1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/ksm.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/backing-dev.h> 33 #include <linux/compaction.h> 34 #include <linux/syscalls.h> 35 #include <linux/compat.h> 36 #include <linux/hugetlb.h> 37 #include <linux/gfp.h> 38 #include <linux/pfn_t.h> 39 #include <linux/page_idle.h> 40 #include <linux/page_owner.h> 41 #include <linux/sched/mm.h> 42 #include <linux/ptrace.h> 43 #include <linux/memory.h> 44 #include <linux/sched/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/pagewalk.h> 47 48 #include <asm/tlbflush.h> 49 50 #include <trace/events/migrate.h> 51 52 #include "internal.h" 53 54 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 55 { 56 struct folio *folio = folio_get_nontail_page(page); 57 const struct movable_operations *mops; 58 59 /* 60 * Avoid burning cycles with pages that are yet under __free_pages(), 61 * or just got freed under us. 62 * 63 * In case we 'win' a race for a movable page being freed under us and 64 * raise its refcount preventing __free_pages() from doing its job 65 * the put_page() at the end of this block will take care of 66 * release this page, thus avoiding a nasty leakage. 67 */ 68 if (!folio) 69 goto out; 70 71 if (unlikely(folio_test_slab(folio))) 72 goto out_putfolio; 73 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 74 smp_rmb(); 75 /* 76 * Check movable flag before taking the page lock because 77 * we use non-atomic bitops on newly allocated page flags so 78 * unconditionally grabbing the lock ruins page's owner side. 79 */ 80 if (unlikely(!__folio_test_movable(folio))) 81 goto out_putfolio; 82 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 83 smp_rmb(); 84 if (unlikely(folio_test_slab(folio))) 85 goto out_putfolio; 86 87 /* 88 * As movable pages are not isolated from LRU lists, concurrent 89 * compaction threads can race against page migration functions 90 * as well as race against the releasing a page. 91 * 92 * In order to avoid having an already isolated movable page 93 * being (wrongly) re-isolated while it is under migration, 94 * or to avoid attempting to isolate pages being released, 95 * lets be sure we have the page lock 96 * before proceeding with the movable page isolation steps. 97 */ 98 if (unlikely(!folio_trylock(folio))) 99 goto out_putfolio; 100 101 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 102 goto out_no_isolated; 103 104 mops = folio_movable_ops(folio); 105 VM_BUG_ON_FOLIO(!mops, folio); 106 107 if (!mops->isolate_page(&folio->page, mode)) 108 goto out_no_isolated; 109 110 /* Driver shouldn't use the isolated flag */ 111 WARN_ON_ONCE(folio_test_isolated(folio)); 112 folio_set_isolated(folio); 113 folio_unlock(folio); 114 115 return true; 116 117 out_no_isolated: 118 folio_unlock(folio); 119 out_putfolio: 120 folio_put(folio); 121 out: 122 return false; 123 } 124 125 static void putback_movable_folio(struct folio *folio) 126 { 127 const struct movable_operations *mops = folio_movable_ops(folio); 128 129 mops->putback_page(&folio->page); 130 folio_clear_isolated(folio); 131 } 132 133 /* 134 * Put previously isolated pages back onto the appropriate lists 135 * from where they were once taken off for compaction/migration. 136 * 137 * This function shall be used whenever the isolated pageset has been 138 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 139 * and isolate_hugetlb(). 140 */ 141 void putback_movable_pages(struct list_head *l) 142 { 143 struct folio *folio; 144 struct folio *folio2; 145 146 list_for_each_entry_safe(folio, folio2, l, lru) { 147 if (unlikely(folio_test_hugetlb(folio))) { 148 folio_putback_active_hugetlb(folio); 149 continue; 150 } 151 list_del(&folio->lru); 152 /* 153 * We isolated non-lru movable folio so here we can use 154 * __folio_test_movable because LRU folio's mapping cannot 155 * have PAGE_MAPPING_MOVABLE. 156 */ 157 if (unlikely(__folio_test_movable(folio))) { 158 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 159 folio_lock(folio); 160 if (folio_test_movable(folio)) 161 putback_movable_folio(folio); 162 else 163 folio_clear_isolated(folio); 164 folio_unlock(folio); 165 folio_put(folio); 166 } else { 167 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 168 folio_is_file_lru(folio), -folio_nr_pages(folio)); 169 folio_putback_lru(folio); 170 } 171 } 172 } 173 174 /* Must be called with an elevated refcount on the non-hugetlb folio */ 175 bool isolate_folio_to_list(struct folio *folio, struct list_head *list) 176 { 177 bool isolated, lru; 178 179 if (folio_test_hugetlb(folio)) 180 return isolate_hugetlb(folio, list); 181 182 lru = !__folio_test_movable(folio); 183 if (lru) 184 isolated = folio_isolate_lru(folio); 185 else 186 isolated = isolate_movable_page(&folio->page, 187 ISOLATE_UNEVICTABLE); 188 189 if (!isolated) 190 return false; 191 192 list_add(&folio->lru, list); 193 if (lru) 194 node_stat_add_folio(folio, NR_ISOLATED_ANON + 195 folio_is_file_lru(folio)); 196 197 return true; 198 } 199 200 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw, 201 struct folio *folio, 202 unsigned long idx) 203 { 204 struct page *page = folio_page(folio, idx); 205 bool contains_data; 206 pte_t newpte; 207 void *addr; 208 209 if (PageCompound(page)) 210 return false; 211 VM_BUG_ON_PAGE(!PageAnon(page), page); 212 VM_BUG_ON_PAGE(!PageLocked(page), page); 213 VM_BUG_ON_PAGE(pte_present(*pvmw->pte), page); 214 215 if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) || 216 mm_forbids_zeropage(pvmw->vma->vm_mm)) 217 return false; 218 219 /* 220 * The pmd entry mapping the old thp was flushed and the pte mapping 221 * this subpage has been non present. If the subpage is only zero-filled 222 * then map it to the shared zeropage. 223 */ 224 addr = kmap_local_page(page); 225 contains_data = memchr_inv(addr, 0, PAGE_SIZE); 226 kunmap_local(addr); 227 228 if (contains_data) 229 return false; 230 231 newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address), 232 pvmw->vma->vm_page_prot)); 233 set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte); 234 235 dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio)); 236 return true; 237 } 238 239 struct rmap_walk_arg { 240 struct folio *folio; 241 bool map_unused_to_zeropage; 242 }; 243 244 /* 245 * Restore a potential migration pte to a working pte entry 246 */ 247 static bool remove_migration_pte(struct folio *folio, 248 struct vm_area_struct *vma, unsigned long addr, void *arg) 249 { 250 struct rmap_walk_arg *rmap_walk_arg = arg; 251 DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 252 253 while (page_vma_mapped_walk(&pvmw)) { 254 rmap_t rmap_flags = RMAP_NONE; 255 pte_t old_pte; 256 pte_t pte; 257 swp_entry_t entry; 258 struct page *new; 259 unsigned long idx = 0; 260 261 /* pgoff is invalid for ksm pages, but they are never large */ 262 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 263 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 264 new = folio_page(folio, idx); 265 266 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 267 /* PMD-mapped THP migration entry */ 268 if (!pvmw.pte) { 269 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 270 !folio_test_pmd_mappable(folio), folio); 271 remove_migration_pmd(&pvmw, new); 272 continue; 273 } 274 #endif 275 if (rmap_walk_arg->map_unused_to_zeropage && 276 try_to_map_unused_to_zeropage(&pvmw, folio, idx)) 277 continue; 278 279 folio_get(folio); 280 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 281 old_pte = ptep_get(pvmw.pte); 282 283 entry = pte_to_swp_entry(old_pte); 284 if (!is_migration_entry_young(entry)) 285 pte = pte_mkold(pte); 286 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 287 pte = pte_mkdirty(pte); 288 if (pte_swp_soft_dirty(old_pte)) 289 pte = pte_mksoft_dirty(pte); 290 else 291 pte = pte_clear_soft_dirty(pte); 292 293 if (is_writable_migration_entry(entry)) 294 pte = pte_mkwrite(pte, vma); 295 else if (pte_swp_uffd_wp(old_pte)) 296 pte = pte_mkuffd_wp(pte); 297 298 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 299 rmap_flags |= RMAP_EXCLUSIVE; 300 301 if (unlikely(is_device_private_page(new))) { 302 if (pte_write(pte)) 303 entry = make_writable_device_private_entry( 304 page_to_pfn(new)); 305 else 306 entry = make_readable_device_private_entry( 307 page_to_pfn(new)); 308 pte = swp_entry_to_pte(entry); 309 if (pte_swp_soft_dirty(old_pte)) 310 pte = pte_swp_mksoft_dirty(pte); 311 if (pte_swp_uffd_wp(old_pte)) 312 pte = pte_swp_mkuffd_wp(pte); 313 } 314 315 #ifdef CONFIG_HUGETLB_PAGE 316 if (folio_test_hugetlb(folio)) { 317 struct hstate *h = hstate_vma(vma); 318 unsigned int shift = huge_page_shift(h); 319 unsigned long psize = huge_page_size(h); 320 321 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 322 if (folio_test_anon(folio)) 323 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 324 rmap_flags); 325 else 326 hugetlb_add_file_rmap(folio); 327 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 328 psize); 329 } else 330 #endif 331 { 332 if (folio_test_anon(folio)) 333 folio_add_anon_rmap_pte(folio, new, vma, 334 pvmw.address, rmap_flags); 335 else 336 folio_add_file_rmap_pte(folio, new, vma); 337 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 338 } 339 if (vma->vm_flags & VM_LOCKED) 340 mlock_drain_local(); 341 342 trace_remove_migration_pte(pvmw.address, pte_val(pte), 343 compound_order(new)); 344 345 /* No need to invalidate - it was non-present before */ 346 update_mmu_cache(vma, pvmw.address, pvmw.pte); 347 } 348 349 return true; 350 } 351 352 /* 353 * Get rid of all migration entries and replace them by 354 * references to the indicated page. 355 */ 356 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags) 357 { 358 struct rmap_walk_arg rmap_walk_arg = { 359 .folio = src, 360 .map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE, 361 }; 362 363 struct rmap_walk_control rwc = { 364 .rmap_one = remove_migration_pte, 365 .arg = &rmap_walk_arg, 366 }; 367 368 VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src); 369 370 if (flags & RMP_LOCKED) 371 rmap_walk_locked(dst, &rwc); 372 else 373 rmap_walk(dst, &rwc); 374 } 375 376 /* 377 * Something used the pte of a page under migration. We need to 378 * get to the page and wait until migration is finished. 379 * When we return from this function the fault will be retried. 380 */ 381 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 382 unsigned long address) 383 { 384 spinlock_t *ptl; 385 pte_t *ptep; 386 pte_t pte; 387 swp_entry_t entry; 388 389 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 390 if (!ptep) 391 return; 392 393 pte = ptep_get(ptep); 394 pte_unmap(ptep); 395 396 if (!is_swap_pte(pte)) 397 goto out; 398 399 entry = pte_to_swp_entry(pte); 400 if (!is_migration_entry(entry)) 401 goto out; 402 403 migration_entry_wait_on_locked(entry, ptl); 404 return; 405 out: 406 spin_unlock(ptl); 407 } 408 409 #ifdef CONFIG_HUGETLB_PAGE 410 /* 411 * The vma read lock must be held upon entry. Holding that lock prevents either 412 * the pte or the ptl from being freed. 413 * 414 * This function will release the vma lock before returning. 415 */ 416 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 417 { 418 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 419 pte_t pte; 420 421 hugetlb_vma_assert_locked(vma); 422 spin_lock(ptl); 423 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 424 425 if (unlikely(!is_hugetlb_entry_migration(pte))) { 426 spin_unlock(ptl); 427 hugetlb_vma_unlock_read(vma); 428 } else { 429 /* 430 * If migration entry existed, safe to release vma lock 431 * here because the pgtable page won't be freed without the 432 * pgtable lock released. See comment right above pgtable 433 * lock release in migration_entry_wait_on_locked(). 434 */ 435 hugetlb_vma_unlock_read(vma); 436 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 437 } 438 } 439 #endif 440 441 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 442 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 443 { 444 spinlock_t *ptl; 445 446 ptl = pmd_lock(mm, pmd); 447 if (!is_pmd_migration_entry(*pmd)) 448 goto unlock; 449 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 450 return; 451 unlock: 452 spin_unlock(ptl); 453 } 454 #endif 455 456 static int folio_expected_refs(struct address_space *mapping, 457 struct folio *folio) 458 { 459 int refs = 1; 460 if (!mapping) 461 return refs; 462 463 refs += folio_nr_pages(folio); 464 if (folio_test_private(folio)) 465 refs++; 466 467 return refs; 468 } 469 470 /* 471 * Replace the folio in the mapping. 472 * 473 * The number of remaining references must be: 474 * 1 for anonymous folios without a mapping 475 * 2 for folios with a mapping 476 * 3 for folios with a mapping and PagePrivate/PagePrivate2 set. 477 */ 478 static int __folio_migrate_mapping(struct address_space *mapping, 479 struct folio *newfolio, struct folio *folio, int expected_count) 480 { 481 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 482 struct zone *oldzone, *newzone; 483 int dirty; 484 long nr = folio_nr_pages(folio); 485 long entries, i; 486 487 if (!mapping) { 488 /* Take off deferred split queue while frozen and memcg set */ 489 if (folio_test_large(folio) && 490 folio_test_large_rmappable(folio)) { 491 if (!folio_ref_freeze(folio, expected_count)) 492 return -EAGAIN; 493 folio_undo_large_rmappable(folio); 494 folio_ref_unfreeze(folio, expected_count); 495 } 496 497 /* No turning back from here */ 498 newfolio->index = folio->index; 499 newfolio->mapping = folio->mapping; 500 if (folio_test_anon(folio) && folio_test_large(folio)) 501 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 502 if (folio_test_swapbacked(folio)) 503 __folio_set_swapbacked(newfolio); 504 505 return MIGRATEPAGE_SUCCESS; 506 } 507 508 oldzone = folio_zone(folio); 509 newzone = folio_zone(newfolio); 510 511 xas_lock_irq(&xas); 512 if (!folio_ref_freeze(folio, expected_count)) { 513 xas_unlock_irq(&xas); 514 return -EAGAIN; 515 } 516 517 /* Take off deferred split queue while frozen and memcg set */ 518 folio_undo_large_rmappable(folio); 519 520 /* 521 * Now we know that no one else is looking at the folio: 522 * no turning back from here. 523 */ 524 newfolio->index = folio->index; 525 newfolio->mapping = folio->mapping; 526 if (folio_test_anon(folio) && folio_test_large(folio)) 527 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 528 folio_ref_add(newfolio, nr); /* add cache reference */ 529 if (folio_test_swapbacked(folio)) { 530 __folio_set_swapbacked(newfolio); 531 if (folio_test_swapcache(folio)) { 532 folio_set_swapcache(newfolio); 533 newfolio->private = folio_get_private(folio); 534 } 535 entries = nr; 536 } else { 537 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 538 entries = 1; 539 } 540 541 /* Move dirty while folio refs frozen and newfolio not yet exposed */ 542 dirty = folio_test_dirty(folio); 543 if (dirty) { 544 folio_clear_dirty(folio); 545 folio_set_dirty(newfolio); 546 } 547 548 /* Swap cache still stores N entries instead of a high-order entry */ 549 for (i = 0; i < entries; i++) { 550 xas_store(&xas, newfolio); 551 xas_next(&xas); 552 } 553 554 /* 555 * Drop cache reference from old folio by unfreezing 556 * to one less reference. 557 * We know this isn't the last reference. 558 */ 559 folio_ref_unfreeze(folio, expected_count - nr); 560 561 xas_unlock(&xas); 562 /* Leave irq disabled to prevent preemption while updating stats */ 563 564 /* 565 * If moved to a different zone then also account 566 * the folio for that zone. Other VM counters will be 567 * taken care of when we establish references to the 568 * new folio and drop references to the old folio. 569 * 570 * Note that anonymous folios are accounted for 571 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 572 * are mapped to swap space. 573 */ 574 if (newzone != oldzone) { 575 struct lruvec *old_lruvec, *new_lruvec; 576 struct mem_cgroup *memcg; 577 578 memcg = folio_memcg(folio); 579 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 580 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 581 582 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 583 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 584 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 585 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 586 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 587 588 if (folio_test_pmd_mappable(folio)) { 589 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 590 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 591 } 592 } 593 #ifdef CONFIG_SWAP 594 if (folio_test_swapcache(folio)) { 595 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 596 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 597 } 598 #endif 599 if (dirty && mapping_can_writeback(mapping)) { 600 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 601 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 602 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 603 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 604 } 605 } 606 local_irq_enable(); 607 608 return MIGRATEPAGE_SUCCESS; 609 } 610 611 int folio_migrate_mapping(struct address_space *mapping, 612 struct folio *newfolio, struct folio *folio, int extra_count) 613 { 614 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 615 616 if (folio_ref_count(folio) != expected_count) 617 return -EAGAIN; 618 619 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count); 620 } 621 EXPORT_SYMBOL(folio_migrate_mapping); 622 623 /* 624 * The expected number of remaining references is the same as that 625 * of folio_migrate_mapping(). 626 */ 627 int migrate_huge_page_move_mapping(struct address_space *mapping, 628 struct folio *dst, struct folio *src) 629 { 630 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 631 int rc, expected_count = folio_expected_refs(mapping, src); 632 633 if (folio_ref_count(src) != expected_count) 634 return -EAGAIN; 635 636 rc = folio_mc_copy(dst, src); 637 if (unlikely(rc)) 638 return rc; 639 640 xas_lock_irq(&xas); 641 if (!folio_ref_freeze(src, expected_count)) { 642 xas_unlock_irq(&xas); 643 return -EAGAIN; 644 } 645 646 dst->index = src->index; 647 dst->mapping = src->mapping; 648 649 folio_ref_add(dst, folio_nr_pages(dst)); 650 651 xas_store(&xas, dst); 652 653 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 654 655 xas_unlock_irq(&xas); 656 657 return MIGRATEPAGE_SUCCESS; 658 } 659 660 /* 661 * Copy the flags and some other ancillary information 662 */ 663 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 664 { 665 int cpupid; 666 667 if (folio_test_referenced(folio)) 668 folio_set_referenced(newfolio); 669 if (folio_test_uptodate(folio)) 670 folio_mark_uptodate(newfolio); 671 if (folio_test_clear_active(folio)) { 672 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 673 folio_set_active(newfolio); 674 } else if (folio_test_clear_unevictable(folio)) 675 folio_set_unevictable(newfolio); 676 if (folio_test_workingset(folio)) 677 folio_set_workingset(newfolio); 678 if (folio_test_checked(folio)) 679 folio_set_checked(newfolio); 680 /* 681 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 682 * migration entries. We can still have PG_anon_exclusive set on an 683 * effectively unmapped and unreferenced first sub-pages of an 684 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 685 */ 686 if (folio_test_mappedtodisk(folio)) 687 folio_set_mappedtodisk(newfolio); 688 689 /* Move dirty on pages not done by folio_migrate_mapping() */ 690 if (folio_test_dirty(folio)) 691 folio_set_dirty(newfolio); 692 693 if (folio_test_young(folio)) 694 folio_set_young(newfolio); 695 if (folio_test_idle(folio)) 696 folio_set_idle(newfolio); 697 698 /* 699 * Copy NUMA information to the new page, to prevent over-eager 700 * future migrations of this same page. 701 */ 702 cpupid = folio_xchg_last_cpupid(folio, -1); 703 /* 704 * For memory tiering mode, when migrate between slow and fast 705 * memory node, reset cpupid, because that is used to record 706 * page access time in slow memory node. 707 */ 708 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 709 bool f_toptier = node_is_toptier(folio_nid(folio)); 710 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 711 712 if (f_toptier != t_toptier) 713 cpupid = -1; 714 } 715 folio_xchg_last_cpupid(newfolio, cpupid); 716 717 folio_migrate_ksm(newfolio, folio); 718 /* 719 * Please do not reorder this without considering how mm/ksm.c's 720 * ksm_get_folio() depends upon ksm_migrate_page() and the 721 * swapcache flag. 722 */ 723 if (folio_test_swapcache(folio)) 724 folio_clear_swapcache(folio); 725 folio_clear_private(folio); 726 727 /* page->private contains hugetlb specific flags */ 728 if (!folio_test_hugetlb(folio)) 729 folio->private = NULL; 730 731 /* 732 * If any waiters have accumulated on the new page then 733 * wake them up. 734 */ 735 if (folio_test_writeback(newfolio)) 736 folio_end_writeback(newfolio); 737 738 /* 739 * PG_readahead shares the same bit with PG_reclaim. The above 740 * end_page_writeback() may clear PG_readahead mistakenly, so set the 741 * bit after that. 742 */ 743 if (folio_test_readahead(folio)) 744 folio_set_readahead(newfolio); 745 746 folio_copy_owner(newfolio, folio); 747 pgalloc_tag_copy(newfolio, folio); 748 749 mem_cgroup_migrate(folio, newfolio); 750 } 751 EXPORT_SYMBOL(folio_migrate_flags); 752 753 /************************************************************ 754 * Migration functions 755 ***********************************************************/ 756 757 static int __migrate_folio(struct address_space *mapping, struct folio *dst, 758 struct folio *src, void *src_private, 759 enum migrate_mode mode) 760 { 761 int rc, expected_count = folio_expected_refs(mapping, src); 762 763 /* Check whether src does not have extra refs before we do more work */ 764 if (folio_ref_count(src) != expected_count) 765 return -EAGAIN; 766 767 rc = folio_mc_copy(dst, src); 768 if (unlikely(rc)) 769 return rc; 770 771 rc = __folio_migrate_mapping(mapping, dst, src, expected_count); 772 if (rc != MIGRATEPAGE_SUCCESS) 773 return rc; 774 775 if (src_private) 776 folio_attach_private(dst, folio_detach_private(src)); 777 778 folio_migrate_flags(dst, src); 779 return MIGRATEPAGE_SUCCESS; 780 } 781 782 /** 783 * migrate_folio() - Simple folio migration. 784 * @mapping: The address_space containing the folio. 785 * @dst: The folio to migrate the data to. 786 * @src: The folio containing the current data. 787 * @mode: How to migrate the page. 788 * 789 * Common logic to directly migrate a single LRU folio suitable for 790 * folios that do not use PagePrivate/PagePrivate2. 791 * 792 * Folios are locked upon entry and exit. 793 */ 794 int migrate_folio(struct address_space *mapping, struct folio *dst, 795 struct folio *src, enum migrate_mode mode) 796 { 797 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 798 return __migrate_folio(mapping, dst, src, NULL, mode); 799 } 800 EXPORT_SYMBOL(migrate_folio); 801 802 #ifdef CONFIG_BUFFER_HEAD 803 /* Returns true if all buffers are successfully locked */ 804 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 805 enum migrate_mode mode) 806 { 807 struct buffer_head *bh = head; 808 struct buffer_head *failed_bh; 809 810 do { 811 if (!trylock_buffer(bh)) { 812 if (mode == MIGRATE_ASYNC) 813 goto unlock; 814 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 815 goto unlock; 816 lock_buffer(bh); 817 } 818 819 bh = bh->b_this_page; 820 } while (bh != head); 821 822 return true; 823 824 unlock: 825 /* We failed to lock the buffer and cannot stall. */ 826 failed_bh = bh; 827 bh = head; 828 while (bh != failed_bh) { 829 unlock_buffer(bh); 830 bh = bh->b_this_page; 831 } 832 833 return false; 834 } 835 836 static int __buffer_migrate_folio(struct address_space *mapping, 837 struct folio *dst, struct folio *src, enum migrate_mode mode, 838 bool check_refs) 839 { 840 struct buffer_head *bh, *head; 841 int rc; 842 int expected_count; 843 844 head = folio_buffers(src); 845 if (!head) 846 return migrate_folio(mapping, dst, src, mode); 847 848 /* Check whether page does not have extra refs before we do more work */ 849 expected_count = folio_expected_refs(mapping, src); 850 if (folio_ref_count(src) != expected_count) 851 return -EAGAIN; 852 853 if (!buffer_migrate_lock_buffers(head, mode)) 854 return -EAGAIN; 855 856 if (check_refs) { 857 bool busy; 858 bool invalidated = false; 859 860 recheck_buffers: 861 busy = false; 862 spin_lock(&mapping->i_private_lock); 863 bh = head; 864 do { 865 if (atomic_read(&bh->b_count)) { 866 busy = true; 867 break; 868 } 869 bh = bh->b_this_page; 870 } while (bh != head); 871 if (busy) { 872 if (invalidated) { 873 rc = -EAGAIN; 874 goto unlock_buffers; 875 } 876 spin_unlock(&mapping->i_private_lock); 877 invalidate_bh_lrus(); 878 invalidated = true; 879 goto recheck_buffers; 880 } 881 } 882 883 rc = filemap_migrate_folio(mapping, dst, src, mode); 884 if (rc != MIGRATEPAGE_SUCCESS) 885 goto unlock_buffers; 886 887 bh = head; 888 do { 889 folio_set_bh(bh, dst, bh_offset(bh)); 890 bh = bh->b_this_page; 891 } while (bh != head); 892 893 unlock_buffers: 894 if (check_refs) 895 spin_unlock(&mapping->i_private_lock); 896 bh = head; 897 do { 898 unlock_buffer(bh); 899 bh = bh->b_this_page; 900 } while (bh != head); 901 902 return rc; 903 } 904 905 /** 906 * buffer_migrate_folio() - Migration function for folios with buffers. 907 * @mapping: The address space containing @src. 908 * @dst: The folio to migrate to. 909 * @src: The folio to migrate from. 910 * @mode: How to migrate the folio. 911 * 912 * This function can only be used if the underlying filesystem guarantees 913 * that no other references to @src exist. For example attached buffer 914 * heads are accessed only under the folio lock. If your filesystem cannot 915 * provide this guarantee, buffer_migrate_folio_norefs() may be more 916 * appropriate. 917 * 918 * Return: 0 on success or a negative errno on failure. 919 */ 920 int buffer_migrate_folio(struct address_space *mapping, 921 struct folio *dst, struct folio *src, enum migrate_mode mode) 922 { 923 return __buffer_migrate_folio(mapping, dst, src, mode, false); 924 } 925 EXPORT_SYMBOL(buffer_migrate_folio); 926 927 /** 928 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 929 * @mapping: The address space containing @src. 930 * @dst: The folio to migrate to. 931 * @src: The folio to migrate from. 932 * @mode: How to migrate the folio. 933 * 934 * Like buffer_migrate_folio() except that this variant is more careful 935 * and checks that there are also no buffer head references. This function 936 * is the right one for mappings where buffer heads are directly looked 937 * up and referenced (such as block device mappings). 938 * 939 * Return: 0 on success or a negative errno on failure. 940 */ 941 int buffer_migrate_folio_norefs(struct address_space *mapping, 942 struct folio *dst, struct folio *src, enum migrate_mode mode) 943 { 944 return __buffer_migrate_folio(mapping, dst, src, mode, true); 945 } 946 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 947 #endif /* CONFIG_BUFFER_HEAD */ 948 949 int filemap_migrate_folio(struct address_space *mapping, 950 struct folio *dst, struct folio *src, enum migrate_mode mode) 951 { 952 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode); 953 } 954 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 955 956 /* 957 * Writeback a folio to clean the dirty state 958 */ 959 static int writeout(struct address_space *mapping, struct folio *folio) 960 { 961 struct writeback_control wbc = { 962 .sync_mode = WB_SYNC_NONE, 963 .nr_to_write = 1, 964 .range_start = 0, 965 .range_end = LLONG_MAX, 966 .for_reclaim = 1 967 }; 968 int rc; 969 970 if (!mapping->a_ops->writepage) 971 /* No write method for the address space */ 972 return -EINVAL; 973 974 if (!folio_clear_dirty_for_io(folio)) 975 /* Someone else already triggered a write */ 976 return -EAGAIN; 977 978 /* 979 * A dirty folio may imply that the underlying filesystem has 980 * the folio on some queue. So the folio must be clean for 981 * migration. Writeout may mean we lose the lock and the 982 * folio state is no longer what we checked for earlier. 983 * At this point we know that the migration attempt cannot 984 * be successful. 985 */ 986 remove_migration_ptes(folio, folio, 0); 987 988 rc = mapping->a_ops->writepage(&folio->page, &wbc); 989 990 if (rc != AOP_WRITEPAGE_ACTIVATE) 991 /* unlocked. Relock */ 992 folio_lock(folio); 993 994 return (rc < 0) ? -EIO : -EAGAIN; 995 } 996 997 /* 998 * Default handling if a filesystem does not provide a migration function. 999 */ 1000 static int fallback_migrate_folio(struct address_space *mapping, 1001 struct folio *dst, struct folio *src, enum migrate_mode mode) 1002 { 1003 if (folio_test_dirty(src)) { 1004 /* Only writeback folios in full synchronous migration */ 1005 switch (mode) { 1006 case MIGRATE_SYNC: 1007 break; 1008 default: 1009 return -EBUSY; 1010 } 1011 return writeout(mapping, src); 1012 } 1013 1014 /* 1015 * Buffers may be managed in a filesystem specific way. 1016 * We must have no buffers or drop them. 1017 */ 1018 if (!filemap_release_folio(src, GFP_KERNEL)) 1019 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 1020 1021 return migrate_folio(mapping, dst, src, mode); 1022 } 1023 1024 /* 1025 * Move a page to a newly allocated page 1026 * The page is locked and all ptes have been successfully removed. 1027 * 1028 * The new page will have replaced the old page if this function 1029 * is successful. 1030 * 1031 * Return value: 1032 * < 0 - error code 1033 * MIGRATEPAGE_SUCCESS - success 1034 */ 1035 static int move_to_new_folio(struct folio *dst, struct folio *src, 1036 enum migrate_mode mode) 1037 { 1038 int rc = -EAGAIN; 1039 bool is_lru = !__folio_test_movable(src); 1040 1041 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 1042 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 1043 1044 if (likely(is_lru)) { 1045 struct address_space *mapping = folio_mapping(src); 1046 1047 if (!mapping) 1048 rc = migrate_folio(mapping, dst, src, mode); 1049 else if (mapping_inaccessible(mapping)) 1050 rc = -EOPNOTSUPP; 1051 else if (mapping->a_ops->migrate_folio) 1052 /* 1053 * Most folios have a mapping and most filesystems 1054 * provide a migrate_folio callback. Anonymous folios 1055 * are part of swap space which also has its own 1056 * migrate_folio callback. This is the most common path 1057 * for page migration. 1058 */ 1059 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 1060 mode); 1061 else 1062 rc = fallback_migrate_folio(mapping, dst, src, mode); 1063 } else { 1064 const struct movable_operations *mops; 1065 1066 /* 1067 * In case of non-lru page, it could be released after 1068 * isolation step. In that case, we shouldn't try migration. 1069 */ 1070 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1071 if (!folio_test_movable(src)) { 1072 rc = MIGRATEPAGE_SUCCESS; 1073 folio_clear_isolated(src); 1074 goto out; 1075 } 1076 1077 mops = folio_movable_ops(src); 1078 rc = mops->migrate_page(&dst->page, &src->page, mode); 1079 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 1080 !folio_test_isolated(src)); 1081 } 1082 1083 /* 1084 * When successful, old pagecache src->mapping must be cleared before 1085 * src is freed; but stats require that PageAnon be left as PageAnon. 1086 */ 1087 if (rc == MIGRATEPAGE_SUCCESS) { 1088 if (__folio_test_movable(src)) { 1089 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1090 1091 /* 1092 * We clear PG_movable under page_lock so any compactor 1093 * cannot try to migrate this page. 1094 */ 1095 folio_clear_isolated(src); 1096 } 1097 1098 /* 1099 * Anonymous and movable src->mapping will be cleared by 1100 * free_pages_prepare so don't reset it here for keeping 1101 * the type to work PageAnon, for example. 1102 */ 1103 if (!folio_mapping_flags(src)) 1104 src->mapping = NULL; 1105 1106 if (likely(!folio_is_zone_device(dst))) 1107 flush_dcache_folio(dst); 1108 } 1109 out: 1110 return rc; 1111 } 1112 1113 /* 1114 * To record some information during migration, we use unused private 1115 * field of struct folio of the newly allocated destination folio. 1116 * This is safe because nobody is using it except us. 1117 */ 1118 enum { 1119 PAGE_WAS_MAPPED = BIT(0), 1120 PAGE_WAS_MLOCKED = BIT(1), 1121 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1122 }; 1123 1124 static void __migrate_folio_record(struct folio *dst, 1125 int old_page_state, 1126 struct anon_vma *anon_vma) 1127 { 1128 dst->private = (void *)anon_vma + old_page_state; 1129 } 1130 1131 static void __migrate_folio_extract(struct folio *dst, 1132 int *old_page_state, 1133 struct anon_vma **anon_vmap) 1134 { 1135 unsigned long private = (unsigned long)dst->private; 1136 1137 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1138 *old_page_state = private & PAGE_OLD_STATES; 1139 dst->private = NULL; 1140 } 1141 1142 /* Restore the source folio to the original state upon failure */ 1143 static void migrate_folio_undo_src(struct folio *src, 1144 int page_was_mapped, 1145 struct anon_vma *anon_vma, 1146 bool locked, 1147 struct list_head *ret) 1148 { 1149 if (page_was_mapped) 1150 remove_migration_ptes(src, src, 0); 1151 /* Drop an anon_vma reference if we took one */ 1152 if (anon_vma) 1153 put_anon_vma(anon_vma); 1154 if (locked) 1155 folio_unlock(src); 1156 if (ret) 1157 list_move_tail(&src->lru, ret); 1158 } 1159 1160 /* Restore the destination folio to the original state upon failure */ 1161 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1162 free_folio_t put_new_folio, unsigned long private) 1163 { 1164 if (locked) 1165 folio_unlock(dst); 1166 if (put_new_folio) 1167 put_new_folio(dst, private); 1168 else 1169 folio_put(dst); 1170 } 1171 1172 /* Cleanup src folio upon migration success */ 1173 static void migrate_folio_done(struct folio *src, 1174 enum migrate_reason reason) 1175 { 1176 /* 1177 * Compaction can migrate also non-LRU pages which are 1178 * not accounted to NR_ISOLATED_*. They can be recognized 1179 * as __folio_test_movable 1180 */ 1181 if (likely(!__folio_test_movable(src)) && reason != MR_DEMOTION) 1182 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1183 folio_is_file_lru(src), -folio_nr_pages(src)); 1184 1185 if (reason != MR_MEMORY_FAILURE) 1186 /* We release the page in page_handle_poison. */ 1187 folio_put(src); 1188 } 1189 1190 /* Obtain the lock on page, remove all ptes. */ 1191 static int migrate_folio_unmap(new_folio_t get_new_folio, 1192 free_folio_t put_new_folio, unsigned long private, 1193 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1194 enum migrate_reason reason, struct list_head *ret) 1195 { 1196 struct folio *dst; 1197 int rc = -EAGAIN; 1198 int old_page_state = 0; 1199 struct anon_vma *anon_vma = NULL; 1200 bool is_lru = data_race(!__folio_test_movable(src)); 1201 bool locked = false; 1202 bool dst_locked = false; 1203 1204 if (folio_ref_count(src) == 1) { 1205 /* Folio was freed from under us. So we are done. */ 1206 folio_clear_active(src); 1207 folio_clear_unevictable(src); 1208 /* free_pages_prepare() will clear PG_isolated. */ 1209 list_del(&src->lru); 1210 migrate_folio_done(src, reason); 1211 return MIGRATEPAGE_SUCCESS; 1212 } 1213 1214 dst = get_new_folio(src, private); 1215 if (!dst) 1216 return -ENOMEM; 1217 *dstp = dst; 1218 1219 dst->private = NULL; 1220 1221 if (!folio_trylock(src)) { 1222 if (mode == MIGRATE_ASYNC) 1223 goto out; 1224 1225 /* 1226 * It's not safe for direct compaction to call lock_page. 1227 * For example, during page readahead pages are added locked 1228 * to the LRU. Later, when the IO completes the pages are 1229 * marked uptodate and unlocked. However, the queueing 1230 * could be merging multiple pages for one bio (e.g. 1231 * mpage_readahead). If an allocation happens for the 1232 * second or third page, the process can end up locking 1233 * the same page twice and deadlocking. Rather than 1234 * trying to be clever about what pages can be locked, 1235 * avoid the use of lock_page for direct compaction 1236 * altogether. 1237 */ 1238 if (current->flags & PF_MEMALLOC) 1239 goto out; 1240 1241 /* 1242 * In "light" mode, we can wait for transient locks (eg 1243 * inserting a page into the page table), but it's not 1244 * worth waiting for I/O. 1245 */ 1246 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1247 goto out; 1248 1249 folio_lock(src); 1250 } 1251 locked = true; 1252 if (folio_test_mlocked(src)) 1253 old_page_state |= PAGE_WAS_MLOCKED; 1254 1255 if (folio_test_writeback(src)) { 1256 /* 1257 * Only in the case of a full synchronous migration is it 1258 * necessary to wait for PageWriteback. In the async case, 1259 * the retry loop is too short and in the sync-light case, 1260 * the overhead of stalling is too much 1261 */ 1262 switch (mode) { 1263 case MIGRATE_SYNC: 1264 break; 1265 default: 1266 rc = -EBUSY; 1267 goto out; 1268 } 1269 folio_wait_writeback(src); 1270 } 1271 1272 /* 1273 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1274 * we cannot notice that anon_vma is freed while we migrate a page. 1275 * This get_anon_vma() delays freeing anon_vma pointer until the end 1276 * of migration. File cache pages are no problem because of page_lock() 1277 * File Caches may use write_page() or lock_page() in migration, then, 1278 * just care Anon page here. 1279 * 1280 * Only folio_get_anon_vma() understands the subtleties of 1281 * getting a hold on an anon_vma from outside one of its mms. 1282 * But if we cannot get anon_vma, then we won't need it anyway, 1283 * because that implies that the anon page is no longer mapped 1284 * (and cannot be remapped so long as we hold the page lock). 1285 */ 1286 if (folio_test_anon(src) && !folio_test_ksm(src)) 1287 anon_vma = folio_get_anon_vma(src); 1288 1289 /* 1290 * Block others from accessing the new page when we get around to 1291 * establishing additional references. We are usually the only one 1292 * holding a reference to dst at this point. We used to have a BUG 1293 * here if folio_trylock(dst) fails, but would like to allow for 1294 * cases where there might be a race with the previous use of dst. 1295 * This is much like races on refcount of oldpage: just don't BUG(). 1296 */ 1297 if (unlikely(!folio_trylock(dst))) 1298 goto out; 1299 dst_locked = true; 1300 1301 if (unlikely(!is_lru)) { 1302 __migrate_folio_record(dst, old_page_state, anon_vma); 1303 return MIGRATEPAGE_UNMAP; 1304 } 1305 1306 /* 1307 * Corner case handling: 1308 * 1. When a new swap-cache page is read into, it is added to the LRU 1309 * and treated as swapcache but it has no rmap yet. 1310 * Calling try_to_unmap() against a src->mapping==NULL page will 1311 * trigger a BUG. So handle it here. 1312 * 2. An orphaned page (see truncate_cleanup_page) might have 1313 * fs-private metadata. The page can be picked up due to memory 1314 * offlining. Everywhere else except page reclaim, the page is 1315 * invisible to the vm, so the page can not be migrated. So try to 1316 * free the metadata, so the page can be freed. 1317 */ 1318 if (!src->mapping) { 1319 if (folio_test_private(src)) { 1320 try_to_free_buffers(src); 1321 goto out; 1322 } 1323 } else if (folio_mapped(src)) { 1324 /* Establish migration ptes */ 1325 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1326 !folio_test_ksm(src) && !anon_vma, src); 1327 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1328 old_page_state |= PAGE_WAS_MAPPED; 1329 } 1330 1331 if (!folio_mapped(src)) { 1332 __migrate_folio_record(dst, old_page_state, anon_vma); 1333 return MIGRATEPAGE_UNMAP; 1334 } 1335 1336 out: 1337 /* 1338 * A folio that has not been unmapped will be restored to 1339 * right list unless we want to retry. 1340 */ 1341 if (rc == -EAGAIN) 1342 ret = NULL; 1343 1344 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1345 anon_vma, locked, ret); 1346 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1347 1348 return rc; 1349 } 1350 1351 /* Migrate the folio to the newly allocated folio in dst. */ 1352 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1353 struct folio *src, struct folio *dst, 1354 enum migrate_mode mode, enum migrate_reason reason, 1355 struct list_head *ret) 1356 { 1357 int rc; 1358 int old_page_state = 0; 1359 struct anon_vma *anon_vma = NULL; 1360 bool is_lru = !__folio_test_movable(src); 1361 struct list_head *prev; 1362 1363 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1364 prev = dst->lru.prev; 1365 list_del(&dst->lru); 1366 1367 rc = move_to_new_folio(dst, src, mode); 1368 if (rc) 1369 goto out; 1370 1371 if (unlikely(!is_lru)) 1372 goto out_unlock_both; 1373 1374 /* 1375 * When successful, push dst to LRU immediately: so that if it 1376 * turns out to be an mlocked page, remove_migration_ptes() will 1377 * automatically build up the correct dst->mlock_count for it. 1378 * 1379 * We would like to do something similar for the old page, when 1380 * unsuccessful, and other cases when a page has been temporarily 1381 * isolated from the unevictable LRU: but this case is the easiest. 1382 */ 1383 folio_add_lru(dst); 1384 if (old_page_state & PAGE_WAS_MLOCKED) 1385 lru_add_drain(); 1386 1387 if (old_page_state & PAGE_WAS_MAPPED) 1388 remove_migration_ptes(src, dst, 0); 1389 1390 out_unlock_both: 1391 folio_unlock(dst); 1392 set_page_owner_migrate_reason(&dst->page, reason); 1393 /* 1394 * If migration is successful, decrease refcount of dst, 1395 * which will not free the page because new page owner increased 1396 * refcounter. 1397 */ 1398 folio_put(dst); 1399 1400 /* 1401 * A folio that has been migrated has all references removed 1402 * and will be freed. 1403 */ 1404 list_del(&src->lru); 1405 /* Drop an anon_vma reference if we took one */ 1406 if (anon_vma) 1407 put_anon_vma(anon_vma); 1408 folio_unlock(src); 1409 migrate_folio_done(src, reason); 1410 1411 return rc; 1412 out: 1413 /* 1414 * A folio that has not been migrated will be restored to 1415 * right list unless we want to retry. 1416 */ 1417 if (rc == -EAGAIN) { 1418 list_add(&dst->lru, prev); 1419 __migrate_folio_record(dst, old_page_state, anon_vma); 1420 return rc; 1421 } 1422 1423 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1424 anon_vma, true, ret); 1425 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1426 1427 return rc; 1428 } 1429 1430 /* 1431 * Counterpart of unmap_and_move_page() for hugepage migration. 1432 * 1433 * This function doesn't wait the completion of hugepage I/O 1434 * because there is no race between I/O and migration for hugepage. 1435 * Note that currently hugepage I/O occurs only in direct I/O 1436 * where no lock is held and PG_writeback is irrelevant, 1437 * and writeback status of all subpages are counted in the reference 1438 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1439 * under direct I/O, the reference of the head page is 512 and a bit more.) 1440 * This means that when we try to migrate hugepage whose subpages are 1441 * doing direct I/O, some references remain after try_to_unmap() and 1442 * hugepage migration fails without data corruption. 1443 * 1444 * There is also no race when direct I/O is issued on the page under migration, 1445 * because then pte is replaced with migration swap entry and direct I/O code 1446 * will wait in the page fault for migration to complete. 1447 */ 1448 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1449 free_folio_t put_new_folio, unsigned long private, 1450 struct folio *src, int force, enum migrate_mode mode, 1451 int reason, struct list_head *ret) 1452 { 1453 struct folio *dst; 1454 int rc = -EAGAIN; 1455 int page_was_mapped = 0; 1456 struct anon_vma *anon_vma = NULL; 1457 struct address_space *mapping = NULL; 1458 1459 if (folio_ref_count(src) == 1) { 1460 /* page was freed from under us. So we are done. */ 1461 folio_putback_active_hugetlb(src); 1462 return MIGRATEPAGE_SUCCESS; 1463 } 1464 1465 dst = get_new_folio(src, private); 1466 if (!dst) 1467 return -ENOMEM; 1468 1469 if (!folio_trylock(src)) { 1470 if (!force) 1471 goto out; 1472 switch (mode) { 1473 case MIGRATE_SYNC: 1474 break; 1475 default: 1476 goto out; 1477 } 1478 folio_lock(src); 1479 } 1480 1481 /* 1482 * Check for pages which are in the process of being freed. Without 1483 * folio_mapping() set, hugetlbfs specific move page routine will not 1484 * be called and we could leak usage counts for subpools. 1485 */ 1486 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1487 rc = -EBUSY; 1488 goto out_unlock; 1489 } 1490 1491 if (folio_test_anon(src)) 1492 anon_vma = folio_get_anon_vma(src); 1493 1494 if (unlikely(!folio_trylock(dst))) 1495 goto put_anon; 1496 1497 if (folio_mapped(src)) { 1498 enum ttu_flags ttu = 0; 1499 1500 if (!folio_test_anon(src)) { 1501 /* 1502 * In shared mappings, try_to_unmap could potentially 1503 * call huge_pmd_unshare. Because of this, take 1504 * semaphore in write mode here and set TTU_RMAP_LOCKED 1505 * to let lower levels know we have taken the lock. 1506 */ 1507 mapping = hugetlb_folio_mapping_lock_write(src); 1508 if (unlikely(!mapping)) 1509 goto unlock_put_anon; 1510 1511 ttu = TTU_RMAP_LOCKED; 1512 } 1513 1514 try_to_migrate(src, ttu); 1515 page_was_mapped = 1; 1516 1517 if (ttu & TTU_RMAP_LOCKED) 1518 i_mmap_unlock_write(mapping); 1519 } 1520 1521 if (!folio_mapped(src)) 1522 rc = move_to_new_folio(dst, src, mode); 1523 1524 if (page_was_mapped) 1525 remove_migration_ptes(src, 1526 rc == MIGRATEPAGE_SUCCESS ? dst : src, 0); 1527 1528 unlock_put_anon: 1529 folio_unlock(dst); 1530 1531 put_anon: 1532 if (anon_vma) 1533 put_anon_vma(anon_vma); 1534 1535 if (rc == MIGRATEPAGE_SUCCESS) { 1536 move_hugetlb_state(src, dst, reason); 1537 put_new_folio = NULL; 1538 } 1539 1540 out_unlock: 1541 folio_unlock(src); 1542 out: 1543 if (rc == MIGRATEPAGE_SUCCESS) 1544 folio_putback_active_hugetlb(src); 1545 else if (rc != -EAGAIN) 1546 list_move_tail(&src->lru, ret); 1547 1548 /* 1549 * If migration was not successful and there's a freeing callback, use 1550 * it. Otherwise, put_page() will drop the reference grabbed during 1551 * isolation. 1552 */ 1553 if (put_new_folio) 1554 put_new_folio(dst, private); 1555 else 1556 folio_putback_active_hugetlb(dst); 1557 1558 return rc; 1559 } 1560 1561 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios, 1562 enum migrate_mode mode) 1563 { 1564 int rc; 1565 1566 if (mode == MIGRATE_ASYNC) { 1567 if (!folio_trylock(folio)) 1568 return -EAGAIN; 1569 } else { 1570 folio_lock(folio); 1571 } 1572 rc = split_folio_to_list(folio, split_folios); 1573 folio_unlock(folio); 1574 if (!rc) 1575 list_move_tail(&folio->lru, split_folios); 1576 1577 return rc; 1578 } 1579 1580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1581 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1582 #else 1583 #define NR_MAX_BATCHED_MIGRATION 512 1584 #endif 1585 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1586 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1587 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1588 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1589 1590 struct migrate_pages_stats { 1591 int nr_succeeded; /* Normal and large folios migrated successfully, in 1592 units of base pages */ 1593 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1594 units of base pages. Untried folios aren't counted */ 1595 int nr_thp_succeeded; /* THP migrated successfully */ 1596 int nr_thp_failed; /* THP failed to be migrated */ 1597 int nr_thp_split; /* THP split before migrating */ 1598 int nr_split; /* Large folio (include THP) split before migrating */ 1599 }; 1600 1601 /* 1602 * Returns the number of hugetlb folios that were not migrated, or an error code 1603 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1604 * any more because the list has become empty or no retryable hugetlb folios 1605 * exist any more. It is caller's responsibility to call putback_movable_pages() 1606 * only if ret != 0. 1607 */ 1608 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1609 free_folio_t put_new_folio, unsigned long private, 1610 enum migrate_mode mode, int reason, 1611 struct migrate_pages_stats *stats, 1612 struct list_head *ret_folios) 1613 { 1614 int retry = 1; 1615 int nr_failed = 0; 1616 int nr_retry_pages = 0; 1617 int pass = 0; 1618 struct folio *folio, *folio2; 1619 int rc, nr_pages; 1620 1621 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1622 retry = 0; 1623 nr_retry_pages = 0; 1624 1625 list_for_each_entry_safe(folio, folio2, from, lru) { 1626 if (!folio_test_hugetlb(folio)) 1627 continue; 1628 1629 nr_pages = folio_nr_pages(folio); 1630 1631 cond_resched(); 1632 1633 /* 1634 * Migratability of hugepages depends on architectures and 1635 * their size. This check is necessary because some callers 1636 * of hugepage migration like soft offline and memory 1637 * hotremove don't walk through page tables or check whether 1638 * the hugepage is pmd-based or not before kicking migration. 1639 */ 1640 if (!hugepage_migration_supported(folio_hstate(folio))) { 1641 nr_failed++; 1642 stats->nr_failed_pages += nr_pages; 1643 list_move_tail(&folio->lru, ret_folios); 1644 continue; 1645 } 1646 1647 rc = unmap_and_move_huge_page(get_new_folio, 1648 put_new_folio, private, 1649 folio, pass > 2, mode, 1650 reason, ret_folios); 1651 /* 1652 * The rules are: 1653 * Success: hugetlb folio will be put back 1654 * -EAGAIN: stay on the from list 1655 * -ENOMEM: stay on the from list 1656 * Other errno: put on ret_folios list 1657 */ 1658 switch(rc) { 1659 case -ENOMEM: 1660 /* 1661 * When memory is low, don't bother to try to migrate 1662 * other folios, just exit. 1663 */ 1664 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1665 return -ENOMEM; 1666 case -EAGAIN: 1667 retry++; 1668 nr_retry_pages += nr_pages; 1669 break; 1670 case MIGRATEPAGE_SUCCESS: 1671 stats->nr_succeeded += nr_pages; 1672 break; 1673 default: 1674 /* 1675 * Permanent failure (-EBUSY, etc.): 1676 * unlike -EAGAIN case, the failed folio is 1677 * removed from migration folio list and not 1678 * retried in the next outer loop. 1679 */ 1680 nr_failed++; 1681 stats->nr_failed_pages += nr_pages; 1682 break; 1683 } 1684 } 1685 } 1686 /* 1687 * nr_failed is number of hugetlb folios failed to be migrated. After 1688 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1689 * folios as failed. 1690 */ 1691 nr_failed += retry; 1692 stats->nr_failed_pages += nr_retry_pages; 1693 1694 return nr_failed; 1695 } 1696 1697 /* 1698 * migrate_pages_batch() first unmaps folios in the from list as many as 1699 * possible, then move the unmapped folios. 1700 * 1701 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1702 * lock or bit when we have locked more than one folio. Which may cause 1703 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1704 * length of the from list must be <= 1. 1705 */ 1706 static int migrate_pages_batch(struct list_head *from, 1707 new_folio_t get_new_folio, free_folio_t put_new_folio, 1708 unsigned long private, enum migrate_mode mode, int reason, 1709 struct list_head *ret_folios, struct list_head *split_folios, 1710 struct migrate_pages_stats *stats, int nr_pass) 1711 { 1712 int retry = 1; 1713 int thp_retry = 1; 1714 int nr_failed = 0; 1715 int nr_retry_pages = 0; 1716 int pass = 0; 1717 bool is_thp = false; 1718 bool is_large = false; 1719 struct folio *folio, *folio2, *dst = NULL, *dst2; 1720 int rc, rc_saved = 0, nr_pages; 1721 LIST_HEAD(unmap_folios); 1722 LIST_HEAD(dst_folios); 1723 bool nosplit = (reason == MR_NUMA_MISPLACED); 1724 1725 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1726 !list_empty(from) && !list_is_singular(from)); 1727 1728 for (pass = 0; pass < nr_pass && retry; pass++) { 1729 retry = 0; 1730 thp_retry = 0; 1731 nr_retry_pages = 0; 1732 1733 list_for_each_entry_safe(folio, folio2, from, lru) { 1734 is_large = folio_test_large(folio); 1735 is_thp = is_large && folio_test_pmd_mappable(folio); 1736 nr_pages = folio_nr_pages(folio); 1737 1738 cond_resched(); 1739 1740 /* 1741 * The rare folio on the deferred split list should 1742 * be split now. It should not count as a failure: 1743 * but increment nr_failed because, without doing so, 1744 * migrate_pages() may report success with (split but 1745 * unmigrated) pages still on its fromlist; whereas it 1746 * always reports success when its fromlist is empty. 1747 * stats->nr_thp_failed should be increased too, 1748 * otherwise stats inconsistency will happen when 1749 * migrate_pages_batch is called via migrate_pages() 1750 * with MIGRATE_SYNC and MIGRATE_ASYNC. 1751 * 1752 * Only check it without removing it from the list. 1753 * Since the folio can be on deferred_split_scan() 1754 * local list and removing it can cause the local list 1755 * corruption. Folio split process below can handle it 1756 * with the help of folio_ref_freeze(). 1757 * 1758 * nr_pages > 2 is needed to avoid checking order-1 1759 * page cache folios. They exist, in contrast to 1760 * non-existent order-1 anonymous folios, and do not 1761 * use _deferred_list. 1762 */ 1763 if (nr_pages > 2 && 1764 !list_empty(&folio->_deferred_list) && 1765 folio_test_partially_mapped(folio)) { 1766 if (!try_split_folio(folio, split_folios, mode)) { 1767 nr_failed++; 1768 stats->nr_thp_failed += is_thp; 1769 stats->nr_thp_split += is_thp; 1770 stats->nr_split++; 1771 continue; 1772 } 1773 } 1774 1775 /* 1776 * Large folio migration might be unsupported or 1777 * the allocation might be failed so we should retry 1778 * on the same folio with the large folio split 1779 * to normal folios. 1780 * 1781 * Split folios are put in split_folios, and 1782 * we will migrate them after the rest of the 1783 * list is processed. 1784 */ 1785 if (!thp_migration_supported() && is_thp) { 1786 nr_failed++; 1787 stats->nr_thp_failed++; 1788 if (!try_split_folio(folio, split_folios, mode)) { 1789 stats->nr_thp_split++; 1790 stats->nr_split++; 1791 continue; 1792 } 1793 stats->nr_failed_pages += nr_pages; 1794 list_move_tail(&folio->lru, ret_folios); 1795 continue; 1796 } 1797 1798 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1799 private, folio, &dst, mode, reason, 1800 ret_folios); 1801 /* 1802 * The rules are: 1803 * Success: folio will be freed 1804 * Unmap: folio will be put on unmap_folios list, 1805 * dst folio put on dst_folios list 1806 * -EAGAIN: stay on the from list 1807 * -ENOMEM: stay on the from list 1808 * Other errno: put on ret_folios list 1809 */ 1810 switch(rc) { 1811 case -ENOMEM: 1812 /* 1813 * When memory is low, don't bother to try to migrate 1814 * other folios, move unmapped folios, then exit. 1815 */ 1816 nr_failed++; 1817 stats->nr_thp_failed += is_thp; 1818 /* Large folio NUMA faulting doesn't split to retry. */ 1819 if (is_large && !nosplit) { 1820 int ret = try_split_folio(folio, split_folios, mode); 1821 1822 if (!ret) { 1823 stats->nr_thp_split += is_thp; 1824 stats->nr_split++; 1825 break; 1826 } else if (reason == MR_LONGTERM_PIN && 1827 ret == -EAGAIN) { 1828 /* 1829 * Try again to split large folio to 1830 * mitigate the failure of longterm pinning. 1831 */ 1832 retry++; 1833 thp_retry += is_thp; 1834 nr_retry_pages += nr_pages; 1835 /* Undo duplicated failure counting. */ 1836 nr_failed--; 1837 stats->nr_thp_failed -= is_thp; 1838 break; 1839 } 1840 } 1841 1842 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1843 /* nr_failed isn't updated for not used */ 1844 stats->nr_thp_failed += thp_retry; 1845 rc_saved = rc; 1846 if (list_empty(&unmap_folios)) 1847 goto out; 1848 else 1849 goto move; 1850 case -EAGAIN: 1851 retry++; 1852 thp_retry += is_thp; 1853 nr_retry_pages += nr_pages; 1854 break; 1855 case MIGRATEPAGE_SUCCESS: 1856 stats->nr_succeeded += nr_pages; 1857 stats->nr_thp_succeeded += is_thp; 1858 break; 1859 case MIGRATEPAGE_UNMAP: 1860 list_move_tail(&folio->lru, &unmap_folios); 1861 list_add_tail(&dst->lru, &dst_folios); 1862 break; 1863 default: 1864 /* 1865 * Permanent failure (-EBUSY, etc.): 1866 * unlike -EAGAIN case, the failed folio is 1867 * removed from migration folio list and not 1868 * retried in the next outer loop. 1869 */ 1870 nr_failed++; 1871 stats->nr_thp_failed += is_thp; 1872 stats->nr_failed_pages += nr_pages; 1873 break; 1874 } 1875 } 1876 } 1877 nr_failed += retry; 1878 stats->nr_thp_failed += thp_retry; 1879 stats->nr_failed_pages += nr_retry_pages; 1880 move: 1881 /* Flush TLBs for all unmapped folios */ 1882 try_to_unmap_flush(); 1883 1884 retry = 1; 1885 for (pass = 0; pass < nr_pass && retry; pass++) { 1886 retry = 0; 1887 thp_retry = 0; 1888 nr_retry_pages = 0; 1889 1890 dst = list_first_entry(&dst_folios, struct folio, lru); 1891 dst2 = list_next_entry(dst, lru); 1892 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1893 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1894 nr_pages = folio_nr_pages(folio); 1895 1896 cond_resched(); 1897 1898 rc = migrate_folio_move(put_new_folio, private, 1899 folio, dst, mode, 1900 reason, ret_folios); 1901 /* 1902 * The rules are: 1903 * Success: folio will be freed 1904 * -EAGAIN: stay on the unmap_folios list 1905 * Other errno: put on ret_folios list 1906 */ 1907 switch(rc) { 1908 case -EAGAIN: 1909 retry++; 1910 thp_retry += is_thp; 1911 nr_retry_pages += nr_pages; 1912 break; 1913 case MIGRATEPAGE_SUCCESS: 1914 stats->nr_succeeded += nr_pages; 1915 stats->nr_thp_succeeded += is_thp; 1916 break; 1917 default: 1918 nr_failed++; 1919 stats->nr_thp_failed += is_thp; 1920 stats->nr_failed_pages += nr_pages; 1921 break; 1922 } 1923 dst = dst2; 1924 dst2 = list_next_entry(dst, lru); 1925 } 1926 } 1927 nr_failed += retry; 1928 stats->nr_thp_failed += thp_retry; 1929 stats->nr_failed_pages += nr_retry_pages; 1930 1931 rc = rc_saved ? : nr_failed; 1932 out: 1933 /* Cleanup remaining folios */ 1934 dst = list_first_entry(&dst_folios, struct folio, lru); 1935 dst2 = list_next_entry(dst, lru); 1936 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1937 int old_page_state = 0; 1938 struct anon_vma *anon_vma = NULL; 1939 1940 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1941 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1942 anon_vma, true, ret_folios); 1943 list_del(&dst->lru); 1944 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1945 dst = dst2; 1946 dst2 = list_next_entry(dst, lru); 1947 } 1948 1949 return rc; 1950 } 1951 1952 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1953 free_folio_t put_new_folio, unsigned long private, 1954 enum migrate_mode mode, int reason, 1955 struct list_head *ret_folios, struct list_head *split_folios, 1956 struct migrate_pages_stats *stats) 1957 { 1958 int rc, nr_failed = 0; 1959 LIST_HEAD(folios); 1960 struct migrate_pages_stats astats; 1961 1962 memset(&astats, 0, sizeof(astats)); 1963 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1964 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1965 reason, &folios, split_folios, &astats, 1966 NR_MAX_MIGRATE_ASYNC_RETRY); 1967 stats->nr_succeeded += astats.nr_succeeded; 1968 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1969 stats->nr_thp_split += astats.nr_thp_split; 1970 stats->nr_split += astats.nr_split; 1971 if (rc < 0) { 1972 stats->nr_failed_pages += astats.nr_failed_pages; 1973 stats->nr_thp_failed += astats.nr_thp_failed; 1974 list_splice_tail(&folios, ret_folios); 1975 return rc; 1976 } 1977 stats->nr_thp_failed += astats.nr_thp_split; 1978 /* 1979 * Do not count rc, as pages will be retried below. 1980 * Count nr_split only, since it includes nr_thp_split. 1981 */ 1982 nr_failed += astats.nr_split; 1983 /* 1984 * Fall back to migrate all failed folios one by one synchronously. All 1985 * failed folios except split THPs will be retried, so their failure 1986 * isn't counted 1987 */ 1988 list_splice_tail_init(&folios, from); 1989 while (!list_empty(from)) { 1990 list_move(from->next, &folios); 1991 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1992 private, mode, reason, ret_folios, 1993 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1994 list_splice_tail_init(&folios, ret_folios); 1995 if (rc < 0) 1996 return rc; 1997 nr_failed += rc; 1998 } 1999 2000 return nr_failed; 2001 } 2002 2003 /* 2004 * migrate_pages - migrate the folios specified in a list, to the free folios 2005 * supplied as the target for the page migration 2006 * 2007 * @from: The list of folios to be migrated. 2008 * @get_new_folio: The function used to allocate free folios to be used 2009 * as the target of the folio migration. 2010 * @put_new_folio: The function used to free target folios if migration 2011 * fails, or NULL if no special handling is necessary. 2012 * @private: Private data to be passed on to get_new_folio() 2013 * @mode: The migration mode that specifies the constraints for 2014 * folio migration, if any. 2015 * @reason: The reason for folio migration. 2016 * @ret_succeeded: Set to the number of folios migrated successfully if 2017 * the caller passes a non-NULL pointer. 2018 * 2019 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 2020 * are movable any more because the list has become empty or no retryable folios 2021 * exist any more. It is caller's responsibility to call putback_movable_pages() 2022 * only if ret != 0. 2023 * 2024 * Returns the number of {normal folio, large folio, hugetlb} that were not 2025 * migrated, or an error code. The number of large folio splits will be 2026 * considered as the number of non-migrated large folio, no matter how many 2027 * split folios of the large folio are migrated successfully. 2028 */ 2029 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 2030 free_folio_t put_new_folio, unsigned long private, 2031 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 2032 { 2033 int rc, rc_gather; 2034 int nr_pages; 2035 struct folio *folio, *folio2; 2036 LIST_HEAD(folios); 2037 LIST_HEAD(ret_folios); 2038 LIST_HEAD(split_folios); 2039 struct migrate_pages_stats stats; 2040 2041 trace_mm_migrate_pages_start(mode, reason); 2042 2043 memset(&stats, 0, sizeof(stats)); 2044 2045 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 2046 mode, reason, &stats, &ret_folios); 2047 if (rc_gather < 0) 2048 goto out; 2049 2050 again: 2051 nr_pages = 0; 2052 list_for_each_entry_safe(folio, folio2, from, lru) { 2053 /* Retried hugetlb folios will be kept in list */ 2054 if (folio_test_hugetlb(folio)) { 2055 list_move_tail(&folio->lru, &ret_folios); 2056 continue; 2057 } 2058 2059 nr_pages += folio_nr_pages(folio); 2060 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2061 break; 2062 } 2063 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2064 list_cut_before(&folios, from, &folio2->lru); 2065 else 2066 list_splice_init(from, &folios); 2067 if (mode == MIGRATE_ASYNC) 2068 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2069 private, mode, reason, &ret_folios, 2070 &split_folios, &stats, 2071 NR_MAX_MIGRATE_PAGES_RETRY); 2072 else 2073 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 2074 private, mode, reason, &ret_folios, 2075 &split_folios, &stats); 2076 list_splice_tail_init(&folios, &ret_folios); 2077 if (rc < 0) { 2078 rc_gather = rc; 2079 list_splice_tail(&split_folios, &ret_folios); 2080 goto out; 2081 } 2082 if (!list_empty(&split_folios)) { 2083 /* 2084 * Failure isn't counted since all split folios of a large folio 2085 * is counted as 1 failure already. And, we only try to migrate 2086 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 2087 */ 2088 migrate_pages_batch(&split_folios, get_new_folio, 2089 put_new_folio, private, MIGRATE_ASYNC, reason, 2090 &ret_folios, NULL, &stats, 1); 2091 list_splice_tail_init(&split_folios, &ret_folios); 2092 } 2093 rc_gather += rc; 2094 if (!list_empty(from)) 2095 goto again; 2096 out: 2097 /* 2098 * Put the permanent failure folio back to migration list, they 2099 * will be put back to the right list by the caller. 2100 */ 2101 list_splice(&ret_folios, from); 2102 2103 /* 2104 * Return 0 in case all split folios of fail-to-migrate large folios 2105 * are migrated successfully. 2106 */ 2107 if (list_empty(from)) 2108 rc_gather = 0; 2109 2110 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2111 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2112 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2113 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2114 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2115 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2116 stats.nr_thp_succeeded, stats.nr_thp_failed, 2117 stats.nr_thp_split, stats.nr_split, mode, 2118 reason); 2119 2120 if (ret_succeeded) 2121 *ret_succeeded = stats.nr_succeeded; 2122 2123 return rc_gather; 2124 } 2125 2126 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2127 { 2128 struct migration_target_control *mtc; 2129 gfp_t gfp_mask; 2130 unsigned int order = 0; 2131 int nid; 2132 int zidx; 2133 2134 mtc = (struct migration_target_control *)private; 2135 gfp_mask = mtc->gfp_mask; 2136 nid = mtc->nid; 2137 if (nid == NUMA_NO_NODE) 2138 nid = folio_nid(src); 2139 2140 if (folio_test_hugetlb(src)) { 2141 struct hstate *h = folio_hstate(src); 2142 2143 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2144 return alloc_hugetlb_folio_nodemask(h, nid, 2145 mtc->nmask, gfp_mask, 2146 htlb_allow_alloc_fallback(mtc->reason)); 2147 } 2148 2149 if (folio_test_large(src)) { 2150 /* 2151 * clear __GFP_RECLAIM to make the migration callback 2152 * consistent with regular THP allocations. 2153 */ 2154 gfp_mask &= ~__GFP_RECLAIM; 2155 gfp_mask |= GFP_TRANSHUGE; 2156 order = folio_order(src); 2157 } 2158 zidx = zone_idx(folio_zone(src)); 2159 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2160 gfp_mask |= __GFP_HIGHMEM; 2161 2162 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2163 } 2164 2165 #ifdef CONFIG_NUMA 2166 2167 static int store_status(int __user *status, int start, int value, int nr) 2168 { 2169 while (nr-- > 0) { 2170 if (put_user(value, status + start)) 2171 return -EFAULT; 2172 start++; 2173 } 2174 2175 return 0; 2176 } 2177 2178 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2179 { 2180 int err; 2181 struct migration_target_control mtc = { 2182 .nid = node, 2183 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2184 .reason = MR_SYSCALL, 2185 }; 2186 2187 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2188 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2189 if (err) 2190 putback_movable_pages(pagelist); 2191 return err; 2192 } 2193 2194 static int __add_folio_for_migration(struct folio *folio, int node, 2195 struct list_head *pagelist, bool migrate_all) 2196 { 2197 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2198 return -EFAULT; 2199 2200 if (folio_is_zone_device(folio)) 2201 return -ENOENT; 2202 2203 if (folio_nid(folio) == node) 2204 return 0; 2205 2206 if (folio_likely_mapped_shared(folio) && !migrate_all) 2207 return -EACCES; 2208 2209 if (folio_test_hugetlb(folio)) { 2210 if (isolate_hugetlb(folio, pagelist)) 2211 return 1; 2212 } else if (folio_isolate_lru(folio)) { 2213 list_add_tail(&folio->lru, pagelist); 2214 node_stat_mod_folio(folio, 2215 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2216 folio_nr_pages(folio)); 2217 return 1; 2218 } 2219 return -EBUSY; 2220 } 2221 2222 /* 2223 * Resolves the given address to a struct folio, isolates it from the LRU and 2224 * puts it to the given pagelist. 2225 * Returns: 2226 * errno - if the folio cannot be found/isolated 2227 * 0 - when it doesn't have to be migrated because it is already on the 2228 * target node 2229 * 1 - when it has been queued 2230 */ 2231 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p, 2232 int node, struct list_head *pagelist, bool migrate_all) 2233 { 2234 struct vm_area_struct *vma; 2235 struct folio_walk fw; 2236 struct folio *folio; 2237 unsigned long addr; 2238 int err = -EFAULT; 2239 2240 mmap_read_lock(mm); 2241 addr = (unsigned long)untagged_addr_remote(mm, p); 2242 2243 vma = vma_lookup(mm, addr); 2244 if (vma && vma_migratable(vma)) { 2245 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2246 if (folio) { 2247 err = __add_folio_for_migration(folio, node, pagelist, 2248 migrate_all); 2249 folio_walk_end(&fw, vma); 2250 } else { 2251 err = -ENOENT; 2252 } 2253 } 2254 mmap_read_unlock(mm); 2255 return err; 2256 } 2257 2258 static int move_pages_and_store_status(int node, 2259 struct list_head *pagelist, int __user *status, 2260 int start, int i, unsigned long nr_pages) 2261 { 2262 int err; 2263 2264 if (list_empty(pagelist)) 2265 return 0; 2266 2267 err = do_move_pages_to_node(pagelist, node); 2268 if (err) { 2269 /* 2270 * Positive err means the number of failed 2271 * pages to migrate. Since we are going to 2272 * abort and return the number of non-migrated 2273 * pages, so need to include the rest of the 2274 * nr_pages that have not been attempted as 2275 * well. 2276 */ 2277 if (err > 0) 2278 err += nr_pages - i; 2279 return err; 2280 } 2281 return store_status(status, start, node, i - start); 2282 } 2283 2284 /* 2285 * Migrate an array of page address onto an array of nodes and fill 2286 * the corresponding array of status. 2287 */ 2288 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2289 unsigned long nr_pages, 2290 const void __user * __user *pages, 2291 const int __user *nodes, 2292 int __user *status, int flags) 2293 { 2294 compat_uptr_t __user *compat_pages = (void __user *)pages; 2295 int current_node = NUMA_NO_NODE; 2296 LIST_HEAD(pagelist); 2297 int start, i; 2298 int err = 0, err1; 2299 2300 lru_cache_disable(); 2301 2302 for (i = start = 0; i < nr_pages; i++) { 2303 const void __user *p; 2304 int node; 2305 2306 err = -EFAULT; 2307 if (in_compat_syscall()) { 2308 compat_uptr_t cp; 2309 2310 if (get_user(cp, compat_pages + i)) 2311 goto out_flush; 2312 2313 p = compat_ptr(cp); 2314 } else { 2315 if (get_user(p, pages + i)) 2316 goto out_flush; 2317 } 2318 if (get_user(node, nodes + i)) 2319 goto out_flush; 2320 2321 err = -ENODEV; 2322 if (node < 0 || node >= MAX_NUMNODES) 2323 goto out_flush; 2324 if (!node_state(node, N_MEMORY)) 2325 goto out_flush; 2326 2327 err = -EACCES; 2328 if (!node_isset(node, task_nodes)) 2329 goto out_flush; 2330 2331 if (current_node == NUMA_NO_NODE) { 2332 current_node = node; 2333 start = i; 2334 } else if (node != current_node) { 2335 err = move_pages_and_store_status(current_node, 2336 &pagelist, status, start, i, nr_pages); 2337 if (err) 2338 goto out; 2339 start = i; 2340 current_node = node; 2341 } 2342 2343 /* 2344 * Errors in the page lookup or isolation are not fatal and we simply 2345 * report them via status 2346 */ 2347 err = add_folio_for_migration(mm, p, current_node, &pagelist, 2348 flags & MPOL_MF_MOVE_ALL); 2349 2350 if (err > 0) { 2351 /* The page is successfully queued for migration */ 2352 continue; 2353 } 2354 2355 /* 2356 * The move_pages() man page does not have an -EEXIST choice, so 2357 * use -EFAULT instead. 2358 */ 2359 if (err == -EEXIST) 2360 err = -EFAULT; 2361 2362 /* 2363 * If the page is already on the target node (!err), store the 2364 * node, otherwise, store the err. 2365 */ 2366 err = store_status(status, i, err ? : current_node, 1); 2367 if (err) 2368 goto out_flush; 2369 2370 err = move_pages_and_store_status(current_node, &pagelist, 2371 status, start, i, nr_pages); 2372 if (err) { 2373 /* We have accounted for page i */ 2374 if (err > 0) 2375 err--; 2376 goto out; 2377 } 2378 current_node = NUMA_NO_NODE; 2379 } 2380 out_flush: 2381 /* Make sure we do not overwrite the existing error */ 2382 err1 = move_pages_and_store_status(current_node, &pagelist, 2383 status, start, i, nr_pages); 2384 if (err >= 0) 2385 err = err1; 2386 out: 2387 lru_cache_enable(); 2388 return err; 2389 } 2390 2391 /* 2392 * Determine the nodes of an array of pages and store it in an array of status. 2393 */ 2394 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2395 const void __user **pages, int *status) 2396 { 2397 unsigned long i; 2398 2399 mmap_read_lock(mm); 2400 2401 for (i = 0; i < nr_pages; i++) { 2402 unsigned long addr = (unsigned long)(*pages); 2403 struct vm_area_struct *vma; 2404 struct folio_walk fw; 2405 struct folio *folio; 2406 int err = -EFAULT; 2407 2408 vma = vma_lookup(mm, addr); 2409 if (!vma) 2410 goto set_status; 2411 2412 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2413 if (folio) { 2414 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2415 err = -EFAULT; 2416 else if (folio_is_zone_device(folio)) 2417 err = -ENOENT; 2418 else 2419 err = folio_nid(folio); 2420 folio_walk_end(&fw, vma); 2421 } else { 2422 err = -ENOENT; 2423 } 2424 set_status: 2425 *status = err; 2426 2427 pages++; 2428 status++; 2429 } 2430 2431 mmap_read_unlock(mm); 2432 } 2433 2434 static int get_compat_pages_array(const void __user *chunk_pages[], 2435 const void __user * __user *pages, 2436 unsigned long chunk_nr) 2437 { 2438 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2439 compat_uptr_t p; 2440 int i; 2441 2442 for (i = 0; i < chunk_nr; i++) { 2443 if (get_user(p, pages32 + i)) 2444 return -EFAULT; 2445 chunk_pages[i] = compat_ptr(p); 2446 } 2447 2448 return 0; 2449 } 2450 2451 /* 2452 * Determine the nodes of a user array of pages and store it in 2453 * a user array of status. 2454 */ 2455 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2456 const void __user * __user *pages, 2457 int __user *status) 2458 { 2459 #define DO_PAGES_STAT_CHUNK_NR 16UL 2460 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2461 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2462 2463 while (nr_pages) { 2464 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2465 2466 if (in_compat_syscall()) { 2467 if (get_compat_pages_array(chunk_pages, pages, 2468 chunk_nr)) 2469 break; 2470 } else { 2471 if (copy_from_user(chunk_pages, pages, 2472 chunk_nr * sizeof(*chunk_pages))) 2473 break; 2474 } 2475 2476 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2477 2478 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2479 break; 2480 2481 pages += chunk_nr; 2482 status += chunk_nr; 2483 nr_pages -= chunk_nr; 2484 } 2485 return nr_pages ? -EFAULT : 0; 2486 } 2487 2488 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2489 { 2490 struct task_struct *task; 2491 struct mm_struct *mm; 2492 2493 /* 2494 * There is no need to check if current process has the right to modify 2495 * the specified process when they are same. 2496 */ 2497 if (!pid) { 2498 mmget(current->mm); 2499 *mem_nodes = cpuset_mems_allowed(current); 2500 return current->mm; 2501 } 2502 2503 task = find_get_task_by_vpid(pid); 2504 if (!task) { 2505 return ERR_PTR(-ESRCH); 2506 } 2507 2508 /* 2509 * Check if this process has the right to modify the specified 2510 * process. Use the regular "ptrace_may_access()" checks. 2511 */ 2512 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2513 mm = ERR_PTR(-EPERM); 2514 goto out; 2515 } 2516 2517 mm = ERR_PTR(security_task_movememory(task)); 2518 if (IS_ERR(mm)) 2519 goto out; 2520 *mem_nodes = cpuset_mems_allowed(task); 2521 mm = get_task_mm(task); 2522 out: 2523 put_task_struct(task); 2524 if (!mm) 2525 mm = ERR_PTR(-EINVAL); 2526 return mm; 2527 } 2528 2529 /* 2530 * Move a list of pages in the address space of the currently executing 2531 * process. 2532 */ 2533 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2534 const void __user * __user *pages, 2535 const int __user *nodes, 2536 int __user *status, int flags) 2537 { 2538 struct mm_struct *mm; 2539 int err; 2540 nodemask_t task_nodes; 2541 2542 /* Check flags */ 2543 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2544 return -EINVAL; 2545 2546 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2547 return -EPERM; 2548 2549 mm = find_mm_struct(pid, &task_nodes); 2550 if (IS_ERR(mm)) 2551 return PTR_ERR(mm); 2552 2553 if (nodes) 2554 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2555 nodes, status, flags); 2556 else 2557 err = do_pages_stat(mm, nr_pages, pages, status); 2558 2559 mmput(mm); 2560 return err; 2561 } 2562 2563 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2564 const void __user * __user *, pages, 2565 const int __user *, nodes, 2566 int __user *, status, int, flags) 2567 { 2568 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2569 } 2570 2571 #ifdef CONFIG_NUMA_BALANCING 2572 /* 2573 * Returns true if this is a safe migration target node for misplaced NUMA 2574 * pages. Currently it only checks the watermarks which is crude. 2575 */ 2576 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2577 unsigned long nr_migrate_pages) 2578 { 2579 int z; 2580 2581 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2582 struct zone *zone = pgdat->node_zones + z; 2583 2584 if (!managed_zone(zone)) 2585 continue; 2586 2587 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2588 if (!zone_watermark_ok(zone, 0, 2589 high_wmark_pages(zone) + 2590 nr_migrate_pages, 2591 ZONE_MOVABLE, ALLOC_CMA)) 2592 continue; 2593 return true; 2594 } 2595 return false; 2596 } 2597 2598 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2599 unsigned long data) 2600 { 2601 int nid = (int) data; 2602 int order = folio_order(src); 2603 gfp_t gfp = __GFP_THISNODE; 2604 2605 if (order > 0) 2606 gfp |= GFP_TRANSHUGE_LIGHT; 2607 else { 2608 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2609 __GFP_NOWARN; 2610 gfp &= ~__GFP_RECLAIM; 2611 } 2612 return __folio_alloc_node(gfp, order, nid); 2613 } 2614 2615 /* 2616 * Prepare for calling migrate_misplaced_folio() by isolating the folio if 2617 * permitted. Must be called with the PTL still held. 2618 */ 2619 int migrate_misplaced_folio_prepare(struct folio *folio, 2620 struct vm_area_struct *vma, int node) 2621 { 2622 int nr_pages = folio_nr_pages(folio); 2623 pg_data_t *pgdat = NODE_DATA(node); 2624 2625 if (folio_is_file_lru(folio)) { 2626 /* 2627 * Do not migrate file folios that are mapped in multiple 2628 * processes with execute permissions as they are probably 2629 * shared libraries. 2630 * 2631 * See folio_likely_mapped_shared() on possible imprecision 2632 * when we cannot easily detect if a folio is shared. 2633 */ 2634 if ((vma->vm_flags & VM_EXEC) && 2635 folio_likely_mapped_shared(folio)) 2636 return -EACCES; 2637 2638 /* 2639 * Do not migrate dirty folios as not all filesystems can move 2640 * dirty folios in MIGRATE_ASYNC mode which is a waste of 2641 * cycles. 2642 */ 2643 if (folio_test_dirty(folio)) 2644 return -EAGAIN; 2645 } 2646 2647 /* Avoid migrating to a node that is nearly full */ 2648 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2649 int z; 2650 2651 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2652 return -EAGAIN; 2653 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2654 if (managed_zone(pgdat->node_zones + z)) 2655 break; 2656 } 2657 2658 /* 2659 * If there are no managed zones, it should not proceed 2660 * further. 2661 */ 2662 if (z < 0) 2663 return -EAGAIN; 2664 2665 wakeup_kswapd(pgdat->node_zones + z, 0, 2666 folio_order(folio), ZONE_MOVABLE); 2667 return -EAGAIN; 2668 } 2669 2670 if (!folio_isolate_lru(folio)) 2671 return -EAGAIN; 2672 2673 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2674 nr_pages); 2675 return 0; 2676 } 2677 2678 /* 2679 * Attempt to migrate a misplaced folio to the specified destination 2680 * node. Caller is expected to have isolated the folio by calling 2681 * migrate_misplaced_folio_prepare(), which will result in an 2682 * elevated reference count on the folio. This function will un-isolate the 2683 * folio, dereferencing the folio before returning. 2684 */ 2685 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma, 2686 int node) 2687 { 2688 pg_data_t *pgdat = NODE_DATA(node); 2689 int nr_remaining; 2690 unsigned int nr_succeeded; 2691 LIST_HEAD(migratepages); 2692 struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio); 2693 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2694 2695 list_add(&folio->lru, &migratepages); 2696 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2697 NULL, node, MIGRATE_ASYNC, 2698 MR_NUMA_MISPLACED, &nr_succeeded); 2699 if (nr_remaining && !list_empty(&migratepages)) 2700 putback_movable_pages(&migratepages); 2701 if (nr_succeeded) { 2702 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2703 count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded); 2704 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 2705 && !node_is_toptier(folio_nid(folio)) 2706 && node_is_toptier(node)) 2707 mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded); 2708 } 2709 mem_cgroup_put(memcg); 2710 BUG_ON(!list_empty(&migratepages)); 2711 return nr_remaining ? -EAGAIN : 0; 2712 } 2713 #endif /* CONFIG_NUMA_BALANCING */ 2714 #endif /* CONFIG_NUMA */ 2715