xref: /linux/mm/migrate.c (revision 94e48d6aafef23143f92eadd010c505c49487576)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 
53 #include <asm/tlbflush.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct address_space *mapping;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mapping = page_mapping(page);
101 	VM_BUG_ON_PAGE(!mapping, page);
102 
103 	if (!mapping->a_ops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	__SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	struct address_space *mapping;
124 
125 	mapping = page_mapping(page);
126 	mapping->a_ops->putback_page(page);
127 	__ClearPageIsolated(page);
128 }
129 
130 /*
131  * Put previously isolated pages back onto the appropriate lists
132  * from where they were once taken off for compaction/migration.
133  *
134  * This function shall be used whenever the isolated pageset has been
135  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136  * and isolate_huge_page().
137  */
138 void putback_movable_pages(struct list_head *l)
139 {
140 	struct page *page;
141 	struct page *page2;
142 
143 	list_for_each_entry_safe(page, page2, l, lru) {
144 		if (unlikely(PageHuge(page))) {
145 			putback_active_hugepage(page);
146 			continue;
147 		}
148 		list_del(&page->lru);
149 		/*
150 		 * We isolated non-lru movable page so here we can use
151 		 * __PageMovable because LRU page's mapping cannot have
152 		 * PAGE_MAPPING_MOVABLE.
153 		 */
154 		if (unlikely(__PageMovable(page))) {
155 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 			lock_page(page);
157 			if (PageMovable(page))
158 				putback_movable_page(page);
159 			else
160 				__ClearPageIsolated(page);
161 			unlock_page(page);
162 			put_page(page);
163 		} else {
164 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 					page_is_file_lru(page), -thp_nr_pages(page));
166 			putback_lru_page(page);
167 		}
168 	}
169 }
170 
171 /*
172  * Restore a potential migration pte to a working pte entry
173  */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 				 unsigned long addr, void *old)
176 {
177 	struct page_vma_mapped_walk pvmw = {
178 		.page = old,
179 		.vma = vma,
180 		.address = addr,
181 		.flags = PVMW_SYNC | PVMW_MIGRATION,
182 	};
183 	struct page *new;
184 	pte_t pte;
185 	swp_entry_t entry;
186 
187 	VM_BUG_ON_PAGE(PageTail(page), page);
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		if (PageKsm(page))
190 			new = page;
191 		else
192 			new = page - pvmw.page->index +
193 				linear_page_index(vma, pvmw.address);
194 
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 		/* PMD-mapped THP migration entry */
197 		if (!pvmw.pte) {
198 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 			remove_migration_pmd(&pvmw, new);
200 			continue;
201 		}
202 #endif
203 
204 		get_page(new);
205 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 		if (pte_swp_soft_dirty(*pvmw.pte))
207 			pte = pte_mksoft_dirty(pte);
208 
209 		/*
210 		 * Recheck VMA as permissions can change since migration started
211 		 */
212 		entry = pte_to_swp_entry(*pvmw.pte);
213 		if (is_write_migration_entry(entry))
214 			pte = maybe_mkwrite(pte, vma);
215 		else if (pte_swp_uffd_wp(*pvmw.pte))
216 			pte = pte_mkuffd_wp(pte);
217 
218 		if (unlikely(is_device_private_page(new))) {
219 			entry = make_device_private_entry(new, pte_write(pte));
220 			pte = swp_entry_to_pte(entry);
221 			if (pte_swp_soft_dirty(*pvmw.pte))
222 				pte = pte_swp_mksoft_dirty(pte);
223 			if (pte_swp_uffd_wp(*pvmw.pte))
224 				pte = pte_swp_mkuffd_wp(pte);
225 		}
226 
227 #ifdef CONFIG_HUGETLB_PAGE
228 		if (PageHuge(new)) {
229 			pte = pte_mkhuge(pte);
230 			pte = arch_make_huge_pte(pte, vma, new, 0);
231 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
232 			if (PageAnon(new))
233 				hugepage_add_anon_rmap(new, vma, pvmw.address);
234 			else
235 				page_dup_rmap(new, true);
236 		} else
237 #endif
238 		{
239 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240 
241 			if (PageAnon(new))
242 				page_add_anon_rmap(new, vma, pvmw.address, false);
243 			else
244 				page_add_file_rmap(new, false);
245 		}
246 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247 			mlock_vma_page(new);
248 
249 		if (PageTransHuge(page) && PageMlocked(page))
250 			clear_page_mlock(page);
251 
252 		/* No need to invalidate - it was non-present before */
253 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
254 	}
255 
256 	return true;
257 }
258 
259 /*
260  * Get rid of all migration entries and replace them by
261  * references to the indicated page.
262  */
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
264 {
265 	struct rmap_walk_control rwc = {
266 		.rmap_one = remove_migration_pte,
267 		.arg = old,
268 	};
269 
270 	if (locked)
271 		rmap_walk_locked(new, &rwc);
272 	else
273 		rmap_walk(new, &rwc);
274 }
275 
276 /*
277  * Something used the pte of a page under migration. We need to
278  * get to the page and wait until migration is finished.
279  * When we return from this function the fault will be retried.
280  */
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282 				spinlock_t *ptl)
283 {
284 	pte_t pte;
285 	swp_entry_t entry;
286 	struct page *page;
287 
288 	spin_lock(ptl);
289 	pte = *ptep;
290 	if (!is_swap_pte(pte))
291 		goto out;
292 
293 	entry = pte_to_swp_entry(pte);
294 	if (!is_migration_entry(entry))
295 		goto out;
296 
297 	page = migration_entry_to_page(entry);
298 	page = compound_head(page);
299 
300 	/*
301 	 * Once page cache replacement of page migration started, page_count
302 	 * is zero; but we must not call put_and_wait_on_page_locked() without
303 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
304 	 */
305 	if (!get_page_unless_zero(page))
306 		goto out;
307 	pte_unmap_unlock(ptep, ptl);
308 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
309 	return;
310 out:
311 	pte_unmap_unlock(ptep, ptl);
312 }
313 
314 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
315 				unsigned long address)
316 {
317 	spinlock_t *ptl = pte_lockptr(mm, pmd);
318 	pte_t *ptep = pte_offset_map(pmd, address);
319 	__migration_entry_wait(mm, ptep, ptl);
320 }
321 
322 void migration_entry_wait_huge(struct vm_area_struct *vma,
323 		struct mm_struct *mm, pte_t *pte)
324 {
325 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
326 	__migration_entry_wait(mm, pte, ptl);
327 }
328 
329 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
330 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
331 {
332 	spinlock_t *ptl;
333 	struct page *page;
334 
335 	ptl = pmd_lock(mm, pmd);
336 	if (!is_pmd_migration_entry(*pmd))
337 		goto unlock;
338 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
339 	if (!get_page_unless_zero(page))
340 		goto unlock;
341 	spin_unlock(ptl);
342 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
343 	return;
344 unlock:
345 	spin_unlock(ptl);
346 }
347 #endif
348 
349 static int expected_page_refs(struct address_space *mapping, struct page *page)
350 {
351 	int expected_count = 1;
352 
353 	/*
354 	 * Device private pages have an extra refcount as they are
355 	 * ZONE_DEVICE pages.
356 	 */
357 	expected_count += is_device_private_page(page);
358 	if (mapping)
359 		expected_count += thp_nr_pages(page) + page_has_private(page);
360 
361 	return expected_count;
362 }
363 
364 /*
365  * Replace the page in the mapping.
366  *
367  * The number of remaining references must be:
368  * 1 for anonymous pages without a mapping
369  * 2 for pages with a mapping
370  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
371  */
372 int migrate_page_move_mapping(struct address_space *mapping,
373 		struct page *newpage, struct page *page, int extra_count)
374 {
375 	XA_STATE(xas, &mapping->i_pages, page_index(page));
376 	struct zone *oldzone, *newzone;
377 	int dirty;
378 	int expected_count = expected_page_refs(mapping, page) + extra_count;
379 	int nr = thp_nr_pages(page);
380 
381 	if (!mapping) {
382 		/* Anonymous page without mapping */
383 		if (page_count(page) != expected_count)
384 			return -EAGAIN;
385 
386 		/* No turning back from here */
387 		newpage->index = page->index;
388 		newpage->mapping = page->mapping;
389 		if (PageSwapBacked(page))
390 			__SetPageSwapBacked(newpage);
391 
392 		return MIGRATEPAGE_SUCCESS;
393 	}
394 
395 	oldzone = page_zone(page);
396 	newzone = page_zone(newpage);
397 
398 	xas_lock_irq(&xas);
399 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
400 		xas_unlock_irq(&xas);
401 		return -EAGAIN;
402 	}
403 
404 	if (!page_ref_freeze(page, expected_count)) {
405 		xas_unlock_irq(&xas);
406 		return -EAGAIN;
407 	}
408 
409 	/*
410 	 * Now we know that no one else is looking at the page:
411 	 * no turning back from here.
412 	 */
413 	newpage->index = page->index;
414 	newpage->mapping = page->mapping;
415 	page_ref_add(newpage, nr); /* add cache reference */
416 	if (PageSwapBacked(page)) {
417 		__SetPageSwapBacked(newpage);
418 		if (PageSwapCache(page)) {
419 			SetPageSwapCache(newpage);
420 			set_page_private(newpage, page_private(page));
421 		}
422 	} else {
423 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
424 	}
425 
426 	/* Move dirty while page refs frozen and newpage not yet exposed */
427 	dirty = PageDirty(page);
428 	if (dirty) {
429 		ClearPageDirty(page);
430 		SetPageDirty(newpage);
431 	}
432 
433 	xas_store(&xas, newpage);
434 	if (PageTransHuge(page)) {
435 		int i;
436 
437 		for (i = 1; i < nr; i++) {
438 			xas_next(&xas);
439 			xas_store(&xas, newpage);
440 		}
441 	}
442 
443 	/*
444 	 * Drop cache reference from old page by unfreezing
445 	 * to one less reference.
446 	 * We know this isn't the last reference.
447 	 */
448 	page_ref_unfreeze(page, expected_count - nr);
449 
450 	xas_unlock(&xas);
451 	/* Leave irq disabled to prevent preemption while updating stats */
452 
453 	/*
454 	 * If moved to a different zone then also account
455 	 * the page for that zone. Other VM counters will be
456 	 * taken care of when we establish references to the
457 	 * new page and drop references to the old page.
458 	 *
459 	 * Note that anonymous pages are accounted for
460 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
461 	 * are mapped to swap space.
462 	 */
463 	if (newzone != oldzone) {
464 		struct lruvec *old_lruvec, *new_lruvec;
465 		struct mem_cgroup *memcg;
466 
467 		memcg = page_memcg(page);
468 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
469 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
470 
471 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
472 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
473 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
474 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
475 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
476 		}
477 #ifdef CONFIG_SWAP
478 		if (PageSwapCache(page)) {
479 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
480 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
481 		}
482 #endif
483 		if (dirty && mapping_can_writeback(mapping)) {
484 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
485 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
486 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
487 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
488 		}
489 	}
490 	local_irq_enable();
491 
492 	return MIGRATEPAGE_SUCCESS;
493 }
494 EXPORT_SYMBOL(migrate_page_move_mapping);
495 
496 /*
497  * The expected number of remaining references is the same as that
498  * of migrate_page_move_mapping().
499  */
500 int migrate_huge_page_move_mapping(struct address_space *mapping,
501 				   struct page *newpage, struct page *page)
502 {
503 	XA_STATE(xas, &mapping->i_pages, page_index(page));
504 	int expected_count;
505 
506 	xas_lock_irq(&xas);
507 	expected_count = 2 + page_has_private(page);
508 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
509 		xas_unlock_irq(&xas);
510 		return -EAGAIN;
511 	}
512 
513 	if (!page_ref_freeze(page, expected_count)) {
514 		xas_unlock_irq(&xas);
515 		return -EAGAIN;
516 	}
517 
518 	newpage->index = page->index;
519 	newpage->mapping = page->mapping;
520 
521 	get_page(newpage);
522 
523 	xas_store(&xas, newpage);
524 
525 	page_ref_unfreeze(page, expected_count - 1);
526 
527 	xas_unlock_irq(&xas);
528 
529 	return MIGRATEPAGE_SUCCESS;
530 }
531 
532 /*
533  * Gigantic pages are so large that we do not guarantee that page++ pointer
534  * arithmetic will work across the entire page.  We need something more
535  * specialized.
536  */
537 static void __copy_gigantic_page(struct page *dst, struct page *src,
538 				int nr_pages)
539 {
540 	int i;
541 	struct page *dst_base = dst;
542 	struct page *src_base = src;
543 
544 	for (i = 0; i < nr_pages; ) {
545 		cond_resched();
546 		copy_highpage(dst, src);
547 
548 		i++;
549 		dst = mem_map_next(dst, dst_base, i);
550 		src = mem_map_next(src, src_base, i);
551 	}
552 }
553 
554 static void copy_huge_page(struct page *dst, struct page *src)
555 {
556 	int i;
557 	int nr_pages;
558 
559 	if (PageHuge(src)) {
560 		/* hugetlbfs page */
561 		struct hstate *h = page_hstate(src);
562 		nr_pages = pages_per_huge_page(h);
563 
564 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
565 			__copy_gigantic_page(dst, src, nr_pages);
566 			return;
567 		}
568 	} else {
569 		/* thp page */
570 		BUG_ON(!PageTransHuge(src));
571 		nr_pages = thp_nr_pages(src);
572 	}
573 
574 	for (i = 0; i < nr_pages; i++) {
575 		cond_resched();
576 		copy_highpage(dst + i, src + i);
577 	}
578 }
579 
580 /*
581  * Copy the page to its new location
582  */
583 void migrate_page_states(struct page *newpage, struct page *page)
584 {
585 	int cpupid;
586 
587 	if (PageError(page))
588 		SetPageError(newpage);
589 	if (PageReferenced(page))
590 		SetPageReferenced(newpage);
591 	if (PageUptodate(page))
592 		SetPageUptodate(newpage);
593 	if (TestClearPageActive(page)) {
594 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
595 		SetPageActive(newpage);
596 	} else if (TestClearPageUnevictable(page))
597 		SetPageUnevictable(newpage);
598 	if (PageWorkingset(page))
599 		SetPageWorkingset(newpage);
600 	if (PageChecked(page))
601 		SetPageChecked(newpage);
602 	if (PageMappedToDisk(page))
603 		SetPageMappedToDisk(newpage);
604 
605 	/* Move dirty on pages not done by migrate_page_move_mapping() */
606 	if (PageDirty(page))
607 		SetPageDirty(newpage);
608 
609 	if (page_is_young(page))
610 		set_page_young(newpage);
611 	if (page_is_idle(page))
612 		set_page_idle(newpage);
613 
614 	/*
615 	 * Copy NUMA information to the new page, to prevent over-eager
616 	 * future migrations of this same page.
617 	 */
618 	cpupid = page_cpupid_xchg_last(page, -1);
619 	page_cpupid_xchg_last(newpage, cpupid);
620 
621 	ksm_migrate_page(newpage, page);
622 	/*
623 	 * Please do not reorder this without considering how mm/ksm.c's
624 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
625 	 */
626 	if (PageSwapCache(page))
627 		ClearPageSwapCache(page);
628 	ClearPagePrivate(page);
629 	set_page_private(page, 0);
630 
631 	/*
632 	 * If any waiters have accumulated on the new page then
633 	 * wake them up.
634 	 */
635 	if (PageWriteback(newpage))
636 		end_page_writeback(newpage);
637 
638 	/*
639 	 * PG_readahead shares the same bit with PG_reclaim.  The above
640 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
641 	 * bit after that.
642 	 */
643 	if (PageReadahead(page))
644 		SetPageReadahead(newpage);
645 
646 	copy_page_owner(page, newpage);
647 
648 	if (!PageHuge(page))
649 		mem_cgroup_migrate(page, newpage);
650 }
651 EXPORT_SYMBOL(migrate_page_states);
652 
653 void migrate_page_copy(struct page *newpage, struct page *page)
654 {
655 	if (PageHuge(page) || PageTransHuge(page))
656 		copy_huge_page(newpage, page);
657 	else
658 		copy_highpage(newpage, page);
659 
660 	migrate_page_states(newpage, page);
661 }
662 EXPORT_SYMBOL(migrate_page_copy);
663 
664 /************************************************************
665  *                    Migration functions
666  ***********************************************************/
667 
668 /*
669  * Common logic to directly migrate a single LRU page suitable for
670  * pages that do not use PagePrivate/PagePrivate2.
671  *
672  * Pages are locked upon entry and exit.
673  */
674 int migrate_page(struct address_space *mapping,
675 		struct page *newpage, struct page *page,
676 		enum migrate_mode mode)
677 {
678 	int rc;
679 
680 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
681 
682 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
683 
684 	if (rc != MIGRATEPAGE_SUCCESS)
685 		return rc;
686 
687 	if (mode != MIGRATE_SYNC_NO_COPY)
688 		migrate_page_copy(newpage, page);
689 	else
690 		migrate_page_states(newpage, page);
691 	return MIGRATEPAGE_SUCCESS;
692 }
693 EXPORT_SYMBOL(migrate_page);
694 
695 #ifdef CONFIG_BLOCK
696 /* Returns true if all buffers are successfully locked */
697 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
698 							enum migrate_mode mode)
699 {
700 	struct buffer_head *bh = head;
701 
702 	/* Simple case, sync compaction */
703 	if (mode != MIGRATE_ASYNC) {
704 		do {
705 			lock_buffer(bh);
706 			bh = bh->b_this_page;
707 
708 		} while (bh != head);
709 
710 		return true;
711 	}
712 
713 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
714 	do {
715 		if (!trylock_buffer(bh)) {
716 			/*
717 			 * We failed to lock the buffer and cannot stall in
718 			 * async migration. Release the taken locks
719 			 */
720 			struct buffer_head *failed_bh = bh;
721 			bh = head;
722 			while (bh != failed_bh) {
723 				unlock_buffer(bh);
724 				bh = bh->b_this_page;
725 			}
726 			return false;
727 		}
728 
729 		bh = bh->b_this_page;
730 	} while (bh != head);
731 	return true;
732 }
733 
734 static int __buffer_migrate_page(struct address_space *mapping,
735 		struct page *newpage, struct page *page, enum migrate_mode mode,
736 		bool check_refs)
737 {
738 	struct buffer_head *bh, *head;
739 	int rc;
740 	int expected_count;
741 
742 	if (!page_has_buffers(page))
743 		return migrate_page(mapping, newpage, page, mode);
744 
745 	/* Check whether page does not have extra refs before we do more work */
746 	expected_count = expected_page_refs(mapping, page);
747 	if (page_count(page) != expected_count)
748 		return -EAGAIN;
749 
750 	head = page_buffers(page);
751 	if (!buffer_migrate_lock_buffers(head, mode))
752 		return -EAGAIN;
753 
754 	if (check_refs) {
755 		bool busy;
756 		bool invalidated = false;
757 
758 recheck_buffers:
759 		busy = false;
760 		spin_lock(&mapping->private_lock);
761 		bh = head;
762 		do {
763 			if (atomic_read(&bh->b_count)) {
764 				busy = true;
765 				break;
766 			}
767 			bh = bh->b_this_page;
768 		} while (bh != head);
769 		if (busy) {
770 			if (invalidated) {
771 				rc = -EAGAIN;
772 				goto unlock_buffers;
773 			}
774 			spin_unlock(&mapping->private_lock);
775 			invalidate_bh_lrus();
776 			invalidated = true;
777 			goto recheck_buffers;
778 		}
779 	}
780 
781 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
782 	if (rc != MIGRATEPAGE_SUCCESS)
783 		goto unlock_buffers;
784 
785 	attach_page_private(newpage, detach_page_private(page));
786 
787 	bh = head;
788 	do {
789 		set_bh_page(bh, newpage, bh_offset(bh));
790 		bh = bh->b_this_page;
791 
792 	} while (bh != head);
793 
794 	if (mode != MIGRATE_SYNC_NO_COPY)
795 		migrate_page_copy(newpage, page);
796 	else
797 		migrate_page_states(newpage, page);
798 
799 	rc = MIGRATEPAGE_SUCCESS;
800 unlock_buffers:
801 	if (check_refs)
802 		spin_unlock(&mapping->private_lock);
803 	bh = head;
804 	do {
805 		unlock_buffer(bh);
806 		bh = bh->b_this_page;
807 
808 	} while (bh != head);
809 
810 	return rc;
811 }
812 
813 /*
814  * Migration function for pages with buffers. This function can only be used
815  * if the underlying filesystem guarantees that no other references to "page"
816  * exist. For example attached buffer heads are accessed only under page lock.
817  */
818 int buffer_migrate_page(struct address_space *mapping,
819 		struct page *newpage, struct page *page, enum migrate_mode mode)
820 {
821 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
822 }
823 EXPORT_SYMBOL(buffer_migrate_page);
824 
825 /*
826  * Same as above except that this variant is more careful and checks that there
827  * are also no buffer head references. This function is the right one for
828  * mappings where buffer heads are directly looked up and referenced (such as
829  * block device mappings).
830  */
831 int buffer_migrate_page_norefs(struct address_space *mapping,
832 		struct page *newpage, struct page *page, enum migrate_mode mode)
833 {
834 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
835 }
836 #endif
837 
838 /*
839  * Writeback a page to clean the dirty state
840  */
841 static int writeout(struct address_space *mapping, struct page *page)
842 {
843 	struct writeback_control wbc = {
844 		.sync_mode = WB_SYNC_NONE,
845 		.nr_to_write = 1,
846 		.range_start = 0,
847 		.range_end = LLONG_MAX,
848 		.for_reclaim = 1
849 	};
850 	int rc;
851 
852 	if (!mapping->a_ops->writepage)
853 		/* No write method for the address space */
854 		return -EINVAL;
855 
856 	if (!clear_page_dirty_for_io(page))
857 		/* Someone else already triggered a write */
858 		return -EAGAIN;
859 
860 	/*
861 	 * A dirty page may imply that the underlying filesystem has
862 	 * the page on some queue. So the page must be clean for
863 	 * migration. Writeout may mean we loose the lock and the
864 	 * page state is no longer what we checked for earlier.
865 	 * At this point we know that the migration attempt cannot
866 	 * be successful.
867 	 */
868 	remove_migration_ptes(page, page, false);
869 
870 	rc = mapping->a_ops->writepage(page, &wbc);
871 
872 	if (rc != AOP_WRITEPAGE_ACTIVATE)
873 		/* unlocked. Relock */
874 		lock_page(page);
875 
876 	return (rc < 0) ? -EIO : -EAGAIN;
877 }
878 
879 /*
880  * Default handling if a filesystem does not provide a migration function.
881  */
882 static int fallback_migrate_page(struct address_space *mapping,
883 	struct page *newpage, struct page *page, enum migrate_mode mode)
884 {
885 	if (PageDirty(page)) {
886 		/* Only writeback pages in full synchronous migration */
887 		switch (mode) {
888 		case MIGRATE_SYNC:
889 		case MIGRATE_SYNC_NO_COPY:
890 			break;
891 		default:
892 			return -EBUSY;
893 		}
894 		return writeout(mapping, page);
895 	}
896 
897 	/*
898 	 * Buffers may be managed in a filesystem specific way.
899 	 * We must have no buffers or drop them.
900 	 */
901 	if (page_has_private(page) &&
902 	    !try_to_release_page(page, GFP_KERNEL))
903 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
904 
905 	return migrate_page(mapping, newpage, page, mode);
906 }
907 
908 /*
909  * Move a page to a newly allocated page
910  * The page is locked and all ptes have been successfully removed.
911  *
912  * The new page will have replaced the old page if this function
913  * is successful.
914  *
915  * Return value:
916  *   < 0 - error code
917  *  MIGRATEPAGE_SUCCESS - success
918  */
919 static int move_to_new_page(struct page *newpage, struct page *page,
920 				enum migrate_mode mode)
921 {
922 	struct address_space *mapping;
923 	int rc = -EAGAIN;
924 	bool is_lru = !__PageMovable(page);
925 
926 	VM_BUG_ON_PAGE(!PageLocked(page), page);
927 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
928 
929 	mapping = page_mapping(page);
930 
931 	if (likely(is_lru)) {
932 		if (!mapping)
933 			rc = migrate_page(mapping, newpage, page, mode);
934 		else if (mapping->a_ops->migratepage)
935 			/*
936 			 * Most pages have a mapping and most filesystems
937 			 * provide a migratepage callback. Anonymous pages
938 			 * are part of swap space which also has its own
939 			 * migratepage callback. This is the most common path
940 			 * for page migration.
941 			 */
942 			rc = mapping->a_ops->migratepage(mapping, newpage,
943 							page, mode);
944 		else
945 			rc = fallback_migrate_page(mapping, newpage,
946 							page, mode);
947 	} else {
948 		/*
949 		 * In case of non-lru page, it could be released after
950 		 * isolation step. In that case, we shouldn't try migration.
951 		 */
952 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
953 		if (!PageMovable(page)) {
954 			rc = MIGRATEPAGE_SUCCESS;
955 			__ClearPageIsolated(page);
956 			goto out;
957 		}
958 
959 		rc = mapping->a_ops->migratepage(mapping, newpage,
960 						page, mode);
961 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
962 			!PageIsolated(page));
963 	}
964 
965 	/*
966 	 * When successful, old pagecache page->mapping must be cleared before
967 	 * page is freed; but stats require that PageAnon be left as PageAnon.
968 	 */
969 	if (rc == MIGRATEPAGE_SUCCESS) {
970 		if (__PageMovable(page)) {
971 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
972 
973 			/*
974 			 * We clear PG_movable under page_lock so any compactor
975 			 * cannot try to migrate this page.
976 			 */
977 			__ClearPageIsolated(page);
978 		}
979 
980 		/*
981 		 * Anonymous and movable page->mapping will be cleared by
982 		 * free_pages_prepare so don't reset it here for keeping
983 		 * the type to work PageAnon, for example.
984 		 */
985 		if (!PageMappingFlags(page))
986 			page->mapping = NULL;
987 
988 		if (likely(!is_zone_device_page(newpage)))
989 			flush_dcache_page(newpage);
990 
991 	}
992 out:
993 	return rc;
994 }
995 
996 static int __unmap_and_move(struct page *page, struct page *newpage,
997 				int force, enum migrate_mode mode)
998 {
999 	int rc = -EAGAIN;
1000 	int page_was_mapped = 0;
1001 	struct anon_vma *anon_vma = NULL;
1002 	bool is_lru = !__PageMovable(page);
1003 
1004 	if (!trylock_page(page)) {
1005 		if (!force || mode == MIGRATE_ASYNC)
1006 			goto out;
1007 
1008 		/*
1009 		 * It's not safe for direct compaction to call lock_page.
1010 		 * For example, during page readahead pages are added locked
1011 		 * to the LRU. Later, when the IO completes the pages are
1012 		 * marked uptodate and unlocked. However, the queueing
1013 		 * could be merging multiple pages for one bio (e.g.
1014 		 * mpage_readahead). If an allocation happens for the
1015 		 * second or third page, the process can end up locking
1016 		 * the same page twice and deadlocking. Rather than
1017 		 * trying to be clever about what pages can be locked,
1018 		 * avoid the use of lock_page for direct compaction
1019 		 * altogether.
1020 		 */
1021 		if (current->flags & PF_MEMALLOC)
1022 			goto out;
1023 
1024 		lock_page(page);
1025 	}
1026 
1027 	if (PageWriteback(page)) {
1028 		/*
1029 		 * Only in the case of a full synchronous migration is it
1030 		 * necessary to wait for PageWriteback. In the async case,
1031 		 * the retry loop is too short and in the sync-light case,
1032 		 * the overhead of stalling is too much
1033 		 */
1034 		switch (mode) {
1035 		case MIGRATE_SYNC:
1036 		case MIGRATE_SYNC_NO_COPY:
1037 			break;
1038 		default:
1039 			rc = -EBUSY;
1040 			goto out_unlock;
1041 		}
1042 		if (!force)
1043 			goto out_unlock;
1044 		wait_on_page_writeback(page);
1045 	}
1046 
1047 	/*
1048 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1049 	 * we cannot notice that anon_vma is freed while we migrates a page.
1050 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1051 	 * of migration. File cache pages are no problem because of page_lock()
1052 	 * File Caches may use write_page() or lock_page() in migration, then,
1053 	 * just care Anon page here.
1054 	 *
1055 	 * Only page_get_anon_vma() understands the subtleties of
1056 	 * getting a hold on an anon_vma from outside one of its mms.
1057 	 * But if we cannot get anon_vma, then we won't need it anyway,
1058 	 * because that implies that the anon page is no longer mapped
1059 	 * (and cannot be remapped so long as we hold the page lock).
1060 	 */
1061 	if (PageAnon(page) && !PageKsm(page))
1062 		anon_vma = page_get_anon_vma(page);
1063 
1064 	/*
1065 	 * Block others from accessing the new page when we get around to
1066 	 * establishing additional references. We are usually the only one
1067 	 * holding a reference to newpage at this point. We used to have a BUG
1068 	 * here if trylock_page(newpage) fails, but would like to allow for
1069 	 * cases where there might be a race with the previous use of newpage.
1070 	 * This is much like races on refcount of oldpage: just don't BUG().
1071 	 */
1072 	if (unlikely(!trylock_page(newpage)))
1073 		goto out_unlock;
1074 
1075 	if (unlikely(!is_lru)) {
1076 		rc = move_to_new_page(newpage, page, mode);
1077 		goto out_unlock_both;
1078 	}
1079 
1080 	/*
1081 	 * Corner case handling:
1082 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1083 	 * and treated as swapcache but it has no rmap yet.
1084 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1085 	 * trigger a BUG.  So handle it here.
1086 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1087 	 * fs-private metadata. The page can be picked up due to memory
1088 	 * offlining.  Everywhere else except page reclaim, the page is
1089 	 * invisible to the vm, so the page can not be migrated.  So try to
1090 	 * free the metadata, so the page can be freed.
1091 	 */
1092 	if (!page->mapping) {
1093 		VM_BUG_ON_PAGE(PageAnon(page), page);
1094 		if (page_has_private(page)) {
1095 			try_to_free_buffers(page);
1096 			goto out_unlock_both;
1097 		}
1098 	} else if (page_mapped(page)) {
1099 		/* Establish migration ptes */
1100 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1101 				page);
1102 		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1103 		page_was_mapped = 1;
1104 	}
1105 
1106 	if (!page_mapped(page))
1107 		rc = move_to_new_page(newpage, page, mode);
1108 
1109 	if (page_was_mapped)
1110 		remove_migration_ptes(page,
1111 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1112 
1113 out_unlock_both:
1114 	unlock_page(newpage);
1115 out_unlock:
1116 	/* Drop an anon_vma reference if we took one */
1117 	if (anon_vma)
1118 		put_anon_vma(anon_vma);
1119 	unlock_page(page);
1120 out:
1121 	/*
1122 	 * If migration is successful, decrease refcount of the newpage
1123 	 * which will not free the page because new page owner increased
1124 	 * refcounter. As well, if it is LRU page, add the page to LRU
1125 	 * list in here. Use the old state of the isolated source page to
1126 	 * determine if we migrated a LRU page. newpage was already unlocked
1127 	 * and possibly modified by its owner - don't rely on the page
1128 	 * state.
1129 	 */
1130 	if (rc == MIGRATEPAGE_SUCCESS) {
1131 		if (unlikely(!is_lru))
1132 			put_page(newpage);
1133 		else
1134 			putback_lru_page(newpage);
1135 	}
1136 
1137 	return rc;
1138 }
1139 
1140 /*
1141  * Obtain the lock on page, remove all ptes and migrate the page
1142  * to the newly allocated page in newpage.
1143  */
1144 static int unmap_and_move(new_page_t get_new_page,
1145 				   free_page_t put_new_page,
1146 				   unsigned long private, struct page *page,
1147 				   int force, enum migrate_mode mode,
1148 				   enum migrate_reason reason,
1149 				   struct list_head *ret)
1150 {
1151 	int rc = MIGRATEPAGE_SUCCESS;
1152 	struct page *newpage = NULL;
1153 
1154 	if (!thp_migration_supported() && PageTransHuge(page))
1155 		return -ENOSYS;
1156 
1157 	if (page_count(page) == 1) {
1158 		/* page was freed from under us. So we are done. */
1159 		ClearPageActive(page);
1160 		ClearPageUnevictable(page);
1161 		if (unlikely(__PageMovable(page))) {
1162 			lock_page(page);
1163 			if (!PageMovable(page))
1164 				__ClearPageIsolated(page);
1165 			unlock_page(page);
1166 		}
1167 		goto out;
1168 	}
1169 
1170 	newpage = get_new_page(page, private);
1171 	if (!newpage)
1172 		return -ENOMEM;
1173 
1174 	rc = __unmap_and_move(page, newpage, force, mode);
1175 	if (rc == MIGRATEPAGE_SUCCESS)
1176 		set_page_owner_migrate_reason(newpage, reason);
1177 
1178 out:
1179 	if (rc != -EAGAIN) {
1180 		/*
1181 		 * A page that has been migrated has all references
1182 		 * removed and will be freed. A page that has not been
1183 		 * migrated will have kept its references and be restored.
1184 		 */
1185 		list_del(&page->lru);
1186 	}
1187 
1188 	/*
1189 	 * If migration is successful, releases reference grabbed during
1190 	 * isolation. Otherwise, restore the page to right list unless
1191 	 * we want to retry.
1192 	 */
1193 	if (rc == MIGRATEPAGE_SUCCESS) {
1194 		/*
1195 		 * Compaction can migrate also non-LRU pages which are
1196 		 * not accounted to NR_ISOLATED_*. They can be recognized
1197 		 * as __PageMovable
1198 		 */
1199 		if (likely(!__PageMovable(page)))
1200 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1201 					page_is_file_lru(page), -thp_nr_pages(page));
1202 
1203 		if (reason != MR_MEMORY_FAILURE)
1204 			/*
1205 			 * We release the page in page_handle_poison.
1206 			 */
1207 			put_page(page);
1208 	} else {
1209 		if (rc != -EAGAIN)
1210 			list_add_tail(&page->lru, ret);
1211 
1212 		if (put_new_page)
1213 			put_new_page(newpage, private);
1214 		else
1215 			put_page(newpage);
1216 	}
1217 
1218 	return rc;
1219 }
1220 
1221 /*
1222  * Counterpart of unmap_and_move_page() for hugepage migration.
1223  *
1224  * This function doesn't wait the completion of hugepage I/O
1225  * because there is no race between I/O and migration for hugepage.
1226  * Note that currently hugepage I/O occurs only in direct I/O
1227  * where no lock is held and PG_writeback is irrelevant,
1228  * and writeback status of all subpages are counted in the reference
1229  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1230  * under direct I/O, the reference of the head page is 512 and a bit more.)
1231  * This means that when we try to migrate hugepage whose subpages are
1232  * doing direct I/O, some references remain after try_to_unmap() and
1233  * hugepage migration fails without data corruption.
1234  *
1235  * There is also no race when direct I/O is issued on the page under migration,
1236  * because then pte is replaced with migration swap entry and direct I/O code
1237  * will wait in the page fault for migration to complete.
1238  */
1239 static int unmap_and_move_huge_page(new_page_t get_new_page,
1240 				free_page_t put_new_page, unsigned long private,
1241 				struct page *hpage, int force,
1242 				enum migrate_mode mode, int reason,
1243 				struct list_head *ret)
1244 {
1245 	int rc = -EAGAIN;
1246 	int page_was_mapped = 0;
1247 	struct page *new_hpage;
1248 	struct anon_vma *anon_vma = NULL;
1249 	struct address_space *mapping = NULL;
1250 
1251 	/*
1252 	 * Migratability of hugepages depends on architectures and their size.
1253 	 * This check is necessary because some callers of hugepage migration
1254 	 * like soft offline and memory hotremove don't walk through page
1255 	 * tables or check whether the hugepage is pmd-based or not before
1256 	 * kicking migration.
1257 	 */
1258 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1259 		list_move_tail(&hpage->lru, ret);
1260 		return -ENOSYS;
1261 	}
1262 
1263 	if (page_count(hpage) == 1) {
1264 		/* page was freed from under us. So we are done. */
1265 		putback_active_hugepage(hpage);
1266 		return MIGRATEPAGE_SUCCESS;
1267 	}
1268 
1269 	new_hpage = get_new_page(hpage, private);
1270 	if (!new_hpage)
1271 		return -ENOMEM;
1272 
1273 	if (!trylock_page(hpage)) {
1274 		if (!force)
1275 			goto out;
1276 		switch (mode) {
1277 		case MIGRATE_SYNC:
1278 		case MIGRATE_SYNC_NO_COPY:
1279 			break;
1280 		default:
1281 			goto out;
1282 		}
1283 		lock_page(hpage);
1284 	}
1285 
1286 	/*
1287 	 * Check for pages which are in the process of being freed.  Without
1288 	 * page_mapping() set, hugetlbfs specific move page routine will not
1289 	 * be called and we could leak usage counts for subpools.
1290 	 */
1291 	if (page_private(hpage) && !page_mapping(hpage)) {
1292 		rc = -EBUSY;
1293 		goto out_unlock;
1294 	}
1295 
1296 	if (PageAnon(hpage))
1297 		anon_vma = page_get_anon_vma(hpage);
1298 
1299 	if (unlikely(!trylock_page(new_hpage)))
1300 		goto put_anon;
1301 
1302 	if (page_mapped(hpage)) {
1303 		bool mapping_locked = false;
1304 		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1305 
1306 		if (!PageAnon(hpage)) {
1307 			/*
1308 			 * In shared mappings, try_to_unmap could potentially
1309 			 * call huge_pmd_unshare.  Because of this, take
1310 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1311 			 * to let lower levels know we have taken the lock.
1312 			 */
1313 			mapping = hugetlb_page_mapping_lock_write(hpage);
1314 			if (unlikely(!mapping))
1315 				goto unlock_put_anon;
1316 
1317 			mapping_locked = true;
1318 			ttu |= TTU_RMAP_LOCKED;
1319 		}
1320 
1321 		try_to_unmap(hpage, ttu);
1322 		page_was_mapped = 1;
1323 
1324 		if (mapping_locked)
1325 			i_mmap_unlock_write(mapping);
1326 	}
1327 
1328 	if (!page_mapped(hpage))
1329 		rc = move_to_new_page(new_hpage, hpage, mode);
1330 
1331 	if (page_was_mapped)
1332 		remove_migration_ptes(hpage,
1333 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1334 
1335 unlock_put_anon:
1336 	unlock_page(new_hpage);
1337 
1338 put_anon:
1339 	if (anon_vma)
1340 		put_anon_vma(anon_vma);
1341 
1342 	if (rc == MIGRATEPAGE_SUCCESS) {
1343 		move_hugetlb_state(hpage, new_hpage, reason);
1344 		put_new_page = NULL;
1345 	}
1346 
1347 out_unlock:
1348 	unlock_page(hpage);
1349 out:
1350 	if (rc == MIGRATEPAGE_SUCCESS)
1351 		putback_active_hugepage(hpage);
1352 	else if (rc != -EAGAIN)
1353 		list_move_tail(&hpage->lru, ret);
1354 
1355 	/*
1356 	 * If migration was not successful and there's a freeing callback, use
1357 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1358 	 * isolation.
1359 	 */
1360 	if (put_new_page)
1361 		put_new_page(new_hpage, private);
1362 	else
1363 		putback_active_hugepage(new_hpage);
1364 
1365 	return rc;
1366 }
1367 
1368 static inline int try_split_thp(struct page *page, struct page **page2,
1369 				struct list_head *from)
1370 {
1371 	int rc = 0;
1372 
1373 	lock_page(page);
1374 	rc = split_huge_page_to_list(page, from);
1375 	unlock_page(page);
1376 	if (!rc)
1377 		list_safe_reset_next(page, *page2, lru);
1378 
1379 	return rc;
1380 }
1381 
1382 /*
1383  * migrate_pages - migrate the pages specified in a list, to the free pages
1384  *		   supplied as the target for the page migration
1385  *
1386  * @from:		The list of pages to be migrated.
1387  * @get_new_page:	The function used to allocate free pages to be used
1388  *			as the target of the page migration.
1389  * @put_new_page:	The function used to free target pages if migration
1390  *			fails, or NULL if no special handling is necessary.
1391  * @private:		Private data to be passed on to get_new_page()
1392  * @mode:		The migration mode that specifies the constraints for
1393  *			page migration, if any.
1394  * @reason:		The reason for page migration.
1395  *
1396  * The function returns after 10 attempts or if no pages are movable any more
1397  * because the list has become empty or no retryable pages exist any more.
1398  * It is caller's responsibility to call putback_movable_pages() to return pages
1399  * to the LRU or free list only if ret != 0.
1400  *
1401  * Returns the number of pages that were not migrated, or an error code.
1402  */
1403 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1404 		free_page_t put_new_page, unsigned long private,
1405 		enum migrate_mode mode, int reason)
1406 {
1407 	int retry = 1;
1408 	int thp_retry = 1;
1409 	int nr_failed = 0;
1410 	int nr_succeeded = 0;
1411 	int nr_thp_succeeded = 0;
1412 	int nr_thp_failed = 0;
1413 	int nr_thp_split = 0;
1414 	int pass = 0;
1415 	bool is_thp = false;
1416 	struct page *page;
1417 	struct page *page2;
1418 	int swapwrite = current->flags & PF_SWAPWRITE;
1419 	int rc, nr_subpages;
1420 	LIST_HEAD(ret_pages);
1421 
1422 	trace_mm_migrate_pages_start(mode, reason);
1423 
1424 	if (!swapwrite)
1425 		current->flags |= PF_SWAPWRITE;
1426 
1427 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1428 		retry = 0;
1429 		thp_retry = 0;
1430 
1431 		list_for_each_entry_safe(page, page2, from, lru) {
1432 retry:
1433 			/*
1434 			 * THP statistics is based on the source huge page.
1435 			 * Capture required information that might get lost
1436 			 * during migration.
1437 			 */
1438 			is_thp = PageTransHuge(page) && !PageHuge(page);
1439 			nr_subpages = thp_nr_pages(page);
1440 			cond_resched();
1441 
1442 			if (PageHuge(page))
1443 				rc = unmap_and_move_huge_page(get_new_page,
1444 						put_new_page, private, page,
1445 						pass > 2, mode, reason,
1446 						&ret_pages);
1447 			else
1448 				rc = unmap_and_move(get_new_page, put_new_page,
1449 						private, page, pass > 2, mode,
1450 						reason, &ret_pages);
1451 			/*
1452 			 * The rules are:
1453 			 *	Success: non hugetlb page will be freed, hugetlb
1454 			 *		 page will be put back
1455 			 *	-EAGAIN: stay on the from list
1456 			 *	-ENOMEM: stay on the from list
1457 			 *	Other errno: put on ret_pages list then splice to
1458 			 *		     from list
1459 			 */
1460 			switch(rc) {
1461 			/*
1462 			 * THP migration might be unsupported or the
1463 			 * allocation could've failed so we should
1464 			 * retry on the same page with the THP split
1465 			 * to base pages.
1466 			 *
1467 			 * Head page is retried immediately and tail
1468 			 * pages are added to the tail of the list so
1469 			 * we encounter them after the rest of the list
1470 			 * is processed.
1471 			 */
1472 			case -ENOSYS:
1473 				/* THP migration is unsupported */
1474 				if (is_thp) {
1475 					if (!try_split_thp(page, &page2, from)) {
1476 						nr_thp_split++;
1477 						goto retry;
1478 					}
1479 
1480 					nr_thp_failed++;
1481 					nr_failed += nr_subpages;
1482 					break;
1483 				}
1484 
1485 				/* Hugetlb migration is unsupported */
1486 				nr_failed++;
1487 				break;
1488 			case -ENOMEM:
1489 				/*
1490 				 * When memory is low, don't bother to try to migrate
1491 				 * other pages, just exit.
1492 				 */
1493 				if (is_thp) {
1494 					if (!try_split_thp(page, &page2, from)) {
1495 						nr_thp_split++;
1496 						goto retry;
1497 					}
1498 
1499 					nr_thp_failed++;
1500 					nr_failed += nr_subpages;
1501 					goto out;
1502 				}
1503 				nr_failed++;
1504 				goto out;
1505 			case -EAGAIN:
1506 				if (is_thp) {
1507 					thp_retry++;
1508 					break;
1509 				}
1510 				retry++;
1511 				break;
1512 			case MIGRATEPAGE_SUCCESS:
1513 				if (is_thp) {
1514 					nr_thp_succeeded++;
1515 					nr_succeeded += nr_subpages;
1516 					break;
1517 				}
1518 				nr_succeeded++;
1519 				break;
1520 			default:
1521 				/*
1522 				 * Permanent failure (-EBUSY, etc.):
1523 				 * unlike -EAGAIN case, the failed page is
1524 				 * removed from migration page list and not
1525 				 * retried in the next outer loop.
1526 				 */
1527 				if (is_thp) {
1528 					nr_thp_failed++;
1529 					nr_failed += nr_subpages;
1530 					break;
1531 				}
1532 				nr_failed++;
1533 				break;
1534 			}
1535 		}
1536 	}
1537 	nr_failed += retry + thp_retry;
1538 	nr_thp_failed += thp_retry;
1539 	rc = nr_failed;
1540 out:
1541 	/*
1542 	 * Put the permanent failure page back to migration list, they
1543 	 * will be put back to the right list by the caller.
1544 	 */
1545 	list_splice(&ret_pages, from);
1546 
1547 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1548 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1549 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1550 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1551 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1552 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1553 			       nr_thp_failed, nr_thp_split, mode, reason);
1554 
1555 	if (!swapwrite)
1556 		current->flags &= ~PF_SWAPWRITE;
1557 
1558 	return rc;
1559 }
1560 
1561 struct page *alloc_migration_target(struct page *page, unsigned long private)
1562 {
1563 	struct migration_target_control *mtc;
1564 	gfp_t gfp_mask;
1565 	unsigned int order = 0;
1566 	struct page *new_page = NULL;
1567 	int nid;
1568 	int zidx;
1569 
1570 	mtc = (struct migration_target_control *)private;
1571 	gfp_mask = mtc->gfp_mask;
1572 	nid = mtc->nid;
1573 	if (nid == NUMA_NO_NODE)
1574 		nid = page_to_nid(page);
1575 
1576 	if (PageHuge(page)) {
1577 		struct hstate *h = page_hstate(compound_head(page));
1578 
1579 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1580 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1581 	}
1582 
1583 	if (PageTransHuge(page)) {
1584 		/*
1585 		 * clear __GFP_RECLAIM to make the migration callback
1586 		 * consistent with regular THP allocations.
1587 		 */
1588 		gfp_mask &= ~__GFP_RECLAIM;
1589 		gfp_mask |= GFP_TRANSHUGE;
1590 		order = HPAGE_PMD_ORDER;
1591 	}
1592 	zidx = zone_idx(page_zone(page));
1593 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1594 		gfp_mask |= __GFP_HIGHMEM;
1595 
1596 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1597 
1598 	if (new_page && PageTransHuge(new_page))
1599 		prep_transhuge_page(new_page);
1600 
1601 	return new_page;
1602 }
1603 
1604 #ifdef CONFIG_NUMA
1605 
1606 static int store_status(int __user *status, int start, int value, int nr)
1607 {
1608 	while (nr-- > 0) {
1609 		if (put_user(value, status + start))
1610 			return -EFAULT;
1611 		start++;
1612 	}
1613 
1614 	return 0;
1615 }
1616 
1617 static int do_move_pages_to_node(struct mm_struct *mm,
1618 		struct list_head *pagelist, int node)
1619 {
1620 	int err;
1621 	struct migration_target_control mtc = {
1622 		.nid = node,
1623 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1624 	};
1625 
1626 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1627 			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1628 	if (err)
1629 		putback_movable_pages(pagelist);
1630 	return err;
1631 }
1632 
1633 /*
1634  * Resolves the given address to a struct page, isolates it from the LRU and
1635  * puts it to the given pagelist.
1636  * Returns:
1637  *     errno - if the page cannot be found/isolated
1638  *     0 - when it doesn't have to be migrated because it is already on the
1639  *         target node
1640  *     1 - when it has been queued
1641  */
1642 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1643 		int node, struct list_head *pagelist, bool migrate_all)
1644 {
1645 	struct vm_area_struct *vma;
1646 	struct page *page;
1647 	unsigned int follflags;
1648 	int err;
1649 
1650 	mmap_read_lock(mm);
1651 	err = -EFAULT;
1652 	vma = find_vma(mm, addr);
1653 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1654 		goto out;
1655 
1656 	/* FOLL_DUMP to ignore special (like zero) pages */
1657 	follflags = FOLL_GET | FOLL_DUMP;
1658 	page = follow_page(vma, addr, follflags);
1659 
1660 	err = PTR_ERR(page);
1661 	if (IS_ERR(page))
1662 		goto out;
1663 
1664 	err = -ENOENT;
1665 	if (!page)
1666 		goto out;
1667 
1668 	err = 0;
1669 	if (page_to_nid(page) == node)
1670 		goto out_putpage;
1671 
1672 	err = -EACCES;
1673 	if (page_mapcount(page) > 1 && !migrate_all)
1674 		goto out_putpage;
1675 
1676 	if (PageHuge(page)) {
1677 		if (PageHead(page)) {
1678 			isolate_huge_page(page, pagelist);
1679 			err = 1;
1680 		}
1681 	} else {
1682 		struct page *head;
1683 
1684 		head = compound_head(page);
1685 		err = isolate_lru_page(head);
1686 		if (err)
1687 			goto out_putpage;
1688 
1689 		err = 1;
1690 		list_add_tail(&head->lru, pagelist);
1691 		mod_node_page_state(page_pgdat(head),
1692 			NR_ISOLATED_ANON + page_is_file_lru(head),
1693 			thp_nr_pages(head));
1694 	}
1695 out_putpage:
1696 	/*
1697 	 * Either remove the duplicate refcount from
1698 	 * isolate_lru_page() or drop the page ref if it was
1699 	 * not isolated.
1700 	 */
1701 	put_page(page);
1702 out:
1703 	mmap_read_unlock(mm);
1704 	return err;
1705 }
1706 
1707 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1708 		struct list_head *pagelist, int __user *status,
1709 		int start, int i, unsigned long nr_pages)
1710 {
1711 	int err;
1712 
1713 	if (list_empty(pagelist))
1714 		return 0;
1715 
1716 	err = do_move_pages_to_node(mm, pagelist, node);
1717 	if (err) {
1718 		/*
1719 		 * Positive err means the number of failed
1720 		 * pages to migrate.  Since we are going to
1721 		 * abort and return the number of non-migrated
1722 		 * pages, so need to include the rest of the
1723 		 * nr_pages that have not been attempted as
1724 		 * well.
1725 		 */
1726 		if (err > 0)
1727 			err += nr_pages - i - 1;
1728 		return err;
1729 	}
1730 	return store_status(status, start, node, i - start);
1731 }
1732 
1733 /*
1734  * Migrate an array of page address onto an array of nodes and fill
1735  * the corresponding array of status.
1736  */
1737 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1738 			 unsigned long nr_pages,
1739 			 const void __user * __user *pages,
1740 			 const int __user *nodes,
1741 			 int __user *status, int flags)
1742 {
1743 	int current_node = NUMA_NO_NODE;
1744 	LIST_HEAD(pagelist);
1745 	int start, i;
1746 	int err = 0, err1;
1747 
1748 	lru_cache_disable();
1749 
1750 	for (i = start = 0; i < nr_pages; i++) {
1751 		const void __user *p;
1752 		unsigned long addr;
1753 		int node;
1754 
1755 		err = -EFAULT;
1756 		if (get_user(p, pages + i))
1757 			goto out_flush;
1758 		if (get_user(node, nodes + i))
1759 			goto out_flush;
1760 		addr = (unsigned long)untagged_addr(p);
1761 
1762 		err = -ENODEV;
1763 		if (node < 0 || node >= MAX_NUMNODES)
1764 			goto out_flush;
1765 		if (!node_state(node, N_MEMORY))
1766 			goto out_flush;
1767 
1768 		err = -EACCES;
1769 		if (!node_isset(node, task_nodes))
1770 			goto out_flush;
1771 
1772 		if (current_node == NUMA_NO_NODE) {
1773 			current_node = node;
1774 			start = i;
1775 		} else if (node != current_node) {
1776 			err = move_pages_and_store_status(mm, current_node,
1777 					&pagelist, status, start, i, nr_pages);
1778 			if (err)
1779 				goto out;
1780 			start = i;
1781 			current_node = node;
1782 		}
1783 
1784 		/*
1785 		 * Errors in the page lookup or isolation are not fatal and we simply
1786 		 * report them via status
1787 		 */
1788 		err = add_page_for_migration(mm, addr, current_node,
1789 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1790 
1791 		if (err > 0) {
1792 			/* The page is successfully queued for migration */
1793 			continue;
1794 		}
1795 
1796 		/*
1797 		 * If the page is already on the target node (!err), store the
1798 		 * node, otherwise, store the err.
1799 		 */
1800 		err = store_status(status, i, err ? : current_node, 1);
1801 		if (err)
1802 			goto out_flush;
1803 
1804 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1805 				status, start, i, nr_pages);
1806 		if (err)
1807 			goto out;
1808 		current_node = NUMA_NO_NODE;
1809 	}
1810 out_flush:
1811 	/* Make sure we do not overwrite the existing error */
1812 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1813 				status, start, i, nr_pages);
1814 	if (err >= 0)
1815 		err = err1;
1816 out:
1817 	lru_cache_enable();
1818 	return err;
1819 }
1820 
1821 /*
1822  * Determine the nodes of an array of pages and store it in an array of status.
1823  */
1824 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1825 				const void __user **pages, int *status)
1826 {
1827 	unsigned long i;
1828 
1829 	mmap_read_lock(mm);
1830 
1831 	for (i = 0; i < nr_pages; i++) {
1832 		unsigned long addr = (unsigned long)(*pages);
1833 		struct vm_area_struct *vma;
1834 		struct page *page;
1835 		int err = -EFAULT;
1836 
1837 		vma = vma_lookup(mm, addr);
1838 		if (!vma)
1839 			goto set_status;
1840 
1841 		/* FOLL_DUMP to ignore special (like zero) pages */
1842 		page = follow_page(vma, addr, FOLL_DUMP);
1843 
1844 		err = PTR_ERR(page);
1845 		if (IS_ERR(page))
1846 			goto set_status;
1847 
1848 		err = page ? page_to_nid(page) : -ENOENT;
1849 set_status:
1850 		*status = err;
1851 
1852 		pages++;
1853 		status++;
1854 	}
1855 
1856 	mmap_read_unlock(mm);
1857 }
1858 
1859 /*
1860  * Determine the nodes of a user array of pages and store it in
1861  * a user array of status.
1862  */
1863 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1864 			 const void __user * __user *pages,
1865 			 int __user *status)
1866 {
1867 #define DO_PAGES_STAT_CHUNK_NR 16
1868 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1869 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1870 
1871 	while (nr_pages) {
1872 		unsigned long chunk_nr;
1873 
1874 		chunk_nr = nr_pages;
1875 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1876 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1877 
1878 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1879 			break;
1880 
1881 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1882 
1883 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1884 			break;
1885 
1886 		pages += chunk_nr;
1887 		status += chunk_nr;
1888 		nr_pages -= chunk_nr;
1889 	}
1890 	return nr_pages ? -EFAULT : 0;
1891 }
1892 
1893 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1894 {
1895 	struct task_struct *task;
1896 	struct mm_struct *mm;
1897 
1898 	/*
1899 	 * There is no need to check if current process has the right to modify
1900 	 * the specified process when they are same.
1901 	 */
1902 	if (!pid) {
1903 		mmget(current->mm);
1904 		*mem_nodes = cpuset_mems_allowed(current);
1905 		return current->mm;
1906 	}
1907 
1908 	/* Find the mm_struct */
1909 	rcu_read_lock();
1910 	task = find_task_by_vpid(pid);
1911 	if (!task) {
1912 		rcu_read_unlock();
1913 		return ERR_PTR(-ESRCH);
1914 	}
1915 	get_task_struct(task);
1916 
1917 	/*
1918 	 * Check if this process has the right to modify the specified
1919 	 * process. Use the regular "ptrace_may_access()" checks.
1920 	 */
1921 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1922 		rcu_read_unlock();
1923 		mm = ERR_PTR(-EPERM);
1924 		goto out;
1925 	}
1926 	rcu_read_unlock();
1927 
1928 	mm = ERR_PTR(security_task_movememory(task));
1929 	if (IS_ERR(mm))
1930 		goto out;
1931 	*mem_nodes = cpuset_mems_allowed(task);
1932 	mm = get_task_mm(task);
1933 out:
1934 	put_task_struct(task);
1935 	if (!mm)
1936 		mm = ERR_PTR(-EINVAL);
1937 	return mm;
1938 }
1939 
1940 /*
1941  * Move a list of pages in the address space of the currently executing
1942  * process.
1943  */
1944 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1945 			     const void __user * __user *pages,
1946 			     const int __user *nodes,
1947 			     int __user *status, int flags)
1948 {
1949 	struct mm_struct *mm;
1950 	int err;
1951 	nodemask_t task_nodes;
1952 
1953 	/* Check flags */
1954 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1955 		return -EINVAL;
1956 
1957 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1958 		return -EPERM;
1959 
1960 	mm = find_mm_struct(pid, &task_nodes);
1961 	if (IS_ERR(mm))
1962 		return PTR_ERR(mm);
1963 
1964 	if (nodes)
1965 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1966 				    nodes, status, flags);
1967 	else
1968 		err = do_pages_stat(mm, nr_pages, pages, status);
1969 
1970 	mmput(mm);
1971 	return err;
1972 }
1973 
1974 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1975 		const void __user * __user *, pages,
1976 		const int __user *, nodes,
1977 		int __user *, status, int, flags)
1978 {
1979 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1980 }
1981 
1982 #ifdef CONFIG_COMPAT
1983 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1984 		       compat_uptr_t __user *, pages32,
1985 		       const int __user *, nodes,
1986 		       int __user *, status,
1987 		       int, flags)
1988 {
1989 	const void __user * __user *pages;
1990 	int i;
1991 
1992 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1993 	for (i = 0; i < nr_pages; i++) {
1994 		compat_uptr_t p;
1995 
1996 		if (get_user(p, pages32 + i) ||
1997 			put_user(compat_ptr(p), pages + i))
1998 			return -EFAULT;
1999 	}
2000 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2001 }
2002 #endif /* CONFIG_COMPAT */
2003 
2004 #ifdef CONFIG_NUMA_BALANCING
2005 /*
2006  * Returns true if this is a safe migration target node for misplaced NUMA
2007  * pages. Currently it only checks the watermarks which crude
2008  */
2009 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2010 				   unsigned long nr_migrate_pages)
2011 {
2012 	int z;
2013 
2014 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2015 		struct zone *zone = pgdat->node_zones + z;
2016 
2017 		if (!populated_zone(zone))
2018 			continue;
2019 
2020 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2021 		if (!zone_watermark_ok(zone, 0,
2022 				       high_wmark_pages(zone) +
2023 				       nr_migrate_pages,
2024 				       ZONE_MOVABLE, 0))
2025 			continue;
2026 		return true;
2027 	}
2028 	return false;
2029 }
2030 
2031 static struct page *alloc_misplaced_dst_page(struct page *page,
2032 					   unsigned long data)
2033 {
2034 	int nid = (int) data;
2035 	struct page *newpage;
2036 
2037 	newpage = __alloc_pages_node(nid,
2038 					 (GFP_HIGHUSER_MOVABLE |
2039 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2040 					  __GFP_NORETRY | __GFP_NOWARN) &
2041 					 ~__GFP_RECLAIM, 0);
2042 
2043 	return newpage;
2044 }
2045 
2046 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2047 {
2048 	int page_lru;
2049 
2050 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2051 
2052 	/* Avoid migrating to a node that is nearly full */
2053 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2054 		return 0;
2055 
2056 	if (isolate_lru_page(page))
2057 		return 0;
2058 
2059 	/*
2060 	 * migrate_misplaced_transhuge_page() skips page migration's usual
2061 	 * check on page_count(), so we must do it here, now that the page
2062 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
2063 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
2064 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
2065 	 */
2066 	if (PageTransHuge(page) && page_count(page) != 3) {
2067 		putback_lru_page(page);
2068 		return 0;
2069 	}
2070 
2071 	page_lru = page_is_file_lru(page);
2072 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2073 				thp_nr_pages(page));
2074 
2075 	/*
2076 	 * Isolating the page has taken another reference, so the
2077 	 * caller's reference can be safely dropped without the page
2078 	 * disappearing underneath us during migration.
2079 	 */
2080 	put_page(page);
2081 	return 1;
2082 }
2083 
2084 bool pmd_trans_migrating(pmd_t pmd)
2085 {
2086 	struct page *page = pmd_page(pmd);
2087 	return PageLocked(page);
2088 }
2089 
2090 /*
2091  * Attempt to migrate a misplaced page to the specified destination
2092  * node. Caller is expected to have an elevated reference count on
2093  * the page that will be dropped by this function before returning.
2094  */
2095 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2096 			   int node)
2097 {
2098 	pg_data_t *pgdat = NODE_DATA(node);
2099 	int isolated;
2100 	int nr_remaining;
2101 	LIST_HEAD(migratepages);
2102 
2103 	/*
2104 	 * Don't migrate file pages that are mapped in multiple processes
2105 	 * with execute permissions as they are probably shared libraries.
2106 	 */
2107 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2108 	    (vma->vm_flags & VM_EXEC))
2109 		goto out;
2110 
2111 	/*
2112 	 * Also do not migrate dirty pages as not all filesystems can move
2113 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2114 	 */
2115 	if (page_is_file_lru(page) && PageDirty(page))
2116 		goto out;
2117 
2118 	isolated = numamigrate_isolate_page(pgdat, page);
2119 	if (!isolated)
2120 		goto out;
2121 
2122 	list_add(&page->lru, &migratepages);
2123 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2124 				     NULL, node, MIGRATE_ASYNC,
2125 				     MR_NUMA_MISPLACED);
2126 	if (nr_remaining) {
2127 		if (!list_empty(&migratepages)) {
2128 			list_del(&page->lru);
2129 			dec_node_page_state(page, NR_ISOLATED_ANON +
2130 					page_is_file_lru(page));
2131 			putback_lru_page(page);
2132 		}
2133 		isolated = 0;
2134 	} else
2135 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
2136 	BUG_ON(!list_empty(&migratepages));
2137 	return isolated;
2138 
2139 out:
2140 	put_page(page);
2141 	return 0;
2142 }
2143 #endif /* CONFIG_NUMA_BALANCING */
2144 
2145 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2146 /*
2147  * Migrates a THP to a given target node. page must be locked and is unlocked
2148  * before returning.
2149  */
2150 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2151 				struct vm_area_struct *vma,
2152 				pmd_t *pmd, pmd_t entry,
2153 				unsigned long address,
2154 				struct page *page, int node)
2155 {
2156 	spinlock_t *ptl;
2157 	pg_data_t *pgdat = NODE_DATA(node);
2158 	int isolated = 0;
2159 	struct page *new_page = NULL;
2160 	int page_lru = page_is_file_lru(page);
2161 	unsigned long start = address & HPAGE_PMD_MASK;
2162 
2163 	new_page = alloc_pages_node(node,
2164 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2165 		HPAGE_PMD_ORDER);
2166 	if (!new_page)
2167 		goto out_fail;
2168 	prep_transhuge_page(new_page);
2169 
2170 	isolated = numamigrate_isolate_page(pgdat, page);
2171 	if (!isolated) {
2172 		put_page(new_page);
2173 		goto out_fail;
2174 	}
2175 
2176 	/* Prepare a page as a migration target */
2177 	__SetPageLocked(new_page);
2178 	if (PageSwapBacked(page))
2179 		__SetPageSwapBacked(new_page);
2180 
2181 	/* anon mapping, we can simply copy page->mapping to the new page: */
2182 	new_page->mapping = page->mapping;
2183 	new_page->index = page->index;
2184 	/* flush the cache before copying using the kernel virtual address */
2185 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2186 	migrate_page_copy(new_page, page);
2187 	WARN_ON(PageLRU(new_page));
2188 
2189 	/* Recheck the target PMD */
2190 	ptl = pmd_lock(mm, pmd);
2191 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2192 		spin_unlock(ptl);
2193 
2194 		/* Reverse changes made by migrate_page_copy() */
2195 		if (TestClearPageActive(new_page))
2196 			SetPageActive(page);
2197 		if (TestClearPageUnevictable(new_page))
2198 			SetPageUnevictable(page);
2199 
2200 		unlock_page(new_page);
2201 		put_page(new_page);		/* Free it */
2202 
2203 		/* Retake the callers reference and putback on LRU */
2204 		get_page(page);
2205 		putback_lru_page(page);
2206 		mod_node_page_state(page_pgdat(page),
2207 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2208 
2209 		goto out_unlock;
2210 	}
2211 
2212 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2213 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2214 
2215 	/*
2216 	 * Overwrite the old entry under pagetable lock and establish
2217 	 * the new PTE. Any parallel GUP will either observe the old
2218 	 * page blocking on the page lock, block on the page table
2219 	 * lock or observe the new page. The SetPageUptodate on the
2220 	 * new page and page_add_new_anon_rmap guarantee the copy is
2221 	 * visible before the pagetable update.
2222 	 */
2223 	page_add_anon_rmap(new_page, vma, start, true);
2224 	/*
2225 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2226 	 * has already been flushed globally.  So no TLB can be currently
2227 	 * caching this non present pmd mapping.  There's no need to clear the
2228 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2229 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2230 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2231 	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
2232 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2233 	 * pmd.
2234 	 */
2235 	set_pmd_at(mm, start, pmd, entry);
2236 	update_mmu_cache_pmd(vma, address, &entry);
2237 
2238 	page_ref_unfreeze(page, 2);
2239 	mlock_migrate_page(new_page, page);
2240 	page_remove_rmap(page, true);
2241 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2242 
2243 	spin_unlock(ptl);
2244 
2245 	/* Take an "isolate" reference and put new page on the LRU. */
2246 	get_page(new_page);
2247 	putback_lru_page(new_page);
2248 
2249 	unlock_page(new_page);
2250 	unlock_page(page);
2251 	put_page(page);			/* Drop the rmap reference */
2252 	put_page(page);			/* Drop the LRU isolation reference */
2253 
2254 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2255 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2256 
2257 	mod_node_page_state(page_pgdat(page),
2258 			NR_ISOLATED_ANON + page_lru,
2259 			-HPAGE_PMD_NR);
2260 	return isolated;
2261 
2262 out_fail:
2263 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2264 	ptl = pmd_lock(mm, pmd);
2265 	if (pmd_same(*pmd, entry)) {
2266 		entry = pmd_modify(entry, vma->vm_page_prot);
2267 		set_pmd_at(mm, start, pmd, entry);
2268 		update_mmu_cache_pmd(vma, address, &entry);
2269 	}
2270 	spin_unlock(ptl);
2271 
2272 out_unlock:
2273 	unlock_page(page);
2274 	put_page(page);
2275 	return 0;
2276 }
2277 #endif /* CONFIG_NUMA_BALANCING */
2278 
2279 #endif /* CONFIG_NUMA */
2280 
2281 #ifdef CONFIG_DEVICE_PRIVATE
2282 static int migrate_vma_collect_skip(unsigned long start,
2283 				    unsigned long end,
2284 				    struct mm_walk *walk)
2285 {
2286 	struct migrate_vma *migrate = walk->private;
2287 	unsigned long addr;
2288 
2289 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2290 		migrate->dst[migrate->npages] = 0;
2291 		migrate->src[migrate->npages++] = 0;
2292 	}
2293 
2294 	return 0;
2295 }
2296 
2297 static int migrate_vma_collect_hole(unsigned long start,
2298 				    unsigned long end,
2299 				    __always_unused int depth,
2300 				    struct mm_walk *walk)
2301 {
2302 	struct migrate_vma *migrate = walk->private;
2303 	unsigned long addr;
2304 
2305 	/* Only allow populating anonymous memory. */
2306 	if (!vma_is_anonymous(walk->vma))
2307 		return migrate_vma_collect_skip(start, end, walk);
2308 
2309 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2310 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2311 		migrate->dst[migrate->npages] = 0;
2312 		migrate->npages++;
2313 		migrate->cpages++;
2314 	}
2315 
2316 	return 0;
2317 }
2318 
2319 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2320 				   unsigned long start,
2321 				   unsigned long end,
2322 				   struct mm_walk *walk)
2323 {
2324 	struct migrate_vma *migrate = walk->private;
2325 	struct vm_area_struct *vma = walk->vma;
2326 	struct mm_struct *mm = vma->vm_mm;
2327 	unsigned long addr = start, unmapped = 0;
2328 	spinlock_t *ptl;
2329 	pte_t *ptep;
2330 
2331 again:
2332 	if (pmd_none(*pmdp))
2333 		return migrate_vma_collect_hole(start, end, -1, walk);
2334 
2335 	if (pmd_trans_huge(*pmdp)) {
2336 		struct page *page;
2337 
2338 		ptl = pmd_lock(mm, pmdp);
2339 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2340 			spin_unlock(ptl);
2341 			goto again;
2342 		}
2343 
2344 		page = pmd_page(*pmdp);
2345 		if (is_huge_zero_page(page)) {
2346 			spin_unlock(ptl);
2347 			split_huge_pmd(vma, pmdp, addr);
2348 			if (pmd_trans_unstable(pmdp))
2349 				return migrate_vma_collect_skip(start, end,
2350 								walk);
2351 		} else {
2352 			int ret;
2353 
2354 			get_page(page);
2355 			spin_unlock(ptl);
2356 			if (unlikely(!trylock_page(page)))
2357 				return migrate_vma_collect_skip(start, end,
2358 								walk);
2359 			ret = split_huge_page(page);
2360 			unlock_page(page);
2361 			put_page(page);
2362 			if (ret)
2363 				return migrate_vma_collect_skip(start, end,
2364 								walk);
2365 			if (pmd_none(*pmdp))
2366 				return migrate_vma_collect_hole(start, end, -1,
2367 								walk);
2368 		}
2369 	}
2370 
2371 	if (unlikely(pmd_bad(*pmdp)))
2372 		return migrate_vma_collect_skip(start, end, walk);
2373 
2374 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2375 	arch_enter_lazy_mmu_mode();
2376 
2377 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2378 		unsigned long mpfn = 0, pfn;
2379 		struct page *page;
2380 		swp_entry_t entry;
2381 		pte_t pte;
2382 
2383 		pte = *ptep;
2384 
2385 		if (pte_none(pte)) {
2386 			if (vma_is_anonymous(vma)) {
2387 				mpfn = MIGRATE_PFN_MIGRATE;
2388 				migrate->cpages++;
2389 			}
2390 			goto next;
2391 		}
2392 
2393 		if (!pte_present(pte)) {
2394 			/*
2395 			 * Only care about unaddressable device page special
2396 			 * page table entry. Other special swap entries are not
2397 			 * migratable, and we ignore regular swapped page.
2398 			 */
2399 			entry = pte_to_swp_entry(pte);
2400 			if (!is_device_private_entry(entry))
2401 				goto next;
2402 
2403 			page = device_private_entry_to_page(entry);
2404 			if (!(migrate->flags &
2405 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2406 			    page->pgmap->owner != migrate->pgmap_owner)
2407 				goto next;
2408 
2409 			mpfn = migrate_pfn(page_to_pfn(page)) |
2410 					MIGRATE_PFN_MIGRATE;
2411 			if (is_write_device_private_entry(entry))
2412 				mpfn |= MIGRATE_PFN_WRITE;
2413 		} else {
2414 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2415 				goto next;
2416 			pfn = pte_pfn(pte);
2417 			if (is_zero_pfn(pfn)) {
2418 				mpfn = MIGRATE_PFN_MIGRATE;
2419 				migrate->cpages++;
2420 				goto next;
2421 			}
2422 			page = vm_normal_page(migrate->vma, addr, pte);
2423 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2424 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2425 		}
2426 
2427 		/* FIXME support THP */
2428 		if (!page || !page->mapping || PageTransCompound(page)) {
2429 			mpfn = 0;
2430 			goto next;
2431 		}
2432 
2433 		/*
2434 		 * By getting a reference on the page we pin it and that blocks
2435 		 * any kind of migration. Side effect is that it "freezes" the
2436 		 * pte.
2437 		 *
2438 		 * We drop this reference after isolating the page from the lru
2439 		 * for non device page (device page are not on the lru and thus
2440 		 * can't be dropped from it).
2441 		 */
2442 		get_page(page);
2443 		migrate->cpages++;
2444 
2445 		/*
2446 		 * Optimize for the common case where page is only mapped once
2447 		 * in one process. If we can lock the page, then we can safely
2448 		 * set up a special migration page table entry now.
2449 		 */
2450 		if (trylock_page(page)) {
2451 			pte_t swp_pte;
2452 
2453 			mpfn |= MIGRATE_PFN_LOCKED;
2454 			ptep_get_and_clear(mm, addr, ptep);
2455 
2456 			/* Setup special migration page table entry */
2457 			entry = make_migration_entry(page, mpfn &
2458 						     MIGRATE_PFN_WRITE);
2459 			swp_pte = swp_entry_to_pte(entry);
2460 			if (pte_present(pte)) {
2461 				if (pte_soft_dirty(pte))
2462 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2463 				if (pte_uffd_wp(pte))
2464 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2465 			} else {
2466 				if (pte_swp_soft_dirty(pte))
2467 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2468 				if (pte_swp_uffd_wp(pte))
2469 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2470 			}
2471 			set_pte_at(mm, addr, ptep, swp_pte);
2472 
2473 			/*
2474 			 * This is like regular unmap: we remove the rmap and
2475 			 * drop page refcount. Page won't be freed, as we took
2476 			 * a reference just above.
2477 			 */
2478 			page_remove_rmap(page, false);
2479 			put_page(page);
2480 
2481 			if (pte_present(pte))
2482 				unmapped++;
2483 		}
2484 
2485 next:
2486 		migrate->dst[migrate->npages] = 0;
2487 		migrate->src[migrate->npages++] = mpfn;
2488 	}
2489 	arch_leave_lazy_mmu_mode();
2490 	pte_unmap_unlock(ptep - 1, ptl);
2491 
2492 	/* Only flush the TLB if we actually modified any entries */
2493 	if (unmapped)
2494 		flush_tlb_range(walk->vma, start, end);
2495 
2496 	return 0;
2497 }
2498 
2499 static const struct mm_walk_ops migrate_vma_walk_ops = {
2500 	.pmd_entry		= migrate_vma_collect_pmd,
2501 	.pte_hole		= migrate_vma_collect_hole,
2502 };
2503 
2504 /*
2505  * migrate_vma_collect() - collect pages over a range of virtual addresses
2506  * @migrate: migrate struct containing all migration information
2507  *
2508  * This will walk the CPU page table. For each virtual address backed by a
2509  * valid page, it updates the src array and takes a reference on the page, in
2510  * order to pin the page until we lock it and unmap it.
2511  */
2512 static void migrate_vma_collect(struct migrate_vma *migrate)
2513 {
2514 	struct mmu_notifier_range range;
2515 
2516 	/*
2517 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2518 	 * that the registered device driver can skip invalidating device
2519 	 * private page mappings that won't be migrated.
2520 	 */
2521 	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2522 		migrate->vma->vm_mm, migrate->start, migrate->end,
2523 		migrate->pgmap_owner);
2524 	mmu_notifier_invalidate_range_start(&range);
2525 
2526 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2527 			&migrate_vma_walk_ops, migrate);
2528 
2529 	mmu_notifier_invalidate_range_end(&range);
2530 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2531 }
2532 
2533 /*
2534  * migrate_vma_check_page() - check if page is pinned or not
2535  * @page: struct page to check
2536  *
2537  * Pinned pages cannot be migrated. This is the same test as in
2538  * migrate_page_move_mapping(), except that here we allow migration of a
2539  * ZONE_DEVICE page.
2540  */
2541 static bool migrate_vma_check_page(struct page *page)
2542 {
2543 	/*
2544 	 * One extra ref because caller holds an extra reference, either from
2545 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2546 	 * a device page.
2547 	 */
2548 	int extra = 1;
2549 
2550 	/*
2551 	 * FIXME support THP (transparent huge page), it is bit more complex to
2552 	 * check them than regular pages, because they can be mapped with a pmd
2553 	 * or with a pte (split pte mapping).
2554 	 */
2555 	if (PageCompound(page))
2556 		return false;
2557 
2558 	/* Page from ZONE_DEVICE have one extra reference */
2559 	if (is_zone_device_page(page)) {
2560 		/*
2561 		 * Private page can never be pin as they have no valid pte and
2562 		 * GUP will fail for those. Yet if there is a pending migration
2563 		 * a thread might try to wait on the pte migration entry and
2564 		 * will bump the page reference count. Sadly there is no way to
2565 		 * differentiate a regular pin from migration wait. Hence to
2566 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2567 		 * infinite loop (one stopping migration because the other is
2568 		 * waiting on pte migration entry). We always return true here.
2569 		 *
2570 		 * FIXME proper solution is to rework migration_entry_wait() so
2571 		 * it does not need to take a reference on page.
2572 		 */
2573 		return is_device_private_page(page);
2574 	}
2575 
2576 	/* For file back page */
2577 	if (page_mapping(page))
2578 		extra += 1 + page_has_private(page);
2579 
2580 	if ((page_count(page) - extra) > page_mapcount(page))
2581 		return false;
2582 
2583 	return true;
2584 }
2585 
2586 /*
2587  * migrate_vma_prepare() - lock pages and isolate them from the lru
2588  * @migrate: migrate struct containing all migration information
2589  *
2590  * This locks pages that have been collected by migrate_vma_collect(). Once each
2591  * page is locked it is isolated from the lru (for non-device pages). Finally,
2592  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2593  * migrated by concurrent kernel threads.
2594  */
2595 static void migrate_vma_prepare(struct migrate_vma *migrate)
2596 {
2597 	const unsigned long npages = migrate->npages;
2598 	const unsigned long start = migrate->start;
2599 	unsigned long addr, i, restore = 0;
2600 	bool allow_drain = true;
2601 
2602 	lru_add_drain();
2603 
2604 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2605 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2606 		bool remap = true;
2607 
2608 		if (!page)
2609 			continue;
2610 
2611 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2612 			/*
2613 			 * Because we are migrating several pages there can be
2614 			 * a deadlock between 2 concurrent migration where each
2615 			 * are waiting on each other page lock.
2616 			 *
2617 			 * Make migrate_vma() a best effort thing and backoff
2618 			 * for any page we can not lock right away.
2619 			 */
2620 			if (!trylock_page(page)) {
2621 				migrate->src[i] = 0;
2622 				migrate->cpages--;
2623 				put_page(page);
2624 				continue;
2625 			}
2626 			remap = false;
2627 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2628 		}
2629 
2630 		/* ZONE_DEVICE pages are not on LRU */
2631 		if (!is_zone_device_page(page)) {
2632 			if (!PageLRU(page) && allow_drain) {
2633 				/* Drain CPU's pagevec */
2634 				lru_add_drain_all();
2635 				allow_drain = false;
2636 			}
2637 
2638 			if (isolate_lru_page(page)) {
2639 				if (remap) {
2640 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2641 					migrate->cpages--;
2642 					restore++;
2643 				} else {
2644 					migrate->src[i] = 0;
2645 					unlock_page(page);
2646 					migrate->cpages--;
2647 					put_page(page);
2648 				}
2649 				continue;
2650 			}
2651 
2652 			/* Drop the reference we took in collect */
2653 			put_page(page);
2654 		}
2655 
2656 		if (!migrate_vma_check_page(page)) {
2657 			if (remap) {
2658 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2659 				migrate->cpages--;
2660 				restore++;
2661 
2662 				if (!is_zone_device_page(page)) {
2663 					get_page(page);
2664 					putback_lru_page(page);
2665 				}
2666 			} else {
2667 				migrate->src[i] = 0;
2668 				unlock_page(page);
2669 				migrate->cpages--;
2670 
2671 				if (!is_zone_device_page(page))
2672 					putback_lru_page(page);
2673 				else
2674 					put_page(page);
2675 			}
2676 		}
2677 	}
2678 
2679 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2680 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2681 
2682 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2683 			continue;
2684 
2685 		remove_migration_pte(page, migrate->vma, addr, page);
2686 
2687 		migrate->src[i] = 0;
2688 		unlock_page(page);
2689 		put_page(page);
2690 		restore--;
2691 	}
2692 }
2693 
2694 /*
2695  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2696  * @migrate: migrate struct containing all migration information
2697  *
2698  * Replace page mapping (CPU page table pte) with a special migration pte entry
2699  * and check again if it has been pinned. Pinned pages are restored because we
2700  * cannot migrate them.
2701  *
2702  * This is the last step before we call the device driver callback to allocate
2703  * destination memory and copy contents of original page over to new page.
2704  */
2705 static void migrate_vma_unmap(struct migrate_vma *migrate)
2706 {
2707 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2708 	const unsigned long npages = migrate->npages;
2709 	const unsigned long start = migrate->start;
2710 	unsigned long addr, i, restore = 0;
2711 
2712 	for (i = 0; i < npages; i++) {
2713 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2714 
2715 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2716 			continue;
2717 
2718 		if (page_mapped(page)) {
2719 			try_to_unmap(page, flags);
2720 			if (page_mapped(page))
2721 				goto restore;
2722 		}
2723 
2724 		if (migrate_vma_check_page(page))
2725 			continue;
2726 
2727 restore:
2728 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2729 		migrate->cpages--;
2730 		restore++;
2731 	}
2732 
2733 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2734 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2735 
2736 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2737 			continue;
2738 
2739 		remove_migration_ptes(page, page, false);
2740 
2741 		migrate->src[i] = 0;
2742 		unlock_page(page);
2743 		restore--;
2744 
2745 		if (is_zone_device_page(page))
2746 			put_page(page);
2747 		else
2748 			putback_lru_page(page);
2749 	}
2750 }
2751 
2752 /**
2753  * migrate_vma_setup() - prepare to migrate a range of memory
2754  * @args: contains the vma, start, and pfns arrays for the migration
2755  *
2756  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2757  * without an error.
2758  *
2759  * Prepare to migrate a range of memory virtual address range by collecting all
2760  * the pages backing each virtual address in the range, saving them inside the
2761  * src array.  Then lock those pages and unmap them. Once the pages are locked
2762  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2763  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2764  * corresponding src array entry.  Then restores any pages that are pinned, by
2765  * remapping and unlocking those pages.
2766  *
2767  * The caller should then allocate destination memory and copy source memory to
2768  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2769  * flag set).  Once these are allocated and copied, the caller must update each
2770  * corresponding entry in the dst array with the pfn value of the destination
2771  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2772  * (destination pages must have their struct pages locked, via lock_page()).
2773  *
2774  * Note that the caller does not have to migrate all the pages that are marked
2775  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2776  * device memory to system memory.  If the caller cannot migrate a device page
2777  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2778  * consequences for the userspace process, so it must be avoided if at all
2779  * possible.
2780  *
2781  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2782  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2783  * allowing the caller to allocate device memory for those unbacked virtual
2784  * addresses.  For this the caller simply has to allocate device memory and
2785  * properly set the destination entry like for regular migration.  Note that
2786  * this can still fail, and thus inside the device driver you must check if the
2787  * migration was successful for those entries after calling migrate_vma_pages(),
2788  * just like for regular migration.
2789  *
2790  * After that, the callers must call migrate_vma_pages() to go over each entry
2791  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2792  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2793  * then migrate_vma_pages() to migrate struct page information from the source
2794  * struct page to the destination struct page.  If it fails to migrate the
2795  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2796  * src array.
2797  *
2798  * At this point all successfully migrated pages have an entry in the src
2799  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2800  * array entry with MIGRATE_PFN_VALID flag set.
2801  *
2802  * Once migrate_vma_pages() returns the caller may inspect which pages were
2803  * successfully migrated, and which were not.  Successfully migrated pages will
2804  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2805  *
2806  * It is safe to update device page table after migrate_vma_pages() because
2807  * both destination and source page are still locked, and the mmap_lock is held
2808  * in read mode (hence no one can unmap the range being migrated).
2809  *
2810  * Once the caller is done cleaning up things and updating its page table (if it
2811  * chose to do so, this is not an obligation) it finally calls
2812  * migrate_vma_finalize() to update the CPU page table to point to new pages
2813  * for successfully migrated pages or otherwise restore the CPU page table to
2814  * point to the original source pages.
2815  */
2816 int migrate_vma_setup(struct migrate_vma *args)
2817 {
2818 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2819 
2820 	args->start &= PAGE_MASK;
2821 	args->end &= PAGE_MASK;
2822 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2823 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2824 		return -EINVAL;
2825 	if (nr_pages <= 0)
2826 		return -EINVAL;
2827 	if (args->start < args->vma->vm_start ||
2828 	    args->start >= args->vma->vm_end)
2829 		return -EINVAL;
2830 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2831 		return -EINVAL;
2832 	if (!args->src || !args->dst)
2833 		return -EINVAL;
2834 
2835 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2836 	args->cpages = 0;
2837 	args->npages = 0;
2838 
2839 	migrate_vma_collect(args);
2840 
2841 	if (args->cpages)
2842 		migrate_vma_prepare(args);
2843 	if (args->cpages)
2844 		migrate_vma_unmap(args);
2845 
2846 	/*
2847 	 * At this point pages are locked and unmapped, and thus they have
2848 	 * stable content and can safely be copied to destination memory that
2849 	 * is allocated by the drivers.
2850 	 */
2851 	return 0;
2852 
2853 }
2854 EXPORT_SYMBOL(migrate_vma_setup);
2855 
2856 /*
2857  * This code closely matches the code in:
2858  *   __handle_mm_fault()
2859  *     handle_pte_fault()
2860  *       do_anonymous_page()
2861  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2862  * private page.
2863  */
2864 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2865 				    unsigned long addr,
2866 				    struct page *page,
2867 				    unsigned long *src)
2868 {
2869 	struct vm_area_struct *vma = migrate->vma;
2870 	struct mm_struct *mm = vma->vm_mm;
2871 	bool flush = false;
2872 	spinlock_t *ptl;
2873 	pte_t entry;
2874 	pgd_t *pgdp;
2875 	p4d_t *p4dp;
2876 	pud_t *pudp;
2877 	pmd_t *pmdp;
2878 	pte_t *ptep;
2879 
2880 	/* Only allow populating anonymous memory */
2881 	if (!vma_is_anonymous(vma))
2882 		goto abort;
2883 
2884 	pgdp = pgd_offset(mm, addr);
2885 	p4dp = p4d_alloc(mm, pgdp, addr);
2886 	if (!p4dp)
2887 		goto abort;
2888 	pudp = pud_alloc(mm, p4dp, addr);
2889 	if (!pudp)
2890 		goto abort;
2891 	pmdp = pmd_alloc(mm, pudp, addr);
2892 	if (!pmdp)
2893 		goto abort;
2894 
2895 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2896 		goto abort;
2897 
2898 	/*
2899 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2900 	 * pte_offset_map() on pmds where a huge pmd might be created
2901 	 * from a different thread.
2902 	 *
2903 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2904 	 * parallel threads are excluded by other means.
2905 	 *
2906 	 * Here we only have mmap_read_lock(mm).
2907 	 */
2908 	if (pte_alloc(mm, pmdp))
2909 		goto abort;
2910 
2911 	/* See the comment in pte_alloc_one_map() */
2912 	if (unlikely(pmd_trans_unstable(pmdp)))
2913 		goto abort;
2914 
2915 	if (unlikely(anon_vma_prepare(vma)))
2916 		goto abort;
2917 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2918 		goto abort;
2919 
2920 	/*
2921 	 * The memory barrier inside __SetPageUptodate makes sure that
2922 	 * preceding stores to the page contents become visible before
2923 	 * the set_pte_at() write.
2924 	 */
2925 	__SetPageUptodate(page);
2926 
2927 	if (is_zone_device_page(page)) {
2928 		if (is_device_private_page(page)) {
2929 			swp_entry_t swp_entry;
2930 
2931 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2932 			entry = swp_entry_to_pte(swp_entry);
2933 		} else {
2934 			/*
2935 			 * For now we only support migrating to un-addressable
2936 			 * device memory.
2937 			 */
2938 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2939 			goto abort;
2940 		}
2941 	} else {
2942 		entry = mk_pte(page, vma->vm_page_prot);
2943 		if (vma->vm_flags & VM_WRITE)
2944 			entry = pte_mkwrite(pte_mkdirty(entry));
2945 	}
2946 
2947 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2948 
2949 	if (check_stable_address_space(mm))
2950 		goto unlock_abort;
2951 
2952 	if (pte_present(*ptep)) {
2953 		unsigned long pfn = pte_pfn(*ptep);
2954 
2955 		if (!is_zero_pfn(pfn))
2956 			goto unlock_abort;
2957 		flush = true;
2958 	} else if (!pte_none(*ptep))
2959 		goto unlock_abort;
2960 
2961 	/*
2962 	 * Check for userfaultfd but do not deliver the fault. Instead,
2963 	 * just back off.
2964 	 */
2965 	if (userfaultfd_missing(vma))
2966 		goto unlock_abort;
2967 
2968 	inc_mm_counter(mm, MM_ANONPAGES);
2969 	page_add_new_anon_rmap(page, vma, addr, false);
2970 	if (!is_zone_device_page(page))
2971 		lru_cache_add_inactive_or_unevictable(page, vma);
2972 	get_page(page);
2973 
2974 	if (flush) {
2975 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2976 		ptep_clear_flush_notify(vma, addr, ptep);
2977 		set_pte_at_notify(mm, addr, ptep, entry);
2978 		update_mmu_cache(vma, addr, ptep);
2979 	} else {
2980 		/* No need to invalidate - it was non-present before */
2981 		set_pte_at(mm, addr, ptep, entry);
2982 		update_mmu_cache(vma, addr, ptep);
2983 	}
2984 
2985 	pte_unmap_unlock(ptep, ptl);
2986 	*src = MIGRATE_PFN_MIGRATE;
2987 	return;
2988 
2989 unlock_abort:
2990 	pte_unmap_unlock(ptep, ptl);
2991 abort:
2992 	*src &= ~MIGRATE_PFN_MIGRATE;
2993 }
2994 
2995 /**
2996  * migrate_vma_pages() - migrate meta-data from src page to dst page
2997  * @migrate: migrate struct containing all migration information
2998  *
2999  * This migrates struct page meta-data from source struct page to destination
3000  * struct page. This effectively finishes the migration from source page to the
3001  * destination page.
3002  */
3003 void migrate_vma_pages(struct migrate_vma *migrate)
3004 {
3005 	const unsigned long npages = migrate->npages;
3006 	const unsigned long start = migrate->start;
3007 	struct mmu_notifier_range range;
3008 	unsigned long addr, i;
3009 	bool notified = false;
3010 
3011 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3012 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3013 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3014 		struct address_space *mapping;
3015 		int r;
3016 
3017 		if (!newpage) {
3018 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3019 			continue;
3020 		}
3021 
3022 		if (!page) {
3023 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3024 				continue;
3025 			if (!notified) {
3026 				notified = true;
3027 
3028 				mmu_notifier_range_init_migrate(&range, 0,
3029 					migrate->vma, migrate->vma->vm_mm,
3030 					addr, migrate->end,
3031 					migrate->pgmap_owner);
3032 				mmu_notifier_invalidate_range_start(&range);
3033 			}
3034 			migrate_vma_insert_page(migrate, addr, newpage,
3035 						&migrate->src[i]);
3036 			continue;
3037 		}
3038 
3039 		mapping = page_mapping(page);
3040 
3041 		if (is_zone_device_page(newpage)) {
3042 			if (is_device_private_page(newpage)) {
3043 				/*
3044 				 * For now only support private anonymous when
3045 				 * migrating to un-addressable device memory.
3046 				 */
3047 				if (mapping) {
3048 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3049 					continue;
3050 				}
3051 			} else {
3052 				/*
3053 				 * Other types of ZONE_DEVICE page are not
3054 				 * supported.
3055 				 */
3056 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3057 				continue;
3058 			}
3059 		}
3060 
3061 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3062 		if (r != MIGRATEPAGE_SUCCESS)
3063 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3064 	}
3065 
3066 	/*
3067 	 * No need to double call mmu_notifier->invalidate_range() callback as
3068 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3069 	 * did already call it.
3070 	 */
3071 	if (notified)
3072 		mmu_notifier_invalidate_range_only_end(&range);
3073 }
3074 EXPORT_SYMBOL(migrate_vma_pages);
3075 
3076 /**
3077  * migrate_vma_finalize() - restore CPU page table entry
3078  * @migrate: migrate struct containing all migration information
3079  *
3080  * This replaces the special migration pte entry with either a mapping to the
3081  * new page if migration was successful for that page, or to the original page
3082  * otherwise.
3083  *
3084  * This also unlocks the pages and puts them back on the lru, or drops the extra
3085  * refcount, for device pages.
3086  */
3087 void migrate_vma_finalize(struct migrate_vma *migrate)
3088 {
3089 	const unsigned long npages = migrate->npages;
3090 	unsigned long i;
3091 
3092 	for (i = 0; i < npages; i++) {
3093 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3094 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3095 
3096 		if (!page) {
3097 			if (newpage) {
3098 				unlock_page(newpage);
3099 				put_page(newpage);
3100 			}
3101 			continue;
3102 		}
3103 
3104 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3105 			if (newpage) {
3106 				unlock_page(newpage);
3107 				put_page(newpage);
3108 			}
3109 			newpage = page;
3110 		}
3111 
3112 		remove_migration_ptes(page, newpage, false);
3113 		unlock_page(page);
3114 
3115 		if (is_zone_device_page(page))
3116 			put_page(page);
3117 		else
3118 			putback_lru_page(page);
3119 
3120 		if (newpage != page) {
3121 			unlock_page(newpage);
3122 			if (is_zone_device_page(newpage))
3123 				put_page(newpage);
3124 			else
3125 				putback_lru_page(newpage);
3126 		}
3127 	}
3128 }
3129 EXPORT_SYMBOL(migrate_vma_finalize);
3130 #endif /* CONFIG_DEVICE_PRIVATE */
3131