1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 #include <linux/mmu_notifier.h> 40 41 #include <asm/tlbflush.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/migrate.h> 45 46 #include "internal.h" 47 48 /* 49 * migrate_prep() needs to be called before we start compiling a list of pages 50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 51 * undesirable, use migrate_prep_local() 52 */ 53 int migrate_prep(void) 54 { 55 /* 56 * Clear the LRU lists so pages can be isolated. 57 * Note that pages may be moved off the LRU after we have 58 * drained them. Those pages will fail to migrate like other 59 * pages that may be busy. 60 */ 61 lru_add_drain_all(); 62 63 return 0; 64 } 65 66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 67 int migrate_prep_local(void) 68 { 69 lru_add_drain(); 70 71 return 0; 72 } 73 74 /* 75 * Put previously isolated pages back onto the appropriate lists 76 * from where they were once taken off for compaction/migration. 77 * 78 * This function shall be used whenever the isolated pageset has been 79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 80 * and isolate_huge_page(). 81 */ 82 void putback_movable_pages(struct list_head *l) 83 { 84 struct page *page; 85 struct page *page2; 86 87 list_for_each_entry_safe(page, page2, l, lru) { 88 if (unlikely(PageHuge(page))) { 89 putback_active_hugepage(page); 90 continue; 91 } 92 list_del(&page->lru); 93 dec_zone_page_state(page, NR_ISOLATED_ANON + 94 page_is_file_cache(page)); 95 if (unlikely(isolated_balloon_page(page))) 96 balloon_page_putback(page); 97 else 98 putback_lru_page(page); 99 } 100 } 101 102 /* 103 * Restore a potential migration pte to a working pte entry 104 */ 105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 106 unsigned long addr, void *old) 107 { 108 struct mm_struct *mm = vma->vm_mm; 109 swp_entry_t entry; 110 pmd_t *pmd; 111 pte_t *ptep, pte; 112 spinlock_t *ptl; 113 114 if (unlikely(PageHuge(new))) { 115 ptep = huge_pte_offset(mm, addr); 116 if (!ptep) 117 goto out; 118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 119 } else { 120 pmd = mm_find_pmd(mm, addr); 121 if (!pmd) 122 goto out; 123 124 ptep = pte_offset_map(pmd, addr); 125 126 /* 127 * Peek to check is_swap_pte() before taking ptlock? No, we 128 * can race mremap's move_ptes(), which skips anon_vma lock. 129 */ 130 131 ptl = pte_lockptr(mm, pmd); 132 } 133 134 spin_lock(ptl); 135 pte = *ptep; 136 if (!is_swap_pte(pte)) 137 goto unlock; 138 139 entry = pte_to_swp_entry(pte); 140 141 if (!is_migration_entry(entry) || 142 migration_entry_to_page(entry) != old) 143 goto unlock; 144 145 get_page(new); 146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 147 if (pte_swp_soft_dirty(*ptep)) 148 pte = pte_mksoft_dirty(pte); 149 150 /* Recheck VMA as permissions can change since migration started */ 151 if (is_write_migration_entry(entry)) 152 pte = maybe_mkwrite(pte, vma); 153 154 #ifdef CONFIG_HUGETLB_PAGE 155 if (PageHuge(new)) { 156 pte = pte_mkhuge(pte); 157 pte = arch_make_huge_pte(pte, vma, new, 0); 158 } 159 #endif 160 flush_dcache_page(new); 161 set_pte_at(mm, addr, ptep, pte); 162 163 if (PageHuge(new)) { 164 if (PageAnon(new)) 165 hugepage_add_anon_rmap(new, vma, addr); 166 else 167 page_dup_rmap(new); 168 } else if (PageAnon(new)) 169 page_add_anon_rmap(new, vma, addr); 170 else 171 page_add_file_rmap(new); 172 173 /* No need to invalidate - it was non-present before */ 174 update_mmu_cache(vma, addr, ptep); 175 unlock: 176 pte_unmap_unlock(ptep, ptl); 177 out: 178 return SWAP_AGAIN; 179 } 180 181 /* 182 * Get rid of all migration entries and replace them by 183 * references to the indicated page. 184 */ 185 static void remove_migration_ptes(struct page *old, struct page *new) 186 { 187 struct rmap_walk_control rwc = { 188 .rmap_one = remove_migration_pte, 189 .arg = old, 190 }; 191 192 rmap_walk(new, &rwc); 193 } 194 195 /* 196 * Something used the pte of a page under migration. We need to 197 * get to the page and wait until migration is finished. 198 * When we return from this function the fault will be retried. 199 */ 200 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 201 spinlock_t *ptl) 202 { 203 pte_t pte; 204 swp_entry_t entry; 205 struct page *page; 206 207 spin_lock(ptl); 208 pte = *ptep; 209 if (!is_swap_pte(pte)) 210 goto out; 211 212 entry = pte_to_swp_entry(pte); 213 if (!is_migration_entry(entry)) 214 goto out; 215 216 page = migration_entry_to_page(entry); 217 218 /* 219 * Once radix-tree replacement of page migration started, page_count 220 * *must* be zero. And, we don't want to call wait_on_page_locked() 221 * against a page without get_page(). 222 * So, we use get_page_unless_zero(), here. Even failed, page fault 223 * will occur again. 224 */ 225 if (!get_page_unless_zero(page)) 226 goto out; 227 pte_unmap_unlock(ptep, ptl); 228 wait_on_page_locked(page); 229 put_page(page); 230 return; 231 out: 232 pte_unmap_unlock(ptep, ptl); 233 } 234 235 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 236 unsigned long address) 237 { 238 spinlock_t *ptl = pte_lockptr(mm, pmd); 239 pte_t *ptep = pte_offset_map(pmd, address); 240 __migration_entry_wait(mm, ptep, ptl); 241 } 242 243 void migration_entry_wait_huge(struct vm_area_struct *vma, 244 struct mm_struct *mm, pte_t *pte) 245 { 246 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 247 __migration_entry_wait(mm, pte, ptl); 248 } 249 250 #ifdef CONFIG_BLOCK 251 /* Returns true if all buffers are successfully locked */ 252 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 253 enum migrate_mode mode) 254 { 255 struct buffer_head *bh = head; 256 257 /* Simple case, sync compaction */ 258 if (mode != MIGRATE_ASYNC) { 259 do { 260 get_bh(bh); 261 lock_buffer(bh); 262 bh = bh->b_this_page; 263 264 } while (bh != head); 265 266 return true; 267 } 268 269 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 270 do { 271 get_bh(bh); 272 if (!trylock_buffer(bh)) { 273 /* 274 * We failed to lock the buffer and cannot stall in 275 * async migration. Release the taken locks 276 */ 277 struct buffer_head *failed_bh = bh; 278 put_bh(failed_bh); 279 bh = head; 280 while (bh != failed_bh) { 281 unlock_buffer(bh); 282 put_bh(bh); 283 bh = bh->b_this_page; 284 } 285 return false; 286 } 287 288 bh = bh->b_this_page; 289 } while (bh != head); 290 return true; 291 } 292 #else 293 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 294 enum migrate_mode mode) 295 { 296 return true; 297 } 298 #endif /* CONFIG_BLOCK */ 299 300 /* 301 * Replace the page in the mapping. 302 * 303 * The number of remaining references must be: 304 * 1 for anonymous pages without a mapping 305 * 2 for pages with a mapping 306 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 307 */ 308 int migrate_page_move_mapping(struct address_space *mapping, 309 struct page *newpage, struct page *page, 310 struct buffer_head *head, enum migrate_mode mode, 311 int extra_count) 312 { 313 int expected_count = 1 + extra_count; 314 void **pslot; 315 316 if (!mapping) { 317 /* Anonymous page without mapping */ 318 if (page_count(page) != expected_count) 319 return -EAGAIN; 320 return MIGRATEPAGE_SUCCESS; 321 } 322 323 spin_lock_irq(&mapping->tree_lock); 324 325 pslot = radix_tree_lookup_slot(&mapping->page_tree, 326 page_index(page)); 327 328 expected_count += 1 + page_has_private(page); 329 if (page_count(page) != expected_count || 330 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 331 spin_unlock_irq(&mapping->tree_lock); 332 return -EAGAIN; 333 } 334 335 if (!page_freeze_refs(page, expected_count)) { 336 spin_unlock_irq(&mapping->tree_lock); 337 return -EAGAIN; 338 } 339 340 /* 341 * In the async migration case of moving a page with buffers, lock the 342 * buffers using trylock before the mapping is moved. If the mapping 343 * was moved, we later failed to lock the buffers and could not move 344 * the mapping back due to an elevated page count, we would have to 345 * block waiting on other references to be dropped. 346 */ 347 if (mode == MIGRATE_ASYNC && head && 348 !buffer_migrate_lock_buffers(head, mode)) { 349 page_unfreeze_refs(page, expected_count); 350 spin_unlock_irq(&mapping->tree_lock); 351 return -EAGAIN; 352 } 353 354 /* 355 * Now we know that no one else is looking at the page. 356 */ 357 get_page(newpage); /* add cache reference */ 358 if (PageSwapCache(page)) { 359 SetPageSwapCache(newpage); 360 set_page_private(newpage, page_private(page)); 361 } 362 363 radix_tree_replace_slot(pslot, newpage); 364 365 /* 366 * Drop cache reference from old page by unfreezing 367 * to one less reference. 368 * We know this isn't the last reference. 369 */ 370 page_unfreeze_refs(page, expected_count - 1); 371 372 /* 373 * If moved to a different zone then also account 374 * the page for that zone. Other VM counters will be 375 * taken care of when we establish references to the 376 * new page and drop references to the old page. 377 * 378 * Note that anonymous pages are accounted for 379 * via NR_FILE_PAGES and NR_ANON_PAGES if they 380 * are mapped to swap space. 381 */ 382 __dec_zone_page_state(page, NR_FILE_PAGES); 383 __inc_zone_page_state(newpage, NR_FILE_PAGES); 384 if (!PageSwapCache(page) && PageSwapBacked(page)) { 385 __dec_zone_page_state(page, NR_SHMEM); 386 __inc_zone_page_state(newpage, NR_SHMEM); 387 } 388 spin_unlock_irq(&mapping->tree_lock); 389 390 return MIGRATEPAGE_SUCCESS; 391 } 392 393 /* 394 * The expected number of remaining references is the same as that 395 * of migrate_page_move_mapping(). 396 */ 397 int migrate_huge_page_move_mapping(struct address_space *mapping, 398 struct page *newpage, struct page *page) 399 { 400 int expected_count; 401 void **pslot; 402 403 if (!mapping) { 404 if (page_count(page) != 1) 405 return -EAGAIN; 406 return MIGRATEPAGE_SUCCESS; 407 } 408 409 spin_lock_irq(&mapping->tree_lock); 410 411 pslot = radix_tree_lookup_slot(&mapping->page_tree, 412 page_index(page)); 413 414 expected_count = 2 + page_has_private(page); 415 if (page_count(page) != expected_count || 416 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 417 spin_unlock_irq(&mapping->tree_lock); 418 return -EAGAIN; 419 } 420 421 if (!page_freeze_refs(page, expected_count)) { 422 spin_unlock_irq(&mapping->tree_lock); 423 return -EAGAIN; 424 } 425 426 get_page(newpage); 427 428 radix_tree_replace_slot(pslot, newpage); 429 430 page_unfreeze_refs(page, expected_count - 1); 431 432 spin_unlock_irq(&mapping->tree_lock); 433 return MIGRATEPAGE_SUCCESS; 434 } 435 436 /* 437 * Gigantic pages are so large that we do not guarantee that page++ pointer 438 * arithmetic will work across the entire page. We need something more 439 * specialized. 440 */ 441 static void __copy_gigantic_page(struct page *dst, struct page *src, 442 int nr_pages) 443 { 444 int i; 445 struct page *dst_base = dst; 446 struct page *src_base = src; 447 448 for (i = 0; i < nr_pages; ) { 449 cond_resched(); 450 copy_highpage(dst, src); 451 452 i++; 453 dst = mem_map_next(dst, dst_base, i); 454 src = mem_map_next(src, src_base, i); 455 } 456 } 457 458 static void copy_huge_page(struct page *dst, struct page *src) 459 { 460 int i; 461 int nr_pages; 462 463 if (PageHuge(src)) { 464 /* hugetlbfs page */ 465 struct hstate *h = page_hstate(src); 466 nr_pages = pages_per_huge_page(h); 467 468 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 469 __copy_gigantic_page(dst, src, nr_pages); 470 return; 471 } 472 } else { 473 /* thp page */ 474 BUG_ON(!PageTransHuge(src)); 475 nr_pages = hpage_nr_pages(src); 476 } 477 478 for (i = 0; i < nr_pages; i++) { 479 cond_resched(); 480 copy_highpage(dst + i, src + i); 481 } 482 } 483 484 /* 485 * Copy the page to its new location 486 */ 487 void migrate_page_copy(struct page *newpage, struct page *page) 488 { 489 int cpupid; 490 491 if (PageHuge(page) || PageTransHuge(page)) 492 copy_huge_page(newpage, page); 493 else 494 copy_highpage(newpage, page); 495 496 if (PageError(page)) 497 SetPageError(newpage); 498 if (PageReferenced(page)) 499 SetPageReferenced(newpage); 500 if (PageUptodate(page)) 501 SetPageUptodate(newpage); 502 if (TestClearPageActive(page)) { 503 VM_BUG_ON_PAGE(PageUnevictable(page), page); 504 SetPageActive(newpage); 505 } else if (TestClearPageUnevictable(page)) 506 SetPageUnevictable(newpage); 507 if (PageChecked(page)) 508 SetPageChecked(newpage); 509 if (PageMappedToDisk(page)) 510 SetPageMappedToDisk(newpage); 511 512 if (PageDirty(page)) { 513 clear_page_dirty_for_io(page); 514 /* 515 * Want to mark the page and the radix tree as dirty, and 516 * redo the accounting that clear_page_dirty_for_io undid, 517 * but we can't use set_page_dirty because that function 518 * is actually a signal that all of the page has become dirty. 519 * Whereas only part of our page may be dirty. 520 */ 521 if (PageSwapBacked(page)) 522 SetPageDirty(newpage); 523 else 524 __set_page_dirty_nobuffers(newpage); 525 } 526 527 /* 528 * Copy NUMA information to the new page, to prevent over-eager 529 * future migrations of this same page. 530 */ 531 cpupid = page_cpupid_xchg_last(page, -1); 532 page_cpupid_xchg_last(newpage, cpupid); 533 534 mlock_migrate_page(newpage, page); 535 ksm_migrate_page(newpage, page); 536 /* 537 * Please do not reorder this without considering how mm/ksm.c's 538 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 539 */ 540 if (PageSwapCache(page)) 541 ClearPageSwapCache(page); 542 ClearPagePrivate(page); 543 set_page_private(page, 0); 544 545 /* 546 * If any waiters have accumulated on the new page then 547 * wake them up. 548 */ 549 if (PageWriteback(newpage)) 550 end_page_writeback(newpage); 551 } 552 553 /************************************************************ 554 * Migration functions 555 ***********************************************************/ 556 557 /* 558 * Common logic to directly migrate a single page suitable for 559 * pages that do not use PagePrivate/PagePrivate2. 560 * 561 * Pages are locked upon entry and exit. 562 */ 563 int migrate_page(struct address_space *mapping, 564 struct page *newpage, struct page *page, 565 enum migrate_mode mode) 566 { 567 int rc; 568 569 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 570 571 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); 572 573 if (rc != MIGRATEPAGE_SUCCESS) 574 return rc; 575 576 migrate_page_copy(newpage, page); 577 return MIGRATEPAGE_SUCCESS; 578 } 579 EXPORT_SYMBOL(migrate_page); 580 581 #ifdef CONFIG_BLOCK 582 /* 583 * Migration function for pages with buffers. This function can only be used 584 * if the underlying filesystem guarantees that no other references to "page" 585 * exist. 586 */ 587 int buffer_migrate_page(struct address_space *mapping, 588 struct page *newpage, struct page *page, enum migrate_mode mode) 589 { 590 struct buffer_head *bh, *head; 591 int rc; 592 593 if (!page_has_buffers(page)) 594 return migrate_page(mapping, newpage, page, mode); 595 596 head = page_buffers(page); 597 598 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0); 599 600 if (rc != MIGRATEPAGE_SUCCESS) 601 return rc; 602 603 /* 604 * In the async case, migrate_page_move_mapping locked the buffers 605 * with an IRQ-safe spinlock held. In the sync case, the buffers 606 * need to be locked now 607 */ 608 if (mode != MIGRATE_ASYNC) 609 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 610 611 ClearPagePrivate(page); 612 set_page_private(newpage, page_private(page)); 613 set_page_private(page, 0); 614 put_page(page); 615 get_page(newpage); 616 617 bh = head; 618 do { 619 set_bh_page(bh, newpage, bh_offset(bh)); 620 bh = bh->b_this_page; 621 622 } while (bh != head); 623 624 SetPagePrivate(newpage); 625 626 migrate_page_copy(newpage, page); 627 628 bh = head; 629 do { 630 unlock_buffer(bh); 631 put_bh(bh); 632 bh = bh->b_this_page; 633 634 } while (bh != head); 635 636 return MIGRATEPAGE_SUCCESS; 637 } 638 EXPORT_SYMBOL(buffer_migrate_page); 639 #endif 640 641 /* 642 * Writeback a page to clean the dirty state 643 */ 644 static int writeout(struct address_space *mapping, struct page *page) 645 { 646 struct writeback_control wbc = { 647 .sync_mode = WB_SYNC_NONE, 648 .nr_to_write = 1, 649 .range_start = 0, 650 .range_end = LLONG_MAX, 651 .for_reclaim = 1 652 }; 653 int rc; 654 655 if (!mapping->a_ops->writepage) 656 /* No write method for the address space */ 657 return -EINVAL; 658 659 if (!clear_page_dirty_for_io(page)) 660 /* Someone else already triggered a write */ 661 return -EAGAIN; 662 663 /* 664 * A dirty page may imply that the underlying filesystem has 665 * the page on some queue. So the page must be clean for 666 * migration. Writeout may mean we loose the lock and the 667 * page state is no longer what we checked for earlier. 668 * At this point we know that the migration attempt cannot 669 * be successful. 670 */ 671 remove_migration_ptes(page, page); 672 673 rc = mapping->a_ops->writepage(page, &wbc); 674 675 if (rc != AOP_WRITEPAGE_ACTIVATE) 676 /* unlocked. Relock */ 677 lock_page(page); 678 679 return (rc < 0) ? -EIO : -EAGAIN; 680 } 681 682 /* 683 * Default handling if a filesystem does not provide a migration function. 684 */ 685 static int fallback_migrate_page(struct address_space *mapping, 686 struct page *newpage, struct page *page, enum migrate_mode mode) 687 { 688 if (PageDirty(page)) { 689 /* Only writeback pages in full synchronous migration */ 690 if (mode != MIGRATE_SYNC) 691 return -EBUSY; 692 return writeout(mapping, page); 693 } 694 695 /* 696 * Buffers may be managed in a filesystem specific way. 697 * We must have no buffers or drop them. 698 */ 699 if (page_has_private(page) && 700 !try_to_release_page(page, GFP_KERNEL)) 701 return -EAGAIN; 702 703 return migrate_page(mapping, newpage, page, mode); 704 } 705 706 /* 707 * Move a page to a newly allocated page 708 * The page is locked and all ptes have been successfully removed. 709 * 710 * The new page will have replaced the old page if this function 711 * is successful. 712 * 713 * Return value: 714 * < 0 - error code 715 * MIGRATEPAGE_SUCCESS - success 716 */ 717 static int move_to_new_page(struct page *newpage, struct page *page, 718 int page_was_mapped, enum migrate_mode mode) 719 { 720 struct address_space *mapping; 721 int rc; 722 723 /* 724 * Block others from accessing the page when we get around to 725 * establishing additional references. We are the only one 726 * holding a reference to the new page at this point. 727 */ 728 if (!trylock_page(newpage)) 729 BUG(); 730 731 /* Prepare mapping for the new page.*/ 732 newpage->index = page->index; 733 newpage->mapping = page->mapping; 734 if (PageSwapBacked(page)) 735 SetPageSwapBacked(newpage); 736 737 mapping = page_mapping(page); 738 if (!mapping) 739 rc = migrate_page(mapping, newpage, page, mode); 740 else if (mapping->a_ops->migratepage) 741 /* 742 * Most pages have a mapping and most filesystems provide a 743 * migratepage callback. Anonymous pages are part of swap 744 * space which also has its own migratepage callback. This 745 * is the most common path for page migration. 746 */ 747 rc = mapping->a_ops->migratepage(mapping, 748 newpage, page, mode); 749 else 750 rc = fallback_migrate_page(mapping, newpage, page, mode); 751 752 if (rc != MIGRATEPAGE_SUCCESS) { 753 newpage->mapping = NULL; 754 } else { 755 mem_cgroup_migrate(page, newpage, false); 756 if (page_was_mapped) 757 remove_migration_ptes(page, newpage); 758 page->mapping = NULL; 759 } 760 761 unlock_page(newpage); 762 763 return rc; 764 } 765 766 static int __unmap_and_move(struct page *page, struct page *newpage, 767 int force, enum migrate_mode mode) 768 { 769 int rc = -EAGAIN; 770 int page_was_mapped = 0; 771 struct anon_vma *anon_vma = NULL; 772 773 if (!trylock_page(page)) { 774 if (!force || mode == MIGRATE_ASYNC) 775 goto out; 776 777 /* 778 * It's not safe for direct compaction to call lock_page. 779 * For example, during page readahead pages are added locked 780 * to the LRU. Later, when the IO completes the pages are 781 * marked uptodate and unlocked. However, the queueing 782 * could be merging multiple pages for one bio (e.g. 783 * mpage_readpages). If an allocation happens for the 784 * second or third page, the process can end up locking 785 * the same page twice and deadlocking. Rather than 786 * trying to be clever about what pages can be locked, 787 * avoid the use of lock_page for direct compaction 788 * altogether. 789 */ 790 if (current->flags & PF_MEMALLOC) 791 goto out; 792 793 lock_page(page); 794 } 795 796 if (PageWriteback(page)) { 797 /* 798 * Only in the case of a full synchronous migration is it 799 * necessary to wait for PageWriteback. In the async case, 800 * the retry loop is too short and in the sync-light case, 801 * the overhead of stalling is too much 802 */ 803 if (mode != MIGRATE_SYNC) { 804 rc = -EBUSY; 805 goto out_unlock; 806 } 807 if (!force) 808 goto out_unlock; 809 wait_on_page_writeback(page); 810 } 811 /* 812 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 813 * we cannot notice that anon_vma is freed while we migrates a page. 814 * This get_anon_vma() delays freeing anon_vma pointer until the end 815 * of migration. File cache pages are no problem because of page_lock() 816 * File Caches may use write_page() or lock_page() in migration, then, 817 * just care Anon page here. 818 */ 819 if (PageAnon(page) && !PageKsm(page)) { 820 /* 821 * Only page_lock_anon_vma_read() understands the subtleties of 822 * getting a hold on an anon_vma from outside one of its mms. 823 */ 824 anon_vma = page_get_anon_vma(page); 825 if (anon_vma) { 826 /* 827 * Anon page 828 */ 829 } else if (PageSwapCache(page)) { 830 /* 831 * We cannot be sure that the anon_vma of an unmapped 832 * swapcache page is safe to use because we don't 833 * know in advance if the VMA that this page belonged 834 * to still exists. If the VMA and others sharing the 835 * data have been freed, then the anon_vma could 836 * already be invalid. 837 * 838 * To avoid this possibility, swapcache pages get 839 * migrated but are not remapped when migration 840 * completes 841 */ 842 } else { 843 goto out_unlock; 844 } 845 } 846 847 if (unlikely(isolated_balloon_page(page))) { 848 /* 849 * A ballooned page does not need any special attention from 850 * physical to virtual reverse mapping procedures. 851 * Skip any attempt to unmap PTEs or to remap swap cache, 852 * in order to avoid burning cycles at rmap level, and perform 853 * the page migration right away (proteced by page lock). 854 */ 855 rc = balloon_page_migrate(newpage, page, mode); 856 goto out_unlock; 857 } 858 859 /* 860 * Corner case handling: 861 * 1. When a new swap-cache page is read into, it is added to the LRU 862 * and treated as swapcache but it has no rmap yet. 863 * Calling try_to_unmap() against a page->mapping==NULL page will 864 * trigger a BUG. So handle it here. 865 * 2. An orphaned page (see truncate_complete_page) might have 866 * fs-private metadata. The page can be picked up due to memory 867 * offlining. Everywhere else except page reclaim, the page is 868 * invisible to the vm, so the page can not be migrated. So try to 869 * free the metadata, so the page can be freed. 870 */ 871 if (!page->mapping) { 872 VM_BUG_ON_PAGE(PageAnon(page), page); 873 if (page_has_private(page)) { 874 try_to_free_buffers(page); 875 goto out_unlock; 876 } 877 goto skip_unmap; 878 } 879 880 /* Establish migration ptes or remove ptes */ 881 if (page_mapped(page)) { 882 try_to_unmap(page, 883 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 884 page_was_mapped = 1; 885 } 886 887 skip_unmap: 888 if (!page_mapped(page)) 889 rc = move_to_new_page(newpage, page, page_was_mapped, mode); 890 891 if (rc && page_was_mapped) 892 remove_migration_ptes(page, page); 893 894 /* Drop an anon_vma reference if we took one */ 895 if (anon_vma) 896 put_anon_vma(anon_vma); 897 898 out_unlock: 899 unlock_page(page); 900 out: 901 return rc; 902 } 903 904 /* 905 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 906 * around it. 907 */ 908 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM) 909 #define ICE_noinline noinline 910 #else 911 #define ICE_noinline 912 #endif 913 914 /* 915 * Obtain the lock on page, remove all ptes and migrate the page 916 * to the newly allocated page in newpage. 917 */ 918 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 919 free_page_t put_new_page, 920 unsigned long private, struct page *page, 921 int force, enum migrate_mode mode) 922 { 923 int rc = 0; 924 int *result = NULL; 925 struct page *newpage = get_new_page(page, private, &result); 926 927 if (!newpage) 928 return -ENOMEM; 929 930 if (page_count(page) == 1) { 931 /* page was freed from under us. So we are done. */ 932 goto out; 933 } 934 935 if (unlikely(PageTransHuge(page))) 936 if (unlikely(split_huge_page(page))) 937 goto out; 938 939 rc = __unmap_and_move(page, newpage, force, mode); 940 941 out: 942 if (rc != -EAGAIN) { 943 /* 944 * A page that has been migrated has all references 945 * removed and will be freed. A page that has not been 946 * migrated will have kepts its references and be 947 * restored. 948 */ 949 list_del(&page->lru); 950 dec_zone_page_state(page, NR_ISOLATED_ANON + 951 page_is_file_cache(page)); 952 putback_lru_page(page); 953 } 954 955 /* 956 * If migration was not successful and there's a freeing callback, use 957 * it. Otherwise, putback_lru_page() will drop the reference grabbed 958 * during isolation. 959 */ 960 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) { 961 ClearPageSwapBacked(newpage); 962 put_new_page(newpage, private); 963 } else if (unlikely(__is_movable_balloon_page(newpage))) { 964 /* drop our reference, page already in the balloon */ 965 put_page(newpage); 966 } else 967 putback_lru_page(newpage); 968 969 if (result) { 970 if (rc) 971 *result = rc; 972 else 973 *result = page_to_nid(newpage); 974 } 975 return rc; 976 } 977 978 /* 979 * Counterpart of unmap_and_move_page() for hugepage migration. 980 * 981 * This function doesn't wait the completion of hugepage I/O 982 * because there is no race between I/O and migration for hugepage. 983 * Note that currently hugepage I/O occurs only in direct I/O 984 * where no lock is held and PG_writeback is irrelevant, 985 * and writeback status of all subpages are counted in the reference 986 * count of the head page (i.e. if all subpages of a 2MB hugepage are 987 * under direct I/O, the reference of the head page is 512 and a bit more.) 988 * This means that when we try to migrate hugepage whose subpages are 989 * doing direct I/O, some references remain after try_to_unmap() and 990 * hugepage migration fails without data corruption. 991 * 992 * There is also no race when direct I/O is issued on the page under migration, 993 * because then pte is replaced with migration swap entry and direct I/O code 994 * will wait in the page fault for migration to complete. 995 */ 996 static int unmap_and_move_huge_page(new_page_t get_new_page, 997 free_page_t put_new_page, unsigned long private, 998 struct page *hpage, int force, 999 enum migrate_mode mode) 1000 { 1001 int rc = 0; 1002 int *result = NULL; 1003 int page_was_mapped = 0; 1004 struct page *new_hpage; 1005 struct anon_vma *anon_vma = NULL; 1006 1007 /* 1008 * Movability of hugepages depends on architectures and hugepage size. 1009 * This check is necessary because some callers of hugepage migration 1010 * like soft offline and memory hotremove don't walk through page 1011 * tables or check whether the hugepage is pmd-based or not before 1012 * kicking migration. 1013 */ 1014 if (!hugepage_migration_supported(page_hstate(hpage))) { 1015 putback_active_hugepage(hpage); 1016 return -ENOSYS; 1017 } 1018 1019 new_hpage = get_new_page(hpage, private, &result); 1020 if (!new_hpage) 1021 return -ENOMEM; 1022 1023 rc = -EAGAIN; 1024 1025 if (!trylock_page(hpage)) { 1026 if (!force || mode != MIGRATE_SYNC) 1027 goto out; 1028 lock_page(hpage); 1029 } 1030 1031 if (PageAnon(hpage)) 1032 anon_vma = page_get_anon_vma(hpage); 1033 1034 if (page_mapped(hpage)) { 1035 try_to_unmap(hpage, 1036 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1037 page_was_mapped = 1; 1038 } 1039 1040 if (!page_mapped(hpage)) 1041 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode); 1042 1043 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped) 1044 remove_migration_ptes(hpage, hpage); 1045 1046 if (anon_vma) 1047 put_anon_vma(anon_vma); 1048 1049 if (rc == MIGRATEPAGE_SUCCESS) 1050 hugetlb_cgroup_migrate(hpage, new_hpage); 1051 1052 unlock_page(hpage); 1053 out: 1054 if (rc != -EAGAIN) 1055 putback_active_hugepage(hpage); 1056 1057 /* 1058 * If migration was not successful and there's a freeing callback, use 1059 * it. Otherwise, put_page() will drop the reference grabbed during 1060 * isolation. 1061 */ 1062 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) 1063 put_new_page(new_hpage, private); 1064 else 1065 put_page(new_hpage); 1066 1067 if (result) { 1068 if (rc) 1069 *result = rc; 1070 else 1071 *result = page_to_nid(new_hpage); 1072 } 1073 return rc; 1074 } 1075 1076 /* 1077 * migrate_pages - migrate the pages specified in a list, to the free pages 1078 * supplied as the target for the page migration 1079 * 1080 * @from: The list of pages to be migrated. 1081 * @get_new_page: The function used to allocate free pages to be used 1082 * as the target of the page migration. 1083 * @put_new_page: The function used to free target pages if migration 1084 * fails, or NULL if no special handling is necessary. 1085 * @private: Private data to be passed on to get_new_page() 1086 * @mode: The migration mode that specifies the constraints for 1087 * page migration, if any. 1088 * @reason: The reason for page migration. 1089 * 1090 * The function returns after 10 attempts or if no pages are movable any more 1091 * because the list has become empty or no retryable pages exist any more. 1092 * The caller should call putback_lru_pages() to return pages to the LRU 1093 * or free list only if ret != 0. 1094 * 1095 * Returns the number of pages that were not migrated, or an error code. 1096 */ 1097 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1098 free_page_t put_new_page, unsigned long private, 1099 enum migrate_mode mode, int reason) 1100 { 1101 int retry = 1; 1102 int nr_failed = 0; 1103 int nr_succeeded = 0; 1104 int pass = 0; 1105 struct page *page; 1106 struct page *page2; 1107 int swapwrite = current->flags & PF_SWAPWRITE; 1108 int rc; 1109 1110 if (!swapwrite) 1111 current->flags |= PF_SWAPWRITE; 1112 1113 for(pass = 0; pass < 10 && retry; pass++) { 1114 retry = 0; 1115 1116 list_for_each_entry_safe(page, page2, from, lru) { 1117 cond_resched(); 1118 1119 if (PageHuge(page)) 1120 rc = unmap_and_move_huge_page(get_new_page, 1121 put_new_page, private, page, 1122 pass > 2, mode); 1123 else 1124 rc = unmap_and_move(get_new_page, put_new_page, 1125 private, page, pass > 2, mode); 1126 1127 switch(rc) { 1128 case -ENOMEM: 1129 goto out; 1130 case -EAGAIN: 1131 retry++; 1132 break; 1133 case MIGRATEPAGE_SUCCESS: 1134 nr_succeeded++; 1135 break; 1136 default: 1137 /* 1138 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1139 * unlike -EAGAIN case, the failed page is 1140 * removed from migration page list and not 1141 * retried in the next outer loop. 1142 */ 1143 nr_failed++; 1144 break; 1145 } 1146 } 1147 } 1148 rc = nr_failed + retry; 1149 out: 1150 if (nr_succeeded) 1151 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1152 if (nr_failed) 1153 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1154 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1155 1156 if (!swapwrite) 1157 current->flags &= ~PF_SWAPWRITE; 1158 1159 return rc; 1160 } 1161 1162 #ifdef CONFIG_NUMA 1163 /* 1164 * Move a list of individual pages 1165 */ 1166 struct page_to_node { 1167 unsigned long addr; 1168 struct page *page; 1169 int node; 1170 int status; 1171 }; 1172 1173 static struct page *new_page_node(struct page *p, unsigned long private, 1174 int **result) 1175 { 1176 struct page_to_node *pm = (struct page_to_node *)private; 1177 1178 while (pm->node != MAX_NUMNODES && pm->page != p) 1179 pm++; 1180 1181 if (pm->node == MAX_NUMNODES) 1182 return NULL; 1183 1184 *result = &pm->status; 1185 1186 if (PageHuge(p)) 1187 return alloc_huge_page_node(page_hstate(compound_head(p)), 1188 pm->node); 1189 else 1190 return alloc_pages_exact_node(pm->node, 1191 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0); 1192 } 1193 1194 /* 1195 * Move a set of pages as indicated in the pm array. The addr 1196 * field must be set to the virtual address of the page to be moved 1197 * and the node number must contain a valid target node. 1198 * The pm array ends with node = MAX_NUMNODES. 1199 */ 1200 static int do_move_page_to_node_array(struct mm_struct *mm, 1201 struct page_to_node *pm, 1202 int migrate_all) 1203 { 1204 int err; 1205 struct page_to_node *pp; 1206 LIST_HEAD(pagelist); 1207 1208 down_read(&mm->mmap_sem); 1209 1210 /* 1211 * Build a list of pages to migrate 1212 */ 1213 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1214 struct vm_area_struct *vma; 1215 struct page *page; 1216 1217 err = -EFAULT; 1218 vma = find_vma(mm, pp->addr); 1219 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1220 goto set_status; 1221 1222 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1223 1224 err = PTR_ERR(page); 1225 if (IS_ERR(page)) 1226 goto set_status; 1227 1228 err = -ENOENT; 1229 if (!page) 1230 goto set_status; 1231 1232 /* Use PageReserved to check for zero page */ 1233 if (PageReserved(page)) 1234 goto put_and_set; 1235 1236 pp->page = page; 1237 err = page_to_nid(page); 1238 1239 if (err == pp->node) 1240 /* 1241 * Node already in the right place 1242 */ 1243 goto put_and_set; 1244 1245 err = -EACCES; 1246 if (page_mapcount(page) > 1 && 1247 !migrate_all) 1248 goto put_and_set; 1249 1250 if (PageHuge(page)) { 1251 if (PageHead(page)) 1252 isolate_huge_page(page, &pagelist); 1253 goto put_and_set; 1254 } 1255 1256 err = isolate_lru_page(page); 1257 if (!err) { 1258 list_add_tail(&page->lru, &pagelist); 1259 inc_zone_page_state(page, NR_ISOLATED_ANON + 1260 page_is_file_cache(page)); 1261 } 1262 put_and_set: 1263 /* 1264 * Either remove the duplicate refcount from 1265 * isolate_lru_page() or drop the page ref if it was 1266 * not isolated. 1267 */ 1268 put_page(page); 1269 set_status: 1270 pp->status = err; 1271 } 1272 1273 err = 0; 1274 if (!list_empty(&pagelist)) { 1275 err = migrate_pages(&pagelist, new_page_node, NULL, 1276 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1277 if (err) 1278 putback_movable_pages(&pagelist); 1279 } 1280 1281 up_read(&mm->mmap_sem); 1282 return err; 1283 } 1284 1285 /* 1286 * Migrate an array of page address onto an array of nodes and fill 1287 * the corresponding array of status. 1288 */ 1289 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1290 unsigned long nr_pages, 1291 const void __user * __user *pages, 1292 const int __user *nodes, 1293 int __user *status, int flags) 1294 { 1295 struct page_to_node *pm; 1296 unsigned long chunk_nr_pages; 1297 unsigned long chunk_start; 1298 int err; 1299 1300 err = -ENOMEM; 1301 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1302 if (!pm) 1303 goto out; 1304 1305 migrate_prep(); 1306 1307 /* 1308 * Store a chunk of page_to_node array in a page, 1309 * but keep the last one as a marker 1310 */ 1311 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1312 1313 for (chunk_start = 0; 1314 chunk_start < nr_pages; 1315 chunk_start += chunk_nr_pages) { 1316 int j; 1317 1318 if (chunk_start + chunk_nr_pages > nr_pages) 1319 chunk_nr_pages = nr_pages - chunk_start; 1320 1321 /* fill the chunk pm with addrs and nodes from user-space */ 1322 for (j = 0; j < chunk_nr_pages; j++) { 1323 const void __user *p; 1324 int node; 1325 1326 err = -EFAULT; 1327 if (get_user(p, pages + j + chunk_start)) 1328 goto out_pm; 1329 pm[j].addr = (unsigned long) p; 1330 1331 if (get_user(node, nodes + j + chunk_start)) 1332 goto out_pm; 1333 1334 err = -ENODEV; 1335 if (node < 0 || node >= MAX_NUMNODES) 1336 goto out_pm; 1337 1338 if (!node_state(node, N_MEMORY)) 1339 goto out_pm; 1340 1341 err = -EACCES; 1342 if (!node_isset(node, task_nodes)) 1343 goto out_pm; 1344 1345 pm[j].node = node; 1346 } 1347 1348 /* End marker for this chunk */ 1349 pm[chunk_nr_pages].node = MAX_NUMNODES; 1350 1351 /* Migrate this chunk */ 1352 err = do_move_page_to_node_array(mm, pm, 1353 flags & MPOL_MF_MOVE_ALL); 1354 if (err < 0) 1355 goto out_pm; 1356 1357 /* Return status information */ 1358 for (j = 0; j < chunk_nr_pages; j++) 1359 if (put_user(pm[j].status, status + j + chunk_start)) { 1360 err = -EFAULT; 1361 goto out_pm; 1362 } 1363 } 1364 err = 0; 1365 1366 out_pm: 1367 free_page((unsigned long)pm); 1368 out: 1369 return err; 1370 } 1371 1372 /* 1373 * Determine the nodes of an array of pages and store it in an array of status. 1374 */ 1375 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1376 const void __user **pages, int *status) 1377 { 1378 unsigned long i; 1379 1380 down_read(&mm->mmap_sem); 1381 1382 for (i = 0; i < nr_pages; i++) { 1383 unsigned long addr = (unsigned long)(*pages); 1384 struct vm_area_struct *vma; 1385 struct page *page; 1386 int err = -EFAULT; 1387 1388 vma = find_vma(mm, addr); 1389 if (!vma || addr < vma->vm_start) 1390 goto set_status; 1391 1392 page = follow_page(vma, addr, 0); 1393 1394 err = PTR_ERR(page); 1395 if (IS_ERR(page)) 1396 goto set_status; 1397 1398 err = -ENOENT; 1399 /* Use PageReserved to check for zero page */ 1400 if (!page || PageReserved(page)) 1401 goto set_status; 1402 1403 err = page_to_nid(page); 1404 set_status: 1405 *status = err; 1406 1407 pages++; 1408 status++; 1409 } 1410 1411 up_read(&mm->mmap_sem); 1412 } 1413 1414 /* 1415 * Determine the nodes of a user array of pages and store it in 1416 * a user array of status. 1417 */ 1418 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1419 const void __user * __user *pages, 1420 int __user *status) 1421 { 1422 #define DO_PAGES_STAT_CHUNK_NR 16 1423 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1424 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1425 1426 while (nr_pages) { 1427 unsigned long chunk_nr; 1428 1429 chunk_nr = nr_pages; 1430 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1431 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1432 1433 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1434 break; 1435 1436 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1437 1438 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1439 break; 1440 1441 pages += chunk_nr; 1442 status += chunk_nr; 1443 nr_pages -= chunk_nr; 1444 } 1445 return nr_pages ? -EFAULT : 0; 1446 } 1447 1448 /* 1449 * Move a list of pages in the address space of the currently executing 1450 * process. 1451 */ 1452 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1453 const void __user * __user *, pages, 1454 const int __user *, nodes, 1455 int __user *, status, int, flags) 1456 { 1457 const struct cred *cred = current_cred(), *tcred; 1458 struct task_struct *task; 1459 struct mm_struct *mm; 1460 int err; 1461 nodemask_t task_nodes; 1462 1463 /* Check flags */ 1464 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1465 return -EINVAL; 1466 1467 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1468 return -EPERM; 1469 1470 /* Find the mm_struct */ 1471 rcu_read_lock(); 1472 task = pid ? find_task_by_vpid(pid) : current; 1473 if (!task) { 1474 rcu_read_unlock(); 1475 return -ESRCH; 1476 } 1477 get_task_struct(task); 1478 1479 /* 1480 * Check if this process has the right to modify the specified 1481 * process. The right exists if the process has administrative 1482 * capabilities, superuser privileges or the same 1483 * userid as the target process. 1484 */ 1485 tcred = __task_cred(task); 1486 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1487 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1488 !capable(CAP_SYS_NICE)) { 1489 rcu_read_unlock(); 1490 err = -EPERM; 1491 goto out; 1492 } 1493 rcu_read_unlock(); 1494 1495 err = security_task_movememory(task); 1496 if (err) 1497 goto out; 1498 1499 task_nodes = cpuset_mems_allowed(task); 1500 mm = get_task_mm(task); 1501 put_task_struct(task); 1502 1503 if (!mm) 1504 return -EINVAL; 1505 1506 if (nodes) 1507 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1508 nodes, status, flags); 1509 else 1510 err = do_pages_stat(mm, nr_pages, pages, status); 1511 1512 mmput(mm); 1513 return err; 1514 1515 out: 1516 put_task_struct(task); 1517 return err; 1518 } 1519 1520 #ifdef CONFIG_NUMA_BALANCING 1521 /* 1522 * Returns true if this is a safe migration target node for misplaced NUMA 1523 * pages. Currently it only checks the watermarks which crude 1524 */ 1525 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1526 unsigned long nr_migrate_pages) 1527 { 1528 int z; 1529 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1530 struct zone *zone = pgdat->node_zones + z; 1531 1532 if (!populated_zone(zone)) 1533 continue; 1534 1535 if (!zone_reclaimable(zone)) 1536 continue; 1537 1538 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1539 if (!zone_watermark_ok(zone, 0, 1540 high_wmark_pages(zone) + 1541 nr_migrate_pages, 1542 0, 0)) 1543 continue; 1544 return true; 1545 } 1546 return false; 1547 } 1548 1549 static struct page *alloc_misplaced_dst_page(struct page *page, 1550 unsigned long data, 1551 int **result) 1552 { 1553 int nid = (int) data; 1554 struct page *newpage; 1555 1556 newpage = alloc_pages_exact_node(nid, 1557 (GFP_HIGHUSER_MOVABLE | 1558 __GFP_THISNODE | __GFP_NOMEMALLOC | 1559 __GFP_NORETRY | __GFP_NOWARN) & 1560 ~GFP_IOFS, 0); 1561 1562 return newpage; 1563 } 1564 1565 /* 1566 * page migration rate limiting control. 1567 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1568 * window of time. Default here says do not migrate more than 1280M per second. 1569 */ 1570 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1571 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1572 1573 /* Returns true if the node is migrate rate-limited after the update */ 1574 static bool numamigrate_update_ratelimit(pg_data_t *pgdat, 1575 unsigned long nr_pages) 1576 { 1577 /* 1578 * Rate-limit the amount of data that is being migrated to a node. 1579 * Optimal placement is no good if the memory bus is saturated and 1580 * all the time is being spent migrating! 1581 */ 1582 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1583 spin_lock(&pgdat->numabalancing_migrate_lock); 1584 pgdat->numabalancing_migrate_nr_pages = 0; 1585 pgdat->numabalancing_migrate_next_window = jiffies + 1586 msecs_to_jiffies(migrate_interval_millisecs); 1587 spin_unlock(&pgdat->numabalancing_migrate_lock); 1588 } 1589 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { 1590 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, 1591 nr_pages); 1592 return true; 1593 } 1594 1595 /* 1596 * This is an unlocked non-atomic update so errors are possible. 1597 * The consequences are failing to migrate when we potentiall should 1598 * have which is not severe enough to warrant locking. If it is ever 1599 * a problem, it can be converted to a per-cpu counter. 1600 */ 1601 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1602 return false; 1603 } 1604 1605 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1606 { 1607 int page_lru; 1608 1609 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1610 1611 /* Avoid migrating to a node that is nearly full */ 1612 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1613 return 0; 1614 1615 if (isolate_lru_page(page)) 1616 return 0; 1617 1618 /* 1619 * migrate_misplaced_transhuge_page() skips page migration's usual 1620 * check on page_count(), so we must do it here, now that the page 1621 * has been isolated: a GUP pin, or any other pin, prevents migration. 1622 * The expected page count is 3: 1 for page's mapcount and 1 for the 1623 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1624 */ 1625 if (PageTransHuge(page) && page_count(page) != 3) { 1626 putback_lru_page(page); 1627 return 0; 1628 } 1629 1630 page_lru = page_is_file_cache(page); 1631 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1632 hpage_nr_pages(page)); 1633 1634 /* 1635 * Isolating the page has taken another reference, so the 1636 * caller's reference can be safely dropped without the page 1637 * disappearing underneath us during migration. 1638 */ 1639 put_page(page); 1640 return 1; 1641 } 1642 1643 bool pmd_trans_migrating(pmd_t pmd) 1644 { 1645 struct page *page = pmd_page(pmd); 1646 return PageLocked(page); 1647 } 1648 1649 /* 1650 * Attempt to migrate a misplaced page to the specified destination 1651 * node. Caller is expected to have an elevated reference count on 1652 * the page that will be dropped by this function before returning. 1653 */ 1654 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1655 int node) 1656 { 1657 pg_data_t *pgdat = NODE_DATA(node); 1658 int isolated; 1659 int nr_remaining; 1660 LIST_HEAD(migratepages); 1661 1662 /* 1663 * Don't migrate file pages that are mapped in multiple processes 1664 * with execute permissions as they are probably shared libraries. 1665 */ 1666 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1667 (vma->vm_flags & VM_EXEC)) 1668 goto out; 1669 1670 /* 1671 * Rate-limit the amount of data that is being migrated to a node. 1672 * Optimal placement is no good if the memory bus is saturated and 1673 * all the time is being spent migrating! 1674 */ 1675 if (numamigrate_update_ratelimit(pgdat, 1)) 1676 goto out; 1677 1678 isolated = numamigrate_isolate_page(pgdat, page); 1679 if (!isolated) 1680 goto out; 1681 1682 list_add(&page->lru, &migratepages); 1683 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1684 NULL, node, MIGRATE_ASYNC, 1685 MR_NUMA_MISPLACED); 1686 if (nr_remaining) { 1687 if (!list_empty(&migratepages)) { 1688 list_del(&page->lru); 1689 dec_zone_page_state(page, NR_ISOLATED_ANON + 1690 page_is_file_cache(page)); 1691 putback_lru_page(page); 1692 } 1693 isolated = 0; 1694 } else 1695 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1696 BUG_ON(!list_empty(&migratepages)); 1697 return isolated; 1698 1699 out: 1700 put_page(page); 1701 return 0; 1702 } 1703 #endif /* CONFIG_NUMA_BALANCING */ 1704 1705 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1706 /* 1707 * Migrates a THP to a given target node. page must be locked and is unlocked 1708 * before returning. 1709 */ 1710 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1711 struct vm_area_struct *vma, 1712 pmd_t *pmd, pmd_t entry, 1713 unsigned long address, 1714 struct page *page, int node) 1715 { 1716 spinlock_t *ptl; 1717 pg_data_t *pgdat = NODE_DATA(node); 1718 int isolated = 0; 1719 struct page *new_page = NULL; 1720 int page_lru = page_is_file_cache(page); 1721 unsigned long mmun_start = address & HPAGE_PMD_MASK; 1722 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE; 1723 pmd_t orig_entry; 1724 1725 /* 1726 * Rate-limit the amount of data that is being migrated to a node. 1727 * Optimal placement is no good if the memory bus is saturated and 1728 * all the time is being spent migrating! 1729 */ 1730 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1731 goto out_dropref; 1732 1733 new_page = alloc_pages_node(node, 1734 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT, 1735 HPAGE_PMD_ORDER); 1736 if (!new_page) 1737 goto out_fail; 1738 1739 isolated = numamigrate_isolate_page(pgdat, page); 1740 if (!isolated) { 1741 put_page(new_page); 1742 goto out_fail; 1743 } 1744 1745 if (mm_tlb_flush_pending(mm)) 1746 flush_tlb_range(vma, mmun_start, mmun_end); 1747 1748 /* Prepare a page as a migration target */ 1749 __set_page_locked(new_page); 1750 SetPageSwapBacked(new_page); 1751 1752 /* anon mapping, we can simply copy page->mapping to the new page: */ 1753 new_page->mapping = page->mapping; 1754 new_page->index = page->index; 1755 migrate_page_copy(new_page, page); 1756 WARN_ON(PageLRU(new_page)); 1757 1758 /* Recheck the target PMD */ 1759 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1760 ptl = pmd_lock(mm, pmd); 1761 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) { 1762 fail_putback: 1763 spin_unlock(ptl); 1764 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1765 1766 /* Reverse changes made by migrate_page_copy() */ 1767 if (TestClearPageActive(new_page)) 1768 SetPageActive(page); 1769 if (TestClearPageUnevictable(new_page)) 1770 SetPageUnevictable(page); 1771 mlock_migrate_page(page, new_page); 1772 1773 unlock_page(new_page); 1774 put_page(new_page); /* Free it */ 1775 1776 /* Retake the callers reference and putback on LRU */ 1777 get_page(page); 1778 putback_lru_page(page); 1779 mod_zone_page_state(page_zone(page), 1780 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1781 1782 goto out_unlock; 1783 } 1784 1785 orig_entry = *pmd; 1786 entry = mk_pmd(new_page, vma->vm_page_prot); 1787 entry = pmd_mkhuge(entry); 1788 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1789 1790 /* 1791 * Clear the old entry under pagetable lock and establish the new PTE. 1792 * Any parallel GUP will either observe the old page blocking on the 1793 * page lock, block on the page table lock or observe the new page. 1794 * The SetPageUptodate on the new page and page_add_new_anon_rmap 1795 * guarantee the copy is visible before the pagetable update. 1796 */ 1797 flush_cache_range(vma, mmun_start, mmun_end); 1798 page_add_anon_rmap(new_page, vma, mmun_start); 1799 pmdp_clear_flush_notify(vma, mmun_start, pmd); 1800 set_pmd_at(mm, mmun_start, pmd, entry); 1801 flush_tlb_range(vma, mmun_start, mmun_end); 1802 update_mmu_cache_pmd(vma, address, &entry); 1803 1804 if (page_count(page) != 2) { 1805 set_pmd_at(mm, mmun_start, pmd, orig_entry); 1806 flush_tlb_range(vma, mmun_start, mmun_end); 1807 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end); 1808 update_mmu_cache_pmd(vma, address, &entry); 1809 page_remove_rmap(new_page); 1810 goto fail_putback; 1811 } 1812 1813 mem_cgroup_migrate(page, new_page, false); 1814 1815 page_remove_rmap(page); 1816 1817 spin_unlock(ptl); 1818 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1819 1820 /* Take an "isolate" reference and put new page on the LRU. */ 1821 get_page(new_page); 1822 putback_lru_page(new_page); 1823 1824 unlock_page(new_page); 1825 unlock_page(page); 1826 put_page(page); /* Drop the rmap reference */ 1827 put_page(page); /* Drop the LRU isolation reference */ 1828 1829 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1830 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1831 1832 mod_zone_page_state(page_zone(page), 1833 NR_ISOLATED_ANON + page_lru, 1834 -HPAGE_PMD_NR); 1835 return isolated; 1836 1837 out_fail: 1838 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1839 out_dropref: 1840 ptl = pmd_lock(mm, pmd); 1841 if (pmd_same(*pmd, entry)) { 1842 entry = pmd_modify(entry, vma->vm_page_prot); 1843 set_pmd_at(mm, mmun_start, pmd, entry); 1844 update_mmu_cache_pmd(vma, address, &entry); 1845 } 1846 spin_unlock(ptl); 1847 1848 out_unlock: 1849 unlock_page(page); 1850 put_page(page); 1851 return 0; 1852 } 1853 #endif /* CONFIG_NUMA_BALANCING */ 1854 1855 #endif /* CONFIG_NUMA */ 1856