1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/gfp.h> 37 38 #include <asm/tlbflush.h> 39 40 #include "internal.h" 41 42 /* 43 * migrate_prep() needs to be called before we start compiling a list of pages 44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 45 * undesirable, use migrate_prep_local() 46 */ 47 int migrate_prep(void) 48 { 49 /* 50 * Clear the LRU lists so pages can be isolated. 51 * Note that pages may be moved off the LRU after we have 52 * drained them. Those pages will fail to migrate like other 53 * pages that may be busy. 54 */ 55 lru_add_drain_all(); 56 57 return 0; 58 } 59 60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 61 int migrate_prep_local(void) 62 { 63 lru_add_drain(); 64 65 return 0; 66 } 67 68 /* 69 * Add isolated pages on the list back to the LRU under page lock 70 * to avoid leaking evictable pages back onto unevictable list. 71 */ 72 void putback_lru_pages(struct list_head *l) 73 { 74 struct page *page; 75 struct page *page2; 76 77 list_for_each_entry_safe(page, page2, l, lru) { 78 list_del(&page->lru); 79 dec_zone_page_state(page, NR_ISOLATED_ANON + 80 page_is_file_cache(page)); 81 putback_lru_page(page); 82 } 83 } 84 85 /* 86 * Restore a potential migration pte to a working pte entry 87 */ 88 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 89 unsigned long addr, void *old) 90 { 91 struct mm_struct *mm = vma->vm_mm; 92 swp_entry_t entry; 93 pgd_t *pgd; 94 pud_t *pud; 95 pmd_t *pmd; 96 pte_t *ptep, pte; 97 spinlock_t *ptl; 98 99 if (unlikely(PageHuge(new))) { 100 ptep = huge_pte_offset(mm, addr); 101 if (!ptep) 102 goto out; 103 ptl = &mm->page_table_lock; 104 } else { 105 pgd = pgd_offset(mm, addr); 106 if (!pgd_present(*pgd)) 107 goto out; 108 109 pud = pud_offset(pgd, addr); 110 if (!pud_present(*pud)) 111 goto out; 112 113 pmd = pmd_offset(pud, addr); 114 if (pmd_trans_huge(*pmd)) 115 goto out; 116 if (!pmd_present(*pmd)) 117 goto out; 118 119 ptep = pte_offset_map(pmd, addr); 120 121 /* 122 * Peek to check is_swap_pte() before taking ptlock? No, we 123 * can race mremap's move_ptes(), which skips anon_vma lock. 124 */ 125 126 ptl = pte_lockptr(mm, pmd); 127 } 128 129 spin_lock(ptl); 130 pte = *ptep; 131 if (!is_swap_pte(pte)) 132 goto unlock; 133 134 entry = pte_to_swp_entry(pte); 135 136 if (!is_migration_entry(entry) || 137 migration_entry_to_page(entry) != old) 138 goto unlock; 139 140 get_page(new); 141 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 142 if (is_write_migration_entry(entry)) 143 pte = pte_mkwrite(pte); 144 #ifdef CONFIG_HUGETLB_PAGE 145 if (PageHuge(new)) 146 pte = pte_mkhuge(pte); 147 #endif 148 flush_cache_page(vma, addr, pte_pfn(pte)); 149 set_pte_at(mm, addr, ptep, pte); 150 151 if (PageHuge(new)) { 152 if (PageAnon(new)) 153 hugepage_add_anon_rmap(new, vma, addr); 154 else 155 page_dup_rmap(new); 156 } else if (PageAnon(new)) 157 page_add_anon_rmap(new, vma, addr); 158 else 159 page_add_file_rmap(new); 160 161 /* No need to invalidate - it was non-present before */ 162 update_mmu_cache(vma, addr, ptep); 163 unlock: 164 pte_unmap_unlock(ptep, ptl); 165 out: 166 return SWAP_AGAIN; 167 } 168 169 /* 170 * Get rid of all migration entries and replace them by 171 * references to the indicated page. 172 */ 173 static void remove_migration_ptes(struct page *old, struct page *new) 174 { 175 rmap_walk(new, remove_migration_pte, old); 176 } 177 178 /* 179 * Something used the pte of a page under migration. We need to 180 * get to the page and wait until migration is finished. 181 * When we return from this function the fault will be retried. 182 */ 183 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 184 unsigned long address) 185 { 186 pte_t *ptep, pte; 187 spinlock_t *ptl; 188 swp_entry_t entry; 189 struct page *page; 190 191 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 192 pte = *ptep; 193 if (!is_swap_pte(pte)) 194 goto out; 195 196 entry = pte_to_swp_entry(pte); 197 if (!is_migration_entry(entry)) 198 goto out; 199 200 page = migration_entry_to_page(entry); 201 202 /* 203 * Once radix-tree replacement of page migration started, page_count 204 * *must* be zero. And, we don't want to call wait_on_page_locked() 205 * against a page without get_page(). 206 * So, we use get_page_unless_zero(), here. Even failed, page fault 207 * will occur again. 208 */ 209 if (!get_page_unless_zero(page)) 210 goto out; 211 pte_unmap_unlock(ptep, ptl); 212 wait_on_page_locked(page); 213 put_page(page); 214 return; 215 out: 216 pte_unmap_unlock(ptep, ptl); 217 } 218 219 /* 220 * Replace the page in the mapping. 221 * 222 * The number of remaining references must be: 223 * 1 for anonymous pages without a mapping 224 * 2 for pages with a mapping 225 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 226 */ 227 static int migrate_page_move_mapping(struct address_space *mapping, 228 struct page *newpage, struct page *page) 229 { 230 int expected_count; 231 void **pslot; 232 233 if (!mapping) { 234 /* Anonymous page without mapping */ 235 if (page_count(page) != 1) 236 return -EAGAIN; 237 return 0; 238 } 239 240 spin_lock_irq(&mapping->tree_lock); 241 242 pslot = radix_tree_lookup_slot(&mapping->page_tree, 243 page_index(page)); 244 245 expected_count = 2 + page_has_private(page); 246 if (page_count(page) != expected_count || 247 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 248 spin_unlock_irq(&mapping->tree_lock); 249 return -EAGAIN; 250 } 251 252 if (!page_freeze_refs(page, expected_count)) { 253 spin_unlock_irq(&mapping->tree_lock); 254 return -EAGAIN; 255 } 256 257 /* 258 * Now we know that no one else is looking at the page. 259 */ 260 get_page(newpage); /* add cache reference */ 261 if (PageSwapCache(page)) { 262 SetPageSwapCache(newpage); 263 set_page_private(newpage, page_private(page)); 264 } 265 266 radix_tree_replace_slot(pslot, newpage); 267 268 /* 269 * Drop cache reference from old page by unfreezing 270 * to one less reference. 271 * We know this isn't the last reference. 272 */ 273 page_unfreeze_refs(page, expected_count - 1); 274 275 /* 276 * If moved to a different zone then also account 277 * the page for that zone. Other VM counters will be 278 * taken care of when we establish references to the 279 * new page and drop references to the old page. 280 * 281 * Note that anonymous pages are accounted for 282 * via NR_FILE_PAGES and NR_ANON_PAGES if they 283 * are mapped to swap space. 284 */ 285 __dec_zone_page_state(page, NR_FILE_PAGES); 286 __inc_zone_page_state(newpage, NR_FILE_PAGES); 287 if (!PageSwapCache(page) && PageSwapBacked(page)) { 288 __dec_zone_page_state(page, NR_SHMEM); 289 __inc_zone_page_state(newpage, NR_SHMEM); 290 } 291 spin_unlock_irq(&mapping->tree_lock); 292 293 return 0; 294 } 295 296 /* 297 * The expected number of remaining references is the same as that 298 * of migrate_page_move_mapping(). 299 */ 300 int migrate_huge_page_move_mapping(struct address_space *mapping, 301 struct page *newpage, struct page *page) 302 { 303 int expected_count; 304 void **pslot; 305 306 if (!mapping) { 307 if (page_count(page) != 1) 308 return -EAGAIN; 309 return 0; 310 } 311 312 spin_lock_irq(&mapping->tree_lock); 313 314 pslot = radix_tree_lookup_slot(&mapping->page_tree, 315 page_index(page)); 316 317 expected_count = 2 + page_has_private(page); 318 if (page_count(page) != expected_count || 319 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 320 spin_unlock_irq(&mapping->tree_lock); 321 return -EAGAIN; 322 } 323 324 if (!page_freeze_refs(page, expected_count)) { 325 spin_unlock_irq(&mapping->tree_lock); 326 return -EAGAIN; 327 } 328 329 get_page(newpage); 330 331 radix_tree_replace_slot(pslot, newpage); 332 333 page_unfreeze_refs(page, expected_count - 1); 334 335 spin_unlock_irq(&mapping->tree_lock); 336 return 0; 337 } 338 339 /* 340 * Copy the page to its new location 341 */ 342 void migrate_page_copy(struct page *newpage, struct page *page) 343 { 344 if (PageHuge(page)) 345 copy_huge_page(newpage, page); 346 else 347 copy_highpage(newpage, page); 348 349 if (PageError(page)) 350 SetPageError(newpage); 351 if (PageReferenced(page)) 352 SetPageReferenced(newpage); 353 if (PageUptodate(page)) 354 SetPageUptodate(newpage); 355 if (TestClearPageActive(page)) { 356 VM_BUG_ON(PageUnevictable(page)); 357 SetPageActive(newpage); 358 } else if (TestClearPageUnevictable(page)) 359 SetPageUnevictable(newpage); 360 if (PageChecked(page)) 361 SetPageChecked(newpage); 362 if (PageMappedToDisk(page)) 363 SetPageMappedToDisk(newpage); 364 365 if (PageDirty(page)) { 366 clear_page_dirty_for_io(page); 367 /* 368 * Want to mark the page and the radix tree as dirty, and 369 * redo the accounting that clear_page_dirty_for_io undid, 370 * but we can't use set_page_dirty because that function 371 * is actually a signal that all of the page has become dirty. 372 * Whereas only part of our page may be dirty. 373 */ 374 __set_page_dirty_nobuffers(newpage); 375 } 376 377 mlock_migrate_page(newpage, page); 378 ksm_migrate_page(newpage, page); 379 380 ClearPageSwapCache(page); 381 ClearPagePrivate(page); 382 set_page_private(page, 0); 383 page->mapping = NULL; 384 385 /* 386 * If any waiters have accumulated on the new page then 387 * wake them up. 388 */ 389 if (PageWriteback(newpage)) 390 end_page_writeback(newpage); 391 } 392 393 /************************************************************ 394 * Migration functions 395 ***********************************************************/ 396 397 /* Always fail migration. Used for mappings that are not movable */ 398 int fail_migrate_page(struct address_space *mapping, 399 struct page *newpage, struct page *page) 400 { 401 return -EIO; 402 } 403 EXPORT_SYMBOL(fail_migrate_page); 404 405 /* 406 * Common logic to directly migrate a single page suitable for 407 * pages that do not use PagePrivate/PagePrivate2. 408 * 409 * Pages are locked upon entry and exit. 410 */ 411 int migrate_page(struct address_space *mapping, 412 struct page *newpage, struct page *page) 413 { 414 int rc; 415 416 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 417 418 rc = migrate_page_move_mapping(mapping, newpage, page); 419 420 if (rc) 421 return rc; 422 423 migrate_page_copy(newpage, page); 424 return 0; 425 } 426 EXPORT_SYMBOL(migrate_page); 427 428 #ifdef CONFIG_BLOCK 429 /* 430 * Migration function for pages with buffers. This function can only be used 431 * if the underlying filesystem guarantees that no other references to "page" 432 * exist. 433 */ 434 int buffer_migrate_page(struct address_space *mapping, 435 struct page *newpage, struct page *page) 436 { 437 struct buffer_head *bh, *head; 438 int rc; 439 440 if (!page_has_buffers(page)) 441 return migrate_page(mapping, newpage, page); 442 443 head = page_buffers(page); 444 445 rc = migrate_page_move_mapping(mapping, newpage, page); 446 447 if (rc) 448 return rc; 449 450 bh = head; 451 do { 452 get_bh(bh); 453 lock_buffer(bh); 454 bh = bh->b_this_page; 455 456 } while (bh != head); 457 458 ClearPagePrivate(page); 459 set_page_private(newpage, page_private(page)); 460 set_page_private(page, 0); 461 put_page(page); 462 get_page(newpage); 463 464 bh = head; 465 do { 466 set_bh_page(bh, newpage, bh_offset(bh)); 467 bh = bh->b_this_page; 468 469 } while (bh != head); 470 471 SetPagePrivate(newpage); 472 473 migrate_page_copy(newpage, page); 474 475 bh = head; 476 do { 477 unlock_buffer(bh); 478 put_bh(bh); 479 bh = bh->b_this_page; 480 481 } while (bh != head); 482 483 return 0; 484 } 485 EXPORT_SYMBOL(buffer_migrate_page); 486 #endif 487 488 /* 489 * Writeback a page to clean the dirty state 490 */ 491 static int writeout(struct address_space *mapping, struct page *page) 492 { 493 struct writeback_control wbc = { 494 .sync_mode = WB_SYNC_NONE, 495 .nr_to_write = 1, 496 .range_start = 0, 497 .range_end = LLONG_MAX, 498 .for_reclaim = 1 499 }; 500 int rc; 501 502 if (!mapping->a_ops->writepage) 503 /* No write method for the address space */ 504 return -EINVAL; 505 506 if (!clear_page_dirty_for_io(page)) 507 /* Someone else already triggered a write */ 508 return -EAGAIN; 509 510 /* 511 * A dirty page may imply that the underlying filesystem has 512 * the page on some queue. So the page must be clean for 513 * migration. Writeout may mean we loose the lock and the 514 * page state is no longer what we checked for earlier. 515 * At this point we know that the migration attempt cannot 516 * be successful. 517 */ 518 remove_migration_ptes(page, page); 519 520 rc = mapping->a_ops->writepage(page, &wbc); 521 522 if (rc != AOP_WRITEPAGE_ACTIVATE) 523 /* unlocked. Relock */ 524 lock_page(page); 525 526 return (rc < 0) ? -EIO : -EAGAIN; 527 } 528 529 /* 530 * Default handling if a filesystem does not provide a migration function. 531 */ 532 static int fallback_migrate_page(struct address_space *mapping, 533 struct page *newpage, struct page *page) 534 { 535 if (PageDirty(page)) 536 return writeout(mapping, page); 537 538 /* 539 * Buffers may be managed in a filesystem specific way. 540 * We must have no buffers or drop them. 541 */ 542 if (page_has_private(page) && 543 !try_to_release_page(page, GFP_KERNEL)) 544 return -EAGAIN; 545 546 return migrate_page(mapping, newpage, page); 547 } 548 549 /* 550 * Move a page to a newly allocated page 551 * The page is locked and all ptes have been successfully removed. 552 * 553 * The new page will have replaced the old page if this function 554 * is successful. 555 * 556 * Return value: 557 * < 0 - error code 558 * == 0 - success 559 */ 560 static int move_to_new_page(struct page *newpage, struct page *page, 561 int remap_swapcache, bool sync) 562 { 563 struct address_space *mapping; 564 int rc; 565 566 /* 567 * Block others from accessing the page when we get around to 568 * establishing additional references. We are the only one 569 * holding a reference to the new page at this point. 570 */ 571 if (!trylock_page(newpage)) 572 BUG(); 573 574 /* Prepare mapping for the new page.*/ 575 newpage->index = page->index; 576 newpage->mapping = page->mapping; 577 if (PageSwapBacked(page)) 578 SetPageSwapBacked(newpage); 579 580 mapping = page_mapping(page); 581 if (!mapping) 582 rc = migrate_page(mapping, newpage, page); 583 else { 584 /* 585 * Do not writeback pages if !sync and migratepage is 586 * not pointing to migrate_page() which is nonblocking 587 * (swapcache/tmpfs uses migratepage = migrate_page). 588 */ 589 if (PageDirty(page) && !sync && 590 mapping->a_ops->migratepage != migrate_page) 591 rc = -EBUSY; 592 else if (mapping->a_ops->migratepage) 593 /* 594 * Most pages have a mapping and most filesystems 595 * should provide a migration function. Anonymous 596 * pages are part of swap space which also has its 597 * own migration function. This is the most common 598 * path for page migration. 599 */ 600 rc = mapping->a_ops->migratepage(mapping, 601 newpage, page); 602 else 603 rc = fallback_migrate_page(mapping, newpage, page); 604 } 605 606 if (rc) { 607 newpage->mapping = NULL; 608 } else { 609 if (remap_swapcache) 610 remove_migration_ptes(page, newpage); 611 } 612 613 unlock_page(newpage); 614 615 return rc; 616 } 617 618 static int __unmap_and_move(struct page *page, struct page *newpage, 619 int force, bool offlining, bool sync) 620 { 621 int rc = -EAGAIN; 622 int remap_swapcache = 1; 623 int charge = 0; 624 struct mem_cgroup *mem; 625 struct anon_vma *anon_vma = NULL; 626 627 if (!trylock_page(page)) { 628 if (!force || !sync) 629 goto out; 630 631 /* 632 * It's not safe for direct compaction to call lock_page. 633 * For example, during page readahead pages are added locked 634 * to the LRU. Later, when the IO completes the pages are 635 * marked uptodate and unlocked. However, the queueing 636 * could be merging multiple pages for one bio (e.g. 637 * mpage_readpages). If an allocation happens for the 638 * second or third page, the process can end up locking 639 * the same page twice and deadlocking. Rather than 640 * trying to be clever about what pages can be locked, 641 * avoid the use of lock_page for direct compaction 642 * altogether. 643 */ 644 if (current->flags & PF_MEMALLOC) 645 goto out; 646 647 lock_page(page); 648 } 649 650 /* 651 * Only memory hotplug's offline_pages() caller has locked out KSM, 652 * and can safely migrate a KSM page. The other cases have skipped 653 * PageKsm along with PageReserved - but it is only now when we have 654 * the page lock that we can be certain it will not go KSM beneath us 655 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees 656 * its pagecount raised, but only here do we take the page lock which 657 * serializes that). 658 */ 659 if (PageKsm(page) && !offlining) { 660 rc = -EBUSY; 661 goto unlock; 662 } 663 664 /* charge against new page */ 665 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL); 666 if (charge == -ENOMEM) { 667 rc = -ENOMEM; 668 goto unlock; 669 } 670 BUG_ON(charge); 671 672 if (PageWriteback(page)) { 673 /* 674 * For !sync, there is no point retrying as the retry loop 675 * is expected to be too short for PageWriteback to be cleared 676 */ 677 if (!sync) { 678 rc = -EBUSY; 679 goto uncharge; 680 } 681 if (!force) 682 goto uncharge; 683 wait_on_page_writeback(page); 684 } 685 /* 686 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 687 * we cannot notice that anon_vma is freed while we migrates a page. 688 * This get_anon_vma() delays freeing anon_vma pointer until the end 689 * of migration. File cache pages are no problem because of page_lock() 690 * File Caches may use write_page() or lock_page() in migration, then, 691 * just care Anon page here. 692 */ 693 if (PageAnon(page)) { 694 /* 695 * Only page_lock_anon_vma() understands the subtleties of 696 * getting a hold on an anon_vma from outside one of its mms. 697 */ 698 anon_vma = page_get_anon_vma(page); 699 if (anon_vma) { 700 /* 701 * Anon page 702 */ 703 } else if (PageSwapCache(page)) { 704 /* 705 * We cannot be sure that the anon_vma of an unmapped 706 * swapcache page is safe to use because we don't 707 * know in advance if the VMA that this page belonged 708 * to still exists. If the VMA and others sharing the 709 * data have been freed, then the anon_vma could 710 * already be invalid. 711 * 712 * To avoid this possibility, swapcache pages get 713 * migrated but are not remapped when migration 714 * completes 715 */ 716 remap_swapcache = 0; 717 } else { 718 goto uncharge; 719 } 720 } 721 722 /* 723 * Corner case handling: 724 * 1. When a new swap-cache page is read into, it is added to the LRU 725 * and treated as swapcache but it has no rmap yet. 726 * Calling try_to_unmap() against a page->mapping==NULL page will 727 * trigger a BUG. So handle it here. 728 * 2. An orphaned page (see truncate_complete_page) might have 729 * fs-private metadata. The page can be picked up due to memory 730 * offlining. Everywhere else except page reclaim, the page is 731 * invisible to the vm, so the page can not be migrated. So try to 732 * free the metadata, so the page can be freed. 733 */ 734 if (!page->mapping) { 735 VM_BUG_ON(PageAnon(page)); 736 if (page_has_private(page)) { 737 try_to_free_buffers(page); 738 goto uncharge; 739 } 740 goto skip_unmap; 741 } 742 743 /* Establish migration ptes or remove ptes */ 744 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 745 746 skip_unmap: 747 if (!page_mapped(page)) 748 rc = move_to_new_page(newpage, page, remap_swapcache, sync); 749 750 if (rc && remap_swapcache) 751 remove_migration_ptes(page, page); 752 753 /* Drop an anon_vma reference if we took one */ 754 if (anon_vma) 755 put_anon_vma(anon_vma); 756 757 uncharge: 758 if (!charge) 759 mem_cgroup_end_migration(mem, page, newpage, rc == 0); 760 unlock: 761 unlock_page(page); 762 out: 763 return rc; 764 } 765 766 /* 767 * Obtain the lock on page, remove all ptes and migrate the page 768 * to the newly allocated page in newpage. 769 */ 770 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 771 struct page *page, int force, bool offlining, bool sync) 772 { 773 int rc = 0; 774 int *result = NULL; 775 struct page *newpage = get_new_page(page, private, &result); 776 777 if (!newpage) 778 return -ENOMEM; 779 780 if (page_count(page) == 1) { 781 /* page was freed from under us. So we are done. */ 782 goto out; 783 } 784 785 if (unlikely(PageTransHuge(page))) 786 if (unlikely(split_huge_page(page))) 787 goto out; 788 789 rc = __unmap_and_move(page, newpage, force, offlining, sync); 790 out: 791 if (rc != -EAGAIN) { 792 /* 793 * A page that has been migrated has all references 794 * removed and will be freed. A page that has not been 795 * migrated will have kepts its references and be 796 * restored. 797 */ 798 list_del(&page->lru); 799 dec_zone_page_state(page, NR_ISOLATED_ANON + 800 page_is_file_cache(page)); 801 putback_lru_page(page); 802 } 803 /* 804 * Move the new page to the LRU. If migration was not successful 805 * then this will free the page. 806 */ 807 putback_lru_page(newpage); 808 if (result) { 809 if (rc) 810 *result = rc; 811 else 812 *result = page_to_nid(newpage); 813 } 814 return rc; 815 } 816 817 /* 818 * Counterpart of unmap_and_move_page() for hugepage migration. 819 * 820 * This function doesn't wait the completion of hugepage I/O 821 * because there is no race between I/O and migration for hugepage. 822 * Note that currently hugepage I/O occurs only in direct I/O 823 * where no lock is held and PG_writeback is irrelevant, 824 * and writeback status of all subpages are counted in the reference 825 * count of the head page (i.e. if all subpages of a 2MB hugepage are 826 * under direct I/O, the reference of the head page is 512 and a bit more.) 827 * This means that when we try to migrate hugepage whose subpages are 828 * doing direct I/O, some references remain after try_to_unmap() and 829 * hugepage migration fails without data corruption. 830 * 831 * There is also no race when direct I/O is issued on the page under migration, 832 * because then pte is replaced with migration swap entry and direct I/O code 833 * will wait in the page fault for migration to complete. 834 */ 835 static int unmap_and_move_huge_page(new_page_t get_new_page, 836 unsigned long private, struct page *hpage, 837 int force, bool offlining, bool sync) 838 { 839 int rc = 0; 840 int *result = NULL; 841 struct page *new_hpage = get_new_page(hpage, private, &result); 842 struct anon_vma *anon_vma = NULL; 843 844 if (!new_hpage) 845 return -ENOMEM; 846 847 rc = -EAGAIN; 848 849 if (!trylock_page(hpage)) { 850 if (!force || !sync) 851 goto out; 852 lock_page(hpage); 853 } 854 855 if (PageAnon(hpage)) 856 anon_vma = page_get_anon_vma(hpage); 857 858 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 859 860 if (!page_mapped(hpage)) 861 rc = move_to_new_page(new_hpage, hpage, 1, sync); 862 863 if (rc) 864 remove_migration_ptes(hpage, hpage); 865 866 if (anon_vma) 867 put_anon_vma(anon_vma); 868 unlock_page(hpage); 869 870 out: 871 if (rc != -EAGAIN) { 872 list_del(&hpage->lru); 873 put_page(hpage); 874 } 875 876 put_page(new_hpage); 877 878 if (result) { 879 if (rc) 880 *result = rc; 881 else 882 *result = page_to_nid(new_hpage); 883 } 884 return rc; 885 } 886 887 /* 888 * migrate_pages 889 * 890 * The function takes one list of pages to migrate and a function 891 * that determines from the page to be migrated and the private data 892 * the target of the move and allocates the page. 893 * 894 * The function returns after 10 attempts or if no pages 895 * are movable anymore because to has become empty 896 * or no retryable pages exist anymore. 897 * Caller should call putback_lru_pages to return pages to the LRU 898 * or free list only if ret != 0. 899 * 900 * Return: Number of pages not migrated or error code. 901 */ 902 int migrate_pages(struct list_head *from, 903 new_page_t get_new_page, unsigned long private, bool offlining, 904 bool sync) 905 { 906 int retry = 1; 907 int nr_failed = 0; 908 int pass = 0; 909 struct page *page; 910 struct page *page2; 911 int swapwrite = current->flags & PF_SWAPWRITE; 912 int rc; 913 914 if (!swapwrite) 915 current->flags |= PF_SWAPWRITE; 916 917 for(pass = 0; pass < 10 && retry; pass++) { 918 retry = 0; 919 920 list_for_each_entry_safe(page, page2, from, lru) { 921 cond_resched(); 922 923 rc = unmap_and_move(get_new_page, private, 924 page, pass > 2, offlining, 925 sync); 926 927 switch(rc) { 928 case -ENOMEM: 929 goto out; 930 case -EAGAIN: 931 retry++; 932 break; 933 case 0: 934 break; 935 default: 936 /* Permanent failure */ 937 nr_failed++; 938 break; 939 } 940 } 941 } 942 rc = 0; 943 out: 944 if (!swapwrite) 945 current->flags &= ~PF_SWAPWRITE; 946 947 if (rc) 948 return rc; 949 950 return nr_failed + retry; 951 } 952 953 int migrate_huge_pages(struct list_head *from, 954 new_page_t get_new_page, unsigned long private, bool offlining, 955 bool sync) 956 { 957 int retry = 1; 958 int nr_failed = 0; 959 int pass = 0; 960 struct page *page; 961 struct page *page2; 962 int rc; 963 964 for (pass = 0; pass < 10 && retry; pass++) { 965 retry = 0; 966 967 list_for_each_entry_safe(page, page2, from, lru) { 968 cond_resched(); 969 970 rc = unmap_and_move_huge_page(get_new_page, 971 private, page, pass > 2, offlining, 972 sync); 973 974 switch(rc) { 975 case -ENOMEM: 976 goto out; 977 case -EAGAIN: 978 retry++; 979 break; 980 case 0: 981 break; 982 default: 983 /* Permanent failure */ 984 nr_failed++; 985 break; 986 } 987 } 988 } 989 rc = 0; 990 out: 991 if (rc) 992 return rc; 993 994 return nr_failed + retry; 995 } 996 997 #ifdef CONFIG_NUMA 998 /* 999 * Move a list of individual pages 1000 */ 1001 struct page_to_node { 1002 unsigned long addr; 1003 struct page *page; 1004 int node; 1005 int status; 1006 }; 1007 1008 static struct page *new_page_node(struct page *p, unsigned long private, 1009 int **result) 1010 { 1011 struct page_to_node *pm = (struct page_to_node *)private; 1012 1013 while (pm->node != MAX_NUMNODES && pm->page != p) 1014 pm++; 1015 1016 if (pm->node == MAX_NUMNODES) 1017 return NULL; 1018 1019 *result = &pm->status; 1020 1021 return alloc_pages_exact_node(pm->node, 1022 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 1023 } 1024 1025 /* 1026 * Move a set of pages as indicated in the pm array. The addr 1027 * field must be set to the virtual address of the page to be moved 1028 * and the node number must contain a valid target node. 1029 * The pm array ends with node = MAX_NUMNODES. 1030 */ 1031 static int do_move_page_to_node_array(struct mm_struct *mm, 1032 struct page_to_node *pm, 1033 int migrate_all) 1034 { 1035 int err; 1036 struct page_to_node *pp; 1037 LIST_HEAD(pagelist); 1038 1039 down_read(&mm->mmap_sem); 1040 1041 /* 1042 * Build a list of pages to migrate 1043 */ 1044 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1045 struct vm_area_struct *vma; 1046 struct page *page; 1047 1048 err = -EFAULT; 1049 vma = find_vma(mm, pp->addr); 1050 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1051 goto set_status; 1052 1053 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1054 1055 err = PTR_ERR(page); 1056 if (IS_ERR(page)) 1057 goto set_status; 1058 1059 err = -ENOENT; 1060 if (!page) 1061 goto set_status; 1062 1063 /* Use PageReserved to check for zero page */ 1064 if (PageReserved(page) || PageKsm(page)) 1065 goto put_and_set; 1066 1067 pp->page = page; 1068 err = page_to_nid(page); 1069 1070 if (err == pp->node) 1071 /* 1072 * Node already in the right place 1073 */ 1074 goto put_and_set; 1075 1076 err = -EACCES; 1077 if (page_mapcount(page) > 1 && 1078 !migrate_all) 1079 goto put_and_set; 1080 1081 err = isolate_lru_page(page); 1082 if (!err) { 1083 list_add_tail(&page->lru, &pagelist); 1084 inc_zone_page_state(page, NR_ISOLATED_ANON + 1085 page_is_file_cache(page)); 1086 } 1087 put_and_set: 1088 /* 1089 * Either remove the duplicate refcount from 1090 * isolate_lru_page() or drop the page ref if it was 1091 * not isolated. 1092 */ 1093 put_page(page); 1094 set_status: 1095 pp->status = err; 1096 } 1097 1098 err = 0; 1099 if (!list_empty(&pagelist)) { 1100 err = migrate_pages(&pagelist, new_page_node, 1101 (unsigned long)pm, 0, true); 1102 if (err) 1103 putback_lru_pages(&pagelist); 1104 } 1105 1106 up_read(&mm->mmap_sem); 1107 return err; 1108 } 1109 1110 /* 1111 * Migrate an array of page address onto an array of nodes and fill 1112 * the corresponding array of status. 1113 */ 1114 static int do_pages_move(struct mm_struct *mm, struct task_struct *task, 1115 unsigned long nr_pages, 1116 const void __user * __user *pages, 1117 const int __user *nodes, 1118 int __user *status, int flags) 1119 { 1120 struct page_to_node *pm; 1121 nodemask_t task_nodes; 1122 unsigned long chunk_nr_pages; 1123 unsigned long chunk_start; 1124 int err; 1125 1126 task_nodes = cpuset_mems_allowed(task); 1127 1128 err = -ENOMEM; 1129 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1130 if (!pm) 1131 goto out; 1132 1133 migrate_prep(); 1134 1135 /* 1136 * Store a chunk of page_to_node array in a page, 1137 * but keep the last one as a marker 1138 */ 1139 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1140 1141 for (chunk_start = 0; 1142 chunk_start < nr_pages; 1143 chunk_start += chunk_nr_pages) { 1144 int j; 1145 1146 if (chunk_start + chunk_nr_pages > nr_pages) 1147 chunk_nr_pages = nr_pages - chunk_start; 1148 1149 /* fill the chunk pm with addrs and nodes from user-space */ 1150 for (j = 0; j < chunk_nr_pages; j++) { 1151 const void __user *p; 1152 int node; 1153 1154 err = -EFAULT; 1155 if (get_user(p, pages + j + chunk_start)) 1156 goto out_pm; 1157 pm[j].addr = (unsigned long) p; 1158 1159 if (get_user(node, nodes + j + chunk_start)) 1160 goto out_pm; 1161 1162 err = -ENODEV; 1163 if (node < 0 || node >= MAX_NUMNODES) 1164 goto out_pm; 1165 1166 if (!node_state(node, N_HIGH_MEMORY)) 1167 goto out_pm; 1168 1169 err = -EACCES; 1170 if (!node_isset(node, task_nodes)) 1171 goto out_pm; 1172 1173 pm[j].node = node; 1174 } 1175 1176 /* End marker for this chunk */ 1177 pm[chunk_nr_pages].node = MAX_NUMNODES; 1178 1179 /* Migrate this chunk */ 1180 err = do_move_page_to_node_array(mm, pm, 1181 flags & MPOL_MF_MOVE_ALL); 1182 if (err < 0) 1183 goto out_pm; 1184 1185 /* Return status information */ 1186 for (j = 0; j < chunk_nr_pages; j++) 1187 if (put_user(pm[j].status, status + j + chunk_start)) { 1188 err = -EFAULT; 1189 goto out_pm; 1190 } 1191 } 1192 err = 0; 1193 1194 out_pm: 1195 free_page((unsigned long)pm); 1196 out: 1197 return err; 1198 } 1199 1200 /* 1201 * Determine the nodes of an array of pages and store it in an array of status. 1202 */ 1203 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1204 const void __user **pages, int *status) 1205 { 1206 unsigned long i; 1207 1208 down_read(&mm->mmap_sem); 1209 1210 for (i = 0; i < nr_pages; i++) { 1211 unsigned long addr = (unsigned long)(*pages); 1212 struct vm_area_struct *vma; 1213 struct page *page; 1214 int err = -EFAULT; 1215 1216 vma = find_vma(mm, addr); 1217 if (!vma || addr < vma->vm_start) 1218 goto set_status; 1219 1220 page = follow_page(vma, addr, 0); 1221 1222 err = PTR_ERR(page); 1223 if (IS_ERR(page)) 1224 goto set_status; 1225 1226 err = -ENOENT; 1227 /* Use PageReserved to check for zero page */ 1228 if (!page || PageReserved(page) || PageKsm(page)) 1229 goto set_status; 1230 1231 err = page_to_nid(page); 1232 set_status: 1233 *status = err; 1234 1235 pages++; 1236 status++; 1237 } 1238 1239 up_read(&mm->mmap_sem); 1240 } 1241 1242 /* 1243 * Determine the nodes of a user array of pages and store it in 1244 * a user array of status. 1245 */ 1246 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1247 const void __user * __user *pages, 1248 int __user *status) 1249 { 1250 #define DO_PAGES_STAT_CHUNK_NR 16 1251 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1252 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1253 1254 while (nr_pages) { 1255 unsigned long chunk_nr; 1256 1257 chunk_nr = nr_pages; 1258 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1259 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1260 1261 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1262 break; 1263 1264 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1265 1266 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1267 break; 1268 1269 pages += chunk_nr; 1270 status += chunk_nr; 1271 nr_pages -= chunk_nr; 1272 } 1273 return nr_pages ? -EFAULT : 0; 1274 } 1275 1276 /* 1277 * Move a list of pages in the address space of the currently executing 1278 * process. 1279 */ 1280 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1281 const void __user * __user *, pages, 1282 const int __user *, nodes, 1283 int __user *, status, int, flags) 1284 { 1285 const struct cred *cred = current_cred(), *tcred; 1286 struct task_struct *task; 1287 struct mm_struct *mm; 1288 int err; 1289 1290 /* Check flags */ 1291 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1292 return -EINVAL; 1293 1294 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1295 return -EPERM; 1296 1297 /* Find the mm_struct */ 1298 rcu_read_lock(); 1299 task = pid ? find_task_by_vpid(pid) : current; 1300 if (!task) { 1301 rcu_read_unlock(); 1302 return -ESRCH; 1303 } 1304 mm = get_task_mm(task); 1305 rcu_read_unlock(); 1306 1307 if (!mm) 1308 return -EINVAL; 1309 1310 /* 1311 * Check if this process has the right to modify the specified 1312 * process. The right exists if the process has administrative 1313 * capabilities, superuser privileges or the same 1314 * userid as the target process. 1315 */ 1316 rcu_read_lock(); 1317 tcred = __task_cred(task); 1318 if (cred->euid != tcred->suid && cred->euid != tcred->uid && 1319 cred->uid != tcred->suid && cred->uid != tcred->uid && 1320 !capable(CAP_SYS_NICE)) { 1321 rcu_read_unlock(); 1322 err = -EPERM; 1323 goto out; 1324 } 1325 rcu_read_unlock(); 1326 1327 err = security_task_movememory(task); 1328 if (err) 1329 goto out; 1330 1331 if (nodes) { 1332 err = do_pages_move(mm, task, nr_pages, pages, nodes, status, 1333 flags); 1334 } else { 1335 err = do_pages_stat(mm, nr_pages, pages, status); 1336 } 1337 1338 out: 1339 mmput(mm); 1340 return err; 1341 } 1342 1343 /* 1344 * Call migration functions in the vma_ops that may prepare 1345 * memory in a vm for migration. migration functions may perform 1346 * the migration for vmas that do not have an underlying page struct. 1347 */ 1348 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1349 const nodemask_t *from, unsigned long flags) 1350 { 1351 struct vm_area_struct *vma; 1352 int err = 0; 1353 1354 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { 1355 if (vma->vm_ops && vma->vm_ops->migrate) { 1356 err = vma->vm_ops->migrate(vma, to, from, flags); 1357 if (err) 1358 break; 1359 } 1360 } 1361 return err; 1362 } 1363 #endif 1364