1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/ksm.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/backing-dev.h> 33 #include <linux/compaction.h> 34 #include <linux/syscalls.h> 35 #include <linux/compat.h> 36 #include <linux/hugetlb.h> 37 #include <linux/gfp.h> 38 #include <linux/pfn_t.h> 39 #include <linux/page_idle.h> 40 #include <linux/page_owner.h> 41 #include <linux/sched/mm.h> 42 #include <linux/ptrace.h> 43 #include <linux/memory.h> 44 #include <linux/sched/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/pagewalk.h> 47 48 #include <asm/tlbflush.h> 49 50 #include <trace/events/migrate.h> 51 52 #include "internal.h" 53 54 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 55 { 56 struct folio *folio = folio_get_nontail_page(page); 57 const struct movable_operations *mops; 58 59 /* 60 * Avoid burning cycles with pages that are yet under __free_pages(), 61 * or just got freed under us. 62 * 63 * In case we 'win' a race for a movable page being freed under us and 64 * raise its refcount preventing __free_pages() from doing its job 65 * the put_page() at the end of this block will take care of 66 * release this page, thus avoiding a nasty leakage. 67 */ 68 if (!folio) 69 goto out; 70 71 /* 72 * Check movable flag before taking the page lock because 73 * we use non-atomic bitops on newly allocated page flags so 74 * unconditionally grabbing the lock ruins page's owner side. 75 */ 76 if (unlikely(!__folio_test_movable(folio))) 77 goto out_putfolio; 78 79 /* 80 * As movable pages are not isolated from LRU lists, concurrent 81 * compaction threads can race against page migration functions 82 * as well as race against the releasing a page. 83 * 84 * In order to avoid having an already isolated movable page 85 * being (wrongly) re-isolated while it is under migration, 86 * or to avoid attempting to isolate pages being released, 87 * lets be sure we have the page lock 88 * before proceeding with the movable page isolation steps. 89 */ 90 if (unlikely(!folio_trylock(folio))) 91 goto out_putfolio; 92 93 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 94 goto out_no_isolated; 95 96 mops = folio_movable_ops(folio); 97 VM_BUG_ON_FOLIO(!mops, folio); 98 99 if (!mops->isolate_page(&folio->page, mode)) 100 goto out_no_isolated; 101 102 /* Driver shouldn't use the isolated flag */ 103 WARN_ON_ONCE(folio_test_isolated(folio)); 104 folio_set_isolated(folio); 105 folio_unlock(folio); 106 107 return true; 108 109 out_no_isolated: 110 folio_unlock(folio); 111 out_putfolio: 112 folio_put(folio); 113 out: 114 return false; 115 } 116 117 static void putback_movable_folio(struct folio *folio) 118 { 119 const struct movable_operations *mops = folio_movable_ops(folio); 120 121 mops->putback_page(&folio->page); 122 folio_clear_isolated(folio); 123 } 124 125 /* 126 * Put previously isolated pages back onto the appropriate lists 127 * from where they were once taken off for compaction/migration. 128 * 129 * This function shall be used whenever the isolated pageset has been 130 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 131 * and folio_isolate_hugetlb(). 132 */ 133 void putback_movable_pages(struct list_head *l) 134 { 135 struct folio *folio; 136 struct folio *folio2; 137 138 list_for_each_entry_safe(folio, folio2, l, lru) { 139 if (unlikely(folio_test_hugetlb(folio))) { 140 folio_putback_hugetlb(folio); 141 continue; 142 } 143 list_del(&folio->lru); 144 /* 145 * We isolated non-lru movable folio so here we can use 146 * __folio_test_movable because LRU folio's mapping cannot 147 * have PAGE_MAPPING_MOVABLE. 148 */ 149 if (unlikely(__folio_test_movable(folio))) { 150 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 151 folio_lock(folio); 152 if (folio_test_movable(folio)) 153 putback_movable_folio(folio); 154 else 155 folio_clear_isolated(folio); 156 folio_unlock(folio); 157 folio_put(folio); 158 } else { 159 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 160 folio_is_file_lru(folio), -folio_nr_pages(folio)); 161 folio_putback_lru(folio); 162 } 163 } 164 } 165 166 /* Must be called with an elevated refcount on the non-hugetlb folio */ 167 bool isolate_folio_to_list(struct folio *folio, struct list_head *list) 168 { 169 bool isolated, lru; 170 171 if (folio_test_hugetlb(folio)) 172 return folio_isolate_hugetlb(folio, list); 173 174 lru = !__folio_test_movable(folio); 175 if (lru) 176 isolated = folio_isolate_lru(folio); 177 else 178 isolated = isolate_movable_page(&folio->page, 179 ISOLATE_UNEVICTABLE); 180 181 if (!isolated) 182 return false; 183 184 list_add(&folio->lru, list); 185 if (lru) 186 node_stat_add_folio(folio, NR_ISOLATED_ANON + 187 folio_is_file_lru(folio)); 188 189 return true; 190 } 191 192 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw, 193 struct folio *folio, 194 unsigned long idx) 195 { 196 struct page *page = folio_page(folio, idx); 197 bool contains_data; 198 pte_t newpte; 199 void *addr; 200 201 if (PageCompound(page)) 202 return false; 203 VM_BUG_ON_PAGE(!PageAnon(page), page); 204 VM_BUG_ON_PAGE(!PageLocked(page), page); 205 VM_BUG_ON_PAGE(pte_present(*pvmw->pte), page); 206 207 if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) || 208 mm_forbids_zeropage(pvmw->vma->vm_mm)) 209 return false; 210 211 /* 212 * The pmd entry mapping the old thp was flushed and the pte mapping 213 * this subpage has been non present. If the subpage is only zero-filled 214 * then map it to the shared zeropage. 215 */ 216 addr = kmap_local_page(page); 217 contains_data = memchr_inv(addr, 0, PAGE_SIZE); 218 kunmap_local(addr); 219 220 if (contains_data) 221 return false; 222 223 newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address), 224 pvmw->vma->vm_page_prot)); 225 set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte); 226 227 dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio)); 228 return true; 229 } 230 231 struct rmap_walk_arg { 232 struct folio *folio; 233 bool map_unused_to_zeropage; 234 }; 235 236 /* 237 * Restore a potential migration pte to a working pte entry 238 */ 239 static bool remove_migration_pte(struct folio *folio, 240 struct vm_area_struct *vma, unsigned long addr, void *arg) 241 { 242 struct rmap_walk_arg *rmap_walk_arg = arg; 243 DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 244 245 while (page_vma_mapped_walk(&pvmw)) { 246 rmap_t rmap_flags = RMAP_NONE; 247 pte_t old_pte; 248 pte_t pte; 249 swp_entry_t entry; 250 struct page *new; 251 unsigned long idx = 0; 252 253 /* pgoff is invalid for ksm pages, but they are never large */ 254 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 255 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 256 new = folio_page(folio, idx); 257 258 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 259 /* PMD-mapped THP migration entry */ 260 if (!pvmw.pte) { 261 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 262 !folio_test_pmd_mappable(folio), folio); 263 remove_migration_pmd(&pvmw, new); 264 continue; 265 } 266 #endif 267 if (rmap_walk_arg->map_unused_to_zeropage && 268 try_to_map_unused_to_zeropage(&pvmw, folio, idx)) 269 continue; 270 271 folio_get(folio); 272 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 273 old_pte = ptep_get(pvmw.pte); 274 275 entry = pte_to_swp_entry(old_pte); 276 if (!is_migration_entry_young(entry)) 277 pte = pte_mkold(pte); 278 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 279 pte = pte_mkdirty(pte); 280 if (pte_swp_soft_dirty(old_pte)) 281 pte = pte_mksoft_dirty(pte); 282 else 283 pte = pte_clear_soft_dirty(pte); 284 285 if (is_writable_migration_entry(entry)) 286 pte = pte_mkwrite(pte, vma); 287 else if (pte_swp_uffd_wp(old_pte)) 288 pte = pte_mkuffd_wp(pte); 289 290 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 291 rmap_flags |= RMAP_EXCLUSIVE; 292 293 if (unlikely(is_device_private_page(new))) { 294 if (pte_write(pte)) 295 entry = make_writable_device_private_entry( 296 page_to_pfn(new)); 297 else 298 entry = make_readable_device_private_entry( 299 page_to_pfn(new)); 300 pte = swp_entry_to_pte(entry); 301 if (pte_swp_soft_dirty(old_pte)) 302 pte = pte_swp_mksoft_dirty(pte); 303 if (pte_swp_uffd_wp(old_pte)) 304 pte = pte_swp_mkuffd_wp(pte); 305 } 306 307 #ifdef CONFIG_HUGETLB_PAGE 308 if (folio_test_hugetlb(folio)) { 309 struct hstate *h = hstate_vma(vma); 310 unsigned int shift = huge_page_shift(h); 311 unsigned long psize = huge_page_size(h); 312 313 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 314 if (folio_test_anon(folio)) 315 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 316 rmap_flags); 317 else 318 hugetlb_add_file_rmap(folio); 319 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 320 psize); 321 } else 322 #endif 323 { 324 if (folio_test_anon(folio)) 325 folio_add_anon_rmap_pte(folio, new, vma, 326 pvmw.address, rmap_flags); 327 else 328 folio_add_file_rmap_pte(folio, new, vma); 329 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 330 } 331 if (vma->vm_flags & VM_LOCKED) 332 mlock_drain_local(); 333 334 trace_remove_migration_pte(pvmw.address, pte_val(pte), 335 compound_order(new)); 336 337 /* No need to invalidate - it was non-present before */ 338 update_mmu_cache(vma, pvmw.address, pvmw.pte); 339 } 340 341 return true; 342 } 343 344 /* 345 * Get rid of all migration entries and replace them by 346 * references to the indicated page. 347 */ 348 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags) 349 { 350 struct rmap_walk_arg rmap_walk_arg = { 351 .folio = src, 352 .map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE, 353 }; 354 355 struct rmap_walk_control rwc = { 356 .rmap_one = remove_migration_pte, 357 .arg = &rmap_walk_arg, 358 }; 359 360 VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src); 361 362 if (flags & RMP_LOCKED) 363 rmap_walk_locked(dst, &rwc); 364 else 365 rmap_walk(dst, &rwc); 366 } 367 368 /* 369 * Something used the pte of a page under migration. We need to 370 * get to the page and wait until migration is finished. 371 * When we return from this function the fault will be retried. 372 */ 373 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 374 unsigned long address) 375 { 376 spinlock_t *ptl; 377 pte_t *ptep; 378 pte_t pte; 379 swp_entry_t entry; 380 381 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 382 if (!ptep) 383 return; 384 385 pte = ptep_get(ptep); 386 pte_unmap(ptep); 387 388 if (!is_swap_pte(pte)) 389 goto out; 390 391 entry = pte_to_swp_entry(pte); 392 if (!is_migration_entry(entry)) 393 goto out; 394 395 migration_entry_wait_on_locked(entry, ptl); 396 return; 397 out: 398 spin_unlock(ptl); 399 } 400 401 #ifdef CONFIG_HUGETLB_PAGE 402 /* 403 * The vma read lock must be held upon entry. Holding that lock prevents either 404 * the pte or the ptl from being freed. 405 * 406 * This function will release the vma lock before returning. 407 */ 408 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 409 { 410 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 411 pte_t pte; 412 413 hugetlb_vma_assert_locked(vma); 414 spin_lock(ptl); 415 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 416 417 if (unlikely(!is_hugetlb_entry_migration(pte))) { 418 spin_unlock(ptl); 419 hugetlb_vma_unlock_read(vma); 420 } else { 421 /* 422 * If migration entry existed, safe to release vma lock 423 * here because the pgtable page won't be freed without the 424 * pgtable lock released. See comment right above pgtable 425 * lock release in migration_entry_wait_on_locked(). 426 */ 427 hugetlb_vma_unlock_read(vma); 428 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 429 } 430 } 431 #endif 432 433 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 434 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 435 { 436 spinlock_t *ptl; 437 438 ptl = pmd_lock(mm, pmd); 439 if (!is_pmd_migration_entry(*pmd)) 440 goto unlock; 441 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 442 return; 443 unlock: 444 spin_unlock(ptl); 445 } 446 #endif 447 448 static int folio_expected_refs(struct address_space *mapping, 449 struct folio *folio) 450 { 451 int refs = 1; 452 if (!mapping) 453 return refs; 454 455 refs += folio_nr_pages(folio); 456 if (folio_test_private(folio)) 457 refs++; 458 459 return refs; 460 } 461 462 /* 463 * Replace the folio in the mapping. 464 * 465 * The number of remaining references must be: 466 * 1 for anonymous folios without a mapping 467 * 2 for folios with a mapping 468 * 3 for folios with a mapping and the private flag set. 469 */ 470 static int __folio_migrate_mapping(struct address_space *mapping, 471 struct folio *newfolio, struct folio *folio, int expected_count) 472 { 473 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 474 struct zone *oldzone, *newzone; 475 int dirty; 476 long nr = folio_nr_pages(folio); 477 long entries, i; 478 479 if (!mapping) { 480 /* Take off deferred split queue while frozen and memcg set */ 481 if (folio_test_large(folio) && 482 folio_test_large_rmappable(folio)) { 483 if (!folio_ref_freeze(folio, expected_count)) 484 return -EAGAIN; 485 folio_unqueue_deferred_split(folio); 486 folio_ref_unfreeze(folio, expected_count); 487 } 488 489 /* No turning back from here */ 490 newfolio->index = folio->index; 491 newfolio->mapping = folio->mapping; 492 if (folio_test_anon(folio) && folio_test_large(folio)) 493 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 494 if (folio_test_swapbacked(folio)) 495 __folio_set_swapbacked(newfolio); 496 497 return MIGRATEPAGE_SUCCESS; 498 } 499 500 oldzone = folio_zone(folio); 501 newzone = folio_zone(newfolio); 502 503 xas_lock_irq(&xas); 504 if (!folio_ref_freeze(folio, expected_count)) { 505 xas_unlock_irq(&xas); 506 return -EAGAIN; 507 } 508 509 /* Take off deferred split queue while frozen and memcg set */ 510 folio_unqueue_deferred_split(folio); 511 512 /* 513 * Now we know that no one else is looking at the folio: 514 * no turning back from here. 515 */ 516 newfolio->index = folio->index; 517 newfolio->mapping = folio->mapping; 518 if (folio_test_anon(folio) && folio_test_large(folio)) 519 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 520 folio_ref_add(newfolio, nr); /* add cache reference */ 521 if (folio_test_swapbacked(folio)) { 522 __folio_set_swapbacked(newfolio); 523 if (folio_test_swapcache(folio)) { 524 folio_set_swapcache(newfolio); 525 newfolio->private = folio_get_private(folio); 526 } 527 entries = nr; 528 } else { 529 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 530 entries = 1; 531 } 532 533 /* Move dirty while folio refs frozen and newfolio not yet exposed */ 534 dirty = folio_test_dirty(folio); 535 if (dirty) { 536 folio_clear_dirty(folio); 537 folio_set_dirty(newfolio); 538 } 539 540 /* Swap cache still stores N entries instead of a high-order entry */ 541 for (i = 0; i < entries; i++) { 542 xas_store(&xas, newfolio); 543 xas_next(&xas); 544 } 545 546 /* 547 * Drop cache reference from old folio by unfreezing 548 * to one less reference. 549 * We know this isn't the last reference. 550 */ 551 folio_ref_unfreeze(folio, expected_count - nr); 552 553 xas_unlock(&xas); 554 /* Leave irq disabled to prevent preemption while updating stats */ 555 556 /* 557 * If moved to a different zone then also account 558 * the folio for that zone. Other VM counters will be 559 * taken care of when we establish references to the 560 * new folio and drop references to the old folio. 561 * 562 * Note that anonymous folios are accounted for 563 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 564 * are mapped to swap space. 565 */ 566 if (newzone != oldzone) { 567 struct lruvec *old_lruvec, *new_lruvec; 568 struct mem_cgroup *memcg; 569 570 memcg = folio_memcg(folio); 571 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 572 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 573 574 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 575 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 576 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 577 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 578 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 579 580 if (folio_test_pmd_mappable(folio)) { 581 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 582 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 583 } 584 } 585 #ifdef CONFIG_SWAP 586 if (folio_test_swapcache(folio)) { 587 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 588 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 589 } 590 #endif 591 if (dirty && mapping_can_writeback(mapping)) { 592 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 593 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 594 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 595 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 596 } 597 } 598 local_irq_enable(); 599 600 return MIGRATEPAGE_SUCCESS; 601 } 602 603 int folio_migrate_mapping(struct address_space *mapping, 604 struct folio *newfolio, struct folio *folio, int extra_count) 605 { 606 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 607 608 if (folio_ref_count(folio) != expected_count) 609 return -EAGAIN; 610 611 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count); 612 } 613 EXPORT_SYMBOL(folio_migrate_mapping); 614 615 /* 616 * The expected number of remaining references is the same as that 617 * of folio_migrate_mapping(). 618 */ 619 int migrate_huge_page_move_mapping(struct address_space *mapping, 620 struct folio *dst, struct folio *src) 621 { 622 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 623 int rc, expected_count = folio_expected_refs(mapping, src); 624 625 if (folio_ref_count(src) != expected_count) 626 return -EAGAIN; 627 628 rc = folio_mc_copy(dst, src); 629 if (unlikely(rc)) 630 return rc; 631 632 xas_lock_irq(&xas); 633 if (!folio_ref_freeze(src, expected_count)) { 634 xas_unlock_irq(&xas); 635 return -EAGAIN; 636 } 637 638 dst->index = src->index; 639 dst->mapping = src->mapping; 640 641 folio_ref_add(dst, folio_nr_pages(dst)); 642 643 xas_store(&xas, dst); 644 645 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 646 647 xas_unlock_irq(&xas); 648 649 return MIGRATEPAGE_SUCCESS; 650 } 651 652 /* 653 * Copy the flags and some other ancillary information 654 */ 655 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 656 { 657 int cpupid; 658 659 if (folio_test_referenced(folio)) 660 folio_set_referenced(newfolio); 661 if (folio_test_uptodate(folio)) 662 folio_mark_uptodate(newfolio); 663 if (folio_test_clear_active(folio)) { 664 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 665 folio_set_active(newfolio); 666 } else if (folio_test_clear_unevictable(folio)) 667 folio_set_unevictable(newfolio); 668 if (folio_test_workingset(folio)) 669 folio_set_workingset(newfolio); 670 if (folio_test_checked(folio)) 671 folio_set_checked(newfolio); 672 /* 673 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 674 * migration entries. We can still have PG_anon_exclusive set on an 675 * effectively unmapped and unreferenced first sub-pages of an 676 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 677 */ 678 if (folio_test_mappedtodisk(folio)) 679 folio_set_mappedtodisk(newfolio); 680 681 /* Move dirty on pages not done by folio_migrate_mapping() */ 682 if (folio_test_dirty(folio)) 683 folio_set_dirty(newfolio); 684 685 if (folio_test_young(folio)) 686 folio_set_young(newfolio); 687 if (folio_test_idle(folio)) 688 folio_set_idle(newfolio); 689 690 folio_migrate_refs(newfolio, folio); 691 /* 692 * Copy NUMA information to the new page, to prevent over-eager 693 * future migrations of this same page. 694 */ 695 cpupid = folio_xchg_last_cpupid(folio, -1); 696 /* 697 * For memory tiering mode, when migrate between slow and fast 698 * memory node, reset cpupid, because that is used to record 699 * page access time in slow memory node. 700 */ 701 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 702 bool f_toptier = node_is_toptier(folio_nid(folio)); 703 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 704 705 if (f_toptier != t_toptier) 706 cpupid = -1; 707 } 708 folio_xchg_last_cpupid(newfolio, cpupid); 709 710 folio_migrate_ksm(newfolio, folio); 711 /* 712 * Please do not reorder this without considering how mm/ksm.c's 713 * ksm_get_folio() depends upon ksm_migrate_page() and the 714 * swapcache flag. 715 */ 716 if (folio_test_swapcache(folio)) 717 folio_clear_swapcache(folio); 718 folio_clear_private(folio); 719 720 /* page->private contains hugetlb specific flags */ 721 if (!folio_test_hugetlb(folio)) 722 folio->private = NULL; 723 724 /* 725 * If any waiters have accumulated on the new page then 726 * wake them up. 727 */ 728 if (folio_test_writeback(newfolio)) 729 folio_end_writeback(newfolio); 730 731 /* 732 * PG_readahead shares the same bit with PG_reclaim. The above 733 * end_page_writeback() may clear PG_readahead mistakenly, so set the 734 * bit after that. 735 */ 736 if (folio_test_readahead(folio)) 737 folio_set_readahead(newfolio); 738 739 folio_copy_owner(newfolio, folio); 740 pgalloc_tag_swap(newfolio, folio); 741 742 mem_cgroup_migrate(folio, newfolio); 743 } 744 EXPORT_SYMBOL(folio_migrate_flags); 745 746 /************************************************************ 747 * Migration functions 748 ***********************************************************/ 749 750 static int __migrate_folio(struct address_space *mapping, struct folio *dst, 751 struct folio *src, void *src_private, 752 enum migrate_mode mode) 753 { 754 int rc, expected_count = folio_expected_refs(mapping, src); 755 756 /* Check whether src does not have extra refs before we do more work */ 757 if (folio_ref_count(src) != expected_count) 758 return -EAGAIN; 759 760 rc = folio_mc_copy(dst, src); 761 if (unlikely(rc)) 762 return rc; 763 764 rc = __folio_migrate_mapping(mapping, dst, src, expected_count); 765 if (rc != MIGRATEPAGE_SUCCESS) 766 return rc; 767 768 if (src_private) 769 folio_attach_private(dst, folio_detach_private(src)); 770 771 folio_migrate_flags(dst, src); 772 return MIGRATEPAGE_SUCCESS; 773 } 774 775 /** 776 * migrate_folio() - Simple folio migration. 777 * @mapping: The address_space containing the folio. 778 * @dst: The folio to migrate the data to. 779 * @src: The folio containing the current data. 780 * @mode: How to migrate the page. 781 * 782 * Common logic to directly migrate a single LRU folio suitable for 783 * folios that do not have private data. 784 * 785 * Folios are locked upon entry and exit. 786 */ 787 int migrate_folio(struct address_space *mapping, struct folio *dst, 788 struct folio *src, enum migrate_mode mode) 789 { 790 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 791 return __migrate_folio(mapping, dst, src, NULL, mode); 792 } 793 EXPORT_SYMBOL(migrate_folio); 794 795 #ifdef CONFIG_BUFFER_HEAD 796 /* Returns true if all buffers are successfully locked */ 797 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 798 enum migrate_mode mode) 799 { 800 struct buffer_head *bh = head; 801 struct buffer_head *failed_bh; 802 803 do { 804 if (!trylock_buffer(bh)) { 805 if (mode == MIGRATE_ASYNC) 806 goto unlock; 807 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 808 goto unlock; 809 lock_buffer(bh); 810 } 811 812 bh = bh->b_this_page; 813 } while (bh != head); 814 815 return true; 816 817 unlock: 818 /* We failed to lock the buffer and cannot stall. */ 819 failed_bh = bh; 820 bh = head; 821 while (bh != failed_bh) { 822 unlock_buffer(bh); 823 bh = bh->b_this_page; 824 } 825 826 return false; 827 } 828 829 static int __buffer_migrate_folio(struct address_space *mapping, 830 struct folio *dst, struct folio *src, enum migrate_mode mode, 831 bool check_refs) 832 { 833 struct buffer_head *bh, *head; 834 int rc; 835 int expected_count; 836 837 head = folio_buffers(src); 838 if (!head) 839 return migrate_folio(mapping, dst, src, mode); 840 841 /* Check whether page does not have extra refs before we do more work */ 842 expected_count = folio_expected_refs(mapping, src); 843 if (folio_ref_count(src) != expected_count) 844 return -EAGAIN; 845 846 if (!buffer_migrate_lock_buffers(head, mode)) 847 return -EAGAIN; 848 849 if (check_refs) { 850 bool busy; 851 bool invalidated = false; 852 853 recheck_buffers: 854 busy = false; 855 spin_lock(&mapping->i_private_lock); 856 bh = head; 857 do { 858 if (atomic_read(&bh->b_count)) { 859 busy = true; 860 break; 861 } 862 bh = bh->b_this_page; 863 } while (bh != head); 864 if (busy) { 865 if (invalidated) { 866 rc = -EAGAIN; 867 goto unlock_buffers; 868 } 869 spin_unlock(&mapping->i_private_lock); 870 invalidate_bh_lrus(); 871 invalidated = true; 872 goto recheck_buffers; 873 } 874 } 875 876 rc = filemap_migrate_folio(mapping, dst, src, mode); 877 if (rc != MIGRATEPAGE_SUCCESS) 878 goto unlock_buffers; 879 880 bh = head; 881 do { 882 folio_set_bh(bh, dst, bh_offset(bh)); 883 bh = bh->b_this_page; 884 } while (bh != head); 885 886 unlock_buffers: 887 if (check_refs) 888 spin_unlock(&mapping->i_private_lock); 889 bh = head; 890 do { 891 unlock_buffer(bh); 892 bh = bh->b_this_page; 893 } while (bh != head); 894 895 return rc; 896 } 897 898 /** 899 * buffer_migrate_folio() - Migration function for folios with buffers. 900 * @mapping: The address space containing @src. 901 * @dst: The folio to migrate to. 902 * @src: The folio to migrate from. 903 * @mode: How to migrate the folio. 904 * 905 * This function can only be used if the underlying filesystem guarantees 906 * that no other references to @src exist. For example attached buffer 907 * heads are accessed only under the folio lock. If your filesystem cannot 908 * provide this guarantee, buffer_migrate_folio_norefs() may be more 909 * appropriate. 910 * 911 * Return: 0 on success or a negative errno on failure. 912 */ 913 int buffer_migrate_folio(struct address_space *mapping, 914 struct folio *dst, struct folio *src, enum migrate_mode mode) 915 { 916 return __buffer_migrate_folio(mapping, dst, src, mode, false); 917 } 918 EXPORT_SYMBOL(buffer_migrate_folio); 919 920 /** 921 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 922 * @mapping: The address space containing @src. 923 * @dst: The folio to migrate to. 924 * @src: The folio to migrate from. 925 * @mode: How to migrate the folio. 926 * 927 * Like buffer_migrate_folio() except that this variant is more careful 928 * and checks that there are also no buffer head references. This function 929 * is the right one for mappings where buffer heads are directly looked 930 * up and referenced (such as block device mappings). 931 * 932 * Return: 0 on success or a negative errno on failure. 933 */ 934 int buffer_migrate_folio_norefs(struct address_space *mapping, 935 struct folio *dst, struct folio *src, enum migrate_mode mode) 936 { 937 return __buffer_migrate_folio(mapping, dst, src, mode, true); 938 } 939 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 940 #endif /* CONFIG_BUFFER_HEAD */ 941 942 int filemap_migrate_folio(struct address_space *mapping, 943 struct folio *dst, struct folio *src, enum migrate_mode mode) 944 { 945 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode); 946 } 947 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 948 949 /* 950 * Writeback a folio to clean the dirty state 951 */ 952 static int writeout(struct address_space *mapping, struct folio *folio) 953 { 954 struct writeback_control wbc = { 955 .sync_mode = WB_SYNC_NONE, 956 .nr_to_write = 1, 957 .range_start = 0, 958 .range_end = LLONG_MAX, 959 .for_reclaim = 1 960 }; 961 int rc; 962 963 if (!mapping->a_ops->writepage) 964 /* No write method for the address space */ 965 return -EINVAL; 966 967 if (!folio_clear_dirty_for_io(folio)) 968 /* Someone else already triggered a write */ 969 return -EAGAIN; 970 971 /* 972 * A dirty folio may imply that the underlying filesystem has 973 * the folio on some queue. So the folio must be clean for 974 * migration. Writeout may mean we lose the lock and the 975 * folio state is no longer what we checked for earlier. 976 * At this point we know that the migration attempt cannot 977 * be successful. 978 */ 979 remove_migration_ptes(folio, folio, 0); 980 981 rc = mapping->a_ops->writepage(&folio->page, &wbc); 982 983 if (rc != AOP_WRITEPAGE_ACTIVATE) 984 /* unlocked. Relock */ 985 folio_lock(folio); 986 987 return (rc < 0) ? -EIO : -EAGAIN; 988 } 989 990 /* 991 * Default handling if a filesystem does not provide a migration function. 992 */ 993 static int fallback_migrate_folio(struct address_space *mapping, 994 struct folio *dst, struct folio *src, enum migrate_mode mode) 995 { 996 if (folio_test_dirty(src)) { 997 /* Only writeback folios in full synchronous migration */ 998 switch (mode) { 999 case MIGRATE_SYNC: 1000 break; 1001 default: 1002 return -EBUSY; 1003 } 1004 return writeout(mapping, src); 1005 } 1006 1007 /* 1008 * Buffers may be managed in a filesystem specific way. 1009 * We must have no buffers or drop them. 1010 */ 1011 if (!filemap_release_folio(src, GFP_KERNEL)) 1012 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 1013 1014 return migrate_folio(mapping, dst, src, mode); 1015 } 1016 1017 /* 1018 * Move a page to a newly allocated page 1019 * The page is locked and all ptes have been successfully removed. 1020 * 1021 * The new page will have replaced the old page if this function 1022 * is successful. 1023 * 1024 * Return value: 1025 * < 0 - error code 1026 * MIGRATEPAGE_SUCCESS - success 1027 */ 1028 static int move_to_new_folio(struct folio *dst, struct folio *src, 1029 enum migrate_mode mode) 1030 { 1031 int rc = -EAGAIN; 1032 bool is_lru = !__folio_test_movable(src); 1033 1034 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 1035 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 1036 1037 if (likely(is_lru)) { 1038 struct address_space *mapping = folio_mapping(src); 1039 1040 if (!mapping) 1041 rc = migrate_folio(mapping, dst, src, mode); 1042 else if (mapping_inaccessible(mapping)) 1043 rc = -EOPNOTSUPP; 1044 else if (mapping->a_ops->migrate_folio) 1045 /* 1046 * Most folios have a mapping and most filesystems 1047 * provide a migrate_folio callback. Anonymous folios 1048 * are part of swap space which also has its own 1049 * migrate_folio callback. This is the most common path 1050 * for page migration. 1051 */ 1052 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 1053 mode); 1054 else 1055 rc = fallback_migrate_folio(mapping, dst, src, mode); 1056 } else { 1057 const struct movable_operations *mops; 1058 1059 /* 1060 * In case of non-lru page, it could be released after 1061 * isolation step. In that case, we shouldn't try migration. 1062 */ 1063 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1064 if (!folio_test_movable(src)) { 1065 rc = MIGRATEPAGE_SUCCESS; 1066 folio_clear_isolated(src); 1067 goto out; 1068 } 1069 1070 mops = folio_movable_ops(src); 1071 rc = mops->migrate_page(&dst->page, &src->page, mode); 1072 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 1073 !folio_test_isolated(src)); 1074 } 1075 1076 /* 1077 * When successful, old pagecache src->mapping must be cleared before 1078 * src is freed; but stats require that PageAnon be left as PageAnon. 1079 */ 1080 if (rc == MIGRATEPAGE_SUCCESS) { 1081 if (__folio_test_movable(src)) { 1082 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1083 1084 /* 1085 * We clear PG_movable under page_lock so any compactor 1086 * cannot try to migrate this page. 1087 */ 1088 folio_clear_isolated(src); 1089 } 1090 1091 /* 1092 * Anonymous and movable src->mapping will be cleared by 1093 * free_pages_prepare so don't reset it here for keeping 1094 * the type to work PageAnon, for example. 1095 */ 1096 if (!folio_mapping_flags(src)) 1097 src->mapping = NULL; 1098 1099 if (likely(!folio_is_zone_device(dst))) 1100 flush_dcache_folio(dst); 1101 } 1102 out: 1103 return rc; 1104 } 1105 1106 /* 1107 * To record some information during migration, we use unused private 1108 * field of struct folio of the newly allocated destination folio. 1109 * This is safe because nobody is using it except us. 1110 */ 1111 enum { 1112 PAGE_WAS_MAPPED = BIT(0), 1113 PAGE_WAS_MLOCKED = BIT(1), 1114 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1115 }; 1116 1117 static void __migrate_folio_record(struct folio *dst, 1118 int old_page_state, 1119 struct anon_vma *anon_vma) 1120 { 1121 dst->private = (void *)anon_vma + old_page_state; 1122 } 1123 1124 static void __migrate_folio_extract(struct folio *dst, 1125 int *old_page_state, 1126 struct anon_vma **anon_vmap) 1127 { 1128 unsigned long private = (unsigned long)dst->private; 1129 1130 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1131 *old_page_state = private & PAGE_OLD_STATES; 1132 dst->private = NULL; 1133 } 1134 1135 /* Restore the source folio to the original state upon failure */ 1136 static void migrate_folio_undo_src(struct folio *src, 1137 int page_was_mapped, 1138 struct anon_vma *anon_vma, 1139 bool locked, 1140 struct list_head *ret) 1141 { 1142 if (page_was_mapped) 1143 remove_migration_ptes(src, src, 0); 1144 /* Drop an anon_vma reference if we took one */ 1145 if (anon_vma) 1146 put_anon_vma(anon_vma); 1147 if (locked) 1148 folio_unlock(src); 1149 if (ret) 1150 list_move_tail(&src->lru, ret); 1151 } 1152 1153 /* Restore the destination folio to the original state upon failure */ 1154 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1155 free_folio_t put_new_folio, unsigned long private) 1156 { 1157 if (locked) 1158 folio_unlock(dst); 1159 if (put_new_folio) 1160 put_new_folio(dst, private); 1161 else 1162 folio_put(dst); 1163 } 1164 1165 /* Cleanup src folio upon migration success */ 1166 static void migrate_folio_done(struct folio *src, 1167 enum migrate_reason reason) 1168 { 1169 /* 1170 * Compaction can migrate also non-LRU pages which are 1171 * not accounted to NR_ISOLATED_*. They can be recognized 1172 * as __folio_test_movable 1173 */ 1174 if (likely(!__folio_test_movable(src)) && reason != MR_DEMOTION) 1175 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1176 folio_is_file_lru(src), -folio_nr_pages(src)); 1177 1178 if (reason != MR_MEMORY_FAILURE) 1179 /* We release the page in page_handle_poison. */ 1180 folio_put(src); 1181 } 1182 1183 /* Obtain the lock on page, remove all ptes. */ 1184 static int migrate_folio_unmap(new_folio_t get_new_folio, 1185 free_folio_t put_new_folio, unsigned long private, 1186 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1187 enum migrate_reason reason, struct list_head *ret) 1188 { 1189 struct folio *dst; 1190 int rc = -EAGAIN; 1191 int old_page_state = 0; 1192 struct anon_vma *anon_vma = NULL; 1193 bool is_lru = data_race(!__folio_test_movable(src)); 1194 bool locked = false; 1195 bool dst_locked = false; 1196 1197 if (folio_ref_count(src) == 1) { 1198 /* Folio was freed from under us. So we are done. */ 1199 folio_clear_active(src); 1200 folio_clear_unevictable(src); 1201 /* free_pages_prepare() will clear PG_isolated. */ 1202 list_del(&src->lru); 1203 migrate_folio_done(src, reason); 1204 return MIGRATEPAGE_SUCCESS; 1205 } 1206 1207 dst = get_new_folio(src, private); 1208 if (!dst) 1209 return -ENOMEM; 1210 *dstp = dst; 1211 1212 dst->private = NULL; 1213 1214 if (!folio_trylock(src)) { 1215 if (mode == MIGRATE_ASYNC) 1216 goto out; 1217 1218 /* 1219 * It's not safe for direct compaction to call lock_page. 1220 * For example, during page readahead pages are added locked 1221 * to the LRU. Later, when the IO completes the pages are 1222 * marked uptodate and unlocked. However, the queueing 1223 * could be merging multiple pages for one bio (e.g. 1224 * mpage_readahead). If an allocation happens for the 1225 * second or third page, the process can end up locking 1226 * the same page twice and deadlocking. Rather than 1227 * trying to be clever about what pages can be locked, 1228 * avoid the use of lock_page for direct compaction 1229 * altogether. 1230 */ 1231 if (current->flags & PF_MEMALLOC) 1232 goto out; 1233 1234 /* 1235 * In "light" mode, we can wait for transient locks (eg 1236 * inserting a page into the page table), but it's not 1237 * worth waiting for I/O. 1238 */ 1239 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1240 goto out; 1241 1242 folio_lock(src); 1243 } 1244 locked = true; 1245 if (folio_test_mlocked(src)) 1246 old_page_state |= PAGE_WAS_MLOCKED; 1247 1248 if (folio_test_writeback(src)) { 1249 /* 1250 * Only in the case of a full synchronous migration is it 1251 * necessary to wait for PageWriteback. In the async case, 1252 * the retry loop is too short and in the sync-light case, 1253 * the overhead of stalling is too much 1254 */ 1255 switch (mode) { 1256 case MIGRATE_SYNC: 1257 break; 1258 default: 1259 rc = -EBUSY; 1260 goto out; 1261 } 1262 folio_wait_writeback(src); 1263 } 1264 1265 /* 1266 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1267 * we cannot notice that anon_vma is freed while we migrate a page. 1268 * This get_anon_vma() delays freeing anon_vma pointer until the end 1269 * of migration. File cache pages are no problem because of page_lock() 1270 * File Caches may use write_page() or lock_page() in migration, then, 1271 * just care Anon page here. 1272 * 1273 * Only folio_get_anon_vma() understands the subtleties of 1274 * getting a hold on an anon_vma from outside one of its mms. 1275 * But if we cannot get anon_vma, then we won't need it anyway, 1276 * because that implies that the anon page is no longer mapped 1277 * (and cannot be remapped so long as we hold the page lock). 1278 */ 1279 if (folio_test_anon(src) && !folio_test_ksm(src)) 1280 anon_vma = folio_get_anon_vma(src); 1281 1282 /* 1283 * Block others from accessing the new page when we get around to 1284 * establishing additional references. We are usually the only one 1285 * holding a reference to dst at this point. We used to have a BUG 1286 * here if folio_trylock(dst) fails, but would like to allow for 1287 * cases where there might be a race with the previous use of dst. 1288 * This is much like races on refcount of oldpage: just don't BUG(). 1289 */ 1290 if (unlikely(!folio_trylock(dst))) 1291 goto out; 1292 dst_locked = true; 1293 1294 if (unlikely(!is_lru)) { 1295 __migrate_folio_record(dst, old_page_state, anon_vma); 1296 return MIGRATEPAGE_UNMAP; 1297 } 1298 1299 /* 1300 * Corner case handling: 1301 * 1. When a new swap-cache page is read into, it is added to the LRU 1302 * and treated as swapcache but it has no rmap yet. 1303 * Calling try_to_unmap() against a src->mapping==NULL page will 1304 * trigger a BUG. So handle it here. 1305 * 2. An orphaned page (see truncate_cleanup_page) might have 1306 * fs-private metadata. The page can be picked up due to memory 1307 * offlining. Everywhere else except page reclaim, the page is 1308 * invisible to the vm, so the page can not be migrated. So try to 1309 * free the metadata, so the page can be freed. 1310 */ 1311 if (!src->mapping) { 1312 if (folio_test_private(src)) { 1313 try_to_free_buffers(src); 1314 goto out; 1315 } 1316 } else if (folio_mapped(src)) { 1317 /* Establish migration ptes */ 1318 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1319 !folio_test_ksm(src) && !anon_vma, src); 1320 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1321 old_page_state |= PAGE_WAS_MAPPED; 1322 } 1323 1324 if (!folio_mapped(src)) { 1325 __migrate_folio_record(dst, old_page_state, anon_vma); 1326 return MIGRATEPAGE_UNMAP; 1327 } 1328 1329 out: 1330 /* 1331 * A folio that has not been unmapped will be restored to 1332 * right list unless we want to retry. 1333 */ 1334 if (rc == -EAGAIN) 1335 ret = NULL; 1336 1337 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1338 anon_vma, locked, ret); 1339 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1340 1341 return rc; 1342 } 1343 1344 /* Migrate the folio to the newly allocated folio in dst. */ 1345 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1346 struct folio *src, struct folio *dst, 1347 enum migrate_mode mode, enum migrate_reason reason, 1348 struct list_head *ret) 1349 { 1350 int rc; 1351 int old_page_state = 0; 1352 struct anon_vma *anon_vma = NULL; 1353 bool is_lru = !__folio_test_movable(src); 1354 struct list_head *prev; 1355 1356 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1357 prev = dst->lru.prev; 1358 list_del(&dst->lru); 1359 1360 rc = move_to_new_folio(dst, src, mode); 1361 if (rc) 1362 goto out; 1363 1364 if (unlikely(!is_lru)) 1365 goto out_unlock_both; 1366 1367 /* 1368 * When successful, push dst to LRU immediately: so that if it 1369 * turns out to be an mlocked page, remove_migration_ptes() will 1370 * automatically build up the correct dst->mlock_count for it. 1371 * 1372 * We would like to do something similar for the old page, when 1373 * unsuccessful, and other cases when a page has been temporarily 1374 * isolated from the unevictable LRU: but this case is the easiest. 1375 */ 1376 folio_add_lru(dst); 1377 if (old_page_state & PAGE_WAS_MLOCKED) 1378 lru_add_drain(); 1379 1380 if (old_page_state & PAGE_WAS_MAPPED) 1381 remove_migration_ptes(src, dst, 0); 1382 1383 out_unlock_both: 1384 folio_unlock(dst); 1385 set_page_owner_migrate_reason(&dst->page, reason); 1386 /* 1387 * If migration is successful, decrease refcount of dst, 1388 * which will not free the page because new page owner increased 1389 * refcounter. 1390 */ 1391 folio_put(dst); 1392 1393 /* 1394 * A folio that has been migrated has all references removed 1395 * and will be freed. 1396 */ 1397 list_del(&src->lru); 1398 /* Drop an anon_vma reference if we took one */ 1399 if (anon_vma) 1400 put_anon_vma(anon_vma); 1401 folio_unlock(src); 1402 migrate_folio_done(src, reason); 1403 1404 return rc; 1405 out: 1406 /* 1407 * A folio that has not been migrated will be restored to 1408 * right list unless we want to retry. 1409 */ 1410 if (rc == -EAGAIN) { 1411 list_add(&dst->lru, prev); 1412 __migrate_folio_record(dst, old_page_state, anon_vma); 1413 return rc; 1414 } 1415 1416 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1417 anon_vma, true, ret); 1418 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1419 1420 return rc; 1421 } 1422 1423 /* 1424 * Counterpart of unmap_and_move_page() for hugepage migration. 1425 * 1426 * This function doesn't wait the completion of hugepage I/O 1427 * because there is no race between I/O and migration for hugepage. 1428 * Note that currently hugepage I/O occurs only in direct I/O 1429 * where no lock is held and PG_writeback is irrelevant, 1430 * and writeback status of all subpages are counted in the reference 1431 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1432 * under direct I/O, the reference of the head page is 512 and a bit more.) 1433 * This means that when we try to migrate hugepage whose subpages are 1434 * doing direct I/O, some references remain after try_to_unmap() and 1435 * hugepage migration fails without data corruption. 1436 * 1437 * There is also no race when direct I/O is issued on the page under migration, 1438 * because then pte is replaced with migration swap entry and direct I/O code 1439 * will wait in the page fault for migration to complete. 1440 */ 1441 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1442 free_folio_t put_new_folio, unsigned long private, 1443 struct folio *src, int force, enum migrate_mode mode, 1444 int reason, struct list_head *ret) 1445 { 1446 struct folio *dst; 1447 int rc = -EAGAIN; 1448 int page_was_mapped = 0; 1449 struct anon_vma *anon_vma = NULL; 1450 struct address_space *mapping = NULL; 1451 1452 if (folio_ref_count(src) == 1) { 1453 /* page was freed from under us. So we are done. */ 1454 folio_putback_hugetlb(src); 1455 return MIGRATEPAGE_SUCCESS; 1456 } 1457 1458 dst = get_new_folio(src, private); 1459 if (!dst) 1460 return -ENOMEM; 1461 1462 if (!folio_trylock(src)) { 1463 if (!force) 1464 goto out; 1465 switch (mode) { 1466 case MIGRATE_SYNC: 1467 break; 1468 default: 1469 goto out; 1470 } 1471 folio_lock(src); 1472 } 1473 1474 /* 1475 * Check for pages which are in the process of being freed. Without 1476 * folio_mapping() set, hugetlbfs specific move page routine will not 1477 * be called and we could leak usage counts for subpools. 1478 */ 1479 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1480 rc = -EBUSY; 1481 goto out_unlock; 1482 } 1483 1484 if (folio_test_anon(src)) 1485 anon_vma = folio_get_anon_vma(src); 1486 1487 if (unlikely(!folio_trylock(dst))) 1488 goto put_anon; 1489 1490 if (folio_mapped(src)) { 1491 enum ttu_flags ttu = 0; 1492 1493 if (!folio_test_anon(src)) { 1494 /* 1495 * In shared mappings, try_to_unmap could potentially 1496 * call huge_pmd_unshare. Because of this, take 1497 * semaphore in write mode here and set TTU_RMAP_LOCKED 1498 * to let lower levels know we have taken the lock. 1499 */ 1500 mapping = hugetlb_folio_mapping_lock_write(src); 1501 if (unlikely(!mapping)) 1502 goto unlock_put_anon; 1503 1504 ttu = TTU_RMAP_LOCKED; 1505 } 1506 1507 try_to_migrate(src, ttu); 1508 page_was_mapped = 1; 1509 1510 if (ttu & TTU_RMAP_LOCKED) 1511 i_mmap_unlock_write(mapping); 1512 } 1513 1514 if (!folio_mapped(src)) 1515 rc = move_to_new_folio(dst, src, mode); 1516 1517 if (page_was_mapped) 1518 remove_migration_ptes(src, 1519 rc == MIGRATEPAGE_SUCCESS ? dst : src, 0); 1520 1521 unlock_put_anon: 1522 folio_unlock(dst); 1523 1524 put_anon: 1525 if (anon_vma) 1526 put_anon_vma(anon_vma); 1527 1528 if (rc == MIGRATEPAGE_SUCCESS) { 1529 move_hugetlb_state(src, dst, reason); 1530 put_new_folio = NULL; 1531 } 1532 1533 out_unlock: 1534 folio_unlock(src); 1535 out: 1536 if (rc == MIGRATEPAGE_SUCCESS) 1537 folio_putback_hugetlb(src); 1538 else if (rc != -EAGAIN) 1539 list_move_tail(&src->lru, ret); 1540 1541 /* 1542 * If migration was not successful and there's a freeing callback, 1543 * return the folio to that special allocator. Otherwise, simply drop 1544 * our additional reference. 1545 */ 1546 if (put_new_folio) 1547 put_new_folio(dst, private); 1548 else 1549 folio_put(dst); 1550 1551 return rc; 1552 } 1553 1554 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios, 1555 enum migrate_mode mode) 1556 { 1557 int rc; 1558 1559 if (mode == MIGRATE_ASYNC) { 1560 if (!folio_trylock(folio)) 1561 return -EAGAIN; 1562 } else { 1563 folio_lock(folio); 1564 } 1565 rc = split_folio_to_list(folio, split_folios); 1566 folio_unlock(folio); 1567 if (!rc) 1568 list_move_tail(&folio->lru, split_folios); 1569 1570 return rc; 1571 } 1572 1573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1574 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1575 #else 1576 #define NR_MAX_BATCHED_MIGRATION 512 1577 #endif 1578 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1579 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1580 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1581 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1582 1583 struct migrate_pages_stats { 1584 int nr_succeeded; /* Normal and large folios migrated successfully, in 1585 units of base pages */ 1586 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1587 units of base pages. Untried folios aren't counted */ 1588 int nr_thp_succeeded; /* THP migrated successfully */ 1589 int nr_thp_failed; /* THP failed to be migrated */ 1590 int nr_thp_split; /* THP split before migrating */ 1591 int nr_split; /* Large folio (include THP) split before migrating */ 1592 }; 1593 1594 /* 1595 * Returns the number of hugetlb folios that were not migrated, or an error code 1596 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1597 * any more because the list has become empty or no retryable hugetlb folios 1598 * exist any more. It is caller's responsibility to call putback_movable_pages() 1599 * only if ret != 0. 1600 */ 1601 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1602 free_folio_t put_new_folio, unsigned long private, 1603 enum migrate_mode mode, int reason, 1604 struct migrate_pages_stats *stats, 1605 struct list_head *ret_folios) 1606 { 1607 int retry = 1; 1608 int nr_failed = 0; 1609 int nr_retry_pages = 0; 1610 int pass = 0; 1611 struct folio *folio, *folio2; 1612 int rc, nr_pages; 1613 1614 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1615 retry = 0; 1616 nr_retry_pages = 0; 1617 1618 list_for_each_entry_safe(folio, folio2, from, lru) { 1619 if (!folio_test_hugetlb(folio)) 1620 continue; 1621 1622 nr_pages = folio_nr_pages(folio); 1623 1624 cond_resched(); 1625 1626 /* 1627 * Migratability of hugepages depends on architectures and 1628 * their size. This check is necessary because some callers 1629 * of hugepage migration like soft offline and memory 1630 * hotremove don't walk through page tables or check whether 1631 * the hugepage is pmd-based or not before kicking migration. 1632 */ 1633 if (!hugepage_migration_supported(folio_hstate(folio))) { 1634 nr_failed++; 1635 stats->nr_failed_pages += nr_pages; 1636 list_move_tail(&folio->lru, ret_folios); 1637 continue; 1638 } 1639 1640 rc = unmap_and_move_huge_page(get_new_folio, 1641 put_new_folio, private, 1642 folio, pass > 2, mode, 1643 reason, ret_folios); 1644 /* 1645 * The rules are: 1646 * Success: hugetlb folio will be put back 1647 * -EAGAIN: stay on the from list 1648 * -ENOMEM: stay on the from list 1649 * Other errno: put on ret_folios list 1650 */ 1651 switch(rc) { 1652 case -ENOMEM: 1653 /* 1654 * When memory is low, don't bother to try to migrate 1655 * other folios, just exit. 1656 */ 1657 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1658 return -ENOMEM; 1659 case -EAGAIN: 1660 retry++; 1661 nr_retry_pages += nr_pages; 1662 break; 1663 case MIGRATEPAGE_SUCCESS: 1664 stats->nr_succeeded += nr_pages; 1665 break; 1666 default: 1667 /* 1668 * Permanent failure (-EBUSY, etc.): 1669 * unlike -EAGAIN case, the failed folio is 1670 * removed from migration folio list and not 1671 * retried in the next outer loop. 1672 */ 1673 nr_failed++; 1674 stats->nr_failed_pages += nr_pages; 1675 break; 1676 } 1677 } 1678 } 1679 /* 1680 * nr_failed is number of hugetlb folios failed to be migrated. After 1681 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1682 * folios as failed. 1683 */ 1684 nr_failed += retry; 1685 stats->nr_failed_pages += nr_retry_pages; 1686 1687 return nr_failed; 1688 } 1689 1690 static void migrate_folios_move(struct list_head *src_folios, 1691 struct list_head *dst_folios, 1692 free_folio_t put_new_folio, unsigned long private, 1693 enum migrate_mode mode, int reason, 1694 struct list_head *ret_folios, 1695 struct migrate_pages_stats *stats, 1696 int *retry, int *thp_retry, int *nr_failed, 1697 int *nr_retry_pages) 1698 { 1699 struct folio *folio, *folio2, *dst, *dst2; 1700 bool is_thp; 1701 int nr_pages; 1702 int rc; 1703 1704 dst = list_first_entry(dst_folios, struct folio, lru); 1705 dst2 = list_next_entry(dst, lru); 1706 list_for_each_entry_safe(folio, folio2, src_folios, lru) { 1707 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1708 nr_pages = folio_nr_pages(folio); 1709 1710 cond_resched(); 1711 1712 rc = migrate_folio_move(put_new_folio, private, 1713 folio, dst, mode, 1714 reason, ret_folios); 1715 /* 1716 * The rules are: 1717 * Success: folio will be freed 1718 * -EAGAIN: stay on the unmap_folios list 1719 * Other errno: put on ret_folios list 1720 */ 1721 switch (rc) { 1722 case -EAGAIN: 1723 *retry += 1; 1724 *thp_retry += is_thp; 1725 *nr_retry_pages += nr_pages; 1726 break; 1727 case MIGRATEPAGE_SUCCESS: 1728 stats->nr_succeeded += nr_pages; 1729 stats->nr_thp_succeeded += is_thp; 1730 break; 1731 default: 1732 *nr_failed += 1; 1733 stats->nr_thp_failed += is_thp; 1734 stats->nr_failed_pages += nr_pages; 1735 break; 1736 } 1737 dst = dst2; 1738 dst2 = list_next_entry(dst, lru); 1739 } 1740 } 1741 1742 static void migrate_folios_undo(struct list_head *src_folios, 1743 struct list_head *dst_folios, 1744 free_folio_t put_new_folio, unsigned long private, 1745 struct list_head *ret_folios) 1746 { 1747 struct folio *folio, *folio2, *dst, *dst2; 1748 1749 dst = list_first_entry(dst_folios, struct folio, lru); 1750 dst2 = list_next_entry(dst, lru); 1751 list_for_each_entry_safe(folio, folio2, src_folios, lru) { 1752 int old_page_state = 0; 1753 struct anon_vma *anon_vma = NULL; 1754 1755 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1756 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1757 anon_vma, true, ret_folios); 1758 list_del(&dst->lru); 1759 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1760 dst = dst2; 1761 dst2 = list_next_entry(dst, lru); 1762 } 1763 } 1764 1765 /* 1766 * migrate_pages_batch() first unmaps folios in the from list as many as 1767 * possible, then move the unmapped folios. 1768 * 1769 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1770 * lock or bit when we have locked more than one folio. Which may cause 1771 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1772 * length of the from list must be <= 1. 1773 */ 1774 static int migrate_pages_batch(struct list_head *from, 1775 new_folio_t get_new_folio, free_folio_t put_new_folio, 1776 unsigned long private, enum migrate_mode mode, int reason, 1777 struct list_head *ret_folios, struct list_head *split_folios, 1778 struct migrate_pages_stats *stats, int nr_pass) 1779 { 1780 int retry = 1; 1781 int thp_retry = 1; 1782 int nr_failed = 0; 1783 int nr_retry_pages = 0; 1784 int pass = 0; 1785 bool is_thp = false; 1786 bool is_large = false; 1787 struct folio *folio, *folio2, *dst = NULL; 1788 int rc, rc_saved = 0, nr_pages; 1789 LIST_HEAD(unmap_folios); 1790 LIST_HEAD(dst_folios); 1791 bool nosplit = (reason == MR_NUMA_MISPLACED); 1792 1793 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1794 !list_empty(from) && !list_is_singular(from)); 1795 1796 for (pass = 0; pass < nr_pass && retry; pass++) { 1797 retry = 0; 1798 thp_retry = 0; 1799 nr_retry_pages = 0; 1800 1801 list_for_each_entry_safe(folio, folio2, from, lru) { 1802 is_large = folio_test_large(folio); 1803 is_thp = folio_test_pmd_mappable(folio); 1804 nr_pages = folio_nr_pages(folio); 1805 1806 cond_resched(); 1807 1808 /* 1809 * The rare folio on the deferred split list should 1810 * be split now. It should not count as a failure: 1811 * but increment nr_failed because, without doing so, 1812 * migrate_pages() may report success with (split but 1813 * unmigrated) pages still on its fromlist; whereas it 1814 * always reports success when its fromlist is empty. 1815 * stats->nr_thp_failed should be increased too, 1816 * otherwise stats inconsistency will happen when 1817 * migrate_pages_batch is called via migrate_pages() 1818 * with MIGRATE_SYNC and MIGRATE_ASYNC. 1819 * 1820 * Only check it without removing it from the list. 1821 * Since the folio can be on deferred_split_scan() 1822 * local list and removing it can cause the local list 1823 * corruption. Folio split process below can handle it 1824 * with the help of folio_ref_freeze(). 1825 * 1826 * nr_pages > 2 is needed to avoid checking order-1 1827 * page cache folios. They exist, in contrast to 1828 * non-existent order-1 anonymous folios, and do not 1829 * use _deferred_list. 1830 */ 1831 if (nr_pages > 2 && 1832 !list_empty(&folio->_deferred_list) && 1833 folio_test_partially_mapped(folio)) { 1834 if (!try_split_folio(folio, split_folios, mode)) { 1835 nr_failed++; 1836 stats->nr_thp_failed += is_thp; 1837 stats->nr_thp_split += is_thp; 1838 stats->nr_split++; 1839 continue; 1840 } 1841 } 1842 1843 /* 1844 * Large folio migration might be unsupported or 1845 * the allocation might be failed so we should retry 1846 * on the same folio with the large folio split 1847 * to normal folios. 1848 * 1849 * Split folios are put in split_folios, and 1850 * we will migrate them after the rest of the 1851 * list is processed. 1852 */ 1853 if (!thp_migration_supported() && is_thp) { 1854 nr_failed++; 1855 stats->nr_thp_failed++; 1856 if (!try_split_folio(folio, split_folios, mode)) { 1857 stats->nr_thp_split++; 1858 stats->nr_split++; 1859 continue; 1860 } 1861 stats->nr_failed_pages += nr_pages; 1862 list_move_tail(&folio->lru, ret_folios); 1863 continue; 1864 } 1865 1866 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1867 private, folio, &dst, mode, reason, 1868 ret_folios); 1869 /* 1870 * The rules are: 1871 * Success: folio will be freed 1872 * Unmap: folio will be put on unmap_folios list, 1873 * dst folio put on dst_folios list 1874 * -EAGAIN: stay on the from list 1875 * -ENOMEM: stay on the from list 1876 * Other errno: put on ret_folios list 1877 */ 1878 switch(rc) { 1879 case -ENOMEM: 1880 /* 1881 * When memory is low, don't bother to try to migrate 1882 * other folios, move unmapped folios, then exit. 1883 */ 1884 nr_failed++; 1885 stats->nr_thp_failed += is_thp; 1886 /* Large folio NUMA faulting doesn't split to retry. */ 1887 if (is_large && !nosplit) { 1888 int ret = try_split_folio(folio, split_folios, mode); 1889 1890 if (!ret) { 1891 stats->nr_thp_split += is_thp; 1892 stats->nr_split++; 1893 break; 1894 } else if (reason == MR_LONGTERM_PIN && 1895 ret == -EAGAIN) { 1896 /* 1897 * Try again to split large folio to 1898 * mitigate the failure of longterm pinning. 1899 */ 1900 retry++; 1901 thp_retry += is_thp; 1902 nr_retry_pages += nr_pages; 1903 /* Undo duplicated failure counting. */ 1904 nr_failed--; 1905 stats->nr_thp_failed -= is_thp; 1906 break; 1907 } 1908 } 1909 1910 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1911 /* nr_failed isn't updated for not used */ 1912 stats->nr_thp_failed += thp_retry; 1913 rc_saved = rc; 1914 if (list_empty(&unmap_folios)) 1915 goto out; 1916 else 1917 goto move; 1918 case -EAGAIN: 1919 retry++; 1920 thp_retry += is_thp; 1921 nr_retry_pages += nr_pages; 1922 break; 1923 case MIGRATEPAGE_SUCCESS: 1924 stats->nr_succeeded += nr_pages; 1925 stats->nr_thp_succeeded += is_thp; 1926 break; 1927 case MIGRATEPAGE_UNMAP: 1928 list_move_tail(&folio->lru, &unmap_folios); 1929 list_add_tail(&dst->lru, &dst_folios); 1930 break; 1931 default: 1932 /* 1933 * Permanent failure (-EBUSY, etc.): 1934 * unlike -EAGAIN case, the failed folio is 1935 * removed from migration folio list and not 1936 * retried in the next outer loop. 1937 */ 1938 nr_failed++; 1939 stats->nr_thp_failed += is_thp; 1940 stats->nr_failed_pages += nr_pages; 1941 break; 1942 } 1943 } 1944 } 1945 nr_failed += retry; 1946 stats->nr_thp_failed += thp_retry; 1947 stats->nr_failed_pages += nr_retry_pages; 1948 move: 1949 /* Flush TLBs for all unmapped folios */ 1950 try_to_unmap_flush(); 1951 1952 retry = 1; 1953 for (pass = 0; pass < nr_pass && retry; pass++) { 1954 retry = 0; 1955 thp_retry = 0; 1956 nr_retry_pages = 0; 1957 1958 /* Move the unmapped folios */ 1959 migrate_folios_move(&unmap_folios, &dst_folios, 1960 put_new_folio, private, mode, reason, 1961 ret_folios, stats, &retry, &thp_retry, 1962 &nr_failed, &nr_retry_pages); 1963 } 1964 nr_failed += retry; 1965 stats->nr_thp_failed += thp_retry; 1966 stats->nr_failed_pages += nr_retry_pages; 1967 1968 rc = rc_saved ? : nr_failed; 1969 out: 1970 /* Cleanup remaining folios */ 1971 migrate_folios_undo(&unmap_folios, &dst_folios, 1972 put_new_folio, private, ret_folios); 1973 1974 return rc; 1975 } 1976 1977 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1978 free_folio_t put_new_folio, unsigned long private, 1979 enum migrate_mode mode, int reason, 1980 struct list_head *ret_folios, struct list_head *split_folios, 1981 struct migrate_pages_stats *stats) 1982 { 1983 int rc, nr_failed = 0; 1984 LIST_HEAD(folios); 1985 struct migrate_pages_stats astats; 1986 1987 memset(&astats, 0, sizeof(astats)); 1988 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1989 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1990 reason, &folios, split_folios, &astats, 1991 NR_MAX_MIGRATE_ASYNC_RETRY); 1992 stats->nr_succeeded += astats.nr_succeeded; 1993 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1994 stats->nr_thp_split += astats.nr_thp_split; 1995 stats->nr_split += astats.nr_split; 1996 if (rc < 0) { 1997 stats->nr_failed_pages += astats.nr_failed_pages; 1998 stats->nr_thp_failed += astats.nr_thp_failed; 1999 list_splice_tail(&folios, ret_folios); 2000 return rc; 2001 } 2002 stats->nr_thp_failed += astats.nr_thp_split; 2003 /* 2004 * Do not count rc, as pages will be retried below. 2005 * Count nr_split only, since it includes nr_thp_split. 2006 */ 2007 nr_failed += astats.nr_split; 2008 /* 2009 * Fall back to migrate all failed folios one by one synchronously. All 2010 * failed folios except split THPs will be retried, so their failure 2011 * isn't counted 2012 */ 2013 list_splice_tail_init(&folios, from); 2014 while (!list_empty(from)) { 2015 list_move(from->next, &folios); 2016 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2017 private, mode, reason, ret_folios, 2018 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 2019 list_splice_tail_init(&folios, ret_folios); 2020 if (rc < 0) 2021 return rc; 2022 nr_failed += rc; 2023 } 2024 2025 return nr_failed; 2026 } 2027 2028 /* 2029 * migrate_pages - migrate the folios specified in a list, to the free folios 2030 * supplied as the target for the page migration 2031 * 2032 * @from: The list of folios to be migrated. 2033 * @get_new_folio: The function used to allocate free folios to be used 2034 * as the target of the folio migration. 2035 * @put_new_folio: The function used to free target folios if migration 2036 * fails, or NULL if no special handling is necessary. 2037 * @private: Private data to be passed on to get_new_folio() 2038 * @mode: The migration mode that specifies the constraints for 2039 * folio migration, if any. 2040 * @reason: The reason for folio migration. 2041 * @ret_succeeded: Set to the number of folios migrated successfully if 2042 * the caller passes a non-NULL pointer. 2043 * 2044 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 2045 * are movable any more because the list has become empty or no retryable folios 2046 * exist any more. It is caller's responsibility to call putback_movable_pages() 2047 * only if ret != 0. 2048 * 2049 * Returns the number of {normal folio, large folio, hugetlb} that were not 2050 * migrated, or an error code. The number of large folio splits will be 2051 * considered as the number of non-migrated large folio, no matter how many 2052 * split folios of the large folio are migrated successfully. 2053 */ 2054 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 2055 free_folio_t put_new_folio, unsigned long private, 2056 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 2057 { 2058 int rc, rc_gather; 2059 int nr_pages; 2060 struct folio *folio, *folio2; 2061 LIST_HEAD(folios); 2062 LIST_HEAD(ret_folios); 2063 LIST_HEAD(split_folios); 2064 struct migrate_pages_stats stats; 2065 2066 trace_mm_migrate_pages_start(mode, reason); 2067 2068 memset(&stats, 0, sizeof(stats)); 2069 2070 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 2071 mode, reason, &stats, &ret_folios); 2072 if (rc_gather < 0) 2073 goto out; 2074 2075 again: 2076 nr_pages = 0; 2077 list_for_each_entry_safe(folio, folio2, from, lru) { 2078 /* Retried hugetlb folios will be kept in list */ 2079 if (folio_test_hugetlb(folio)) { 2080 list_move_tail(&folio->lru, &ret_folios); 2081 continue; 2082 } 2083 2084 nr_pages += folio_nr_pages(folio); 2085 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2086 break; 2087 } 2088 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2089 list_cut_before(&folios, from, &folio2->lru); 2090 else 2091 list_splice_init(from, &folios); 2092 if (mode == MIGRATE_ASYNC) 2093 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2094 private, mode, reason, &ret_folios, 2095 &split_folios, &stats, 2096 NR_MAX_MIGRATE_PAGES_RETRY); 2097 else 2098 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 2099 private, mode, reason, &ret_folios, 2100 &split_folios, &stats); 2101 list_splice_tail_init(&folios, &ret_folios); 2102 if (rc < 0) { 2103 rc_gather = rc; 2104 list_splice_tail(&split_folios, &ret_folios); 2105 goto out; 2106 } 2107 if (!list_empty(&split_folios)) { 2108 /* 2109 * Failure isn't counted since all split folios of a large folio 2110 * is counted as 1 failure already. And, we only try to migrate 2111 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 2112 */ 2113 migrate_pages_batch(&split_folios, get_new_folio, 2114 put_new_folio, private, MIGRATE_ASYNC, reason, 2115 &ret_folios, NULL, &stats, 1); 2116 list_splice_tail_init(&split_folios, &ret_folios); 2117 } 2118 rc_gather += rc; 2119 if (!list_empty(from)) 2120 goto again; 2121 out: 2122 /* 2123 * Put the permanent failure folio back to migration list, they 2124 * will be put back to the right list by the caller. 2125 */ 2126 list_splice(&ret_folios, from); 2127 2128 /* 2129 * Return 0 in case all split folios of fail-to-migrate large folios 2130 * are migrated successfully. 2131 */ 2132 if (list_empty(from)) 2133 rc_gather = 0; 2134 2135 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2136 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2137 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2138 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2139 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2140 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2141 stats.nr_thp_succeeded, stats.nr_thp_failed, 2142 stats.nr_thp_split, stats.nr_split, mode, 2143 reason); 2144 2145 if (ret_succeeded) 2146 *ret_succeeded = stats.nr_succeeded; 2147 2148 return rc_gather; 2149 } 2150 2151 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2152 { 2153 struct migration_target_control *mtc; 2154 gfp_t gfp_mask; 2155 unsigned int order = 0; 2156 int nid; 2157 int zidx; 2158 2159 mtc = (struct migration_target_control *)private; 2160 gfp_mask = mtc->gfp_mask; 2161 nid = mtc->nid; 2162 if (nid == NUMA_NO_NODE) 2163 nid = folio_nid(src); 2164 2165 if (folio_test_hugetlb(src)) { 2166 struct hstate *h = folio_hstate(src); 2167 2168 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2169 return alloc_hugetlb_folio_nodemask(h, nid, 2170 mtc->nmask, gfp_mask, 2171 htlb_allow_alloc_fallback(mtc->reason)); 2172 } 2173 2174 if (folio_test_large(src)) { 2175 /* 2176 * clear __GFP_RECLAIM to make the migration callback 2177 * consistent with regular THP allocations. 2178 */ 2179 gfp_mask &= ~__GFP_RECLAIM; 2180 gfp_mask |= GFP_TRANSHUGE; 2181 order = folio_order(src); 2182 } 2183 zidx = zone_idx(folio_zone(src)); 2184 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2185 gfp_mask |= __GFP_HIGHMEM; 2186 2187 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2188 } 2189 2190 #ifdef CONFIG_NUMA 2191 2192 static int store_status(int __user *status, int start, int value, int nr) 2193 { 2194 while (nr-- > 0) { 2195 if (put_user(value, status + start)) 2196 return -EFAULT; 2197 start++; 2198 } 2199 2200 return 0; 2201 } 2202 2203 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2204 { 2205 int err; 2206 struct migration_target_control mtc = { 2207 .nid = node, 2208 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2209 .reason = MR_SYSCALL, 2210 }; 2211 2212 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2213 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2214 if (err) 2215 putback_movable_pages(pagelist); 2216 return err; 2217 } 2218 2219 static int __add_folio_for_migration(struct folio *folio, int node, 2220 struct list_head *pagelist, bool migrate_all) 2221 { 2222 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2223 return -EFAULT; 2224 2225 if (folio_is_zone_device(folio)) 2226 return -ENOENT; 2227 2228 if (folio_nid(folio) == node) 2229 return 0; 2230 2231 if (folio_likely_mapped_shared(folio) && !migrate_all) 2232 return -EACCES; 2233 2234 if (folio_test_hugetlb(folio)) { 2235 if (folio_isolate_hugetlb(folio, pagelist)) 2236 return 1; 2237 } else if (folio_isolate_lru(folio)) { 2238 list_add_tail(&folio->lru, pagelist); 2239 node_stat_mod_folio(folio, 2240 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2241 folio_nr_pages(folio)); 2242 return 1; 2243 } 2244 return -EBUSY; 2245 } 2246 2247 /* 2248 * Resolves the given address to a struct folio, isolates it from the LRU and 2249 * puts it to the given pagelist. 2250 * Returns: 2251 * errno - if the folio cannot be found/isolated 2252 * 0 - when it doesn't have to be migrated because it is already on the 2253 * target node 2254 * 1 - when it has been queued 2255 */ 2256 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p, 2257 int node, struct list_head *pagelist, bool migrate_all) 2258 { 2259 struct vm_area_struct *vma; 2260 struct folio_walk fw; 2261 struct folio *folio; 2262 unsigned long addr; 2263 int err = -EFAULT; 2264 2265 mmap_read_lock(mm); 2266 addr = (unsigned long)untagged_addr_remote(mm, p); 2267 2268 vma = vma_lookup(mm, addr); 2269 if (vma && vma_migratable(vma)) { 2270 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2271 if (folio) { 2272 err = __add_folio_for_migration(folio, node, pagelist, 2273 migrate_all); 2274 folio_walk_end(&fw, vma); 2275 } else { 2276 err = -ENOENT; 2277 } 2278 } 2279 mmap_read_unlock(mm); 2280 return err; 2281 } 2282 2283 static int move_pages_and_store_status(int node, 2284 struct list_head *pagelist, int __user *status, 2285 int start, int i, unsigned long nr_pages) 2286 { 2287 int err; 2288 2289 if (list_empty(pagelist)) 2290 return 0; 2291 2292 err = do_move_pages_to_node(pagelist, node); 2293 if (err) { 2294 /* 2295 * Positive err means the number of failed 2296 * pages to migrate. Since we are going to 2297 * abort and return the number of non-migrated 2298 * pages, so need to include the rest of the 2299 * nr_pages that have not been attempted as 2300 * well. 2301 */ 2302 if (err > 0) 2303 err += nr_pages - i; 2304 return err; 2305 } 2306 return store_status(status, start, node, i - start); 2307 } 2308 2309 /* 2310 * Migrate an array of page address onto an array of nodes and fill 2311 * the corresponding array of status. 2312 */ 2313 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2314 unsigned long nr_pages, 2315 const void __user * __user *pages, 2316 const int __user *nodes, 2317 int __user *status, int flags) 2318 { 2319 compat_uptr_t __user *compat_pages = (void __user *)pages; 2320 int current_node = NUMA_NO_NODE; 2321 LIST_HEAD(pagelist); 2322 int start, i; 2323 int err = 0, err1; 2324 2325 lru_cache_disable(); 2326 2327 for (i = start = 0; i < nr_pages; i++) { 2328 const void __user *p; 2329 int node; 2330 2331 err = -EFAULT; 2332 if (in_compat_syscall()) { 2333 compat_uptr_t cp; 2334 2335 if (get_user(cp, compat_pages + i)) 2336 goto out_flush; 2337 2338 p = compat_ptr(cp); 2339 } else { 2340 if (get_user(p, pages + i)) 2341 goto out_flush; 2342 } 2343 if (get_user(node, nodes + i)) 2344 goto out_flush; 2345 2346 err = -ENODEV; 2347 if (node < 0 || node >= MAX_NUMNODES) 2348 goto out_flush; 2349 if (!node_state(node, N_MEMORY)) 2350 goto out_flush; 2351 2352 err = -EACCES; 2353 if (!node_isset(node, task_nodes)) 2354 goto out_flush; 2355 2356 if (current_node == NUMA_NO_NODE) { 2357 current_node = node; 2358 start = i; 2359 } else if (node != current_node) { 2360 err = move_pages_and_store_status(current_node, 2361 &pagelist, status, start, i, nr_pages); 2362 if (err) 2363 goto out; 2364 start = i; 2365 current_node = node; 2366 } 2367 2368 /* 2369 * Errors in the page lookup or isolation are not fatal and we simply 2370 * report them via status 2371 */ 2372 err = add_folio_for_migration(mm, p, current_node, &pagelist, 2373 flags & MPOL_MF_MOVE_ALL); 2374 2375 if (err > 0) { 2376 /* The page is successfully queued for migration */ 2377 continue; 2378 } 2379 2380 /* 2381 * The move_pages() man page does not have an -EEXIST choice, so 2382 * use -EFAULT instead. 2383 */ 2384 if (err == -EEXIST) 2385 err = -EFAULT; 2386 2387 /* 2388 * If the page is already on the target node (!err), store the 2389 * node, otherwise, store the err. 2390 */ 2391 err = store_status(status, i, err ? : current_node, 1); 2392 if (err) 2393 goto out_flush; 2394 2395 err = move_pages_and_store_status(current_node, &pagelist, 2396 status, start, i, nr_pages); 2397 if (err) { 2398 /* We have accounted for page i */ 2399 if (err > 0) 2400 err--; 2401 goto out; 2402 } 2403 current_node = NUMA_NO_NODE; 2404 } 2405 out_flush: 2406 /* Make sure we do not overwrite the existing error */ 2407 err1 = move_pages_and_store_status(current_node, &pagelist, 2408 status, start, i, nr_pages); 2409 if (err >= 0) 2410 err = err1; 2411 out: 2412 lru_cache_enable(); 2413 return err; 2414 } 2415 2416 /* 2417 * Determine the nodes of an array of pages and store it in an array of status. 2418 */ 2419 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2420 const void __user **pages, int *status) 2421 { 2422 unsigned long i; 2423 2424 mmap_read_lock(mm); 2425 2426 for (i = 0; i < nr_pages; i++) { 2427 unsigned long addr = (unsigned long)(*pages); 2428 struct vm_area_struct *vma; 2429 struct folio_walk fw; 2430 struct folio *folio; 2431 int err = -EFAULT; 2432 2433 vma = vma_lookup(mm, addr); 2434 if (!vma) 2435 goto set_status; 2436 2437 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2438 if (folio) { 2439 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2440 err = -EFAULT; 2441 else if (folio_is_zone_device(folio)) 2442 err = -ENOENT; 2443 else 2444 err = folio_nid(folio); 2445 folio_walk_end(&fw, vma); 2446 } else { 2447 err = -ENOENT; 2448 } 2449 set_status: 2450 *status = err; 2451 2452 pages++; 2453 status++; 2454 } 2455 2456 mmap_read_unlock(mm); 2457 } 2458 2459 static int get_compat_pages_array(const void __user *chunk_pages[], 2460 const void __user * __user *pages, 2461 unsigned long chunk_nr) 2462 { 2463 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2464 compat_uptr_t p; 2465 int i; 2466 2467 for (i = 0; i < chunk_nr; i++) { 2468 if (get_user(p, pages32 + i)) 2469 return -EFAULT; 2470 chunk_pages[i] = compat_ptr(p); 2471 } 2472 2473 return 0; 2474 } 2475 2476 /* 2477 * Determine the nodes of a user array of pages and store it in 2478 * a user array of status. 2479 */ 2480 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2481 const void __user * __user *pages, 2482 int __user *status) 2483 { 2484 #define DO_PAGES_STAT_CHUNK_NR 16UL 2485 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2486 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2487 2488 while (nr_pages) { 2489 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2490 2491 if (in_compat_syscall()) { 2492 if (get_compat_pages_array(chunk_pages, pages, 2493 chunk_nr)) 2494 break; 2495 } else { 2496 if (copy_from_user(chunk_pages, pages, 2497 chunk_nr * sizeof(*chunk_pages))) 2498 break; 2499 } 2500 2501 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2502 2503 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2504 break; 2505 2506 pages += chunk_nr; 2507 status += chunk_nr; 2508 nr_pages -= chunk_nr; 2509 } 2510 return nr_pages ? -EFAULT : 0; 2511 } 2512 2513 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2514 { 2515 struct task_struct *task; 2516 struct mm_struct *mm; 2517 2518 /* 2519 * There is no need to check if current process has the right to modify 2520 * the specified process when they are same. 2521 */ 2522 if (!pid) { 2523 mmget(current->mm); 2524 *mem_nodes = cpuset_mems_allowed(current); 2525 return current->mm; 2526 } 2527 2528 task = find_get_task_by_vpid(pid); 2529 if (!task) { 2530 return ERR_PTR(-ESRCH); 2531 } 2532 2533 /* 2534 * Check if this process has the right to modify the specified 2535 * process. Use the regular "ptrace_may_access()" checks. 2536 */ 2537 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2538 mm = ERR_PTR(-EPERM); 2539 goto out; 2540 } 2541 2542 mm = ERR_PTR(security_task_movememory(task)); 2543 if (IS_ERR(mm)) 2544 goto out; 2545 *mem_nodes = cpuset_mems_allowed(task); 2546 mm = get_task_mm(task); 2547 out: 2548 put_task_struct(task); 2549 if (!mm) 2550 mm = ERR_PTR(-EINVAL); 2551 return mm; 2552 } 2553 2554 /* 2555 * Move a list of pages in the address space of the currently executing 2556 * process. 2557 */ 2558 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2559 const void __user * __user *pages, 2560 const int __user *nodes, 2561 int __user *status, int flags) 2562 { 2563 struct mm_struct *mm; 2564 int err; 2565 nodemask_t task_nodes; 2566 2567 /* Check flags */ 2568 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2569 return -EINVAL; 2570 2571 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2572 return -EPERM; 2573 2574 mm = find_mm_struct(pid, &task_nodes); 2575 if (IS_ERR(mm)) 2576 return PTR_ERR(mm); 2577 2578 if (nodes) 2579 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2580 nodes, status, flags); 2581 else 2582 err = do_pages_stat(mm, nr_pages, pages, status); 2583 2584 mmput(mm); 2585 return err; 2586 } 2587 2588 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2589 const void __user * __user *, pages, 2590 const int __user *, nodes, 2591 int __user *, status, int, flags) 2592 { 2593 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2594 } 2595 2596 #ifdef CONFIG_NUMA_BALANCING 2597 /* 2598 * Returns true if this is a safe migration target node for misplaced NUMA 2599 * pages. Currently it only checks the watermarks which is crude. 2600 */ 2601 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2602 unsigned long nr_migrate_pages) 2603 { 2604 int z; 2605 2606 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2607 struct zone *zone = pgdat->node_zones + z; 2608 2609 if (!managed_zone(zone)) 2610 continue; 2611 2612 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2613 if (!zone_watermark_ok(zone, 0, 2614 high_wmark_pages(zone) + 2615 nr_migrate_pages, 2616 ZONE_MOVABLE, ALLOC_CMA)) 2617 continue; 2618 return true; 2619 } 2620 return false; 2621 } 2622 2623 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2624 unsigned long data) 2625 { 2626 int nid = (int) data; 2627 int order = folio_order(src); 2628 gfp_t gfp = __GFP_THISNODE; 2629 2630 if (order > 0) 2631 gfp |= GFP_TRANSHUGE_LIGHT; 2632 else { 2633 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2634 __GFP_NOWARN; 2635 gfp &= ~__GFP_RECLAIM; 2636 } 2637 return __folio_alloc_node(gfp, order, nid); 2638 } 2639 2640 /* 2641 * Prepare for calling migrate_misplaced_folio() by isolating the folio if 2642 * permitted. Must be called with the PTL still held. 2643 */ 2644 int migrate_misplaced_folio_prepare(struct folio *folio, 2645 struct vm_area_struct *vma, int node) 2646 { 2647 int nr_pages = folio_nr_pages(folio); 2648 pg_data_t *pgdat = NODE_DATA(node); 2649 2650 if (folio_is_file_lru(folio)) { 2651 /* 2652 * Do not migrate file folios that are mapped in multiple 2653 * processes with execute permissions as they are probably 2654 * shared libraries. 2655 * 2656 * See folio_likely_mapped_shared() on possible imprecision 2657 * when we cannot easily detect if a folio is shared. 2658 */ 2659 if ((vma->vm_flags & VM_EXEC) && 2660 folio_likely_mapped_shared(folio)) 2661 return -EACCES; 2662 2663 /* 2664 * Do not migrate dirty folios as not all filesystems can move 2665 * dirty folios in MIGRATE_ASYNC mode which is a waste of 2666 * cycles. 2667 */ 2668 if (folio_test_dirty(folio)) 2669 return -EAGAIN; 2670 } 2671 2672 /* Avoid migrating to a node that is nearly full */ 2673 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2674 int z; 2675 2676 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2677 return -EAGAIN; 2678 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2679 if (managed_zone(pgdat->node_zones + z)) 2680 break; 2681 } 2682 2683 /* 2684 * If there are no managed zones, it should not proceed 2685 * further. 2686 */ 2687 if (z < 0) 2688 return -EAGAIN; 2689 2690 wakeup_kswapd(pgdat->node_zones + z, 0, 2691 folio_order(folio), ZONE_MOVABLE); 2692 return -EAGAIN; 2693 } 2694 2695 if (!folio_isolate_lru(folio)) 2696 return -EAGAIN; 2697 2698 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2699 nr_pages); 2700 return 0; 2701 } 2702 2703 /* 2704 * Attempt to migrate a misplaced folio to the specified destination 2705 * node. Caller is expected to have isolated the folio by calling 2706 * migrate_misplaced_folio_prepare(), which will result in an 2707 * elevated reference count on the folio. This function will un-isolate the 2708 * folio, dereferencing the folio before returning. 2709 */ 2710 int migrate_misplaced_folio(struct folio *folio, int node) 2711 { 2712 pg_data_t *pgdat = NODE_DATA(node); 2713 int nr_remaining; 2714 unsigned int nr_succeeded; 2715 LIST_HEAD(migratepages); 2716 struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio); 2717 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2718 2719 list_add(&folio->lru, &migratepages); 2720 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2721 NULL, node, MIGRATE_ASYNC, 2722 MR_NUMA_MISPLACED, &nr_succeeded); 2723 if (nr_remaining && !list_empty(&migratepages)) 2724 putback_movable_pages(&migratepages); 2725 if (nr_succeeded) { 2726 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2727 count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded); 2728 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 2729 && !node_is_toptier(folio_nid(folio)) 2730 && node_is_toptier(node)) 2731 mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded); 2732 } 2733 mem_cgroup_put(memcg); 2734 BUG_ON(!list_empty(&migratepages)); 2735 return nr_remaining ? -EAGAIN : 0; 2736 } 2737 #endif /* CONFIG_NUMA_BALANCING */ 2738 #endif /* CONFIG_NUMA */ 2739