xref: /linux/mm/migrate.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
37 
38 #include <asm/tlbflush.h>
39 
40 #include "internal.h"
41 
42 /*
43  * migrate_prep() needs to be called before we start compiling a list of pages
44  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45  * undesirable, use migrate_prep_local()
46  */
47 int migrate_prep(void)
48 {
49 	/*
50 	 * Clear the LRU lists so pages can be isolated.
51 	 * Note that pages may be moved off the LRU after we have
52 	 * drained them. Those pages will fail to migrate like other
53 	 * pages that may be busy.
54 	 */
55 	lru_add_drain_all();
56 
57 	return 0;
58 }
59 
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
62 {
63 	lru_add_drain();
64 
65 	return 0;
66 }
67 
68 /*
69  * Add isolated pages on the list back to the LRU under page lock
70  * to avoid leaking evictable pages back onto unevictable list.
71  */
72 void putback_lru_pages(struct list_head *l)
73 {
74 	struct page *page;
75 	struct page *page2;
76 
77 	list_for_each_entry_safe(page, page2, l, lru) {
78 		list_del(&page->lru);
79 		dec_zone_page_state(page, NR_ISOLATED_ANON +
80 				page_is_file_cache(page));
81 		putback_lru_page(page);
82 	}
83 }
84 
85 /*
86  * Restore a potential migration pte to a working pte entry
87  */
88 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 				 unsigned long addr, void *old)
90 {
91 	struct mm_struct *mm = vma->vm_mm;
92 	swp_entry_t entry;
93  	pgd_t *pgd;
94  	pud_t *pud;
95  	pmd_t *pmd;
96 	pte_t *ptep, pte;
97  	spinlock_t *ptl;
98 
99 	if (unlikely(PageHuge(new))) {
100 		ptep = huge_pte_offset(mm, addr);
101 		if (!ptep)
102 			goto out;
103 		ptl = &mm->page_table_lock;
104 	} else {
105 		pgd = pgd_offset(mm, addr);
106 		if (!pgd_present(*pgd))
107 			goto out;
108 
109 		pud = pud_offset(pgd, addr);
110 		if (!pud_present(*pud))
111 			goto out;
112 
113 		pmd = pmd_offset(pud, addr);
114 		if (pmd_trans_huge(*pmd))
115 			goto out;
116 		if (!pmd_present(*pmd))
117 			goto out;
118 
119 		ptep = pte_offset_map(pmd, addr);
120 
121 		/*
122 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
123 		 * can race mremap's move_ptes(), which skips anon_vma lock.
124 		 */
125 
126 		ptl = pte_lockptr(mm, pmd);
127 	}
128 
129  	spin_lock(ptl);
130 	pte = *ptep;
131 	if (!is_swap_pte(pte))
132 		goto unlock;
133 
134 	entry = pte_to_swp_entry(pte);
135 
136 	if (!is_migration_entry(entry) ||
137 	    migration_entry_to_page(entry) != old)
138 		goto unlock;
139 
140 	get_page(new);
141 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 	if (is_write_migration_entry(entry))
143 		pte = pte_mkwrite(pte);
144 #ifdef CONFIG_HUGETLB_PAGE
145 	if (PageHuge(new))
146 		pte = pte_mkhuge(pte);
147 #endif
148 	flush_cache_page(vma, addr, pte_pfn(pte));
149 	set_pte_at(mm, addr, ptep, pte);
150 
151 	if (PageHuge(new)) {
152 		if (PageAnon(new))
153 			hugepage_add_anon_rmap(new, vma, addr);
154 		else
155 			page_dup_rmap(new);
156 	} else if (PageAnon(new))
157 		page_add_anon_rmap(new, vma, addr);
158 	else
159 		page_add_file_rmap(new);
160 
161 	/* No need to invalidate - it was non-present before */
162 	update_mmu_cache(vma, addr, ptep);
163 unlock:
164 	pte_unmap_unlock(ptep, ptl);
165 out:
166 	return SWAP_AGAIN;
167 }
168 
169 /*
170  * Get rid of all migration entries and replace them by
171  * references to the indicated page.
172  */
173 static void remove_migration_ptes(struct page *old, struct page *new)
174 {
175 	rmap_walk(new, remove_migration_pte, old);
176 }
177 
178 /*
179  * Something used the pte of a page under migration. We need to
180  * get to the page and wait until migration is finished.
181  * When we return from this function the fault will be retried.
182  */
183 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 				unsigned long address)
185 {
186 	pte_t *ptep, pte;
187 	spinlock_t *ptl;
188 	swp_entry_t entry;
189 	struct page *page;
190 
191 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 	pte = *ptep;
193 	if (!is_swap_pte(pte))
194 		goto out;
195 
196 	entry = pte_to_swp_entry(pte);
197 	if (!is_migration_entry(entry))
198 		goto out;
199 
200 	page = migration_entry_to_page(entry);
201 
202 	/*
203 	 * Once radix-tree replacement of page migration started, page_count
204 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 	 * against a page without get_page().
206 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 	 * will occur again.
208 	 */
209 	if (!get_page_unless_zero(page))
210 		goto out;
211 	pte_unmap_unlock(ptep, ptl);
212 	wait_on_page_locked(page);
213 	put_page(page);
214 	return;
215 out:
216 	pte_unmap_unlock(ptep, ptl);
217 }
218 
219 /*
220  * Replace the page in the mapping.
221  *
222  * The number of remaining references must be:
223  * 1 for anonymous pages without a mapping
224  * 2 for pages with a mapping
225  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
226  */
227 static int migrate_page_move_mapping(struct address_space *mapping,
228 		struct page *newpage, struct page *page)
229 {
230 	int expected_count;
231 	void **pslot;
232 
233 	if (!mapping) {
234 		/* Anonymous page without mapping */
235 		if (page_count(page) != 1)
236 			return -EAGAIN;
237 		return 0;
238 	}
239 
240 	spin_lock_irq(&mapping->tree_lock);
241 
242 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
243  					page_index(page));
244 
245 	expected_count = 2 + page_has_private(page);
246 	if (page_count(page) != expected_count ||
247 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
248 		spin_unlock_irq(&mapping->tree_lock);
249 		return -EAGAIN;
250 	}
251 
252 	if (!page_freeze_refs(page, expected_count)) {
253 		spin_unlock_irq(&mapping->tree_lock);
254 		return -EAGAIN;
255 	}
256 
257 	/*
258 	 * Now we know that no one else is looking at the page.
259 	 */
260 	get_page(newpage);	/* add cache reference */
261 	if (PageSwapCache(page)) {
262 		SetPageSwapCache(newpage);
263 		set_page_private(newpage, page_private(page));
264 	}
265 
266 	radix_tree_replace_slot(pslot, newpage);
267 
268 	/*
269 	 * Drop cache reference from old page by unfreezing
270 	 * to one less reference.
271 	 * We know this isn't the last reference.
272 	 */
273 	page_unfreeze_refs(page, expected_count - 1);
274 
275 	/*
276 	 * If moved to a different zone then also account
277 	 * the page for that zone. Other VM counters will be
278 	 * taken care of when we establish references to the
279 	 * new page and drop references to the old page.
280 	 *
281 	 * Note that anonymous pages are accounted for
282 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
283 	 * are mapped to swap space.
284 	 */
285 	__dec_zone_page_state(page, NR_FILE_PAGES);
286 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
287 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
288 		__dec_zone_page_state(page, NR_SHMEM);
289 		__inc_zone_page_state(newpage, NR_SHMEM);
290 	}
291 	spin_unlock_irq(&mapping->tree_lock);
292 
293 	return 0;
294 }
295 
296 /*
297  * The expected number of remaining references is the same as that
298  * of migrate_page_move_mapping().
299  */
300 int migrate_huge_page_move_mapping(struct address_space *mapping,
301 				   struct page *newpage, struct page *page)
302 {
303 	int expected_count;
304 	void **pslot;
305 
306 	if (!mapping) {
307 		if (page_count(page) != 1)
308 			return -EAGAIN;
309 		return 0;
310 	}
311 
312 	spin_lock_irq(&mapping->tree_lock);
313 
314 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
315 					page_index(page));
316 
317 	expected_count = 2 + page_has_private(page);
318 	if (page_count(page) != expected_count ||
319 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
320 		spin_unlock_irq(&mapping->tree_lock);
321 		return -EAGAIN;
322 	}
323 
324 	if (!page_freeze_refs(page, expected_count)) {
325 		spin_unlock_irq(&mapping->tree_lock);
326 		return -EAGAIN;
327 	}
328 
329 	get_page(newpage);
330 
331 	radix_tree_replace_slot(pslot, newpage);
332 
333 	page_unfreeze_refs(page, expected_count - 1);
334 
335 	spin_unlock_irq(&mapping->tree_lock);
336 	return 0;
337 }
338 
339 /*
340  * Copy the page to its new location
341  */
342 void migrate_page_copy(struct page *newpage, struct page *page)
343 {
344 	if (PageHuge(page))
345 		copy_huge_page(newpage, page);
346 	else
347 		copy_highpage(newpage, page);
348 
349 	if (PageError(page))
350 		SetPageError(newpage);
351 	if (PageReferenced(page))
352 		SetPageReferenced(newpage);
353 	if (PageUptodate(page))
354 		SetPageUptodate(newpage);
355 	if (TestClearPageActive(page)) {
356 		VM_BUG_ON(PageUnevictable(page));
357 		SetPageActive(newpage);
358 	} else if (TestClearPageUnevictable(page))
359 		SetPageUnevictable(newpage);
360 	if (PageChecked(page))
361 		SetPageChecked(newpage);
362 	if (PageMappedToDisk(page))
363 		SetPageMappedToDisk(newpage);
364 
365 	if (PageDirty(page)) {
366 		clear_page_dirty_for_io(page);
367 		/*
368 		 * Want to mark the page and the radix tree as dirty, and
369 		 * redo the accounting that clear_page_dirty_for_io undid,
370 		 * but we can't use set_page_dirty because that function
371 		 * is actually a signal that all of the page has become dirty.
372 		 * Whereas only part of our page may be dirty.
373 		 */
374 		__set_page_dirty_nobuffers(newpage);
375  	}
376 
377 	mlock_migrate_page(newpage, page);
378 	ksm_migrate_page(newpage, page);
379 
380 	ClearPageSwapCache(page);
381 	ClearPagePrivate(page);
382 	set_page_private(page, 0);
383 	page->mapping = NULL;
384 
385 	/*
386 	 * If any waiters have accumulated on the new page then
387 	 * wake them up.
388 	 */
389 	if (PageWriteback(newpage))
390 		end_page_writeback(newpage);
391 }
392 
393 /************************************************************
394  *                    Migration functions
395  ***********************************************************/
396 
397 /* Always fail migration. Used for mappings that are not movable */
398 int fail_migrate_page(struct address_space *mapping,
399 			struct page *newpage, struct page *page)
400 {
401 	return -EIO;
402 }
403 EXPORT_SYMBOL(fail_migrate_page);
404 
405 /*
406  * Common logic to directly migrate a single page suitable for
407  * pages that do not use PagePrivate/PagePrivate2.
408  *
409  * Pages are locked upon entry and exit.
410  */
411 int migrate_page(struct address_space *mapping,
412 		struct page *newpage, struct page *page)
413 {
414 	int rc;
415 
416 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
417 
418 	rc = migrate_page_move_mapping(mapping, newpage, page);
419 
420 	if (rc)
421 		return rc;
422 
423 	migrate_page_copy(newpage, page);
424 	return 0;
425 }
426 EXPORT_SYMBOL(migrate_page);
427 
428 #ifdef CONFIG_BLOCK
429 /*
430  * Migration function for pages with buffers. This function can only be used
431  * if the underlying filesystem guarantees that no other references to "page"
432  * exist.
433  */
434 int buffer_migrate_page(struct address_space *mapping,
435 		struct page *newpage, struct page *page)
436 {
437 	struct buffer_head *bh, *head;
438 	int rc;
439 
440 	if (!page_has_buffers(page))
441 		return migrate_page(mapping, newpage, page);
442 
443 	head = page_buffers(page);
444 
445 	rc = migrate_page_move_mapping(mapping, newpage, page);
446 
447 	if (rc)
448 		return rc;
449 
450 	bh = head;
451 	do {
452 		get_bh(bh);
453 		lock_buffer(bh);
454 		bh = bh->b_this_page;
455 
456 	} while (bh != head);
457 
458 	ClearPagePrivate(page);
459 	set_page_private(newpage, page_private(page));
460 	set_page_private(page, 0);
461 	put_page(page);
462 	get_page(newpage);
463 
464 	bh = head;
465 	do {
466 		set_bh_page(bh, newpage, bh_offset(bh));
467 		bh = bh->b_this_page;
468 
469 	} while (bh != head);
470 
471 	SetPagePrivate(newpage);
472 
473 	migrate_page_copy(newpage, page);
474 
475 	bh = head;
476 	do {
477 		unlock_buffer(bh);
478  		put_bh(bh);
479 		bh = bh->b_this_page;
480 
481 	} while (bh != head);
482 
483 	return 0;
484 }
485 EXPORT_SYMBOL(buffer_migrate_page);
486 #endif
487 
488 /*
489  * Writeback a page to clean the dirty state
490  */
491 static int writeout(struct address_space *mapping, struct page *page)
492 {
493 	struct writeback_control wbc = {
494 		.sync_mode = WB_SYNC_NONE,
495 		.nr_to_write = 1,
496 		.range_start = 0,
497 		.range_end = LLONG_MAX,
498 		.for_reclaim = 1
499 	};
500 	int rc;
501 
502 	if (!mapping->a_ops->writepage)
503 		/* No write method for the address space */
504 		return -EINVAL;
505 
506 	if (!clear_page_dirty_for_io(page))
507 		/* Someone else already triggered a write */
508 		return -EAGAIN;
509 
510 	/*
511 	 * A dirty page may imply that the underlying filesystem has
512 	 * the page on some queue. So the page must be clean for
513 	 * migration. Writeout may mean we loose the lock and the
514 	 * page state is no longer what we checked for earlier.
515 	 * At this point we know that the migration attempt cannot
516 	 * be successful.
517 	 */
518 	remove_migration_ptes(page, page);
519 
520 	rc = mapping->a_ops->writepage(page, &wbc);
521 
522 	if (rc != AOP_WRITEPAGE_ACTIVATE)
523 		/* unlocked. Relock */
524 		lock_page(page);
525 
526 	return (rc < 0) ? -EIO : -EAGAIN;
527 }
528 
529 /*
530  * Default handling if a filesystem does not provide a migration function.
531  */
532 static int fallback_migrate_page(struct address_space *mapping,
533 	struct page *newpage, struct page *page)
534 {
535 	if (PageDirty(page))
536 		return writeout(mapping, page);
537 
538 	/*
539 	 * Buffers may be managed in a filesystem specific way.
540 	 * We must have no buffers or drop them.
541 	 */
542 	if (page_has_private(page) &&
543 	    !try_to_release_page(page, GFP_KERNEL))
544 		return -EAGAIN;
545 
546 	return migrate_page(mapping, newpage, page);
547 }
548 
549 /*
550  * Move a page to a newly allocated page
551  * The page is locked and all ptes have been successfully removed.
552  *
553  * The new page will have replaced the old page if this function
554  * is successful.
555  *
556  * Return value:
557  *   < 0 - error code
558  *  == 0 - success
559  */
560 static int move_to_new_page(struct page *newpage, struct page *page,
561 					int remap_swapcache, bool sync)
562 {
563 	struct address_space *mapping;
564 	int rc;
565 
566 	/*
567 	 * Block others from accessing the page when we get around to
568 	 * establishing additional references. We are the only one
569 	 * holding a reference to the new page at this point.
570 	 */
571 	if (!trylock_page(newpage))
572 		BUG();
573 
574 	/* Prepare mapping for the new page.*/
575 	newpage->index = page->index;
576 	newpage->mapping = page->mapping;
577 	if (PageSwapBacked(page))
578 		SetPageSwapBacked(newpage);
579 
580 	mapping = page_mapping(page);
581 	if (!mapping)
582 		rc = migrate_page(mapping, newpage, page);
583 	else {
584 		/*
585 		 * Do not writeback pages if !sync and migratepage is
586 		 * not pointing to migrate_page() which is nonblocking
587 		 * (swapcache/tmpfs uses migratepage = migrate_page).
588 		 */
589 		if (PageDirty(page) && !sync &&
590 		    mapping->a_ops->migratepage != migrate_page)
591 			rc = -EBUSY;
592 		else if (mapping->a_ops->migratepage)
593 			/*
594 			 * Most pages have a mapping and most filesystems
595 			 * should provide a migration function. Anonymous
596 			 * pages are part of swap space which also has its
597 			 * own migration function. This is the most common
598 			 * path for page migration.
599 			 */
600 			rc = mapping->a_ops->migratepage(mapping,
601 							newpage, page);
602 		else
603 			rc = fallback_migrate_page(mapping, newpage, page);
604 	}
605 
606 	if (rc) {
607 		newpage->mapping = NULL;
608 	} else {
609 		if (remap_swapcache)
610 			remove_migration_ptes(page, newpage);
611 	}
612 
613 	unlock_page(newpage);
614 
615 	return rc;
616 }
617 
618 static int __unmap_and_move(struct page *page, struct page *newpage,
619 				int force, bool offlining, bool sync)
620 {
621 	int rc = -EAGAIN;
622 	int remap_swapcache = 1;
623 	int charge = 0;
624 	struct mem_cgroup *mem;
625 	struct anon_vma *anon_vma = NULL;
626 
627 	if (!trylock_page(page)) {
628 		if (!force || !sync)
629 			goto out;
630 
631 		/*
632 		 * It's not safe for direct compaction to call lock_page.
633 		 * For example, during page readahead pages are added locked
634 		 * to the LRU. Later, when the IO completes the pages are
635 		 * marked uptodate and unlocked. However, the queueing
636 		 * could be merging multiple pages for one bio (e.g.
637 		 * mpage_readpages). If an allocation happens for the
638 		 * second or third page, the process can end up locking
639 		 * the same page twice and deadlocking. Rather than
640 		 * trying to be clever about what pages can be locked,
641 		 * avoid the use of lock_page for direct compaction
642 		 * altogether.
643 		 */
644 		if (current->flags & PF_MEMALLOC)
645 			goto out;
646 
647 		lock_page(page);
648 	}
649 
650 	/*
651 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
652 	 * and can safely migrate a KSM page.  The other cases have skipped
653 	 * PageKsm along with PageReserved - but it is only now when we have
654 	 * the page lock that we can be certain it will not go KSM beneath us
655 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
656 	 * its pagecount raised, but only here do we take the page lock which
657 	 * serializes that).
658 	 */
659 	if (PageKsm(page) && !offlining) {
660 		rc = -EBUSY;
661 		goto unlock;
662 	}
663 
664 	/* charge against new page */
665 	charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
666 	if (charge == -ENOMEM) {
667 		rc = -ENOMEM;
668 		goto unlock;
669 	}
670 	BUG_ON(charge);
671 
672 	if (PageWriteback(page)) {
673 		/*
674 		 * For !sync, there is no point retrying as the retry loop
675 		 * is expected to be too short for PageWriteback to be cleared
676 		 */
677 		if (!sync) {
678 			rc = -EBUSY;
679 			goto uncharge;
680 		}
681 		if (!force)
682 			goto uncharge;
683 		wait_on_page_writeback(page);
684 	}
685 	/*
686 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
687 	 * we cannot notice that anon_vma is freed while we migrates a page.
688 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
689 	 * of migration. File cache pages are no problem because of page_lock()
690 	 * File Caches may use write_page() or lock_page() in migration, then,
691 	 * just care Anon page here.
692 	 */
693 	if (PageAnon(page)) {
694 		/*
695 		 * Only page_lock_anon_vma() understands the subtleties of
696 		 * getting a hold on an anon_vma from outside one of its mms.
697 		 */
698 		anon_vma = page_get_anon_vma(page);
699 		if (anon_vma) {
700 			/*
701 			 * Anon page
702 			 */
703 		} else if (PageSwapCache(page)) {
704 			/*
705 			 * We cannot be sure that the anon_vma of an unmapped
706 			 * swapcache page is safe to use because we don't
707 			 * know in advance if the VMA that this page belonged
708 			 * to still exists. If the VMA and others sharing the
709 			 * data have been freed, then the anon_vma could
710 			 * already be invalid.
711 			 *
712 			 * To avoid this possibility, swapcache pages get
713 			 * migrated but are not remapped when migration
714 			 * completes
715 			 */
716 			remap_swapcache = 0;
717 		} else {
718 			goto uncharge;
719 		}
720 	}
721 
722 	/*
723 	 * Corner case handling:
724 	 * 1. When a new swap-cache page is read into, it is added to the LRU
725 	 * and treated as swapcache but it has no rmap yet.
726 	 * Calling try_to_unmap() against a page->mapping==NULL page will
727 	 * trigger a BUG.  So handle it here.
728 	 * 2. An orphaned page (see truncate_complete_page) might have
729 	 * fs-private metadata. The page can be picked up due to memory
730 	 * offlining.  Everywhere else except page reclaim, the page is
731 	 * invisible to the vm, so the page can not be migrated.  So try to
732 	 * free the metadata, so the page can be freed.
733 	 */
734 	if (!page->mapping) {
735 		VM_BUG_ON(PageAnon(page));
736 		if (page_has_private(page)) {
737 			try_to_free_buffers(page);
738 			goto uncharge;
739 		}
740 		goto skip_unmap;
741 	}
742 
743 	/* Establish migration ptes or remove ptes */
744 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
745 
746 skip_unmap:
747 	if (!page_mapped(page))
748 		rc = move_to_new_page(newpage, page, remap_swapcache, sync);
749 
750 	if (rc && remap_swapcache)
751 		remove_migration_ptes(page, page);
752 
753 	/* Drop an anon_vma reference if we took one */
754 	if (anon_vma)
755 		put_anon_vma(anon_vma);
756 
757 uncharge:
758 	if (!charge)
759 		mem_cgroup_end_migration(mem, page, newpage, rc == 0);
760 unlock:
761 	unlock_page(page);
762 out:
763 	return rc;
764 }
765 
766 /*
767  * Obtain the lock on page, remove all ptes and migrate the page
768  * to the newly allocated page in newpage.
769  */
770 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
771 			struct page *page, int force, bool offlining, bool sync)
772 {
773 	int rc = 0;
774 	int *result = NULL;
775 	struct page *newpage = get_new_page(page, private, &result);
776 
777 	if (!newpage)
778 		return -ENOMEM;
779 
780 	if (page_count(page) == 1) {
781 		/* page was freed from under us. So we are done. */
782 		goto out;
783 	}
784 
785 	if (unlikely(PageTransHuge(page)))
786 		if (unlikely(split_huge_page(page)))
787 			goto out;
788 
789 	rc = __unmap_and_move(page, newpage, force, offlining, sync);
790 out:
791 	if (rc != -EAGAIN) {
792 		/*
793 		 * A page that has been migrated has all references
794 		 * removed and will be freed. A page that has not been
795 		 * migrated will have kepts its references and be
796 		 * restored.
797 		 */
798 		list_del(&page->lru);
799 		dec_zone_page_state(page, NR_ISOLATED_ANON +
800 				page_is_file_cache(page));
801 		putback_lru_page(page);
802 	}
803 	/*
804 	 * Move the new page to the LRU. If migration was not successful
805 	 * then this will free the page.
806 	 */
807 	putback_lru_page(newpage);
808 	if (result) {
809 		if (rc)
810 			*result = rc;
811 		else
812 			*result = page_to_nid(newpage);
813 	}
814 	return rc;
815 }
816 
817 /*
818  * Counterpart of unmap_and_move_page() for hugepage migration.
819  *
820  * This function doesn't wait the completion of hugepage I/O
821  * because there is no race between I/O and migration for hugepage.
822  * Note that currently hugepage I/O occurs only in direct I/O
823  * where no lock is held and PG_writeback is irrelevant,
824  * and writeback status of all subpages are counted in the reference
825  * count of the head page (i.e. if all subpages of a 2MB hugepage are
826  * under direct I/O, the reference of the head page is 512 and a bit more.)
827  * This means that when we try to migrate hugepage whose subpages are
828  * doing direct I/O, some references remain after try_to_unmap() and
829  * hugepage migration fails without data corruption.
830  *
831  * There is also no race when direct I/O is issued on the page under migration,
832  * because then pte is replaced with migration swap entry and direct I/O code
833  * will wait in the page fault for migration to complete.
834  */
835 static int unmap_and_move_huge_page(new_page_t get_new_page,
836 				unsigned long private, struct page *hpage,
837 				int force, bool offlining, bool sync)
838 {
839 	int rc = 0;
840 	int *result = NULL;
841 	struct page *new_hpage = get_new_page(hpage, private, &result);
842 	struct anon_vma *anon_vma = NULL;
843 
844 	if (!new_hpage)
845 		return -ENOMEM;
846 
847 	rc = -EAGAIN;
848 
849 	if (!trylock_page(hpage)) {
850 		if (!force || !sync)
851 			goto out;
852 		lock_page(hpage);
853 	}
854 
855 	if (PageAnon(hpage))
856 		anon_vma = page_get_anon_vma(hpage);
857 
858 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
859 
860 	if (!page_mapped(hpage))
861 		rc = move_to_new_page(new_hpage, hpage, 1, sync);
862 
863 	if (rc)
864 		remove_migration_ptes(hpage, hpage);
865 
866 	if (anon_vma)
867 		put_anon_vma(anon_vma);
868 	unlock_page(hpage);
869 
870 out:
871 	if (rc != -EAGAIN) {
872 		list_del(&hpage->lru);
873 		put_page(hpage);
874 	}
875 
876 	put_page(new_hpage);
877 
878 	if (result) {
879 		if (rc)
880 			*result = rc;
881 		else
882 			*result = page_to_nid(new_hpage);
883 	}
884 	return rc;
885 }
886 
887 /*
888  * migrate_pages
889  *
890  * The function takes one list of pages to migrate and a function
891  * that determines from the page to be migrated and the private data
892  * the target of the move and allocates the page.
893  *
894  * The function returns after 10 attempts or if no pages
895  * are movable anymore because to has become empty
896  * or no retryable pages exist anymore.
897  * Caller should call putback_lru_pages to return pages to the LRU
898  * or free list only if ret != 0.
899  *
900  * Return: Number of pages not migrated or error code.
901  */
902 int migrate_pages(struct list_head *from,
903 		new_page_t get_new_page, unsigned long private, bool offlining,
904 		bool sync)
905 {
906 	int retry = 1;
907 	int nr_failed = 0;
908 	int pass = 0;
909 	struct page *page;
910 	struct page *page2;
911 	int swapwrite = current->flags & PF_SWAPWRITE;
912 	int rc;
913 
914 	if (!swapwrite)
915 		current->flags |= PF_SWAPWRITE;
916 
917 	for(pass = 0; pass < 10 && retry; pass++) {
918 		retry = 0;
919 
920 		list_for_each_entry_safe(page, page2, from, lru) {
921 			cond_resched();
922 
923 			rc = unmap_and_move(get_new_page, private,
924 						page, pass > 2, offlining,
925 						sync);
926 
927 			switch(rc) {
928 			case -ENOMEM:
929 				goto out;
930 			case -EAGAIN:
931 				retry++;
932 				break;
933 			case 0:
934 				break;
935 			default:
936 				/* Permanent failure */
937 				nr_failed++;
938 				break;
939 			}
940 		}
941 	}
942 	rc = 0;
943 out:
944 	if (!swapwrite)
945 		current->flags &= ~PF_SWAPWRITE;
946 
947 	if (rc)
948 		return rc;
949 
950 	return nr_failed + retry;
951 }
952 
953 int migrate_huge_pages(struct list_head *from,
954 		new_page_t get_new_page, unsigned long private, bool offlining,
955 		bool sync)
956 {
957 	int retry = 1;
958 	int nr_failed = 0;
959 	int pass = 0;
960 	struct page *page;
961 	struct page *page2;
962 	int rc;
963 
964 	for (pass = 0; pass < 10 && retry; pass++) {
965 		retry = 0;
966 
967 		list_for_each_entry_safe(page, page2, from, lru) {
968 			cond_resched();
969 
970 			rc = unmap_and_move_huge_page(get_new_page,
971 					private, page, pass > 2, offlining,
972 					sync);
973 
974 			switch(rc) {
975 			case -ENOMEM:
976 				goto out;
977 			case -EAGAIN:
978 				retry++;
979 				break;
980 			case 0:
981 				break;
982 			default:
983 				/* Permanent failure */
984 				nr_failed++;
985 				break;
986 			}
987 		}
988 	}
989 	rc = 0;
990 out:
991 	if (rc)
992 		return rc;
993 
994 	return nr_failed + retry;
995 }
996 
997 #ifdef CONFIG_NUMA
998 /*
999  * Move a list of individual pages
1000  */
1001 struct page_to_node {
1002 	unsigned long addr;
1003 	struct page *page;
1004 	int node;
1005 	int status;
1006 };
1007 
1008 static struct page *new_page_node(struct page *p, unsigned long private,
1009 		int **result)
1010 {
1011 	struct page_to_node *pm = (struct page_to_node *)private;
1012 
1013 	while (pm->node != MAX_NUMNODES && pm->page != p)
1014 		pm++;
1015 
1016 	if (pm->node == MAX_NUMNODES)
1017 		return NULL;
1018 
1019 	*result = &pm->status;
1020 
1021 	return alloc_pages_exact_node(pm->node,
1022 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1023 }
1024 
1025 /*
1026  * Move a set of pages as indicated in the pm array. The addr
1027  * field must be set to the virtual address of the page to be moved
1028  * and the node number must contain a valid target node.
1029  * The pm array ends with node = MAX_NUMNODES.
1030  */
1031 static int do_move_page_to_node_array(struct mm_struct *mm,
1032 				      struct page_to_node *pm,
1033 				      int migrate_all)
1034 {
1035 	int err;
1036 	struct page_to_node *pp;
1037 	LIST_HEAD(pagelist);
1038 
1039 	down_read(&mm->mmap_sem);
1040 
1041 	/*
1042 	 * Build a list of pages to migrate
1043 	 */
1044 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1045 		struct vm_area_struct *vma;
1046 		struct page *page;
1047 
1048 		err = -EFAULT;
1049 		vma = find_vma(mm, pp->addr);
1050 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1051 			goto set_status;
1052 
1053 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1054 
1055 		err = PTR_ERR(page);
1056 		if (IS_ERR(page))
1057 			goto set_status;
1058 
1059 		err = -ENOENT;
1060 		if (!page)
1061 			goto set_status;
1062 
1063 		/* Use PageReserved to check for zero page */
1064 		if (PageReserved(page) || PageKsm(page))
1065 			goto put_and_set;
1066 
1067 		pp->page = page;
1068 		err = page_to_nid(page);
1069 
1070 		if (err == pp->node)
1071 			/*
1072 			 * Node already in the right place
1073 			 */
1074 			goto put_and_set;
1075 
1076 		err = -EACCES;
1077 		if (page_mapcount(page) > 1 &&
1078 				!migrate_all)
1079 			goto put_and_set;
1080 
1081 		err = isolate_lru_page(page);
1082 		if (!err) {
1083 			list_add_tail(&page->lru, &pagelist);
1084 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1085 					    page_is_file_cache(page));
1086 		}
1087 put_and_set:
1088 		/*
1089 		 * Either remove the duplicate refcount from
1090 		 * isolate_lru_page() or drop the page ref if it was
1091 		 * not isolated.
1092 		 */
1093 		put_page(page);
1094 set_status:
1095 		pp->status = err;
1096 	}
1097 
1098 	err = 0;
1099 	if (!list_empty(&pagelist)) {
1100 		err = migrate_pages(&pagelist, new_page_node,
1101 				(unsigned long)pm, 0, true);
1102 		if (err)
1103 			putback_lru_pages(&pagelist);
1104 	}
1105 
1106 	up_read(&mm->mmap_sem);
1107 	return err;
1108 }
1109 
1110 /*
1111  * Migrate an array of page address onto an array of nodes and fill
1112  * the corresponding array of status.
1113  */
1114 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1115 			 unsigned long nr_pages,
1116 			 const void __user * __user *pages,
1117 			 const int __user *nodes,
1118 			 int __user *status, int flags)
1119 {
1120 	struct page_to_node *pm;
1121 	nodemask_t task_nodes;
1122 	unsigned long chunk_nr_pages;
1123 	unsigned long chunk_start;
1124 	int err;
1125 
1126 	task_nodes = cpuset_mems_allowed(task);
1127 
1128 	err = -ENOMEM;
1129 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1130 	if (!pm)
1131 		goto out;
1132 
1133 	migrate_prep();
1134 
1135 	/*
1136 	 * Store a chunk of page_to_node array in a page,
1137 	 * but keep the last one as a marker
1138 	 */
1139 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1140 
1141 	for (chunk_start = 0;
1142 	     chunk_start < nr_pages;
1143 	     chunk_start += chunk_nr_pages) {
1144 		int j;
1145 
1146 		if (chunk_start + chunk_nr_pages > nr_pages)
1147 			chunk_nr_pages = nr_pages - chunk_start;
1148 
1149 		/* fill the chunk pm with addrs and nodes from user-space */
1150 		for (j = 0; j < chunk_nr_pages; j++) {
1151 			const void __user *p;
1152 			int node;
1153 
1154 			err = -EFAULT;
1155 			if (get_user(p, pages + j + chunk_start))
1156 				goto out_pm;
1157 			pm[j].addr = (unsigned long) p;
1158 
1159 			if (get_user(node, nodes + j + chunk_start))
1160 				goto out_pm;
1161 
1162 			err = -ENODEV;
1163 			if (node < 0 || node >= MAX_NUMNODES)
1164 				goto out_pm;
1165 
1166 			if (!node_state(node, N_HIGH_MEMORY))
1167 				goto out_pm;
1168 
1169 			err = -EACCES;
1170 			if (!node_isset(node, task_nodes))
1171 				goto out_pm;
1172 
1173 			pm[j].node = node;
1174 		}
1175 
1176 		/* End marker for this chunk */
1177 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1178 
1179 		/* Migrate this chunk */
1180 		err = do_move_page_to_node_array(mm, pm,
1181 						 flags & MPOL_MF_MOVE_ALL);
1182 		if (err < 0)
1183 			goto out_pm;
1184 
1185 		/* Return status information */
1186 		for (j = 0; j < chunk_nr_pages; j++)
1187 			if (put_user(pm[j].status, status + j + chunk_start)) {
1188 				err = -EFAULT;
1189 				goto out_pm;
1190 			}
1191 	}
1192 	err = 0;
1193 
1194 out_pm:
1195 	free_page((unsigned long)pm);
1196 out:
1197 	return err;
1198 }
1199 
1200 /*
1201  * Determine the nodes of an array of pages and store it in an array of status.
1202  */
1203 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1204 				const void __user **pages, int *status)
1205 {
1206 	unsigned long i;
1207 
1208 	down_read(&mm->mmap_sem);
1209 
1210 	for (i = 0; i < nr_pages; i++) {
1211 		unsigned long addr = (unsigned long)(*pages);
1212 		struct vm_area_struct *vma;
1213 		struct page *page;
1214 		int err = -EFAULT;
1215 
1216 		vma = find_vma(mm, addr);
1217 		if (!vma || addr < vma->vm_start)
1218 			goto set_status;
1219 
1220 		page = follow_page(vma, addr, 0);
1221 
1222 		err = PTR_ERR(page);
1223 		if (IS_ERR(page))
1224 			goto set_status;
1225 
1226 		err = -ENOENT;
1227 		/* Use PageReserved to check for zero page */
1228 		if (!page || PageReserved(page) || PageKsm(page))
1229 			goto set_status;
1230 
1231 		err = page_to_nid(page);
1232 set_status:
1233 		*status = err;
1234 
1235 		pages++;
1236 		status++;
1237 	}
1238 
1239 	up_read(&mm->mmap_sem);
1240 }
1241 
1242 /*
1243  * Determine the nodes of a user array of pages and store it in
1244  * a user array of status.
1245  */
1246 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1247 			 const void __user * __user *pages,
1248 			 int __user *status)
1249 {
1250 #define DO_PAGES_STAT_CHUNK_NR 16
1251 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1252 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1253 
1254 	while (nr_pages) {
1255 		unsigned long chunk_nr;
1256 
1257 		chunk_nr = nr_pages;
1258 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1259 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1260 
1261 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1262 			break;
1263 
1264 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1265 
1266 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1267 			break;
1268 
1269 		pages += chunk_nr;
1270 		status += chunk_nr;
1271 		nr_pages -= chunk_nr;
1272 	}
1273 	return nr_pages ? -EFAULT : 0;
1274 }
1275 
1276 /*
1277  * Move a list of pages in the address space of the currently executing
1278  * process.
1279  */
1280 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1281 		const void __user * __user *, pages,
1282 		const int __user *, nodes,
1283 		int __user *, status, int, flags)
1284 {
1285 	const struct cred *cred = current_cred(), *tcred;
1286 	struct task_struct *task;
1287 	struct mm_struct *mm;
1288 	int err;
1289 
1290 	/* Check flags */
1291 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1292 		return -EINVAL;
1293 
1294 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1295 		return -EPERM;
1296 
1297 	/* Find the mm_struct */
1298 	rcu_read_lock();
1299 	task = pid ? find_task_by_vpid(pid) : current;
1300 	if (!task) {
1301 		rcu_read_unlock();
1302 		return -ESRCH;
1303 	}
1304 	mm = get_task_mm(task);
1305 	rcu_read_unlock();
1306 
1307 	if (!mm)
1308 		return -EINVAL;
1309 
1310 	/*
1311 	 * Check if this process has the right to modify the specified
1312 	 * process. The right exists if the process has administrative
1313 	 * capabilities, superuser privileges or the same
1314 	 * userid as the target process.
1315 	 */
1316 	rcu_read_lock();
1317 	tcred = __task_cred(task);
1318 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1319 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1320 	    !capable(CAP_SYS_NICE)) {
1321 		rcu_read_unlock();
1322 		err = -EPERM;
1323 		goto out;
1324 	}
1325 	rcu_read_unlock();
1326 
1327  	err = security_task_movememory(task);
1328  	if (err)
1329 		goto out;
1330 
1331 	if (nodes) {
1332 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1333 				    flags);
1334 	} else {
1335 		err = do_pages_stat(mm, nr_pages, pages, status);
1336 	}
1337 
1338 out:
1339 	mmput(mm);
1340 	return err;
1341 }
1342 
1343 /*
1344  * Call migration functions in the vma_ops that may prepare
1345  * memory in a vm for migration. migration functions may perform
1346  * the migration for vmas that do not have an underlying page struct.
1347  */
1348 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1349 	const nodemask_t *from, unsigned long flags)
1350 {
1351  	struct vm_area_struct *vma;
1352  	int err = 0;
1353 
1354 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1355  		if (vma->vm_ops && vma->vm_ops->migrate) {
1356  			err = vma->vm_ops->migrate(vma, to, from, flags);
1357  			if (err)
1358  				break;
1359  		}
1360  	}
1361  	return err;
1362 }
1363 #endif
1364