if all buffers are successfully locked */ 887 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 888 enum migrate_mode mode) 889 { 890 struct buffer_head *bh = head; 891 struct buffer_head *failed_bh; 892 893 do { 894 if (!trylock_buffer(bh)) { 895 if (mode == MIGRATE_ASYNC) 896 goto unlock; 897 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 898 goto unlock; 899 lock_buffer(bh); 900 } 901 902 bh = bh->b_this_page; 903 } while (bh != head); 904 905 return true; 906 907 unlock: 908 /* We failed to lock the buffer and cannot stall. */ 909 failed_bh = bh; 910 bh = head; 911 while (bh != failed_bh) { 912 unlock_buffer(bh); 913 bh = bh->b_this_page; 914 } 915 916 return false; 917 } 918 919 static int __buffer_migrate_folio(struct address_space *mapping, 920 struct folio *dst, struct folio *src, enum migrate_mode mode, 921 bool check_refs) 922 { 923 struct buffer_head *bh, *head; 924 int rc; 925 int expected_count; 926 927 head = folio_buffers(src); 928 if (!head) 929 return migrate_folio(mapping, dst, src, mode); 930 931 /* Check whether page does not have extra refs before we do more work */ 932 expected_count = folio_expected_ref_count(src) + 1; 933 if (folio_ref_count(src) != expected_count) 934 return -EAGAIN; 935 936 if (!buffer_migrate_lock_buffers(head, mode)) 937 return -EAGAIN; 938 939 if (check_refs) { 940 bool busy, migrating; 941 bool invalidated = false; 942 943 migrating = test_and_set_bit_lock(BH_Migrate, &head->b_state); 944 VM_WARN_ON_ONCE(migrating); 945 recheck_buffers: 946 busy = false; 947 spin_lock(&mapping->i_private_lock); 948 bh = head; 949 do { 950 if (atomic_read(&bh->b_count)) { 951 busy = true; 952 break; 953 } 954 bh = bh->b_this_page; 955 } while (bh != head); 956 spin_unlock(&mapping->i_private_lock); 957 if (busy) { 958 if (invalidated) { 959 rc = -EAGAIN; 960 goto unlock_buffers; 961 } 962 invalidate_bh_lrus(); 963 invalidated = true; 964 goto recheck_buffers; 965 } 966 } 967 968 rc = filemap_migrate_folio(mapping, dst, src, mode); 969 if (rc) 970 goto unlock_buffers; 971 972 bh = head; 973 do { 974 folio_set_bh(bh, dst, bh_offset(bh)); 975 bh = bh->b_this_page; 976 } while (bh != head); 977 978 unlock_buffers: 979 if (check_refs) 980 clear_bit_unlock(BH_Migrate, &head->b_state); 981 bh = head; 982 do { 983 unlock_buffer(bh); 984 bh = bh->b_this_page; 985 } while (bh != head); 986 987 return rc; 988 } 989 990 /** 991 * buffer_migrate_folio() - Migration function for folios with buffers. 992 * @mapping: The address space containing @src. 993 * @dst: The folio to migrate to. 994 * @src: The folio to migrate from. 995 * @mode: How to migrate the folio. 996 * 997 * This function can only be used if the underlying filesystem guarantees 998 * that no other references to @src exist. For example attached buffer 999 * heads are accessed only under the folio lock. If your filesystem cannot 1000 * provide this guarantee, buffer_migrate_folio_norefs() may be more 1001 * appropriate. 1002 * 1003 * Return: 0 on success or a negative errno on failure. 1004 */ 1005 int buffer_migrate_folio(struct address_space *mapping, 1006 struct folio *dst, struct folio *src, enum migrate_mode mode) 1007 { 1008 return __buffer_migrate_folio(mapping, dst, src, mode, false); 1009 } 1010 EXPORT_SYMBOL(buffer_migrate_folio); 1011 1012 /** 1013 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 1014 * @mapping: The address space containing @src. 1015 * @dst: The folio to migrate to. 1016 * @src: The folio to migrate from. 1017 * @mode: How to migrate the folio. 1018 * 1019 * Like buffer_migrate_folio() except that this variant is more careful 1020 * and checks that there are also no buffer head references. This function 1021 * is the right one for mappings where buffer heads are directly looked 1022 * up and referenced (such as block device mappings). 1023 * 1024 * Return: 0 on success or a negative errno on failure. 1025 */ 1026 int buffer_migrate_folio_norefs(struct address_space *mapping, 1027 struct folio *dst, struct folio *src, enum migrate_mode mode) 1028 { 1029 return __buffer_migrate_folio(mapping, dst, src, mode, true); 1030 } 1031 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 1032 #endif /* CONFIG_BUFFER_HEAD */ 1033 1034 int filemap_migrate_folio(struct address_space *mapping, 1035 struct folio *dst, struct folio *src, enum migrate_mode mode) 1036 { 1037 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode); 1038 } 1039 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 1040 1041 /* 1042 * Default handling if a filesystem does not provide a migration function. 1043 */ 1044 static int fallback_migrate_folio(struct address_space *mapping, 1045 struct folio *dst, struct folio *src, enum migrate_mode mode) 1046 { 1047 WARN_ONCE(mapping->a_ops->writepages, 1048 "%ps does not implement migrate_folio\n", 1049 mapping->a_ops); 1050 if (folio_test_dirty(src)) 1051 return -EBUSY; 1052 1053 /* 1054 * Filesystem may have private data at folio->private that we 1055 * can't migrate automatically. 1056 */ 1057 if (!filemap_release_folio(src, GFP_KERNEL)) 1058 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 1059 1060 return migrate_folio(mapping, dst, src, mode); 1061 } 1062 1063 /* 1064 * Move a src folio to a newly allocated dst folio. 1065 * 1066 * The src and dst folios are locked and the src folios was unmapped from 1067 * the page tables. 1068 * 1069 * On success, the src folio was replaced by the dst folio. 1070 * 1071 * Return value: 1072 * < 0 - error code 1073 * 0 - success 1074 */ 1075 static int move_to_new_folio(struct folio *dst, struct folio *src, 1076 enum migrate_mode mode) 1077 { 1078 struct address_space *mapping = folio_mapping(src); 1079 int rc = -EAGAIN; 1080 1081 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 1082 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 1083 1084 if (!mapping) 1085 rc = migrate_folio(mapping, dst, src, mode); 1086 else if (mapping_inaccessible(mapping)) 1087 rc = -EOPNOTSUPP; 1088 else if (mapping->a_ops->migrate_folio) 1089 /* 1090 * Most folios have a mapping and most filesystems 1091 * provide a migrate_folio callback. Anonymous folios 1092 * are part of swap space which also has its own 1093 * migrate_folio callback. This is the most common path 1094 * for page migration. 1095 */ 1096 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 1097 mode); 1098 else 1099 rc = fallback_migrate_folio(mapping, dst, src, mode); 1100 1101 if (!rc) { 1102 /* 1103 * For pagecache folios, src->mapping must be cleared before src 1104 * is freed. Anonymous folios must stay anonymous until freed. 1105 */ 1106 if (!folio_test_anon(src)) 1107 src->mapping = NULL; 1108 1109 if (likely(!folio_is_zone_device(dst))) 1110 flush_dcache_folio(dst); 1111 } 1112 return rc; 1113 } 1114 1115 /* 1116 * To record some information during migration, we use unused private 1117 * field of struct folio of the newly allocated destination folio. 1118 * This is safe because nobody is using it except us. 1119 */ 1120 enum { 1121 PAGE_WAS_MAPPED = BIT(0), 1122 PAGE_WAS_MLOCKED = BIT(1), 1123 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1124 }; 1125 1126 static void __migrate_folio_record(struct folio *dst, 1127 int old_page_state, 1128 struct anon_vma *anon_vma) 1129 { 1130 dst->private = (void *)anon_vma + old_page_state; 1131 } 1132 1133 static void __migrate_folio_extract(struct folio *dst, 1134 int *old_page_state, 1135 struct anon_vma **anon_vmap) 1136 { 1137 unsigned long private = (unsigned long)dst->private; 1138 1139 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1140 *old_page_state = private & PAGE_OLD_STATES; 1141 dst->private = NULL; 1142 } 1143 1144 /* Restore the source folio to the original state upon failure */ 1145 static void migrate_folio_undo_src(struct folio *src, 1146 int page_was_mapped, 1147 struct anon_vma *anon_vma, 1148 bool locked, 1149 struct list_head *ret) 1150 { 1151 if (page_was_mapped) 1152 remove_migration_ptes(src, src, 0); 1153 /* Drop an anon_vma reference if we took one */ 1154 if (anon_vma) 1155 put_anon_vma(anon_vma); 1156 if (locked) 1157 folio_unlock(src); 1158 if (ret) 1159 list_move_tail(&src->lru, ret); 1160 } 1161 1162 /* Restore the destination folio to the original state upon failure */ 1163 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1164 free_folio_t put_new_folio, unsigned long private) 1165 { 1166 if (locked) 1167 folio_unlock(dst); 1168 if (put_new_folio) 1169 put_new_folio(dst, private); 1170 else 1171 folio_put(dst); 1172 } 1173 1174 /* Cleanup src folio upon migration success */ 1175 static void migrate_folio_done(struct folio *src, 1176 enum migrate_reason reason) 1177 { 1178 if (likely(!page_has_movable_ops(&src->page)) && reason != MR_DEMOTION) 1179 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1180 folio_is_file_lru(src), -folio_nr_pages(src)); 1181 1182 if (reason != MR_MEMORY_FAILURE) 1183 /* We release the page in page_handle_poison. */ 1184 folio_put(src); 1185 } 1186 1187 /* Obtain the lock on page, remove all ptes. */ 1188 static int migrate_folio_unmap(new_folio_t get_new_folio, 1189 free_folio_t put_new_folio, unsigned long private, 1190 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1191 struct list_head *ret) 1192 { 1193 struct folio *dst; 1194 int rc = -EAGAIN; 1195 int old_page_state = 0; 1196 struct anon_vma *anon_vma = NULL; 1197 bool locked = false; 1198 bool dst_locked = false; 1199 1200 dst = get_new_folio(src, private); 1201 if (!dst) 1202 return -ENOMEM; 1203 *dstp = dst; 1204 1205 dst->private = NULL; 1206 1207 if (!folio_trylock(src)) { 1208 if (mode == MIGRATE_ASYNC) 1209 goto out; 1210 1211 /* 1212 * It's not safe for direct compaction to call lock_page. 1213 * For example, during page readahead pages are added locked 1214 * to the LRU. Later, when the IO completes the pages are 1215 * marked uptodate and unlocked. However, the queueing 1216 * could be merging multiple pages for one bio (e.g. 1217 * mpage_readahead). If an allocation happens for the 1218 * second or third page, the process can end up locking 1219 * the same page twice and deadlocking. Rather than 1220 * trying to be clever about what pages can be locked, 1221 * avoid the use of lock_page for direct compaction 1222 * altogether. 1223 */ 1224 if (current->flags & PF_MEMALLOC) 1225 goto out; 1226 1227 /* 1228 * In "light" mode, we can wait for transient locks (eg 1229 * inserting a page into the page table), but it's not 1230 * worth waiting for I/O. 1231 */ 1232 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1233 goto out; 1234 1235 folio_lock(src); 1236 } 1237 locked = true; 1238 if (folio_test_mlocked(src)) 1239 old_page_state |= PAGE_WAS_MLOCKED; 1240 1241 if (folio_test_writeback(src)) { 1242 /* 1243 * Only in the case of a full synchronous migration is it 1244 * necessary to wait for PageWriteback. In the async case, 1245 * the retry loop is too short and in the sync-light case, 1246 * the overhead of stalling is too much 1247 */ 1248 switch (mode) { 1249 case MIGRATE_SYNC: 1250 break; 1251 default: 1252 rc = -EBUSY; 1253 goto out; 1254 } 1255 folio_wait_writeback(src); 1256 } 1257 1258 /* 1259 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1260 * we cannot notice that anon_vma is freed while we migrate a page. 1261 * This get_anon_vma() delays freeing anon_vma pointer until the end 1262 * of migration. File cache pages are no problem because of page_lock() 1263 * File Caches may use write_page() or lock_page() in migration, then, 1264 * just care Anon page here. 1265 * 1266 * Only folio_get_anon_vma() understands the subtleties of 1267 * getting a hold on an anon_vma from outside one of its mms. 1268 * But if we cannot get anon_vma, then we won't need it anyway, 1269 * because that implies that the anon page is no longer mapped 1270 * (and cannot be remapped so long as we hold the page lock). 1271 */ 1272 if (folio_test_anon(src) && !folio_test_ksm(src)) 1273 anon_vma = folio_get_anon_vma(src); 1274 1275 /* 1276 * Block others from accessing the new page when we get around to 1277 * establishing additional references. We are usually the only one 1278 * holding a reference to dst at this point. We used to have a BUG 1279 * here if folio_trylock(dst) fails, but would like to allow for 1280 * cases where there might be a race with the previous use of dst. 1281 * This is much like races on refcount of oldpage: just don't BUG(). 1282 */ 1283 if (unlikely(!folio_trylock(dst))) 1284 goto out; 1285 dst_locked = true; 1286 1287 if (unlikely(page_has_movable_ops(&src->page))) { 1288 __migrate_folio_record(dst, old_page_state, anon_vma); 1289 return 0; 1290 } 1291 1292 /* 1293 * Corner case handling: 1294 * 1. When a new swap-cache page is read into, it is added to the LRU 1295 * and treated as swapcache but it has no rmap yet. 1296 * Calling try_to_unmap() against a src->mapping==NULL page will 1297 * trigger a BUG. So handle it here. 1298 * 2. An orphaned page (see truncate_cleanup_page) might have 1299 * fs-private metadata. The page can be picked up due to memory 1300 * offlining. Everywhere else except page reclaim, the page is 1301 * invisible to the vm, so the page can not be migrated. So try to 1302 * free the metadata, so the page can be freed. 1303 */ 1304 if (!src->mapping) { 1305 if (folio_test_private(src)) { 1306 try_to_free_buffers(src); 1307 goto out; 1308 } 1309 } else if (folio_mapped(src)) { 1310 /* Establish migration ptes */ 1311 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1312 !folio_test_ksm(src) && !anon_vma, src); 1313 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1314 old_page_state |= PAGE_WAS_MAPPED; 1315 } 1316 1317 if (!folio_mapped(src)) { 1318 __migrate_folio_record(dst, old_page_state, anon_vma); 1319 return 0; 1320 } 1321 1322 out: 1323 /* 1324 * A folio that has not been unmapped will be restored to 1325 * right list unless we want to retry. 1326 */ 1327 if (rc == -EAGAIN) 1328 ret = NULL; 1329 1330 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1331 anon_vma, locked, ret); 1332 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1333 1334 return rc; 1335 } 1336 1337 /* Migrate the folio to the newly allocated folio in dst. */ 1338 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1339 struct folio *src, struct folio *dst, 1340 enum migrate_mode mode, enum migrate_reason reason, 1341 struct list_head *ret) 1342 { 1343 int rc; 1344 int old_page_state = 0; 1345 struct anon_vma *anon_vma = NULL; 1346 struct list_head *prev; 1347 1348 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1349 prev = dst->lru.prev; 1350 list_del(&dst->lru); 1351 1352 if (unlikely(page_has_movable_ops(&src->page))) { 1353 rc = migrate_movable_ops_page(&dst->page, &src->page, mode); 1354 if (rc) 1355 goto out; 1356 goto out_unlock_both; 1357 } 1358 1359 rc = move_to_new_folio(dst, src, mode); 1360 if (rc) 1361 goto out; 1362 1363 /* 1364 * When successful, push dst to LRU immediately: so that if it 1365 * turns out to be an mlocked page, remove_migration_ptes() will 1366 * automatically build up the correct dst->mlock_count for it. 1367 * 1368 * We would like to do something similar for the old page, when 1369 * unsuccessful, and other cases when a page has been temporarily 1370 * isolated from the unevictable LRU: but this case is the easiest. 1371 */ 1372 folio_add_lru(dst); 1373 if (old_page_state & PAGE_WAS_MLOCKED) 1374 lru_add_drain(); 1375 1376 if (old_page_state & PAGE_WAS_MAPPED) 1377 remove_migration_ptes(src, dst, 0); 1378 1379 out_unlock_both: 1380 folio_unlock(dst); 1381 folio_set_owner_migrate_reason(dst, reason); 1382 /* 1383 * If migration is successful, decrease refcount of dst, 1384 * which will not free the page because new page owner increased 1385 * refcounter. 1386 */ 1387 folio_put(dst); 1388 1389 /* 1390 * A folio that has been migrated has all references removed 1391 * and will be freed. 1392 */ 1393 list_del(&src->lru); 1394 /* Drop an anon_vma reference if we took one */ 1395 if (anon_vma) 1396 put_anon_vma(anon_vma); 1397 folio_unlock(src); 1398 migrate_folio_done(src, reason); 1399 1400 return rc; 1401 out: 1402 /* 1403 * A folio that has not been migrated will be restored to 1404 * right list unless we want to retry. 1405 */ 1406 if (rc == -EAGAIN) { 1407 list_add(&dst->lru, prev); 1408 __migrate_folio_record(dst, old_page_state, anon_vma); 1409 return rc; 1410 } 1411 1412 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1413 anon_vma, true, ret); 1414 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1415 1416 return rc; 1417 } 1418 1419 /* 1420 * Counterpart of unmap_and_move_page() for hugepage migration. 1421 * 1422 * This function doesn't wait the completion of hugepage I/O 1423 * because there is no race between I/O and migration for hugepage. 1424 * Note that currently hugepage I/O occurs only in direct I/O 1425 * where no lock is held and PG_writeback is irrelevant, 1426 * and writeback status of all subpages are counted in the reference 1427 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1428 * under direct I/O, the reference of the head page is 512 and a bit more.) 1429 * This means that when we try to migrate hugepage whose subpages are 1430 * doing direct I/O, some references remain after try_to_unmap() and 1431 * hugepage migration fails without data corruption. 1432 * 1433 * There is also no race when direct I/O is issued on the page under migration, 1434 * because then pte is replaced with migration swap entry and direct I/O code 1435 * will wait in the page fault for migration to complete. 1436 */ 1437 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1438 free_folio_t put_new_folio, unsigned long private, 1439 struct folio *src, int force, enum migrate_mode mode, 1440 int reason, struct list_head *ret) 1441 { 1442 struct folio *dst; 1443 int rc = -EAGAIN; 1444 int page_was_mapped = 0; 1445 struct anon_vma *anon_vma = NULL; 1446 struct address_space *mapping = NULL; 1447 1448 if (folio_ref_count(src) == 1) { 1449 /* page was freed from under us. So we are done. */ 1450 folio_putback_hugetlb(src); 1451 return 0; 1452 } 1453 1454 dst = get_new_folio(src, private); 1455 if (!dst) 1456 return -ENOMEM; 1457 1458 if (!folio_trylock(src)) { 1459 if (!force) 1460 goto out; 1461 switch (mode) { 1462 case MIGRATE_SYNC: 1463 break; 1464 default: 1465 goto out; 1466 } 1467 folio_lock(src); 1468 } 1469 1470 /* 1471 * Check for pages which are in the process of being freed. Without 1472 * folio_mapping() set, hugetlbfs specific move page routine will not 1473 * be called and we could leak usage counts for subpools. 1474 */ 1475 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1476 rc = -EBUSY; 1477 goto out_unlock; 1478 } 1479 1480 if (folio_test_anon(src)) 1481 anon_vma = folio_get_anon_vma(src); 1482 1483 if (unlikely(!folio_trylock(dst))) 1484 goto put_anon; 1485 1486 if (folio_mapped(src)) { 1487 enum ttu_flags ttu = 0; 1488 1489 if (!folio_test_anon(src)) { 1490 /* 1491 * In shared mappings, try_to_unmap could potentially 1492 * call huge_pmd_unshare. Because of this, take 1493 * semaphore in write mode here and set TTU_RMAP_LOCKED 1494 * to let lower levels know we have taken the lock. 1495 */ 1496 mapping = hugetlb_folio_mapping_lock_write(src); 1497 if (unlikely(!mapping)) 1498 goto unlock_put_anon; 1499 1500 ttu = TTU_RMAP_LOCKED; 1501 } 1502 1503 try_to_migrate(src, ttu); 1504 page_was_mapped = 1; 1505 1506 if (ttu & TTU_RMAP_LOCKED) 1507 i_mmap_unlock_write(mapping); 1508 } 1509 1510 if (!folio_mapped(src)) 1511 rc = move_to_new_folio(dst, src, mode); 1512 1513 if (page_was_mapped) 1514 remove_migration_ptes(src, !rc ? dst : src, 0); 1515 1516 unlock_put_anon: 1517 folio_unlock(dst); 1518 1519 put_anon: 1520 if (anon_vma) 1521 put_anon_vma(anon_vma); 1522 1523 if (!rc) { 1524 move_hugetlb_state(src, dst, reason); 1525 put_new_folio = NULL; 1526 } 1527 1528 out_unlock: 1529 folio_unlock(src); 1530 out: 1531 if (!rc) 1532 folio_putback_hugetlb(src); 1533 else if (rc != -EAGAIN) 1534 list_move_tail(&src->lru, ret); 1535 1536 /* 1537 * If migration was not successful and there's a freeing callback, 1538 * return the folio to that special allocator. Otherwise, simply drop 1539 * our additional reference. 1540 */ 1541 if (put_new_folio) 1542 put_new_folio(dst, private); 1543 else 1544 folio_put(dst); 1545 1546 return rc; 1547 } 1548 1549 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios, 1550 enum migrate_mode mode) 1551 { 1552 int rc; 1553 1554 if (mode == MIGRATE_ASYNC) { 1555 if (!folio_trylock(folio)) 1556 return -EAGAIN; 1557 } else { 1558 folio_lock(folio); 1559 } 1560 rc = split_folio_to_list(folio, split_folios); 1561 folio_unlock(folio); 1562 if (!rc) 1563 list_move_tail(&folio->lru, split_folios); 1564 1565 return rc; 1566 } 1567 1568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1569 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1570 #else 1571 #define NR_MAX_BATCHED_MIGRATION 512 1572 #endif 1573 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1574 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1575 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1576 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1577 1578 struct migrate_pages_stats { 1579 int nr_succeeded; /* Normal and large folios migrated successfully, in 1580 units of base pages */ 1581 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1582 units of base pages. Untried folios aren't counted */ 1583 int nr_thp_succeeded; /* THP migrated successfully */ 1584 int nr_thp_failed; /* THP failed to be migrated */ 1585 int nr_thp_split; /* THP split before migrating */ 1586 int nr_split; /* Large folio (include THP) split before migrating */ 1587 }; 1588 1589 /* 1590 * Returns the number of hugetlb folios that were not migrated, or an error code 1591 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1592 * any more because the list has become empty or no retryable hugetlb folios 1593 * exist any more. It is caller's responsibility to call putback_movable_pages() 1594 * only if ret != 0. 1595 */ 1596 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1597 free_folio_t put_new_folio, unsigned long private, 1598 enum migrate_mode mode, int reason, 1599 struct migrate_pages_stats *stats, 1600 struct list_head *ret_folios) 1601 { 1602 int retry = 1; 1603 int nr_failed = 0; 1604 int nr_retry_pages = 0; 1605 int pass = 0; 1606 struct folio *folio, *folio2; 1607 int rc, nr_pages; 1608 1609 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1610 retry = 0; 1611 nr_retry_pages = 0; 1612 1613 list_for_each_entry_safe(folio, folio2, from, lru) { 1614 if (!folio_test_hugetlb(folio)) 1615 continue; 1616 1617 nr_pages = folio_nr_pages(folio); 1618 1619 cond_resched(); 1620 1621 /* 1622 * Migratability of hugepages depends on architectures and 1623 * their size. This check is necessary because some callers 1624 * of hugepage migration like soft offline and memory 1625 * hotremove don't walk through page tables or check whether 1626 * the hugepage is pmd-based or not before kicking migration. 1627 */ 1628 if (!hugepage_migration_supported(folio_hstate(folio))) { 1629 nr_failed++; 1630 stats->nr_failed_pages += nr_pages; 1631 list_move_tail(&folio->lru, ret_folios); 1632 continue; 1633 } 1634 1635 rc = unmap_and_move_huge_page(get_new_folio, 1636 put_new_folio, private, 1637 folio, pass > 2, mode, 1638 reason, ret_folios); 1639 /* 1640 * The rules are: 1641 * 0: hugetlb folio will be put back 1642 * -EAGAIN: stay on the from list 1643 * -ENOMEM: stay on the from list 1644 * Other errno: put on ret_folios list 1645 */ 1646 switch(rc) { 1647 case -ENOMEM: 1648 /* 1649 * When memory is low, don't bother to try to migrate 1650 * other folios, just exit. 1651 */ 1652 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1653 return -ENOMEM; 1654 case -EAGAIN: 1655 retry++; 1656 nr_retry_pages += nr_pages; 1657 break; 1658 case 0: 1659 stats->nr_succeeded += nr_pages; 1660 break; 1661 default: 1662 /* 1663 * Permanent failure (-EBUSY, etc.): 1664 * unlike -EAGAIN case, the failed folio is 1665 * removed from migration folio list and not 1666 * retried in the next outer loop. 1667 */ 1668 nr_failed++; 1669 stats->nr_failed_pages += nr_pages; 1670 break; 1671 } 1672 } 1673 } 1674 /* 1675 * nr_failed is number of hugetlb folios failed to be migrated. After 1676 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1677 * folios as failed. 1678 */ 1679 nr_failed += retry; 1680 stats->nr_failed_pages += nr_retry_pages; 1681 1682 return nr_failed; 1683 } 1684 1685 static void migrate_folios_move(struct list_head *src_folios, 1686 struct list_head *dst_folios, 1687 free_folio_t put_new_folio, unsigned long private, 1688 enum migrate_mode mode, int reason, 1689 struct list_head *ret_folios, 1690 struct migrate_pages_stats *stats, 1691 int *retry, int *thp_retry, int *nr_failed, 1692 int *nr_retry_pages) 1693 { 1694 struct folio *folio, *folio2, *dst, *dst2; 1695 bool is_thp; 1696 int nr_pages; 1697 int rc; 1698 1699 dst = list_first_entry(dst_folios, struct folio, lru); 1700 dst2 = list_next_entry(dst, lru); 1701 list_for_each_entry_safe(folio, folio2, src_folios, lru) { 1702 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1703 nr_pages = folio_nr_pages(folio); 1704 1705 cond_resched(); 1706 1707 rc = migrate_folio_move(put_new_folio, private, 1708 folio, dst, mode, 1709 reason, ret_folios); 1710 /* 1711 * The rules are: 1712 * 0: folio will be freed 1713 * -EAGAIN: stay on the unmap_folios list 1714 * Other errno: put on ret_folios list 1715 */ 1716 switch (rc) { 1717 case -EAGAIN: 1718 *retry += 1; 1719 *thp_retry += is_thp; 1720 *nr_retry_pages += nr_pages; 1721 break; 1722 case 0: 1723 stats->nr_succeeded += nr_pages; 1724 stats->nr_thp_succeeded += is_thp; 1725 break; 1726 default: 1727 *nr_failed += 1; 1728 stats->nr_thp_failed += is_thp; 1729 stats->nr_failed_pages += nr_pages; 1730 break; 1731 } 1732 dst = dst2; 1733 dst2 = list_next_entry(dst, lru); 1734 } 1735 } 1736 1737 static void migrate_folios_undo(struct list_head *src_folios, 1738 struct list_head *dst_folios, 1739 free_folio_t put_new_folio, unsigned long private, 1740 struct list_head *ret_folios) 1741 { 1742 struct folio *folio, *folio2, *dst, *dst2; 1743 1744 dst = list_first_entry(dst_folios, struct folio, lru); 1745 dst2 = list_next_entry(dst, lru); 1746 list_for_each_entry_safe(folio, folio2, src_folios, lru) { 1747 int old_page_state = 0; 1748 struct anon_vma *anon_vma = NULL; 1749 1750 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1751 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1752 anon_vma, true, ret_folios); 1753 list_del(&dst->lru); 1754 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1755 dst = dst2; 1756 dst2 = list_next_entry(dst, lru); 1757 } 1758 } 1759 1760 /* 1761 * migrate_pages_batch() first unmaps folios in the from list as many as 1762 * possible, then move the unmapped folios. 1763 * 1764 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1765 * lock or bit when we have locked more than one folio. Which may cause 1766 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1767 * length of the from list must be <= 1. 1768 */ 1769 static int migrate_pages_batch(struct list_head *from, 1770 new_folio_t get_new_folio, free_folio_t put_new_folio, 1771 unsigned long private, enum migrate_mode mode, int reason, 1772 struct list_head *ret_folios, struct list_head *split_folios, 1773 struct migrate_pages_stats *stats, int nr_pass) 1774 { 1775 int retry = 1; 1776 int thp_retry = 1; 1777 int nr_failed = 0; 1778 int nr_retry_pages = 0; 1779 int pass = 0; 1780 bool is_thp = false; 1781 bool is_large = false; 1782 struct folio *folio, *folio2, *dst = NULL; 1783 int rc, rc_saved = 0, nr_pages; 1784 LIST_HEAD(unmap_folios); 1785 LIST_HEAD(dst_folios); 1786 bool nosplit = (reason == MR_NUMA_MISPLACED); 1787 1788 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1789 !list_empty(from) && !list_is_singular(from)); 1790 1791 for (pass = 0; pass < nr_pass && retry; pass++) { 1792 retry = 0; 1793 thp_retry = 0; 1794 nr_retry_pages = 0; 1795 1796 list_for_each_entry_safe(folio, folio2, from, lru) { 1797 is_large = folio_test_large(folio); 1798 is_thp = folio_test_pmd_mappable(folio); 1799 nr_pages = folio_nr_pages(folio); 1800 1801 cond_resched(); 1802 1803 /* 1804 * The rare folio on the deferred split list should 1805 * be split now. It should not count as a failure: 1806 * but increment nr_failed because, without doing so, 1807 * migrate_pages() may report success with (split but 1808 * unmigrated) pages still on its fromlist; whereas it 1809 * always reports success when its fromlist is empty. 1810 * stats->nr_thp_failed should be increased too, 1811 * otherwise stats inconsistency will happen when 1812 * migrate_pages_batch is called via migrate_pages() 1813 * with MIGRATE_SYNC and MIGRATE_ASYNC. 1814 * 1815 * Only check it without removing it from the list. 1816 * Since the folio can be on deferred_split_scan() 1817 * local list and removing it can cause the local list 1818 * corruption. Folio split process below can handle it 1819 * with the help of folio_ref_freeze(). 1820 * 1821 * nr_pages > 2 is needed to avoid checking order-1 1822 * page cache folios. They exist, in contrast to 1823 * non-existent order-1 anonymous folios, and do not 1824 * use _deferred_list. 1825 */ 1826 if (nr_pages > 2 && 1827 !list_empty(&folio->_deferred_list) && 1828 folio_test_partially_mapped(folio)) { 1829 if (!try_split_folio(folio, split_folios, mode)) { 1830 nr_failed++; 1831 stats->nr_thp_failed += is_thp; 1832 stats->nr_thp_split += is_thp; 1833 stats->nr_split++; 1834 continue; 1835 } 1836 } 1837 1838 /* 1839 * Large folio migration might be unsupported or 1840 * the allocation might be failed so we should retry 1841 * on the same folio with the large folio split 1842 * to normal folios. 1843 * 1844 * Split folios are put in split_folios, and 1845 * we will migrate them after the rest of the 1846 * list is processed. 1847 */ 1848 if (!thp_migration_supported() && is_thp) { 1849 nr_failed++; 1850 stats->nr_thp_failed++; 1851 if (!try_split_folio(folio, split_folios, mode)) { 1852 stats->nr_thp_split++; 1853 stats->nr_split++; 1854 continue; 1855 } 1856 stats->nr_failed_pages += nr_pages; 1857 list_move_tail(&folio->lru, ret_folios); 1858 continue; 1859 } 1860 1861 /* 1862 * If we are holding the last folio reference, the folio 1863 * was freed from under us, so just drop our reference. 1864 */ 1865 if (likely(!page_has_movable_ops(&folio->page)) && 1866 folio_ref_count(folio) == 1) { 1867 folio_clear_active(folio); 1868 folio_clear_unevictable(folio); 1869 list_del(&folio->lru); 1870 migrate_folio_done(folio, reason); 1871 stats->nr_succeeded += nr_pages; 1872 stats->nr_thp_succeeded += is_thp; 1873 continue; 1874 } 1875 1876 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1877 private, folio, &dst, mode, ret_folios); 1878 /* 1879 * The rules are: 1880 * 0: folio will be put on unmap_folios list, 1881 * dst folio put on dst_folios list 1882 * -EAGAIN: stay on the from list 1883 * -ENOMEM: stay on the from list 1884 * Other errno: put on ret_folios list 1885 */ 1886 switch(rc) { 1887 case -ENOMEM: 1888 /* 1889 * When memory is low, don't bother to try to migrate 1890 * other folios, move unmapped folios, then exit. 1891 */ 1892 nr_failed++; 1893 stats->nr_thp_failed += is_thp; 1894 /* Large folio NUMA faulting doesn't split to retry. */ 1895 if (is_large && !nosplit) { 1896 int ret = try_split_folio(folio, split_folios, mode); 1897 1898 if (!ret) { 1899 stats->nr_thp_split += is_thp; 1900 stats->nr_split++; 1901 break; 1902 } else if (reason == MR_LONGTERM_PIN && 1903 ret == -EAGAIN) { 1904 /* 1905 * Try again to split large folio to 1906 * mitigate the failure of longterm pinning. 1907 */ 1908 retry++; 1909 thp_retry += is_thp; 1910 nr_retry_pages += nr_pages; 1911 /* Undo duplicated failure counting. */ 1912 nr_failed--; 1913 stats->nr_thp_failed -= is_thp; 1914 break; 1915 } 1916 } 1917 1918 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1919 /* nr_failed isn't updated for not used */ 1920 stats->nr_thp_failed += thp_retry; 1921 rc_saved = rc; 1922 if (list_empty(&unmap_folios)) 1923 goto out; 1924 else 1925 goto move; 1926 case -EAGAIN: 1927 retry++; 1928 thp_retry += is_thp; 1929 nr_retry_pages += nr_pages; 1930 break; 1931 case 0: 1932 list_move_tail(&folio->lru, &unmap_folios); 1933 list_add_tail(&dst->lru, &dst_folios); 1934 break; 1935 default: 1936 /* 1937 * Permanent failure (-EBUSY, etc.): 1938 * unlike -EAGAIN case, the failed folio is 1939 * removed from migration folio list and not 1940 * retried in the next outer loop. 1941 */ 1942 nr_failed++; 1943 stats->nr_thp_failed += is_thp; 1944 stats->nr_failed_pages += nr_pages; 1945 break; 1946 } 1947 } 1948 } 1949 nr_failed += retry; 1950 stats->nr_thp_failed += thp_retry; 1951 stats->nr_failed_pages += nr_retry_pages; 1952 move: 1953 /* Flush TLBs for all unmapped folios */ 1954 try_to_unmap_flush(); 1955 1956 retry = 1; 1957 for (pass = 0; pass < nr_pass && retry; pass++) { 1958 retry = 0; 1959 thp_retry = 0; 1960 nr_retry_pages = 0; 1961 1962 /* Move the unmapped folios */ 1963 migrate_folios_move(&unmap_folios, &dst_folios, 1964 put_new_folio, private, mode, reason, 1965 ret_folios, stats, &retry, &thp_retry, 1966 &nr_failed, &nr_retry_pages); 1967 } 1968 nr_failed += retry; 1969 stats->nr_thp_failed += thp_retry; 1970 stats->nr_failed_pages += nr_retry_pages; 1971 1972 rc = rc_saved ? : nr_failed; 1973 out: 1974 /* Cleanup remaining folios */ 1975 migrate_folios_undo(&unmap_folios, &dst_folios, 1976 put_new_folio, private, ret_folios); 1977 1978 return rc; 1979 } 1980 1981 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1982 free_folio_t put_new_folio, unsigned long private, 1983 enum migrate_mode mode, int reason, 1984 struct list_head *ret_folios, struct list_head *split_folios, 1985 struct migrate_pages_stats *stats) 1986 { 1987 int rc, nr_failed = 0; 1988 LIST_HEAD(folios); 1989 struct migrate_pages_stats astats; 1990 1991 memset(&astats, 0, sizeof(astats)); 1992 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1993 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1994 reason, &folios, split_folios, &astats, 1995 NR_MAX_MIGRATE_ASYNC_RETRY); 1996 stats->nr_succeeded += astats.nr_succeeded; 1997 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1998 stats->nr_thp_split += astats.nr_thp_split; 1999 stats->nr_split += astats.nr_split; 2000 if (rc < 0) { 2001 stats->nr_failed_pages += astats.nr_failed_pages; 2002 stats->nr_thp_failed += astats.nr_thp_failed; 2003 list_splice_tail(&folios, ret_folios); 2004 return rc; 2005 } 2006 stats->nr_thp_failed += astats.nr_thp_split; 2007 /* 2008 * Do not count rc, as pages will be retried below. 2009 * Count nr_split only, since it includes nr_thp_split. 2010 */ 2011 nr_failed += astats.nr_split; 2012 /* 2013 * Fall back to migrate all failed folios one by one synchronously. All 2014 * failed folios except split THPs will be retried, so their failure 2015 * isn't counted 2016 */ 2017 list_splice_tail_init(&folios, from); 2018 while (!list_empty(from)) { 2019 list_move(from->next, &folios); 2020 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2021 private, mode, reason, ret_folios, 2022 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 2023 list_splice_tail_init(&folios, ret_folios); 2024 if (rc < 0) 2025 return rc; 2026 nr_failed += rc; 2027 } 2028 2029 return nr_failed; 2030 } 2031 2032 /* 2033 * migrate_pages - migrate the folios specified in a list, to the free folios 2034 * supplied as the target for the page migration 2035 * 2036 * @from: The list of folios to be migrated. 2037 * @get_new_folio: The function used to allocate free folios to be used 2038 * as the target of the folio migration. 2039 * @put_new_folio: The function used to free target folios if migration 2040 * fails, or NULL if no special handling is necessary. 2041 * @private: Private data to be passed on to get_new_folio() 2042 * @mode: The migration mode that specifies the constraints for 2043 * folio migration, if any. 2044 * @reason: The reason for folio migration. 2045 * @ret_succeeded: Set to the number of folios migrated successfully if 2046 * the caller passes a non-NULL pointer. 2047 * 2048 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 2049 * are movable any more because the list has become empty or no retryable folios 2050 * exist any more. It is caller's responsibility to call putback_movable_pages() 2051 * only if ret != 0. 2052 * 2053 * Returns the number of {normal folio, large folio, hugetlb} that were not 2054 * migrated, or an error code. The number of large folio splits will be 2055 * considered as the number of non-migrated large folio, no matter how many 2056 * split folios of the large folio are migrated successfully. 2057 */ 2058 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 2059 free_folio_t put_new_folio, unsigned long private, 2060 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 2061 { 2062 int rc, rc_gather; 2063 int nr_pages; 2064 struct folio *folio, *folio2; 2065 LIST_HEAD(folios); 2066 LIST_HEAD(ret_folios); 2067 LIST_HEAD(split_folios); 2068 struct migrate_pages_stats stats; 2069 2070 trace_mm_migrate_pages_start(mode, reason); 2071 2072 memset(&stats, 0, sizeof(stats)); 2073 2074 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 2075 mode, reason, &stats, &ret_folios); 2076 if (rc_gather < 0) 2077 goto out; 2078 2079 again: 2080 nr_pages = 0; 2081 list_for_each_entry_safe(folio, folio2, from, lru) { 2082 /* Retried hugetlb folios will be kept in list */ 2083 if (folio_test_hugetlb(folio)) { 2084 list_move_tail(&folio->lru, &ret_folios); 2085 continue; 2086 } 2087 2088 nr_pages += folio_nr_pages(folio); 2089 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2090 break; 2091 } 2092 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2093 list_cut_before(&folios, from, &folio2->lru); 2094 else 2095 list_splice_init(from, &folios); 2096 if (mode == MIGRATE_ASYNC) 2097 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2098 private, mode, reason, &ret_folios, 2099 &split_folios, &stats, 2100 NR_MAX_MIGRATE_PAGES_RETRY); 2101 else 2102 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 2103 private, mode, reason, &ret_folios, 2104 &split_folios, &stats); 2105 list_splice_tail_init(&folios, &ret_folios); 2106 if (rc < 0) { 2107 rc_gather = rc; 2108 list_splice_tail(&split_folios, &ret_folios); 2109 goto out; 2110 } 2111 if (!list_empty(&split_folios)) { 2112 /* 2113 * Failure isn't counted since all split folios of a large folio 2114 * is counted as 1 failure already. And, we only try to migrate 2115 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 2116 */ 2117 migrate_pages_batch(&split_folios, get_new_folio, 2118 put_new_folio, private, MIGRATE_ASYNC, reason, 2119 &ret_folios, NULL, &stats, 1); 2120 list_splice_tail_init(&split_folios, &ret_folios); 2121 } 2122 rc_gather += rc; 2123 if (!list_empty(from)) 2124 goto again; 2125 out: 2126 /* 2127 * Put the permanent failure folio back to migration list, they 2128 * will be put back to the right list by the caller. 2129 */ 2130 list_splice(&ret_folios, from); 2131 2132 /* 2133 * Return 0 in case all split folios of fail-to-migrate large folios 2134 * are migrated successfully. 2135 */ 2136 if (list_empty(from)) 2137 rc_gather = 0; 2138 2139 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2140 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2141 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2142 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2143 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2144 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2145 stats.nr_thp_succeeded, stats.nr_thp_failed, 2146 stats.nr_thp_split, stats.nr_split, mode, 2147 reason); 2148 2149 if (ret_succeeded) 2150 *ret_succeeded = stats.nr_succeeded; 2151 2152 return rc_gather; 2153 } 2154 2155 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2156 { 2157 struct migration_target_control *mtc; 2158 gfp_t gfp_mask; 2159 unsigned int order = 0; 2160 int nid; 2161 int zidx; 2162 2163 mtc = (struct migration_target_control *)private; 2164 gfp_mask = mtc->gfp_mask; 2165 nid = mtc->nid; 2166 if (nid == NUMA_NO_NODE) 2167 nid = folio_nid(src); 2168 2169 if (folio_test_hugetlb(src)) { 2170 struct hstate *h = folio_hstate(src); 2171 2172 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2173 return alloc_hugetlb_folio_nodemask(h, nid, 2174 mtc->nmask, gfp_mask, 2175 htlb_allow_alloc_fallback(mtc->reason)); 2176 } 2177 2178 if (folio_test_large(src)) { 2179 /* 2180 * clear __GFP_RECLAIM to make the migration callback 2181 * consistent with regular THP allocations. 2182 */ 2183 gfp_mask &= ~__GFP_RECLAIM; 2184 gfp_mask |= GFP_TRANSHUGE; 2185 order = folio_order(src); 2186 } 2187 zidx = zone_idx(folio_zone(src)); 2188 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2189 gfp_mask |= __GFP_HIGHMEM; 2190 2191 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2192 } 2193 2194 #ifdef CONFIG_NUMA 2195 2196 static int store_status(int __user *status, int start, int value, int nr) 2197 { 2198 while (nr-- > 0) { 2199 if (put_user(value, status + start)) 2200 return -EFAULT; 2201 start++; 2202 } 2203 2204 return 0; 2205 } 2206 2207 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2208 { 2209 int err; 2210 struct migration_target_control mtc = { 2211 .nid = node, 2212 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2213 .reason = MR_SYSCALL, 2214 }; 2215 2216 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2217 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2218 if (err) 2219 putback_movable_pages(pagelist); 2220 return err; 2221 } 2222 2223 static int __add_folio_for_migration(struct folio *folio, int node, 2224 struct list_head *pagelist, bool migrate_all) 2225 { 2226 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2227 return -EFAULT; 2228 2229 if (folio_is_zone_device(folio)) 2230 return -ENOENT; 2231 2232 if (folio_nid(folio) == node) 2233 return 0; 2234 2235 if (folio_maybe_mapped_shared(folio) && !migrate_all) 2236 return -EACCES; 2237 2238 if (folio_test_hugetlb(folio)) { 2239 if (folio_isolate_hugetlb(folio, pagelist)) 2240 return 1; 2241 } else if (folio_isolate_lru(folio)) { 2242 list_add_tail(&folio->lru, pagelist); 2243 node_stat_mod_folio(folio, 2244 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2245 folio_nr_pages(folio)); 2246 return 1; 2247 } 2248 return -EBUSY; 2249 } 2250 2251 /* 2252 * Resolves the given address to a struct folio, isolates it from the LRU and 2253 * puts it to the given pagelist. 2254 * Returns: 2255 * errno - if the folio cannot be found/isolated 2256 * 0 - when it doesn't have to be migrated because it is already on the 2257 * target node 2258 * 1 - when it has been queued 2259 */ 2260 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p, 2261 int node, struct list_head *pagelist, bool migrate_all) 2262 { 2263 struct vm_area_struct *vma; 2264 struct folio_walk fw; 2265 struct folio *folio; 2266 unsigned long addr; 2267 int err = -EFAULT; 2268 2269 mmap_read_lock(mm); 2270 addr = (unsigned long)untagged_addr_remote(mm, p); 2271 2272 vma = vma_lookup(mm, addr); 2273 if (vma && vma_migratable(vma)) { 2274 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2275 if (folio) { 2276 err = __add_folio_for_migration(folio, node, pagelist, 2277 migrate_all); 2278 folio_walk_end(&fw, vma); 2279 } else { 2280 err = -ENOENT; 2281 } 2282 } 2283 mmap_read_unlock(mm); 2284 return err; 2285 } 2286 2287 static int move_pages_and_store_status(int node, 2288 struct list_head *pagelist, int __user *status, 2289 int start, int i, unsigned long nr_pages) 2290 { 2291 int err; 2292 2293 if (list_empty(pagelist)) 2294 return 0; 2295 2296 err = do_move_pages_to_node(pagelist, node); 2297 if (err) { 2298 /* 2299 * Positive err means the number of failed 2300 * pages to migrate. Since we are going to 2301 * abort and return the number of non-migrated 2302 * pages, so need to include the rest of the 2303 * nr_pages that have not been attempted as 2304 * well. 2305 */ 2306 if (err > 0) 2307 err += nr_pages - i; 2308 return err; 2309 } 2310 return store_status(status, start, node, i - start); 2311 } 2312 2313 /* 2314 * Migrate an array of page address onto an array of nodes and fill 2315 * the corresponding array of status. 2316 */ 2317 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2318 unsigned long nr_pages, 2319 const void __user * __user *pages, 2320 const int __user *nodes, 2321 int __user *status, int flags) 2322 { 2323 compat_uptr_t __user *compat_pages = (void __user *)pages; 2324 int current_node = NUMA_NO_NODE; 2325 LIST_HEAD(pagelist); 2326 int start, i; 2327 int err = 0, err1; 2328 2329 lru_cache_disable(); 2330 2331 for (i = start = 0; i < nr_pages; i++) { 2332 const void __user *p; 2333 int node; 2334 2335 err = -EFAULT; 2336 if (in_compat_syscall()) { 2337 compat_uptr_t cp; 2338 2339 if (get_user(cp, compat_pages + i)) 2340 goto out_flush; 2341 2342 p = compat_ptr(cp); 2343 } else { 2344 if (get_user(p, pages + i)) 2345 goto out_flush; 2346 } 2347 if (get_user(node, nodes + i)) 2348 goto out_flush; 2349 2350 err = -ENODEV; 2351 if (node < 0 || node >= MAX_NUMNODES) 2352 goto out_flush; 2353 if (!node_state(node, N_MEMORY)) 2354 goto out_flush; 2355 2356 err = -EACCES; 2357 if (!node_isset(node, task_nodes)) 2358 goto out_flush; 2359 2360 if (current_node == NUMA_NO_NODE) { 2361 current_node = node; 2362 start = i; 2363 } else if (node != current_node) { 2364 err = move_pages_and_store_status(current_node, 2365 &pagelist, status, start, i, nr_pages); 2366 if (err) 2367 goto out; 2368 start = i; 2369 current_node = node; 2370 } 2371 2372 /* 2373 * Errors in the page lookup or isolation are not fatal and we simply 2374 * report them via status 2375 */ 2376 err = add_folio_for_migration(mm, p, current_node, &pagelist, 2377 flags & MPOL_MF_MOVE_ALL); 2378 2379 if (err > 0) { 2380 /* The page is successfully queued for migration */ 2381 continue; 2382 } 2383 2384 /* 2385 * If the page is already on the target node (!err), store the 2386 * node, otherwise, store the err. 2387 */ 2388 err = store_status(status, i, err ? : current_node, 1); 2389 if (err) 2390 goto out_flush; 2391 2392 err = move_pages_and_store_status(current_node, &pagelist, 2393 status, start, i, nr_pages); 2394 if (err) { 2395 /* We have accounted for page i */ 2396 if (err > 0) 2397 err--; 2398 goto out; 2399 } 2400 current_node = NUMA_NO_NODE; 2401 } 2402 out_flush: 2403 /* Make sure we do not overwrite the existing error */ 2404 err1 = move_pages_and_store_status(current_node, &pagelist, 2405 status, start, i, nr_pages); 2406 if (err >= 0) 2407 err = err1; 2408 out: 2409 lru_cache_enable(); 2410 return err; 2411 } 2412 2413 /* 2414 * Determine the nodes of an array of pages and store it in an array of status. 2415 */ 2416 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2417 const void __user **pages, int *status) 2418 { 2419 unsigned long i; 2420 2421 mmap_read_lock(mm); 2422 2423 for (i = 0; i < nr_pages; i++) { 2424 unsigned long addr = (unsigned long)(*pages); 2425 struct vm_area_struct *vma; 2426 struct folio_walk fw; 2427 struct folio *folio; 2428 int err = -EFAULT; 2429 2430 vma = vma_lookup(mm, addr); 2431 if (!vma) 2432 goto set_status; 2433 2434 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2435 if (folio) { 2436 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2437 err = -EFAULT; 2438 else if (folio_is_zone_device(folio)) 2439 err = -ENOENT; 2440 else 2441 err = folio_nid(folio); 2442 folio_walk_end(&fw, vma); 2443 } else { 2444 err = -ENOENT; 2445 } 2446 set_status: 2447 *status = err; 2448 2449 pages++; 2450 status++; 2451 } 2452 2453 mmap_read_unlock(mm); 2454 } 2455 2456 static int get_compat_pages_array(const void __user *chunk_pages[], 2457 const void __user * __user *pages, 2458 unsigned long chunk_offset, 2459 unsigned long chunk_nr) 2460 { 2461 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2462 compat_uptr_t p; 2463 int i; 2464 2465 for (i = 0; i < chunk_nr; i++) { 2466 if (get_user(p, pages32 + chunk_offset + i)) 2467 return -EFAULT; 2468 chunk_pages[i] = compat_ptr(p); 2469 } 2470 2471 return 0; 2472 } 2473 2474 /* 2475 * Determine the nodes of a user array of pages and store it in 2476 * a user array of status. 2477 */ 2478 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2479 const void __user * __user *pages, 2480 int __user *status) 2481 { 2482 #define DO_PAGES_STAT_CHUNK_NR 16UL 2483 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2484 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2485 unsigned long chunk_offset = 0; 2486 2487 while (nr_pages) { 2488 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2489 2490 if (in_compat_syscall()) { 2491 if (get_compat_pages_array(chunk_pages, pages, 2492 chunk_offset, chunk_nr)) 2493 break; 2494 } else { 2495 if (copy_from_user(chunk_pages, pages + chunk_offset, 2496 chunk_nr * sizeof(*chunk_pages))) 2497 break; 2498 } 2499 2500 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2501 2502 if (copy_to_user(status + chunk_offset, chunk_status, 2503 chunk_nr * sizeof(*status))) 2504 break; 2505 2506 chunk_offset += chunk_nr; 2507 nr_pages -= chunk_nr; 2508 } 2509 return nr_pages ? -EFAULT : 0; 2510 } 2511 2512 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2513 { 2514 struct task_struct *task; 2515 struct mm_struct *mm; 2516 2517 /* 2518 * There is no need to check if current process has the right to modify 2519 * the specified process when they are same. 2520 */ 2521 if (!pid) { 2522 mmget(current->mm); 2523 *mem_nodes = cpuset_mems_allowed(current); 2524 return current->mm; 2525 } 2526 2527 task = find_get_task_by_vpid(pid); 2528 if (!task) { 2529 return ERR_PTR(-ESRCH); 2530 } 2531 2532 /* 2533 * Check if this process has the right to modify the specified 2534 * process. Use the regular "ptrace_may_access()" checks. 2535 */ 2536 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2537 mm = ERR_PTR(-EPERM); 2538 goto out; 2539 } 2540 2541 mm = ERR_PTR(security_task_movememory(task)); 2542 if (IS_ERR(mm)) 2543 goto out; 2544 *mem_nodes = cpuset_mems_allowed(task); 2545 mm = get_task_mm(task); 2546 out: 2547 put_task_struct(task); 2548 if (!mm) 2549 mm = ERR_PTR(-EINVAL); 2550 return mm; 2551 } 2552 2553 /* 2554 * Move a list of pages in the address space of the currently executing 2555 * process. 2556 */ 2557 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2558 const void __user * __user *pages, 2559 const int __user *nodes, 2560 int __user *status, int flags) 2561 { 2562 struct mm_struct *mm; 2563 int err; 2564 nodemask_t task_nodes; 2565 2566 /* Check flags */ 2567 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2568 return -EINVAL; 2569 2570 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2571 return -EPERM; 2572 2573 mm = find_mm_struct(pid, &task_nodes); 2574 if (IS_ERR(mm)) 2575 return PTR_ERR(mm); 2576 2577 if (nodes) 2578 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2579 nodes, status, flags); 2580 else 2581 err = do_pages_stat(mm, nr_pages, pages, status); 2582 2583 mmput(mm); 2584 return err; 2585 } 2586 2587 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2588 const void __user * __user *, pages, 2589 const int __user *, nodes, 2590 int __user *, status, int, flags) 2591 { 2592 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2593 } 2594 2595 #ifdef CONFIG_NUMA_BALANCING 2596 /* 2597 * Returns true if this is a safe migration target node for misplaced NUMA 2598 * pages. Currently it only checks the watermarks which is crude. 2599 */ 2600 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2601 unsigned long nr_migrate_pages) 2602 { 2603 int z; 2604 2605 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2606 struct zone *zone = pgdat->node_zones + z; 2607 2608 if (!managed_zone(zone)) 2609 continue; 2610 2611 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2612 if (!zone_watermark_ok(zone, 0, 2613 high_wmark_pages(zone) + 2614 nr_migrate_pages, 2615 ZONE_MOVABLE, ALLOC_CMA)) 2616 continue; 2617 return true; 2618 } 2619 return false; 2620 } 2621 2622 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2623 unsigned long data) 2624 { 2625 int nid = (int) data; 2626 int order = folio_order(src); 2627 gfp_t gfp = __GFP_THISNODE; 2628 2629 if (order > 0) 2630 gfp |= GFP_TRANSHUGE_LIGHT; 2631 else { 2632 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2633 __GFP_NOWARN; 2634 gfp &= ~__GFP_RECLAIM; 2635 } 2636 return __folio_alloc_node(gfp, order, nid); 2637 } 2638 2639 /* 2640 * Prepare for calling migrate_misplaced_folio() by isolating the folio if 2641 * permitted. Must be called with the PTL still held. 2642 */ 2643 int migrate_misplaced_folio_prepare(struct folio *folio, 2644 struct vm_area_struct *vma, int node) 2645 { 2646 int nr_pages = folio_nr_pages(folio); 2647 pg_data_t *pgdat = NODE_DATA(node); 2648 2649 if (folio_is_file_lru(folio)) { 2650 /* 2651 * Do not migrate file folios that are mapped in multiple 2652 * processes with execute permissions as they are probably 2653 * shared libraries. 2654 * 2655 * See folio_maybe_mapped_shared() on possible imprecision 2656 * when we cannot easily detect if a folio is shared. 2657 */ 2658 if ((vma->vm_flags & VM_EXEC) && folio_maybe_mapped_shared(folio)) 2659 return -EACCES; 2660 2661 /* 2662 * Do not migrate dirty folios as not all filesystems can move 2663 * dirty folios in MIGRATE_ASYNC mode which is a waste of 2664 * cycles. 2665 */ 2666 if (folio_test_dirty(folio)) 2667 return -EAGAIN; 2668 } 2669 2670 /* Avoid migrating to a node that is nearly full */ 2671 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2672 int z; 2673 2674 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2675 return -EAGAIN; 2676 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2677 if (managed_zone(pgdat->node_zones + z)) 2678 break; 2679 } 2680 2681 /* 2682 * If there are no managed zones, it should not proceed 2683 * further. 2684 */ 2685 if (z < 0) 2686 return -EAGAIN; 2687 2688 wakeup_kswapd(pgdat->node_zones + z, 0, 2689 folio_order(folio), ZONE_MOVABLE); 2690 return -EAGAIN; 2691 } 2692 2693 if (!folio_isolate_lru(folio)) 2694 return -EAGAIN; 2695 2696 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2697 nr_pages); 2698 return 0; 2699 } 2700 2701 /* 2702 * Attempt to migrate a misplaced folio to the specified destination 2703 * node. Caller is expected to have isolated the folio by calling 2704 * migrate_misplaced_folio_prepare(), which will result in an 2705 * elevated reference count on the folio. This function will un-isolate the 2706 * folio, dereferencing the folio before returning. 2707 */ 2708 int migrate_misplaced_folio(struct folio *folio, int node) 2709 { 2710 pg_data_t *pgdat = NODE_DATA(node); 2711 int nr_remaining; 2712 unsigned int nr_succeeded; 2713 LIST_HEAD(migratepages); 2714 struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio); 2715 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2716 2717 list_add(&folio->lru, &migratepages); 2718 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2719 NULL, node, MIGRATE_ASYNC, 2720 MR_NUMA_MISPLACED, &nr_succeeded); 2721 if (nr_remaining && !list_empty(&migratepages)) 2722 putback_movable_pages(&migratepages); 2723 if (nr_succeeded) { 2724 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2725 count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded); 2726 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 2727 && !node_is_toptier(folio_nid(folio)) 2728 && node_is_toptier(node)) 2729 mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded); 2730 } 2731 mem_cgroup_put(memcg); 2732 BUG_ON(!list_empty(&migratepages)); 2733 return nr_remaining ? -EAGAIN : 0; 2734 } 2735 #endif /* CONFIG_NUMA_BALANCING */ 2736 #endif /* CONFIG_NUMA */ 2737