1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/compat.h> 37 #include <linux/hugetlb.h> 38 #include <linux/hugetlb_cgroup.h> 39 #include <linux/gfp.h> 40 #include <linux/pfn_t.h> 41 #include <linux/memremap.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/balloon_compaction.h> 44 #include <linux/page_idle.h> 45 #include <linux/page_owner.h> 46 #include <linux/sched/mm.h> 47 #include <linux/ptrace.h> 48 #include <linux/oom.h> 49 #include <linux/memory.h> 50 #include <linux/random.h> 51 #include <linux/sched/sysctl.h> 52 #include <linux/memory-tiers.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct folio *folio = folio_get_nontail_page(page); 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (!folio) 75 goto out; 76 77 if (unlikely(folio_test_slab(folio))) 78 goto out_putfolio; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__folio_test_movable(folio))) 87 goto out_putfolio; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(folio_test_slab(folio))) 91 goto out_putfolio; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!folio_trylock(folio))) 105 goto out_putfolio; 106 107 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 108 goto out_no_isolated; 109 110 mops = folio_movable_ops(folio); 111 VM_BUG_ON_FOLIO(!mops, folio); 112 113 if (!mops->isolate_page(&folio->page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use PG_isolated bit of page->flags */ 117 WARN_ON_ONCE(folio_test_isolated(folio)); 118 folio_set_isolated(folio); 119 folio_unlock(folio); 120 121 return true; 122 123 out_no_isolated: 124 folio_unlock(folio); 125 out_putfolio: 126 folio_put(folio); 127 out: 128 return false; 129 } 130 131 static void putback_movable_folio(struct folio *folio) 132 { 133 const struct movable_operations *mops = folio_movable_ops(folio); 134 135 mops->putback_page(&folio->page); 136 folio_clear_isolated(folio); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct folio *folio; 150 struct folio *folio2; 151 152 list_for_each_entry_safe(folio, folio2, l, lru) { 153 if (unlikely(folio_test_hugetlb(folio))) { 154 folio_putback_active_hugetlb(folio); 155 continue; 156 } 157 list_del(&folio->lru); 158 /* 159 * We isolated non-lru movable folio so here we can use 160 * __folio_test_movable because LRU folio's mapping cannot 161 * have PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__folio_test_movable(folio))) { 164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 165 folio_lock(folio); 166 if (folio_test_movable(folio)) 167 putback_movable_folio(folio); 168 else 169 folio_clear_isolated(folio); 170 folio_unlock(folio); 171 folio_put(folio); 172 } else { 173 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 174 folio_is_file_lru(folio), -folio_nr_pages(folio)); 175 folio_putback_lru(folio); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t old_pte; 191 pte_t pte; 192 swp_entry_t entry; 193 struct page *new; 194 unsigned long idx = 0; 195 196 /* pgoff is invalid for ksm pages, but they are never large */ 197 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 199 new = folio_page(folio, idx); 200 201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 202 /* PMD-mapped THP migration entry */ 203 if (!pvmw.pte) { 204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 205 !folio_test_pmd_mappable(folio), folio); 206 remove_migration_pmd(&pvmw, new); 207 continue; 208 } 209 #endif 210 211 folio_get(folio); 212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 213 old_pte = ptep_get(pvmw.pte); 214 if (pte_swp_soft_dirty(old_pte)) 215 pte = pte_mksoft_dirty(pte); 216 217 entry = pte_to_swp_entry(old_pte); 218 if (!is_migration_entry_young(entry)) 219 pte = pte_mkold(pte); 220 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 221 pte = pte_mkdirty(pte); 222 if (is_writable_migration_entry(entry)) 223 pte = pte_mkwrite(pte, vma); 224 else if (pte_swp_uffd_wp(old_pte)) 225 pte = pte_mkuffd_wp(pte); 226 227 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 228 rmap_flags |= RMAP_EXCLUSIVE; 229 230 if (unlikely(is_device_private_page(new))) { 231 if (pte_write(pte)) 232 entry = make_writable_device_private_entry( 233 page_to_pfn(new)); 234 else 235 entry = make_readable_device_private_entry( 236 page_to_pfn(new)); 237 pte = swp_entry_to_pte(entry); 238 if (pte_swp_soft_dirty(old_pte)) 239 pte = pte_swp_mksoft_dirty(pte); 240 if (pte_swp_uffd_wp(old_pte)) 241 pte = pte_swp_mkuffd_wp(pte); 242 } 243 244 #ifdef CONFIG_HUGETLB_PAGE 245 if (folio_test_hugetlb(folio)) { 246 struct hstate *h = hstate_vma(vma); 247 unsigned int shift = huge_page_shift(h); 248 unsigned long psize = huge_page_size(h); 249 250 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 251 if (folio_test_anon(folio)) 252 hugepage_add_anon_rmap(folio, vma, pvmw.address, 253 rmap_flags); 254 else 255 page_dup_file_rmap(new, true); 256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 257 psize); 258 } else 259 #endif 260 { 261 if (folio_test_anon(folio)) 262 page_add_anon_rmap(new, vma, pvmw.address, 263 rmap_flags); 264 else 265 page_add_file_rmap(new, vma, false); 266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 267 } 268 if (vma->vm_flags & VM_LOCKED) 269 mlock_drain_local(); 270 271 trace_remove_migration_pte(pvmw.address, pte_val(pte), 272 compound_order(new)); 273 274 /* No need to invalidate - it was non-present before */ 275 update_mmu_cache(vma, pvmw.address, pvmw.pte); 276 } 277 278 return true; 279 } 280 281 /* 282 * Get rid of all migration entries and replace them by 283 * references to the indicated page. 284 */ 285 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 286 { 287 struct rmap_walk_control rwc = { 288 .rmap_one = remove_migration_pte, 289 .arg = src, 290 }; 291 292 if (locked) 293 rmap_walk_locked(dst, &rwc); 294 else 295 rmap_walk(dst, &rwc); 296 } 297 298 /* 299 * Something used the pte of a page under migration. We need to 300 * get to the page and wait until migration is finished. 301 * When we return from this function the fault will be retried. 302 */ 303 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 304 unsigned long address) 305 { 306 spinlock_t *ptl; 307 pte_t *ptep; 308 pte_t pte; 309 swp_entry_t entry; 310 311 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 312 if (!ptep) 313 return; 314 315 pte = ptep_get(ptep); 316 pte_unmap(ptep); 317 318 if (!is_swap_pte(pte)) 319 goto out; 320 321 entry = pte_to_swp_entry(pte); 322 if (!is_migration_entry(entry)) 323 goto out; 324 325 migration_entry_wait_on_locked(entry, ptl); 326 return; 327 out: 328 spin_unlock(ptl); 329 } 330 331 #ifdef CONFIG_HUGETLB_PAGE 332 /* 333 * The vma read lock must be held upon entry. Holding that lock prevents either 334 * the pte or the ptl from being freed. 335 * 336 * This function will release the vma lock before returning. 337 */ 338 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep) 339 { 340 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 341 pte_t pte; 342 343 hugetlb_vma_assert_locked(vma); 344 spin_lock(ptl); 345 pte = huge_ptep_get(ptep); 346 347 if (unlikely(!is_hugetlb_entry_migration(pte))) { 348 spin_unlock(ptl); 349 hugetlb_vma_unlock_read(vma); 350 } else { 351 /* 352 * If migration entry existed, safe to release vma lock 353 * here because the pgtable page won't be freed without the 354 * pgtable lock released. See comment right above pgtable 355 * lock release in migration_entry_wait_on_locked(). 356 */ 357 hugetlb_vma_unlock_read(vma); 358 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 359 } 360 } 361 #endif 362 363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 364 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 365 { 366 spinlock_t *ptl; 367 368 ptl = pmd_lock(mm, pmd); 369 if (!is_pmd_migration_entry(*pmd)) 370 goto unlock; 371 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 372 return; 373 unlock: 374 spin_unlock(ptl); 375 } 376 #endif 377 378 static int folio_expected_refs(struct address_space *mapping, 379 struct folio *folio) 380 { 381 int refs = 1; 382 if (!mapping) 383 return refs; 384 385 refs += folio_nr_pages(folio); 386 if (folio_test_private(folio)) 387 refs++; 388 389 return refs; 390 } 391 392 /* 393 * Replace the page in the mapping. 394 * 395 * The number of remaining references must be: 396 * 1 for anonymous pages without a mapping 397 * 2 for pages with a mapping 398 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 399 */ 400 int folio_migrate_mapping(struct address_space *mapping, 401 struct folio *newfolio, struct folio *folio, int extra_count) 402 { 403 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 404 struct zone *oldzone, *newzone; 405 int dirty; 406 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 407 long nr = folio_nr_pages(folio); 408 long entries, i; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (folio_ref_count(folio) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newfolio->index = folio->index; 417 newfolio->mapping = folio->mapping; 418 if (folio_test_swapbacked(folio)) 419 __folio_set_swapbacked(newfolio); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = folio_zone(folio); 425 newzone = folio_zone(newfolio); 426 427 xas_lock_irq(&xas); 428 if (!folio_ref_freeze(folio, expected_count)) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 /* 434 * Now we know that no one else is looking at the folio: 435 * no turning back from here. 436 */ 437 newfolio->index = folio->index; 438 newfolio->mapping = folio->mapping; 439 folio_ref_add(newfolio, nr); /* add cache reference */ 440 if (folio_test_swapbacked(folio)) { 441 __folio_set_swapbacked(newfolio); 442 if (folio_test_swapcache(folio)) { 443 folio_set_swapcache(newfolio); 444 newfolio->private = folio_get_private(folio); 445 } 446 entries = nr; 447 } else { 448 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 449 entries = 1; 450 } 451 452 /* Move dirty while page refs frozen and newpage not yet exposed */ 453 dirty = folio_test_dirty(folio); 454 if (dirty) { 455 folio_clear_dirty(folio); 456 folio_set_dirty(newfolio); 457 } 458 459 /* Swap cache still stores N entries instead of a high-order entry */ 460 for (i = 0; i < entries; i++) { 461 xas_store(&xas, newfolio); 462 xas_next(&xas); 463 } 464 465 /* 466 * Drop cache reference from old page by unfreezing 467 * to one less reference. 468 * We know this isn't the last reference. 469 */ 470 folio_ref_unfreeze(folio, expected_count - nr); 471 472 xas_unlock(&xas); 473 /* Leave irq disabled to prevent preemption while updating stats */ 474 475 /* 476 * If moved to a different zone then also account 477 * the page for that zone. Other VM counters will be 478 * taken care of when we establish references to the 479 * new page and drop references to the old page. 480 * 481 * Note that anonymous pages are accounted for 482 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 483 * are mapped to swap space. 484 */ 485 if (newzone != oldzone) { 486 struct lruvec *old_lruvec, *new_lruvec; 487 struct mem_cgroup *memcg; 488 489 memcg = folio_memcg(folio); 490 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 491 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 492 493 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 494 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 495 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 496 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 497 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 498 499 if (folio_test_pmd_mappable(folio)) { 500 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 501 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 502 } 503 } 504 #ifdef CONFIG_SWAP 505 if (folio_test_swapcache(folio)) { 506 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 507 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 508 } 509 #endif 510 if (dirty && mapping_can_writeback(mapping)) { 511 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 512 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 513 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 514 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 515 } 516 } 517 local_irq_enable(); 518 519 return MIGRATEPAGE_SUCCESS; 520 } 521 EXPORT_SYMBOL(folio_migrate_mapping); 522 523 /* 524 * The expected number of remaining references is the same as that 525 * of folio_migrate_mapping(). 526 */ 527 int migrate_huge_page_move_mapping(struct address_space *mapping, 528 struct folio *dst, struct folio *src) 529 { 530 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 531 int expected_count; 532 533 xas_lock_irq(&xas); 534 expected_count = folio_expected_refs(mapping, src); 535 if (!folio_ref_freeze(src, expected_count)) { 536 xas_unlock_irq(&xas); 537 return -EAGAIN; 538 } 539 540 dst->index = src->index; 541 dst->mapping = src->mapping; 542 543 folio_ref_add(dst, folio_nr_pages(dst)); 544 545 xas_store(&xas, dst); 546 547 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 548 549 xas_unlock_irq(&xas); 550 551 return MIGRATEPAGE_SUCCESS; 552 } 553 554 /* 555 * Copy the flags and some other ancillary information 556 */ 557 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 558 { 559 int cpupid; 560 561 if (folio_test_error(folio)) 562 folio_set_error(newfolio); 563 if (folio_test_referenced(folio)) 564 folio_set_referenced(newfolio); 565 if (folio_test_uptodate(folio)) 566 folio_mark_uptodate(newfolio); 567 if (folio_test_clear_active(folio)) { 568 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 569 folio_set_active(newfolio); 570 } else if (folio_test_clear_unevictable(folio)) 571 folio_set_unevictable(newfolio); 572 if (folio_test_workingset(folio)) 573 folio_set_workingset(newfolio); 574 if (folio_test_checked(folio)) 575 folio_set_checked(newfolio); 576 /* 577 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 578 * migration entries. We can still have PG_anon_exclusive set on an 579 * effectively unmapped and unreferenced first sub-pages of an 580 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 581 */ 582 if (folio_test_mappedtodisk(folio)) 583 folio_set_mappedtodisk(newfolio); 584 585 /* Move dirty on pages not done by folio_migrate_mapping() */ 586 if (folio_test_dirty(folio)) 587 folio_set_dirty(newfolio); 588 589 if (folio_test_young(folio)) 590 folio_set_young(newfolio); 591 if (folio_test_idle(folio)) 592 folio_set_idle(newfolio); 593 594 /* 595 * Copy NUMA information to the new page, to prevent over-eager 596 * future migrations of this same page. 597 */ 598 cpupid = folio_xchg_last_cpupid(folio, -1); 599 /* 600 * For memory tiering mode, when migrate between slow and fast 601 * memory node, reset cpupid, because that is used to record 602 * page access time in slow memory node. 603 */ 604 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 605 bool f_toptier = node_is_toptier(folio_nid(folio)); 606 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 607 608 if (f_toptier != t_toptier) 609 cpupid = -1; 610 } 611 folio_xchg_last_cpupid(newfolio, cpupid); 612 613 folio_migrate_ksm(newfolio, folio); 614 /* 615 * Please do not reorder this without considering how mm/ksm.c's 616 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 617 */ 618 if (folio_test_swapcache(folio)) 619 folio_clear_swapcache(folio); 620 folio_clear_private(folio); 621 622 /* page->private contains hugetlb specific flags */ 623 if (!folio_test_hugetlb(folio)) 624 folio->private = NULL; 625 626 /* 627 * If any waiters have accumulated on the new page then 628 * wake them up. 629 */ 630 if (folio_test_writeback(newfolio)) 631 folio_end_writeback(newfolio); 632 633 /* 634 * PG_readahead shares the same bit with PG_reclaim. The above 635 * end_page_writeback() may clear PG_readahead mistakenly, so set the 636 * bit after that. 637 */ 638 if (folio_test_readahead(folio)) 639 folio_set_readahead(newfolio); 640 641 folio_copy_owner(newfolio, folio); 642 643 mem_cgroup_migrate(folio, newfolio); 644 } 645 EXPORT_SYMBOL(folio_migrate_flags); 646 647 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 648 { 649 folio_copy(newfolio, folio); 650 folio_migrate_flags(newfolio, folio); 651 } 652 EXPORT_SYMBOL(folio_migrate_copy); 653 654 /************************************************************ 655 * Migration functions 656 ***********************************************************/ 657 658 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 659 struct folio *src, enum migrate_mode mode, int extra_count) 660 { 661 int rc; 662 663 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 664 665 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 666 667 if (rc != MIGRATEPAGE_SUCCESS) 668 return rc; 669 670 if (mode != MIGRATE_SYNC_NO_COPY) 671 folio_migrate_copy(dst, src); 672 else 673 folio_migrate_flags(dst, src); 674 return MIGRATEPAGE_SUCCESS; 675 } 676 677 /** 678 * migrate_folio() - Simple folio migration. 679 * @mapping: The address_space containing the folio. 680 * @dst: The folio to migrate the data to. 681 * @src: The folio containing the current data. 682 * @mode: How to migrate the page. 683 * 684 * Common logic to directly migrate a single LRU folio suitable for 685 * folios that do not use PagePrivate/PagePrivate2. 686 * 687 * Folios are locked upon entry and exit. 688 */ 689 int migrate_folio(struct address_space *mapping, struct folio *dst, 690 struct folio *src, enum migrate_mode mode) 691 { 692 return migrate_folio_extra(mapping, dst, src, mode, 0); 693 } 694 EXPORT_SYMBOL(migrate_folio); 695 696 #ifdef CONFIG_BUFFER_HEAD 697 /* Returns true if all buffers are successfully locked */ 698 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 699 enum migrate_mode mode) 700 { 701 struct buffer_head *bh = head; 702 struct buffer_head *failed_bh; 703 704 do { 705 if (!trylock_buffer(bh)) { 706 if (mode == MIGRATE_ASYNC) 707 goto unlock; 708 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 709 goto unlock; 710 lock_buffer(bh); 711 } 712 713 bh = bh->b_this_page; 714 } while (bh != head); 715 716 return true; 717 718 unlock: 719 /* We failed to lock the buffer and cannot stall. */ 720 failed_bh = bh; 721 bh = head; 722 while (bh != failed_bh) { 723 unlock_buffer(bh); 724 bh = bh->b_this_page; 725 } 726 727 return false; 728 } 729 730 static int __buffer_migrate_folio(struct address_space *mapping, 731 struct folio *dst, struct folio *src, enum migrate_mode mode, 732 bool check_refs) 733 { 734 struct buffer_head *bh, *head; 735 int rc; 736 int expected_count; 737 738 head = folio_buffers(src); 739 if (!head) 740 return migrate_folio(mapping, dst, src, mode); 741 742 /* Check whether page does not have extra refs before we do more work */ 743 expected_count = folio_expected_refs(mapping, src); 744 if (folio_ref_count(src) != expected_count) 745 return -EAGAIN; 746 747 if (!buffer_migrate_lock_buffers(head, mode)) 748 return -EAGAIN; 749 750 if (check_refs) { 751 bool busy; 752 bool invalidated = false; 753 754 recheck_buffers: 755 busy = false; 756 spin_lock(&mapping->private_lock); 757 bh = head; 758 do { 759 if (atomic_read(&bh->b_count)) { 760 busy = true; 761 break; 762 } 763 bh = bh->b_this_page; 764 } while (bh != head); 765 if (busy) { 766 if (invalidated) { 767 rc = -EAGAIN; 768 goto unlock_buffers; 769 } 770 spin_unlock(&mapping->private_lock); 771 invalidate_bh_lrus(); 772 invalidated = true; 773 goto recheck_buffers; 774 } 775 } 776 777 rc = folio_migrate_mapping(mapping, dst, src, 0); 778 if (rc != MIGRATEPAGE_SUCCESS) 779 goto unlock_buffers; 780 781 folio_attach_private(dst, folio_detach_private(src)); 782 783 bh = head; 784 do { 785 folio_set_bh(bh, dst, bh_offset(bh)); 786 bh = bh->b_this_page; 787 } while (bh != head); 788 789 if (mode != MIGRATE_SYNC_NO_COPY) 790 folio_migrate_copy(dst, src); 791 else 792 folio_migrate_flags(dst, src); 793 794 rc = MIGRATEPAGE_SUCCESS; 795 unlock_buffers: 796 if (check_refs) 797 spin_unlock(&mapping->private_lock); 798 bh = head; 799 do { 800 unlock_buffer(bh); 801 bh = bh->b_this_page; 802 } while (bh != head); 803 804 return rc; 805 } 806 807 /** 808 * buffer_migrate_folio() - Migration function for folios with buffers. 809 * @mapping: The address space containing @src. 810 * @dst: The folio to migrate to. 811 * @src: The folio to migrate from. 812 * @mode: How to migrate the folio. 813 * 814 * This function can only be used if the underlying filesystem guarantees 815 * that no other references to @src exist. For example attached buffer 816 * heads are accessed only under the folio lock. If your filesystem cannot 817 * provide this guarantee, buffer_migrate_folio_norefs() may be more 818 * appropriate. 819 * 820 * Return: 0 on success or a negative errno on failure. 821 */ 822 int buffer_migrate_folio(struct address_space *mapping, 823 struct folio *dst, struct folio *src, enum migrate_mode mode) 824 { 825 return __buffer_migrate_folio(mapping, dst, src, mode, false); 826 } 827 EXPORT_SYMBOL(buffer_migrate_folio); 828 829 /** 830 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 831 * @mapping: The address space containing @src. 832 * @dst: The folio to migrate to. 833 * @src: The folio to migrate from. 834 * @mode: How to migrate the folio. 835 * 836 * Like buffer_migrate_folio() except that this variant is more careful 837 * and checks that there are also no buffer head references. This function 838 * is the right one for mappings where buffer heads are directly looked 839 * up and referenced (such as block device mappings). 840 * 841 * Return: 0 on success or a negative errno on failure. 842 */ 843 int buffer_migrate_folio_norefs(struct address_space *mapping, 844 struct folio *dst, struct folio *src, enum migrate_mode mode) 845 { 846 return __buffer_migrate_folio(mapping, dst, src, mode, true); 847 } 848 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 849 #endif /* CONFIG_BUFFER_HEAD */ 850 851 int filemap_migrate_folio(struct address_space *mapping, 852 struct folio *dst, struct folio *src, enum migrate_mode mode) 853 { 854 int ret; 855 856 ret = folio_migrate_mapping(mapping, dst, src, 0); 857 if (ret != MIGRATEPAGE_SUCCESS) 858 return ret; 859 860 if (folio_get_private(src)) 861 folio_attach_private(dst, folio_detach_private(src)); 862 863 if (mode != MIGRATE_SYNC_NO_COPY) 864 folio_migrate_copy(dst, src); 865 else 866 folio_migrate_flags(dst, src); 867 return MIGRATEPAGE_SUCCESS; 868 } 869 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 870 871 /* 872 * Writeback a folio to clean the dirty state 873 */ 874 static int writeout(struct address_space *mapping, struct folio *folio) 875 { 876 struct writeback_control wbc = { 877 .sync_mode = WB_SYNC_NONE, 878 .nr_to_write = 1, 879 .range_start = 0, 880 .range_end = LLONG_MAX, 881 .for_reclaim = 1 882 }; 883 int rc; 884 885 if (!mapping->a_ops->writepage) 886 /* No write method for the address space */ 887 return -EINVAL; 888 889 if (!folio_clear_dirty_for_io(folio)) 890 /* Someone else already triggered a write */ 891 return -EAGAIN; 892 893 /* 894 * A dirty folio may imply that the underlying filesystem has 895 * the folio on some queue. So the folio must be clean for 896 * migration. Writeout may mean we lose the lock and the 897 * folio state is no longer what we checked for earlier. 898 * At this point we know that the migration attempt cannot 899 * be successful. 900 */ 901 remove_migration_ptes(folio, folio, false); 902 903 rc = mapping->a_ops->writepage(&folio->page, &wbc); 904 905 if (rc != AOP_WRITEPAGE_ACTIVATE) 906 /* unlocked. Relock */ 907 folio_lock(folio); 908 909 return (rc < 0) ? -EIO : -EAGAIN; 910 } 911 912 /* 913 * Default handling if a filesystem does not provide a migration function. 914 */ 915 static int fallback_migrate_folio(struct address_space *mapping, 916 struct folio *dst, struct folio *src, enum migrate_mode mode) 917 { 918 if (folio_test_dirty(src)) { 919 /* Only writeback folios in full synchronous migration */ 920 switch (mode) { 921 case MIGRATE_SYNC: 922 case MIGRATE_SYNC_NO_COPY: 923 break; 924 default: 925 return -EBUSY; 926 } 927 return writeout(mapping, src); 928 } 929 930 /* 931 * Buffers may be managed in a filesystem specific way. 932 * We must have no buffers or drop them. 933 */ 934 if (!filemap_release_folio(src, GFP_KERNEL)) 935 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 936 937 return migrate_folio(mapping, dst, src, mode); 938 } 939 940 /* 941 * Move a page to a newly allocated page 942 * The page is locked and all ptes have been successfully removed. 943 * 944 * The new page will have replaced the old page if this function 945 * is successful. 946 * 947 * Return value: 948 * < 0 - error code 949 * MIGRATEPAGE_SUCCESS - success 950 */ 951 static int move_to_new_folio(struct folio *dst, struct folio *src, 952 enum migrate_mode mode) 953 { 954 int rc = -EAGAIN; 955 bool is_lru = !__folio_test_movable(src); 956 957 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 958 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 959 960 if (likely(is_lru)) { 961 struct address_space *mapping = folio_mapping(src); 962 963 if (!mapping) 964 rc = migrate_folio(mapping, dst, src, mode); 965 else if (mapping->a_ops->migrate_folio) 966 /* 967 * Most folios have a mapping and most filesystems 968 * provide a migrate_folio callback. Anonymous folios 969 * are part of swap space which also has its own 970 * migrate_folio callback. This is the most common path 971 * for page migration. 972 */ 973 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 974 mode); 975 else 976 rc = fallback_migrate_folio(mapping, dst, src, mode); 977 } else { 978 const struct movable_operations *mops; 979 980 /* 981 * In case of non-lru page, it could be released after 982 * isolation step. In that case, we shouldn't try migration. 983 */ 984 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 985 if (!folio_test_movable(src)) { 986 rc = MIGRATEPAGE_SUCCESS; 987 folio_clear_isolated(src); 988 goto out; 989 } 990 991 mops = folio_movable_ops(src); 992 rc = mops->migrate_page(&dst->page, &src->page, mode); 993 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 994 !folio_test_isolated(src)); 995 } 996 997 /* 998 * When successful, old pagecache src->mapping must be cleared before 999 * src is freed; but stats require that PageAnon be left as PageAnon. 1000 */ 1001 if (rc == MIGRATEPAGE_SUCCESS) { 1002 if (__folio_test_movable(src)) { 1003 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1004 1005 /* 1006 * We clear PG_movable under page_lock so any compactor 1007 * cannot try to migrate this page. 1008 */ 1009 folio_clear_isolated(src); 1010 } 1011 1012 /* 1013 * Anonymous and movable src->mapping will be cleared by 1014 * free_pages_prepare so don't reset it here for keeping 1015 * the type to work PageAnon, for example. 1016 */ 1017 if (!folio_mapping_flags(src)) 1018 src->mapping = NULL; 1019 1020 if (likely(!folio_is_zone_device(dst))) 1021 flush_dcache_folio(dst); 1022 } 1023 out: 1024 return rc; 1025 } 1026 1027 /* 1028 * To record some information during migration, we use some unused 1029 * fields (mapping and private) of struct folio of the newly allocated 1030 * destination folio. This is safe because nobody is using them 1031 * except us. 1032 */ 1033 union migration_ptr { 1034 struct anon_vma *anon_vma; 1035 struct address_space *mapping; 1036 }; 1037 1038 enum { 1039 PAGE_WAS_MAPPED = BIT(0), 1040 PAGE_WAS_MLOCKED = BIT(1), 1041 }; 1042 1043 static void __migrate_folio_record(struct folio *dst, 1044 unsigned long old_page_state, 1045 struct anon_vma *anon_vma) 1046 { 1047 union migration_ptr ptr = { .anon_vma = anon_vma }; 1048 dst->mapping = ptr.mapping; 1049 dst->private = (void *)old_page_state; 1050 } 1051 1052 static void __migrate_folio_extract(struct folio *dst, 1053 int *old_page_state, 1054 struct anon_vma **anon_vmap) 1055 { 1056 union migration_ptr ptr = { .mapping = dst->mapping }; 1057 *anon_vmap = ptr.anon_vma; 1058 *old_page_state = (unsigned long)dst->private; 1059 dst->mapping = NULL; 1060 dst->private = NULL; 1061 } 1062 1063 /* Restore the source folio to the original state upon failure */ 1064 static void migrate_folio_undo_src(struct folio *src, 1065 int page_was_mapped, 1066 struct anon_vma *anon_vma, 1067 bool locked, 1068 struct list_head *ret) 1069 { 1070 if (page_was_mapped) 1071 remove_migration_ptes(src, src, false); 1072 /* Drop an anon_vma reference if we took one */ 1073 if (anon_vma) 1074 put_anon_vma(anon_vma); 1075 if (locked) 1076 folio_unlock(src); 1077 if (ret) 1078 list_move_tail(&src->lru, ret); 1079 } 1080 1081 /* Restore the destination folio to the original state upon failure */ 1082 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1083 free_folio_t put_new_folio, unsigned long private) 1084 { 1085 if (locked) 1086 folio_unlock(dst); 1087 if (put_new_folio) 1088 put_new_folio(dst, private); 1089 else 1090 folio_put(dst); 1091 } 1092 1093 /* Cleanup src folio upon migration success */ 1094 static void migrate_folio_done(struct folio *src, 1095 enum migrate_reason reason) 1096 { 1097 /* 1098 * Compaction can migrate also non-LRU pages which are 1099 * not accounted to NR_ISOLATED_*. They can be recognized 1100 * as __folio_test_movable 1101 */ 1102 if (likely(!__folio_test_movable(src))) 1103 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1104 folio_is_file_lru(src), -folio_nr_pages(src)); 1105 1106 if (reason != MR_MEMORY_FAILURE) 1107 /* We release the page in page_handle_poison. */ 1108 folio_put(src); 1109 } 1110 1111 /* Obtain the lock on page, remove all ptes. */ 1112 static int migrate_folio_unmap(new_folio_t get_new_folio, 1113 free_folio_t put_new_folio, unsigned long private, 1114 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1115 enum migrate_reason reason, struct list_head *ret) 1116 { 1117 struct folio *dst; 1118 int rc = -EAGAIN; 1119 int old_page_state = 0; 1120 struct anon_vma *anon_vma = NULL; 1121 bool is_lru = !__folio_test_movable(src); 1122 bool locked = false; 1123 bool dst_locked = false; 1124 1125 if (folio_ref_count(src) == 1) { 1126 /* Folio was freed from under us. So we are done. */ 1127 folio_clear_active(src); 1128 folio_clear_unevictable(src); 1129 /* free_pages_prepare() will clear PG_isolated. */ 1130 list_del(&src->lru); 1131 migrate_folio_done(src, reason); 1132 return MIGRATEPAGE_SUCCESS; 1133 } 1134 1135 dst = get_new_folio(src, private); 1136 if (!dst) 1137 return -ENOMEM; 1138 *dstp = dst; 1139 1140 dst->private = NULL; 1141 1142 if (!folio_trylock(src)) { 1143 if (mode == MIGRATE_ASYNC) 1144 goto out; 1145 1146 /* 1147 * It's not safe for direct compaction to call lock_page. 1148 * For example, during page readahead pages are added locked 1149 * to the LRU. Later, when the IO completes the pages are 1150 * marked uptodate and unlocked. However, the queueing 1151 * could be merging multiple pages for one bio (e.g. 1152 * mpage_readahead). If an allocation happens for the 1153 * second or third page, the process can end up locking 1154 * the same page twice and deadlocking. Rather than 1155 * trying to be clever about what pages can be locked, 1156 * avoid the use of lock_page for direct compaction 1157 * altogether. 1158 */ 1159 if (current->flags & PF_MEMALLOC) 1160 goto out; 1161 1162 /* 1163 * In "light" mode, we can wait for transient locks (eg 1164 * inserting a page into the page table), but it's not 1165 * worth waiting for I/O. 1166 */ 1167 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1168 goto out; 1169 1170 folio_lock(src); 1171 } 1172 locked = true; 1173 if (folio_test_mlocked(src)) 1174 old_page_state |= PAGE_WAS_MLOCKED; 1175 1176 if (folio_test_writeback(src)) { 1177 /* 1178 * Only in the case of a full synchronous migration is it 1179 * necessary to wait for PageWriteback. In the async case, 1180 * the retry loop is too short and in the sync-light case, 1181 * the overhead of stalling is too much 1182 */ 1183 switch (mode) { 1184 case MIGRATE_SYNC: 1185 case MIGRATE_SYNC_NO_COPY: 1186 break; 1187 default: 1188 rc = -EBUSY; 1189 goto out; 1190 } 1191 folio_wait_writeback(src); 1192 } 1193 1194 /* 1195 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1196 * we cannot notice that anon_vma is freed while we migrate a page. 1197 * This get_anon_vma() delays freeing anon_vma pointer until the end 1198 * of migration. File cache pages are no problem because of page_lock() 1199 * File Caches may use write_page() or lock_page() in migration, then, 1200 * just care Anon page here. 1201 * 1202 * Only folio_get_anon_vma() understands the subtleties of 1203 * getting a hold on an anon_vma from outside one of its mms. 1204 * But if we cannot get anon_vma, then we won't need it anyway, 1205 * because that implies that the anon page is no longer mapped 1206 * (and cannot be remapped so long as we hold the page lock). 1207 */ 1208 if (folio_test_anon(src) && !folio_test_ksm(src)) 1209 anon_vma = folio_get_anon_vma(src); 1210 1211 /* 1212 * Block others from accessing the new page when we get around to 1213 * establishing additional references. We are usually the only one 1214 * holding a reference to dst at this point. We used to have a BUG 1215 * here if folio_trylock(dst) fails, but would like to allow for 1216 * cases where there might be a race with the previous use of dst. 1217 * This is much like races on refcount of oldpage: just don't BUG(). 1218 */ 1219 if (unlikely(!folio_trylock(dst))) 1220 goto out; 1221 dst_locked = true; 1222 1223 if (unlikely(!is_lru)) { 1224 __migrate_folio_record(dst, old_page_state, anon_vma); 1225 return MIGRATEPAGE_UNMAP; 1226 } 1227 1228 /* 1229 * Corner case handling: 1230 * 1. When a new swap-cache page is read into, it is added to the LRU 1231 * and treated as swapcache but it has no rmap yet. 1232 * Calling try_to_unmap() against a src->mapping==NULL page will 1233 * trigger a BUG. So handle it here. 1234 * 2. An orphaned page (see truncate_cleanup_page) might have 1235 * fs-private metadata. The page can be picked up due to memory 1236 * offlining. Everywhere else except page reclaim, the page is 1237 * invisible to the vm, so the page can not be migrated. So try to 1238 * free the metadata, so the page can be freed. 1239 */ 1240 if (!src->mapping) { 1241 if (folio_test_private(src)) { 1242 try_to_free_buffers(src); 1243 goto out; 1244 } 1245 } else if (folio_mapped(src)) { 1246 /* Establish migration ptes */ 1247 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1248 !folio_test_ksm(src) && !anon_vma, src); 1249 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1250 old_page_state |= PAGE_WAS_MAPPED; 1251 } 1252 1253 if (!folio_mapped(src)) { 1254 __migrate_folio_record(dst, old_page_state, anon_vma); 1255 return MIGRATEPAGE_UNMAP; 1256 } 1257 1258 out: 1259 /* 1260 * A folio that has not been unmapped will be restored to 1261 * right list unless we want to retry. 1262 */ 1263 if (rc == -EAGAIN) 1264 ret = NULL; 1265 1266 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1267 anon_vma, locked, ret); 1268 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1269 1270 return rc; 1271 } 1272 1273 /* Migrate the folio to the newly allocated folio in dst. */ 1274 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1275 struct folio *src, struct folio *dst, 1276 enum migrate_mode mode, enum migrate_reason reason, 1277 struct list_head *ret) 1278 { 1279 int rc; 1280 int old_page_state = 0; 1281 struct anon_vma *anon_vma = NULL; 1282 bool is_lru = !__folio_test_movable(src); 1283 struct list_head *prev; 1284 1285 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1286 prev = dst->lru.prev; 1287 list_del(&dst->lru); 1288 1289 rc = move_to_new_folio(dst, src, mode); 1290 if (rc) 1291 goto out; 1292 1293 if (unlikely(!is_lru)) 1294 goto out_unlock_both; 1295 1296 /* 1297 * When successful, push dst to LRU immediately: so that if it 1298 * turns out to be an mlocked page, remove_migration_ptes() will 1299 * automatically build up the correct dst->mlock_count for it. 1300 * 1301 * We would like to do something similar for the old page, when 1302 * unsuccessful, and other cases when a page has been temporarily 1303 * isolated from the unevictable LRU: but this case is the easiest. 1304 */ 1305 folio_add_lru(dst); 1306 if (old_page_state & PAGE_WAS_MLOCKED) 1307 lru_add_drain(); 1308 1309 if (old_page_state & PAGE_WAS_MAPPED) 1310 remove_migration_ptes(src, dst, false); 1311 1312 out_unlock_both: 1313 folio_unlock(dst); 1314 set_page_owner_migrate_reason(&dst->page, reason); 1315 /* 1316 * If migration is successful, decrease refcount of dst, 1317 * which will not free the page because new page owner increased 1318 * refcounter. 1319 */ 1320 folio_put(dst); 1321 1322 /* 1323 * A folio that has been migrated has all references removed 1324 * and will be freed. 1325 */ 1326 list_del(&src->lru); 1327 /* Drop an anon_vma reference if we took one */ 1328 if (anon_vma) 1329 put_anon_vma(anon_vma); 1330 folio_unlock(src); 1331 migrate_folio_done(src, reason); 1332 1333 return rc; 1334 out: 1335 /* 1336 * A folio that has not been migrated will be restored to 1337 * right list unless we want to retry. 1338 */ 1339 if (rc == -EAGAIN) { 1340 list_add(&dst->lru, prev); 1341 __migrate_folio_record(dst, old_page_state, anon_vma); 1342 return rc; 1343 } 1344 1345 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1346 anon_vma, true, ret); 1347 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1348 1349 return rc; 1350 } 1351 1352 /* 1353 * Counterpart of unmap_and_move_page() for hugepage migration. 1354 * 1355 * This function doesn't wait the completion of hugepage I/O 1356 * because there is no race between I/O and migration for hugepage. 1357 * Note that currently hugepage I/O occurs only in direct I/O 1358 * where no lock is held and PG_writeback is irrelevant, 1359 * and writeback status of all subpages are counted in the reference 1360 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1361 * under direct I/O, the reference of the head page is 512 and a bit more.) 1362 * This means that when we try to migrate hugepage whose subpages are 1363 * doing direct I/O, some references remain after try_to_unmap() and 1364 * hugepage migration fails without data corruption. 1365 * 1366 * There is also no race when direct I/O is issued on the page under migration, 1367 * because then pte is replaced with migration swap entry and direct I/O code 1368 * will wait in the page fault for migration to complete. 1369 */ 1370 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1371 free_folio_t put_new_folio, unsigned long private, 1372 struct folio *src, int force, enum migrate_mode mode, 1373 int reason, struct list_head *ret) 1374 { 1375 struct folio *dst; 1376 int rc = -EAGAIN; 1377 int page_was_mapped = 0; 1378 struct anon_vma *anon_vma = NULL; 1379 struct address_space *mapping = NULL; 1380 1381 if (folio_ref_count(src) == 1) { 1382 /* page was freed from under us. So we are done. */ 1383 folio_putback_active_hugetlb(src); 1384 return MIGRATEPAGE_SUCCESS; 1385 } 1386 1387 dst = get_new_folio(src, private); 1388 if (!dst) 1389 return -ENOMEM; 1390 1391 if (!folio_trylock(src)) { 1392 if (!force) 1393 goto out; 1394 switch (mode) { 1395 case MIGRATE_SYNC: 1396 case MIGRATE_SYNC_NO_COPY: 1397 break; 1398 default: 1399 goto out; 1400 } 1401 folio_lock(src); 1402 } 1403 1404 /* 1405 * Check for pages which are in the process of being freed. Without 1406 * folio_mapping() set, hugetlbfs specific move page routine will not 1407 * be called and we could leak usage counts for subpools. 1408 */ 1409 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1410 rc = -EBUSY; 1411 goto out_unlock; 1412 } 1413 1414 if (folio_test_anon(src)) 1415 anon_vma = folio_get_anon_vma(src); 1416 1417 if (unlikely(!folio_trylock(dst))) 1418 goto put_anon; 1419 1420 if (folio_mapped(src)) { 1421 enum ttu_flags ttu = 0; 1422 1423 if (!folio_test_anon(src)) { 1424 /* 1425 * In shared mappings, try_to_unmap could potentially 1426 * call huge_pmd_unshare. Because of this, take 1427 * semaphore in write mode here and set TTU_RMAP_LOCKED 1428 * to let lower levels know we have taken the lock. 1429 */ 1430 mapping = hugetlb_page_mapping_lock_write(&src->page); 1431 if (unlikely(!mapping)) 1432 goto unlock_put_anon; 1433 1434 ttu = TTU_RMAP_LOCKED; 1435 } 1436 1437 try_to_migrate(src, ttu); 1438 page_was_mapped = 1; 1439 1440 if (ttu & TTU_RMAP_LOCKED) 1441 i_mmap_unlock_write(mapping); 1442 } 1443 1444 if (!folio_mapped(src)) 1445 rc = move_to_new_folio(dst, src, mode); 1446 1447 if (page_was_mapped) 1448 remove_migration_ptes(src, 1449 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1450 1451 unlock_put_anon: 1452 folio_unlock(dst); 1453 1454 put_anon: 1455 if (anon_vma) 1456 put_anon_vma(anon_vma); 1457 1458 if (rc == MIGRATEPAGE_SUCCESS) { 1459 move_hugetlb_state(src, dst, reason); 1460 put_new_folio = NULL; 1461 } 1462 1463 out_unlock: 1464 folio_unlock(src); 1465 out: 1466 if (rc == MIGRATEPAGE_SUCCESS) 1467 folio_putback_active_hugetlb(src); 1468 else if (rc != -EAGAIN) 1469 list_move_tail(&src->lru, ret); 1470 1471 /* 1472 * If migration was not successful and there's a freeing callback, use 1473 * it. Otherwise, put_page() will drop the reference grabbed during 1474 * isolation. 1475 */ 1476 if (put_new_folio) 1477 put_new_folio(dst, private); 1478 else 1479 folio_putback_active_hugetlb(dst); 1480 1481 return rc; 1482 } 1483 1484 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1485 { 1486 int rc; 1487 1488 folio_lock(folio); 1489 rc = split_folio_to_list(folio, split_folios); 1490 folio_unlock(folio); 1491 if (!rc) 1492 list_move_tail(&folio->lru, split_folios); 1493 1494 return rc; 1495 } 1496 1497 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1498 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1499 #else 1500 #define NR_MAX_BATCHED_MIGRATION 512 1501 #endif 1502 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1503 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1504 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1505 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1506 1507 struct migrate_pages_stats { 1508 int nr_succeeded; /* Normal and large folios migrated successfully, in 1509 units of base pages */ 1510 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1511 units of base pages. Untried folios aren't counted */ 1512 int nr_thp_succeeded; /* THP migrated successfully */ 1513 int nr_thp_failed; /* THP failed to be migrated */ 1514 int nr_thp_split; /* THP split before migrating */ 1515 int nr_split; /* Large folio (include THP) split before migrating */ 1516 }; 1517 1518 /* 1519 * Returns the number of hugetlb folios that were not migrated, or an error code 1520 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1521 * any more because the list has become empty or no retryable hugetlb folios 1522 * exist any more. It is caller's responsibility to call putback_movable_pages() 1523 * only if ret != 0. 1524 */ 1525 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1526 free_folio_t put_new_folio, unsigned long private, 1527 enum migrate_mode mode, int reason, 1528 struct migrate_pages_stats *stats, 1529 struct list_head *ret_folios) 1530 { 1531 int retry = 1; 1532 int nr_failed = 0; 1533 int nr_retry_pages = 0; 1534 int pass = 0; 1535 struct folio *folio, *folio2; 1536 int rc, nr_pages; 1537 1538 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1539 retry = 0; 1540 nr_retry_pages = 0; 1541 1542 list_for_each_entry_safe(folio, folio2, from, lru) { 1543 if (!folio_test_hugetlb(folio)) 1544 continue; 1545 1546 nr_pages = folio_nr_pages(folio); 1547 1548 cond_resched(); 1549 1550 /* 1551 * Migratability of hugepages depends on architectures and 1552 * their size. This check is necessary because some callers 1553 * of hugepage migration like soft offline and memory 1554 * hotremove don't walk through page tables or check whether 1555 * the hugepage is pmd-based or not before kicking migration. 1556 */ 1557 if (!hugepage_migration_supported(folio_hstate(folio))) { 1558 nr_failed++; 1559 stats->nr_failed_pages += nr_pages; 1560 list_move_tail(&folio->lru, ret_folios); 1561 continue; 1562 } 1563 1564 rc = unmap_and_move_huge_page(get_new_folio, 1565 put_new_folio, private, 1566 folio, pass > 2, mode, 1567 reason, ret_folios); 1568 /* 1569 * The rules are: 1570 * Success: hugetlb folio will be put back 1571 * -EAGAIN: stay on the from list 1572 * -ENOMEM: stay on the from list 1573 * Other errno: put on ret_folios list 1574 */ 1575 switch(rc) { 1576 case -ENOMEM: 1577 /* 1578 * When memory is low, don't bother to try to migrate 1579 * other folios, just exit. 1580 */ 1581 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1582 return -ENOMEM; 1583 case -EAGAIN: 1584 retry++; 1585 nr_retry_pages += nr_pages; 1586 break; 1587 case MIGRATEPAGE_SUCCESS: 1588 stats->nr_succeeded += nr_pages; 1589 break; 1590 default: 1591 /* 1592 * Permanent failure (-EBUSY, etc.): 1593 * unlike -EAGAIN case, the failed folio is 1594 * removed from migration folio list and not 1595 * retried in the next outer loop. 1596 */ 1597 nr_failed++; 1598 stats->nr_failed_pages += nr_pages; 1599 break; 1600 } 1601 } 1602 } 1603 /* 1604 * nr_failed is number of hugetlb folios failed to be migrated. After 1605 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1606 * folios as failed. 1607 */ 1608 nr_failed += retry; 1609 stats->nr_failed_pages += nr_retry_pages; 1610 1611 return nr_failed; 1612 } 1613 1614 /* 1615 * migrate_pages_batch() first unmaps folios in the from list as many as 1616 * possible, then move the unmapped folios. 1617 * 1618 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1619 * lock or bit when we have locked more than one folio. Which may cause 1620 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1621 * length of the from list must be <= 1. 1622 */ 1623 static int migrate_pages_batch(struct list_head *from, 1624 new_folio_t get_new_folio, free_folio_t put_new_folio, 1625 unsigned long private, enum migrate_mode mode, int reason, 1626 struct list_head *ret_folios, struct list_head *split_folios, 1627 struct migrate_pages_stats *stats, int nr_pass) 1628 { 1629 int retry = 1; 1630 int thp_retry = 1; 1631 int nr_failed = 0; 1632 int nr_retry_pages = 0; 1633 int pass = 0; 1634 bool is_thp = false; 1635 bool is_large = false; 1636 struct folio *folio, *folio2, *dst = NULL, *dst2; 1637 int rc, rc_saved = 0, nr_pages; 1638 LIST_HEAD(unmap_folios); 1639 LIST_HEAD(dst_folios); 1640 bool nosplit = (reason == MR_NUMA_MISPLACED); 1641 1642 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1643 !list_empty(from) && !list_is_singular(from)); 1644 1645 for (pass = 0; pass < nr_pass && retry; pass++) { 1646 retry = 0; 1647 thp_retry = 0; 1648 nr_retry_pages = 0; 1649 1650 list_for_each_entry_safe(folio, folio2, from, lru) { 1651 is_large = folio_test_large(folio); 1652 is_thp = is_large && folio_test_pmd_mappable(folio); 1653 nr_pages = folio_nr_pages(folio); 1654 1655 cond_resched(); 1656 1657 /* 1658 * Large folio migration might be unsupported or 1659 * the allocation might be failed so we should retry 1660 * on the same folio with the large folio split 1661 * to normal folios. 1662 * 1663 * Split folios are put in split_folios, and 1664 * we will migrate them after the rest of the 1665 * list is processed. 1666 */ 1667 if (!thp_migration_supported() && is_thp) { 1668 nr_failed++; 1669 stats->nr_thp_failed++; 1670 if (!try_split_folio(folio, split_folios)) { 1671 stats->nr_thp_split++; 1672 stats->nr_split++; 1673 continue; 1674 } 1675 stats->nr_failed_pages += nr_pages; 1676 list_move_tail(&folio->lru, ret_folios); 1677 continue; 1678 } 1679 1680 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1681 private, folio, &dst, mode, reason, 1682 ret_folios); 1683 /* 1684 * The rules are: 1685 * Success: folio will be freed 1686 * Unmap: folio will be put on unmap_folios list, 1687 * dst folio put on dst_folios list 1688 * -EAGAIN: stay on the from list 1689 * -ENOMEM: stay on the from list 1690 * Other errno: put on ret_folios list 1691 */ 1692 switch(rc) { 1693 case -ENOMEM: 1694 /* 1695 * When memory is low, don't bother to try to migrate 1696 * other folios, move unmapped folios, then exit. 1697 */ 1698 nr_failed++; 1699 stats->nr_thp_failed += is_thp; 1700 /* Large folio NUMA faulting doesn't split to retry. */ 1701 if (is_large && !nosplit) { 1702 int ret = try_split_folio(folio, split_folios); 1703 1704 if (!ret) { 1705 stats->nr_thp_split += is_thp; 1706 stats->nr_split++; 1707 break; 1708 } else if (reason == MR_LONGTERM_PIN && 1709 ret == -EAGAIN) { 1710 /* 1711 * Try again to split large folio to 1712 * mitigate the failure of longterm pinning. 1713 */ 1714 retry++; 1715 thp_retry += is_thp; 1716 nr_retry_pages += nr_pages; 1717 /* Undo duplicated failure counting. */ 1718 nr_failed--; 1719 stats->nr_thp_failed -= is_thp; 1720 break; 1721 } 1722 } 1723 1724 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1725 /* nr_failed isn't updated for not used */ 1726 stats->nr_thp_failed += thp_retry; 1727 rc_saved = rc; 1728 if (list_empty(&unmap_folios)) 1729 goto out; 1730 else 1731 goto move; 1732 case -EAGAIN: 1733 retry++; 1734 thp_retry += is_thp; 1735 nr_retry_pages += nr_pages; 1736 break; 1737 case MIGRATEPAGE_SUCCESS: 1738 stats->nr_succeeded += nr_pages; 1739 stats->nr_thp_succeeded += is_thp; 1740 break; 1741 case MIGRATEPAGE_UNMAP: 1742 list_move_tail(&folio->lru, &unmap_folios); 1743 list_add_tail(&dst->lru, &dst_folios); 1744 break; 1745 default: 1746 /* 1747 * Permanent failure (-EBUSY, etc.): 1748 * unlike -EAGAIN case, the failed folio is 1749 * removed from migration folio list and not 1750 * retried in the next outer loop. 1751 */ 1752 nr_failed++; 1753 stats->nr_thp_failed += is_thp; 1754 stats->nr_failed_pages += nr_pages; 1755 break; 1756 } 1757 } 1758 } 1759 nr_failed += retry; 1760 stats->nr_thp_failed += thp_retry; 1761 stats->nr_failed_pages += nr_retry_pages; 1762 move: 1763 /* Flush TLBs for all unmapped folios */ 1764 try_to_unmap_flush(); 1765 1766 retry = 1; 1767 for (pass = 0; pass < nr_pass && retry; pass++) { 1768 retry = 0; 1769 thp_retry = 0; 1770 nr_retry_pages = 0; 1771 1772 dst = list_first_entry(&dst_folios, struct folio, lru); 1773 dst2 = list_next_entry(dst, lru); 1774 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1775 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1776 nr_pages = folio_nr_pages(folio); 1777 1778 cond_resched(); 1779 1780 rc = migrate_folio_move(put_new_folio, private, 1781 folio, dst, mode, 1782 reason, ret_folios); 1783 /* 1784 * The rules are: 1785 * Success: folio will be freed 1786 * -EAGAIN: stay on the unmap_folios list 1787 * Other errno: put on ret_folios list 1788 */ 1789 switch(rc) { 1790 case -EAGAIN: 1791 retry++; 1792 thp_retry += is_thp; 1793 nr_retry_pages += nr_pages; 1794 break; 1795 case MIGRATEPAGE_SUCCESS: 1796 stats->nr_succeeded += nr_pages; 1797 stats->nr_thp_succeeded += is_thp; 1798 break; 1799 default: 1800 nr_failed++; 1801 stats->nr_thp_failed += is_thp; 1802 stats->nr_failed_pages += nr_pages; 1803 break; 1804 } 1805 dst = dst2; 1806 dst2 = list_next_entry(dst, lru); 1807 } 1808 } 1809 nr_failed += retry; 1810 stats->nr_thp_failed += thp_retry; 1811 stats->nr_failed_pages += nr_retry_pages; 1812 1813 rc = rc_saved ? : nr_failed; 1814 out: 1815 /* Cleanup remaining folios */ 1816 dst = list_first_entry(&dst_folios, struct folio, lru); 1817 dst2 = list_next_entry(dst, lru); 1818 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1819 int old_page_state = 0; 1820 struct anon_vma *anon_vma = NULL; 1821 1822 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1823 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1824 anon_vma, true, ret_folios); 1825 list_del(&dst->lru); 1826 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1827 dst = dst2; 1828 dst2 = list_next_entry(dst, lru); 1829 } 1830 1831 return rc; 1832 } 1833 1834 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1835 free_folio_t put_new_folio, unsigned long private, 1836 enum migrate_mode mode, int reason, 1837 struct list_head *ret_folios, struct list_head *split_folios, 1838 struct migrate_pages_stats *stats) 1839 { 1840 int rc, nr_failed = 0; 1841 LIST_HEAD(folios); 1842 struct migrate_pages_stats astats; 1843 1844 memset(&astats, 0, sizeof(astats)); 1845 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1846 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1847 reason, &folios, split_folios, &astats, 1848 NR_MAX_MIGRATE_ASYNC_RETRY); 1849 stats->nr_succeeded += astats.nr_succeeded; 1850 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1851 stats->nr_thp_split += astats.nr_thp_split; 1852 stats->nr_split += astats.nr_split; 1853 if (rc < 0) { 1854 stats->nr_failed_pages += astats.nr_failed_pages; 1855 stats->nr_thp_failed += astats.nr_thp_failed; 1856 list_splice_tail(&folios, ret_folios); 1857 return rc; 1858 } 1859 stats->nr_thp_failed += astats.nr_thp_split; 1860 /* 1861 * Do not count rc, as pages will be retried below. 1862 * Count nr_split only, since it includes nr_thp_split. 1863 */ 1864 nr_failed += astats.nr_split; 1865 /* 1866 * Fall back to migrate all failed folios one by one synchronously. All 1867 * failed folios except split THPs will be retried, so their failure 1868 * isn't counted 1869 */ 1870 list_splice_tail_init(&folios, from); 1871 while (!list_empty(from)) { 1872 list_move(from->next, &folios); 1873 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1874 private, mode, reason, ret_folios, 1875 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1876 list_splice_tail_init(&folios, ret_folios); 1877 if (rc < 0) 1878 return rc; 1879 nr_failed += rc; 1880 } 1881 1882 return nr_failed; 1883 } 1884 1885 /* 1886 * migrate_pages - migrate the folios specified in a list, to the free folios 1887 * supplied as the target for the page migration 1888 * 1889 * @from: The list of folios to be migrated. 1890 * @get_new_folio: The function used to allocate free folios to be used 1891 * as the target of the folio migration. 1892 * @put_new_folio: The function used to free target folios if migration 1893 * fails, or NULL if no special handling is necessary. 1894 * @private: Private data to be passed on to get_new_folio() 1895 * @mode: The migration mode that specifies the constraints for 1896 * folio migration, if any. 1897 * @reason: The reason for folio migration. 1898 * @ret_succeeded: Set to the number of folios migrated successfully if 1899 * the caller passes a non-NULL pointer. 1900 * 1901 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 1902 * are movable any more because the list has become empty or no retryable folios 1903 * exist any more. It is caller's responsibility to call putback_movable_pages() 1904 * only if ret != 0. 1905 * 1906 * Returns the number of {normal folio, large folio, hugetlb} that were not 1907 * migrated, or an error code. The number of large folio splits will be 1908 * considered as the number of non-migrated large folio, no matter how many 1909 * split folios of the large folio are migrated successfully. 1910 */ 1911 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 1912 free_folio_t put_new_folio, unsigned long private, 1913 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1914 { 1915 int rc, rc_gather; 1916 int nr_pages; 1917 struct folio *folio, *folio2; 1918 LIST_HEAD(folios); 1919 LIST_HEAD(ret_folios); 1920 LIST_HEAD(split_folios); 1921 struct migrate_pages_stats stats; 1922 1923 trace_mm_migrate_pages_start(mode, reason); 1924 1925 memset(&stats, 0, sizeof(stats)); 1926 1927 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 1928 mode, reason, &stats, &ret_folios); 1929 if (rc_gather < 0) 1930 goto out; 1931 1932 again: 1933 nr_pages = 0; 1934 list_for_each_entry_safe(folio, folio2, from, lru) { 1935 /* Retried hugetlb folios will be kept in list */ 1936 if (folio_test_hugetlb(folio)) { 1937 list_move_tail(&folio->lru, &ret_folios); 1938 continue; 1939 } 1940 1941 nr_pages += folio_nr_pages(folio); 1942 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1943 break; 1944 } 1945 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1946 list_cut_before(&folios, from, &folio2->lru); 1947 else 1948 list_splice_init(from, &folios); 1949 if (mode == MIGRATE_ASYNC) 1950 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1951 private, mode, reason, &ret_folios, 1952 &split_folios, &stats, 1953 NR_MAX_MIGRATE_PAGES_RETRY); 1954 else 1955 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 1956 private, mode, reason, &ret_folios, 1957 &split_folios, &stats); 1958 list_splice_tail_init(&folios, &ret_folios); 1959 if (rc < 0) { 1960 rc_gather = rc; 1961 list_splice_tail(&split_folios, &ret_folios); 1962 goto out; 1963 } 1964 if (!list_empty(&split_folios)) { 1965 /* 1966 * Failure isn't counted since all split folios of a large folio 1967 * is counted as 1 failure already. And, we only try to migrate 1968 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 1969 */ 1970 migrate_pages_batch(&split_folios, get_new_folio, 1971 put_new_folio, private, MIGRATE_ASYNC, reason, 1972 &ret_folios, NULL, &stats, 1); 1973 list_splice_tail_init(&split_folios, &ret_folios); 1974 } 1975 rc_gather += rc; 1976 if (!list_empty(from)) 1977 goto again; 1978 out: 1979 /* 1980 * Put the permanent failure folio back to migration list, they 1981 * will be put back to the right list by the caller. 1982 */ 1983 list_splice(&ret_folios, from); 1984 1985 /* 1986 * Return 0 in case all split folios of fail-to-migrate large folios 1987 * are migrated successfully. 1988 */ 1989 if (list_empty(from)) 1990 rc_gather = 0; 1991 1992 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 1993 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 1994 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 1995 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 1996 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 1997 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 1998 stats.nr_thp_succeeded, stats.nr_thp_failed, 1999 stats.nr_thp_split, stats.nr_split, mode, 2000 reason); 2001 2002 if (ret_succeeded) 2003 *ret_succeeded = stats.nr_succeeded; 2004 2005 return rc_gather; 2006 } 2007 2008 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2009 { 2010 struct migration_target_control *mtc; 2011 gfp_t gfp_mask; 2012 unsigned int order = 0; 2013 int nid; 2014 int zidx; 2015 2016 mtc = (struct migration_target_control *)private; 2017 gfp_mask = mtc->gfp_mask; 2018 nid = mtc->nid; 2019 if (nid == NUMA_NO_NODE) 2020 nid = folio_nid(src); 2021 2022 if (folio_test_hugetlb(src)) { 2023 struct hstate *h = folio_hstate(src); 2024 2025 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2026 return alloc_hugetlb_folio_nodemask(h, nid, 2027 mtc->nmask, gfp_mask); 2028 } 2029 2030 if (folio_test_large(src)) { 2031 /* 2032 * clear __GFP_RECLAIM to make the migration callback 2033 * consistent with regular THP allocations. 2034 */ 2035 gfp_mask &= ~__GFP_RECLAIM; 2036 gfp_mask |= GFP_TRANSHUGE; 2037 order = folio_order(src); 2038 } 2039 zidx = zone_idx(folio_zone(src)); 2040 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2041 gfp_mask |= __GFP_HIGHMEM; 2042 2043 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2044 } 2045 2046 #ifdef CONFIG_NUMA 2047 2048 static int store_status(int __user *status, int start, int value, int nr) 2049 { 2050 while (nr-- > 0) { 2051 if (put_user(value, status + start)) 2052 return -EFAULT; 2053 start++; 2054 } 2055 2056 return 0; 2057 } 2058 2059 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2060 { 2061 int err; 2062 struct migration_target_control mtc = { 2063 .nid = node, 2064 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2065 }; 2066 2067 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2068 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2069 if (err) 2070 putback_movable_pages(pagelist); 2071 return err; 2072 } 2073 2074 /* 2075 * Resolves the given address to a struct page, isolates it from the LRU and 2076 * puts it to the given pagelist. 2077 * Returns: 2078 * errno - if the page cannot be found/isolated 2079 * 0 - when it doesn't have to be migrated because it is already on the 2080 * target node 2081 * 1 - when it has been queued 2082 */ 2083 static int add_page_for_migration(struct mm_struct *mm, const void __user *p, 2084 int node, struct list_head *pagelist, bool migrate_all) 2085 { 2086 struct vm_area_struct *vma; 2087 unsigned long addr; 2088 struct page *page; 2089 struct folio *folio; 2090 int err; 2091 2092 mmap_read_lock(mm); 2093 addr = (unsigned long)untagged_addr_remote(mm, p); 2094 2095 err = -EFAULT; 2096 vma = vma_lookup(mm, addr); 2097 if (!vma || !vma_migratable(vma)) 2098 goto out; 2099 2100 /* FOLL_DUMP to ignore special (like zero) pages */ 2101 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2102 2103 err = PTR_ERR(page); 2104 if (IS_ERR(page)) 2105 goto out; 2106 2107 err = -ENOENT; 2108 if (!page) 2109 goto out; 2110 2111 folio = page_folio(page); 2112 if (folio_is_zone_device(folio)) 2113 goto out_putfolio; 2114 2115 err = 0; 2116 if (folio_nid(folio) == node) 2117 goto out_putfolio; 2118 2119 err = -EACCES; 2120 if (page_mapcount(page) > 1 && !migrate_all) 2121 goto out_putfolio; 2122 2123 err = -EBUSY; 2124 if (folio_test_hugetlb(folio)) { 2125 if (isolate_hugetlb(folio, pagelist)) 2126 err = 1; 2127 } else { 2128 if (!folio_isolate_lru(folio)) 2129 goto out_putfolio; 2130 2131 err = 1; 2132 list_add_tail(&folio->lru, pagelist); 2133 node_stat_mod_folio(folio, 2134 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2135 folio_nr_pages(folio)); 2136 } 2137 out_putfolio: 2138 /* 2139 * Either remove the duplicate refcount from folio_isolate_lru() 2140 * or drop the folio ref if it was not isolated. 2141 */ 2142 folio_put(folio); 2143 out: 2144 mmap_read_unlock(mm); 2145 return err; 2146 } 2147 2148 static int move_pages_and_store_status(int node, 2149 struct list_head *pagelist, int __user *status, 2150 int start, int i, unsigned long nr_pages) 2151 { 2152 int err; 2153 2154 if (list_empty(pagelist)) 2155 return 0; 2156 2157 err = do_move_pages_to_node(pagelist, node); 2158 if (err) { 2159 /* 2160 * Positive err means the number of failed 2161 * pages to migrate. Since we are going to 2162 * abort and return the number of non-migrated 2163 * pages, so need to include the rest of the 2164 * nr_pages that have not been attempted as 2165 * well. 2166 */ 2167 if (err > 0) 2168 err += nr_pages - i; 2169 return err; 2170 } 2171 return store_status(status, start, node, i - start); 2172 } 2173 2174 /* 2175 * Migrate an array of page address onto an array of nodes and fill 2176 * the corresponding array of status. 2177 */ 2178 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2179 unsigned long nr_pages, 2180 const void __user * __user *pages, 2181 const int __user *nodes, 2182 int __user *status, int flags) 2183 { 2184 compat_uptr_t __user *compat_pages = (void __user *)pages; 2185 int current_node = NUMA_NO_NODE; 2186 LIST_HEAD(pagelist); 2187 int start, i; 2188 int err = 0, err1; 2189 2190 lru_cache_disable(); 2191 2192 for (i = start = 0; i < nr_pages; i++) { 2193 const void __user *p; 2194 int node; 2195 2196 err = -EFAULT; 2197 if (in_compat_syscall()) { 2198 compat_uptr_t cp; 2199 2200 if (get_user(cp, compat_pages + i)) 2201 goto out_flush; 2202 2203 p = compat_ptr(cp); 2204 } else { 2205 if (get_user(p, pages + i)) 2206 goto out_flush; 2207 } 2208 if (get_user(node, nodes + i)) 2209 goto out_flush; 2210 2211 err = -ENODEV; 2212 if (node < 0 || node >= MAX_NUMNODES) 2213 goto out_flush; 2214 if (!node_state(node, N_MEMORY)) 2215 goto out_flush; 2216 2217 err = -EACCES; 2218 if (!node_isset(node, task_nodes)) 2219 goto out_flush; 2220 2221 if (current_node == NUMA_NO_NODE) { 2222 current_node = node; 2223 start = i; 2224 } else if (node != current_node) { 2225 err = move_pages_and_store_status(current_node, 2226 &pagelist, status, start, i, nr_pages); 2227 if (err) 2228 goto out; 2229 start = i; 2230 current_node = node; 2231 } 2232 2233 /* 2234 * Errors in the page lookup or isolation are not fatal and we simply 2235 * report them via status 2236 */ 2237 err = add_page_for_migration(mm, p, current_node, &pagelist, 2238 flags & MPOL_MF_MOVE_ALL); 2239 2240 if (err > 0) { 2241 /* The page is successfully queued for migration */ 2242 continue; 2243 } 2244 2245 /* 2246 * The move_pages() man page does not have an -EEXIST choice, so 2247 * use -EFAULT instead. 2248 */ 2249 if (err == -EEXIST) 2250 err = -EFAULT; 2251 2252 /* 2253 * If the page is already on the target node (!err), store the 2254 * node, otherwise, store the err. 2255 */ 2256 err = store_status(status, i, err ? : current_node, 1); 2257 if (err) 2258 goto out_flush; 2259 2260 err = move_pages_and_store_status(current_node, &pagelist, 2261 status, start, i, nr_pages); 2262 if (err) { 2263 /* We have accounted for page i */ 2264 if (err > 0) 2265 err--; 2266 goto out; 2267 } 2268 current_node = NUMA_NO_NODE; 2269 } 2270 out_flush: 2271 /* Make sure we do not overwrite the existing error */ 2272 err1 = move_pages_and_store_status(current_node, &pagelist, 2273 status, start, i, nr_pages); 2274 if (err >= 0) 2275 err = err1; 2276 out: 2277 lru_cache_enable(); 2278 return err; 2279 } 2280 2281 /* 2282 * Determine the nodes of an array of pages and store it in an array of status. 2283 */ 2284 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2285 const void __user **pages, int *status) 2286 { 2287 unsigned long i; 2288 2289 mmap_read_lock(mm); 2290 2291 for (i = 0; i < nr_pages; i++) { 2292 unsigned long addr = (unsigned long)(*pages); 2293 struct vm_area_struct *vma; 2294 struct page *page; 2295 int err = -EFAULT; 2296 2297 vma = vma_lookup(mm, addr); 2298 if (!vma) 2299 goto set_status; 2300 2301 /* FOLL_DUMP to ignore special (like zero) pages */ 2302 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2303 2304 err = PTR_ERR(page); 2305 if (IS_ERR(page)) 2306 goto set_status; 2307 2308 err = -ENOENT; 2309 if (!page) 2310 goto set_status; 2311 2312 if (!is_zone_device_page(page)) 2313 err = page_to_nid(page); 2314 2315 put_page(page); 2316 set_status: 2317 *status = err; 2318 2319 pages++; 2320 status++; 2321 } 2322 2323 mmap_read_unlock(mm); 2324 } 2325 2326 static int get_compat_pages_array(const void __user *chunk_pages[], 2327 const void __user * __user *pages, 2328 unsigned long chunk_nr) 2329 { 2330 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2331 compat_uptr_t p; 2332 int i; 2333 2334 for (i = 0; i < chunk_nr; i++) { 2335 if (get_user(p, pages32 + i)) 2336 return -EFAULT; 2337 chunk_pages[i] = compat_ptr(p); 2338 } 2339 2340 return 0; 2341 } 2342 2343 /* 2344 * Determine the nodes of a user array of pages and store it in 2345 * a user array of status. 2346 */ 2347 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2348 const void __user * __user *pages, 2349 int __user *status) 2350 { 2351 #define DO_PAGES_STAT_CHUNK_NR 16UL 2352 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2353 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2354 2355 while (nr_pages) { 2356 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2357 2358 if (in_compat_syscall()) { 2359 if (get_compat_pages_array(chunk_pages, pages, 2360 chunk_nr)) 2361 break; 2362 } else { 2363 if (copy_from_user(chunk_pages, pages, 2364 chunk_nr * sizeof(*chunk_pages))) 2365 break; 2366 } 2367 2368 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2369 2370 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2371 break; 2372 2373 pages += chunk_nr; 2374 status += chunk_nr; 2375 nr_pages -= chunk_nr; 2376 } 2377 return nr_pages ? -EFAULT : 0; 2378 } 2379 2380 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2381 { 2382 struct task_struct *task; 2383 struct mm_struct *mm; 2384 2385 /* 2386 * There is no need to check if current process has the right to modify 2387 * the specified process when they are same. 2388 */ 2389 if (!pid) { 2390 mmget(current->mm); 2391 *mem_nodes = cpuset_mems_allowed(current); 2392 return current->mm; 2393 } 2394 2395 /* Find the mm_struct */ 2396 rcu_read_lock(); 2397 task = find_task_by_vpid(pid); 2398 if (!task) { 2399 rcu_read_unlock(); 2400 return ERR_PTR(-ESRCH); 2401 } 2402 get_task_struct(task); 2403 2404 /* 2405 * Check if this process has the right to modify the specified 2406 * process. Use the regular "ptrace_may_access()" checks. 2407 */ 2408 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2409 rcu_read_unlock(); 2410 mm = ERR_PTR(-EPERM); 2411 goto out; 2412 } 2413 rcu_read_unlock(); 2414 2415 mm = ERR_PTR(security_task_movememory(task)); 2416 if (IS_ERR(mm)) 2417 goto out; 2418 *mem_nodes = cpuset_mems_allowed(task); 2419 mm = get_task_mm(task); 2420 out: 2421 put_task_struct(task); 2422 if (!mm) 2423 mm = ERR_PTR(-EINVAL); 2424 return mm; 2425 } 2426 2427 /* 2428 * Move a list of pages in the address space of the currently executing 2429 * process. 2430 */ 2431 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2432 const void __user * __user *pages, 2433 const int __user *nodes, 2434 int __user *status, int flags) 2435 { 2436 struct mm_struct *mm; 2437 int err; 2438 nodemask_t task_nodes; 2439 2440 /* Check flags */ 2441 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2442 return -EINVAL; 2443 2444 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2445 return -EPERM; 2446 2447 mm = find_mm_struct(pid, &task_nodes); 2448 if (IS_ERR(mm)) 2449 return PTR_ERR(mm); 2450 2451 if (nodes) 2452 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2453 nodes, status, flags); 2454 else 2455 err = do_pages_stat(mm, nr_pages, pages, status); 2456 2457 mmput(mm); 2458 return err; 2459 } 2460 2461 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2462 const void __user * __user *, pages, 2463 const int __user *, nodes, 2464 int __user *, status, int, flags) 2465 { 2466 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2467 } 2468 2469 #ifdef CONFIG_NUMA_BALANCING 2470 /* 2471 * Returns true if this is a safe migration target node for misplaced NUMA 2472 * pages. Currently it only checks the watermarks which is crude. 2473 */ 2474 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2475 unsigned long nr_migrate_pages) 2476 { 2477 int z; 2478 2479 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2480 struct zone *zone = pgdat->node_zones + z; 2481 2482 if (!managed_zone(zone)) 2483 continue; 2484 2485 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2486 if (!zone_watermark_ok(zone, 0, 2487 high_wmark_pages(zone) + 2488 nr_migrate_pages, 2489 ZONE_MOVABLE, 0)) 2490 continue; 2491 return true; 2492 } 2493 return false; 2494 } 2495 2496 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2497 unsigned long data) 2498 { 2499 int nid = (int) data; 2500 int order = folio_order(src); 2501 gfp_t gfp = __GFP_THISNODE; 2502 2503 if (order > 0) 2504 gfp |= GFP_TRANSHUGE_LIGHT; 2505 else { 2506 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2507 __GFP_NOWARN; 2508 gfp &= ~__GFP_RECLAIM; 2509 } 2510 return __folio_alloc_node(gfp, order, nid); 2511 } 2512 2513 static int numamigrate_isolate_folio(pg_data_t *pgdat, struct folio *folio) 2514 { 2515 int nr_pages = folio_nr_pages(folio); 2516 2517 /* Avoid migrating to a node that is nearly full */ 2518 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2519 int z; 2520 2521 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2522 return 0; 2523 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2524 if (managed_zone(pgdat->node_zones + z)) 2525 break; 2526 } 2527 wakeup_kswapd(pgdat->node_zones + z, 0, 2528 folio_order(folio), ZONE_MOVABLE); 2529 return 0; 2530 } 2531 2532 if (!folio_isolate_lru(folio)) 2533 return 0; 2534 2535 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2536 nr_pages); 2537 2538 /* 2539 * Isolating the folio has taken another reference, so the 2540 * caller's reference can be safely dropped without the folio 2541 * disappearing underneath us during migration. 2542 */ 2543 folio_put(folio); 2544 return 1; 2545 } 2546 2547 /* 2548 * Attempt to migrate a misplaced folio to the specified destination 2549 * node. Caller is expected to have an elevated reference count on 2550 * the folio that will be dropped by this function before returning. 2551 */ 2552 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma, 2553 int node) 2554 { 2555 pg_data_t *pgdat = NODE_DATA(node); 2556 int isolated; 2557 int nr_remaining; 2558 unsigned int nr_succeeded; 2559 LIST_HEAD(migratepages); 2560 int nr_pages = folio_nr_pages(folio); 2561 2562 /* 2563 * Don't migrate file folios that are mapped in multiple processes 2564 * with execute permissions as they are probably shared libraries. 2565 * To check if the folio is shared, ideally we want to make sure 2566 * every page is mapped to the same process. Doing that is very 2567 * expensive, so check the estimated mapcount of the folio instead. 2568 */ 2569 if (folio_estimated_sharers(folio) != 1 && folio_is_file_lru(folio) && 2570 (vma->vm_flags & VM_EXEC)) 2571 goto out; 2572 2573 /* 2574 * Also do not migrate dirty folios as not all filesystems can move 2575 * dirty folios in MIGRATE_ASYNC mode which is a waste of cycles. 2576 */ 2577 if (folio_is_file_lru(folio) && folio_test_dirty(folio)) 2578 goto out; 2579 2580 isolated = numamigrate_isolate_folio(pgdat, folio); 2581 if (!isolated) 2582 goto out; 2583 2584 list_add(&folio->lru, &migratepages); 2585 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2586 NULL, node, MIGRATE_ASYNC, 2587 MR_NUMA_MISPLACED, &nr_succeeded); 2588 if (nr_remaining) { 2589 if (!list_empty(&migratepages)) { 2590 list_del(&folio->lru); 2591 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 2592 folio_is_file_lru(folio), -nr_pages); 2593 folio_putback_lru(folio); 2594 } 2595 isolated = 0; 2596 } 2597 if (nr_succeeded) { 2598 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2599 if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node)) 2600 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2601 nr_succeeded); 2602 } 2603 BUG_ON(!list_empty(&migratepages)); 2604 return isolated; 2605 2606 out: 2607 folio_put(folio); 2608 return 0; 2609 } 2610 #endif /* CONFIG_NUMA_BALANCING */ 2611 #endif /* CONFIG_NUMA */ 2612