xref: /linux/mm/migrate.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
34 
35 #include "internal.h"
36 
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38 
39 /*
40  * migrate_prep() needs to be called before we start compiling a list of pages
41  * to be migrated using isolate_lru_page().
42  */
43 int migrate_prep(void)
44 {
45 	/*
46 	 * Clear the LRU lists so pages can be isolated.
47 	 * Note that pages may be moved off the LRU after we have
48 	 * drained them. Those pages will fail to migrate like other
49 	 * pages that may be busy.
50 	 */
51 	lru_add_drain_all();
52 
53 	return 0;
54 }
55 
56 /*
57  * Add isolated pages on the list back to the LRU under page lock
58  * to avoid leaking evictable pages back onto unevictable list.
59  *
60  * returns the number of pages put back.
61  */
62 int putback_lru_pages(struct list_head *l)
63 {
64 	struct page *page;
65 	struct page *page2;
66 	int count = 0;
67 
68 	list_for_each_entry_safe(page, page2, l, lru) {
69 		list_del(&page->lru);
70 		putback_lru_page(page);
71 		count++;
72 	}
73 	return count;
74 }
75 
76 /*
77  * Restore a potential migration pte to a working pte entry
78  */
79 static void remove_migration_pte(struct vm_area_struct *vma,
80 		struct page *old, struct page *new)
81 {
82 	struct mm_struct *mm = vma->vm_mm;
83 	swp_entry_t entry;
84  	pgd_t *pgd;
85  	pud_t *pud;
86  	pmd_t *pmd;
87 	pte_t *ptep, pte;
88  	spinlock_t *ptl;
89 	unsigned long addr = page_address_in_vma(new, vma);
90 
91 	if (addr == -EFAULT)
92 		return;
93 
94  	pgd = pgd_offset(mm, addr);
95 	if (!pgd_present(*pgd))
96                 return;
97 
98 	pud = pud_offset(pgd, addr);
99 	if (!pud_present(*pud))
100                 return;
101 
102 	pmd = pmd_offset(pud, addr);
103 	if (!pmd_present(*pmd))
104 		return;
105 
106 	ptep = pte_offset_map(pmd, addr);
107 
108 	if (!is_swap_pte(*ptep)) {
109 		pte_unmap(ptep);
110  		return;
111  	}
112 
113  	ptl = pte_lockptr(mm, pmd);
114  	spin_lock(ptl);
115 	pte = *ptep;
116 	if (!is_swap_pte(pte))
117 		goto out;
118 
119 	entry = pte_to_swp_entry(pte);
120 
121 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
122 		goto out;
123 
124 	/*
125 	 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
126 	 * Failure is not an option here: we're now expected to remove every
127 	 * migration pte, and will cause crashes otherwise.  Normally this
128 	 * is not an issue: mem_cgroup_prepare_migration bumped up the old
129 	 * page_cgroup count for safety, that's now attached to the new page,
130 	 * so this charge should just be another incrementation of the count,
131 	 * to keep in balance with rmap.c's mem_cgroup_uncharging.  But if
132 	 * there's been a force_empty, those reference counts may no longer
133 	 * be reliable, and this charge can actually fail: oh well, we don't
134 	 * make the situation any worse by proceeding as if it had succeeded.
135 	 */
136 	mem_cgroup_charge(new, mm, GFP_ATOMIC);
137 
138 	get_page(new);
139 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140 	if (is_write_migration_entry(entry))
141 		pte = pte_mkwrite(pte);
142 	flush_cache_page(vma, addr, pte_pfn(pte));
143 	set_pte_at(mm, addr, ptep, pte);
144 
145 	if (PageAnon(new))
146 		page_add_anon_rmap(new, vma, addr);
147 	else
148 		page_add_file_rmap(new);
149 
150 	/* No need to invalidate - it was non-present before */
151 	update_mmu_cache(vma, addr, pte);
152 
153 out:
154 	pte_unmap_unlock(ptep, ptl);
155 }
156 
157 /*
158  * Note that remove_file_migration_ptes will only work on regular mappings,
159  * Nonlinear mappings do not use migration entries.
160  */
161 static void remove_file_migration_ptes(struct page *old, struct page *new)
162 {
163 	struct vm_area_struct *vma;
164 	struct address_space *mapping = page_mapping(new);
165 	struct prio_tree_iter iter;
166 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
167 
168 	if (!mapping)
169 		return;
170 
171 	spin_lock(&mapping->i_mmap_lock);
172 
173 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
174 		remove_migration_pte(vma, old, new);
175 
176 	spin_unlock(&mapping->i_mmap_lock);
177 }
178 
179 /*
180  * Must hold mmap_sem lock on at least one of the vmas containing
181  * the page so that the anon_vma cannot vanish.
182  */
183 static void remove_anon_migration_ptes(struct page *old, struct page *new)
184 {
185 	struct anon_vma *anon_vma;
186 	struct vm_area_struct *vma;
187 	unsigned long mapping;
188 
189 	mapping = (unsigned long)new->mapping;
190 
191 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
192 		return;
193 
194 	/*
195 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
196 	 */
197 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
198 	spin_lock(&anon_vma->lock);
199 
200 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
201 		remove_migration_pte(vma, old, new);
202 
203 	spin_unlock(&anon_vma->lock);
204 }
205 
206 /*
207  * Get rid of all migration entries and replace them by
208  * references to the indicated page.
209  */
210 static void remove_migration_ptes(struct page *old, struct page *new)
211 {
212 	if (PageAnon(new))
213 		remove_anon_migration_ptes(old, new);
214 	else
215 		remove_file_migration_ptes(old, new);
216 }
217 
218 /*
219  * Something used the pte of a page under migration. We need to
220  * get to the page and wait until migration is finished.
221  * When we return from this function the fault will be retried.
222  *
223  * This function is called from do_swap_page().
224  */
225 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
226 				unsigned long address)
227 {
228 	pte_t *ptep, pte;
229 	spinlock_t *ptl;
230 	swp_entry_t entry;
231 	struct page *page;
232 
233 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
234 	pte = *ptep;
235 	if (!is_swap_pte(pte))
236 		goto out;
237 
238 	entry = pte_to_swp_entry(pte);
239 	if (!is_migration_entry(entry))
240 		goto out;
241 
242 	page = migration_entry_to_page(entry);
243 
244 	/*
245 	 * Once radix-tree replacement of page migration started, page_count
246 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
247 	 * against a page without get_page().
248 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
249 	 * will occur again.
250 	 */
251 	if (!get_page_unless_zero(page))
252 		goto out;
253 	pte_unmap_unlock(ptep, ptl);
254 	wait_on_page_locked(page);
255 	put_page(page);
256 	return;
257 out:
258 	pte_unmap_unlock(ptep, ptl);
259 }
260 
261 /*
262  * Replace the page in the mapping.
263  *
264  * The number of remaining references must be:
265  * 1 for anonymous pages without a mapping
266  * 2 for pages with a mapping
267  * 3 for pages with a mapping and PagePrivate set.
268  */
269 static int migrate_page_move_mapping(struct address_space *mapping,
270 		struct page *newpage, struct page *page)
271 {
272 	int expected_count;
273 	void **pslot;
274 
275 	if (!mapping) {
276 		/* Anonymous page without mapping */
277 		if (page_count(page) != 1)
278 			return -EAGAIN;
279 		return 0;
280 	}
281 
282 	spin_lock_irq(&mapping->tree_lock);
283 
284 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
285  					page_index(page));
286 
287 	expected_count = 2 + !!PagePrivate(page);
288 	if (page_count(page) != expected_count ||
289 			(struct page *)radix_tree_deref_slot(pslot) != page) {
290 		spin_unlock_irq(&mapping->tree_lock);
291 		return -EAGAIN;
292 	}
293 
294 	if (!page_freeze_refs(page, expected_count)) {
295 		spin_unlock_irq(&mapping->tree_lock);
296 		return -EAGAIN;
297 	}
298 
299 	/*
300 	 * Now we know that no one else is looking at the page.
301 	 */
302 	get_page(newpage);	/* add cache reference */
303 	if (PageSwapCache(page)) {
304 		SetPageSwapCache(newpage);
305 		set_page_private(newpage, page_private(page));
306 	}
307 
308 	radix_tree_replace_slot(pslot, newpage);
309 
310 	page_unfreeze_refs(page, expected_count);
311 	/*
312 	 * Drop cache reference from old page.
313 	 * We know this isn't the last reference.
314 	 */
315 	__put_page(page);
316 
317 	/*
318 	 * If moved to a different zone then also account
319 	 * the page for that zone. Other VM counters will be
320 	 * taken care of when we establish references to the
321 	 * new page and drop references to the old page.
322 	 *
323 	 * Note that anonymous pages are accounted for
324 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
325 	 * are mapped to swap space.
326 	 */
327 	__dec_zone_page_state(page, NR_FILE_PAGES);
328 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
329 
330 	spin_unlock_irq(&mapping->tree_lock);
331 
332 	return 0;
333 }
334 
335 /*
336  * Copy the page to its new location
337  */
338 static void migrate_page_copy(struct page *newpage, struct page *page)
339 {
340 	int anon;
341 
342 	copy_highpage(newpage, page);
343 
344 	if (PageError(page))
345 		SetPageError(newpage);
346 	if (PageReferenced(page))
347 		SetPageReferenced(newpage);
348 	if (PageUptodate(page))
349 		SetPageUptodate(newpage);
350 	if (TestClearPageActive(page)) {
351 		VM_BUG_ON(PageUnevictable(page));
352 		SetPageActive(newpage);
353 	} else
354 		unevictable_migrate_page(newpage, page);
355 	if (PageChecked(page))
356 		SetPageChecked(newpage);
357 	if (PageMappedToDisk(page))
358 		SetPageMappedToDisk(newpage);
359 
360 	if (PageDirty(page)) {
361 		clear_page_dirty_for_io(page);
362 		/*
363 		 * Want to mark the page and the radix tree as dirty, and
364 		 * redo the accounting that clear_page_dirty_for_io undid,
365 		 * but we can't use set_page_dirty because that function
366 		 * is actually a signal that all of the page has become dirty.
367 		 * Wheras only part of our page may be dirty.
368 		 */
369 		__set_page_dirty_nobuffers(newpage);
370  	}
371 
372 	mlock_migrate_page(newpage, page);
373 
374 	ClearPageSwapCache(page);
375 	ClearPagePrivate(page);
376 	set_page_private(page, 0);
377 	/* page->mapping contains a flag for PageAnon() */
378 	anon = PageAnon(page);
379 	page->mapping = NULL;
380 
381 	if (!anon) /* This page was removed from radix-tree. */
382 		mem_cgroup_uncharge_cache_page(page);
383 
384 	/*
385 	 * If any waiters have accumulated on the new page then
386 	 * wake them up.
387 	 */
388 	if (PageWriteback(newpage))
389 		end_page_writeback(newpage);
390 }
391 
392 /************************************************************
393  *                    Migration functions
394  ***********************************************************/
395 
396 /* Always fail migration. Used for mappings that are not movable */
397 int fail_migrate_page(struct address_space *mapping,
398 			struct page *newpage, struct page *page)
399 {
400 	return -EIO;
401 }
402 EXPORT_SYMBOL(fail_migrate_page);
403 
404 /*
405  * Common logic to directly migrate a single page suitable for
406  * pages that do not use PagePrivate.
407  *
408  * Pages are locked upon entry and exit.
409  */
410 int migrate_page(struct address_space *mapping,
411 		struct page *newpage, struct page *page)
412 {
413 	int rc;
414 
415 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
416 
417 	rc = migrate_page_move_mapping(mapping, newpage, page);
418 
419 	if (rc)
420 		return rc;
421 
422 	migrate_page_copy(newpage, page);
423 	return 0;
424 }
425 EXPORT_SYMBOL(migrate_page);
426 
427 #ifdef CONFIG_BLOCK
428 /*
429  * Migration function for pages with buffers. This function can only be used
430  * if the underlying filesystem guarantees that no other references to "page"
431  * exist.
432  */
433 int buffer_migrate_page(struct address_space *mapping,
434 		struct page *newpage, struct page *page)
435 {
436 	struct buffer_head *bh, *head;
437 	int rc;
438 
439 	if (!page_has_buffers(page))
440 		return migrate_page(mapping, newpage, page);
441 
442 	head = page_buffers(page);
443 
444 	rc = migrate_page_move_mapping(mapping, newpage, page);
445 
446 	if (rc)
447 		return rc;
448 
449 	bh = head;
450 	do {
451 		get_bh(bh);
452 		lock_buffer(bh);
453 		bh = bh->b_this_page;
454 
455 	} while (bh != head);
456 
457 	ClearPagePrivate(page);
458 	set_page_private(newpage, page_private(page));
459 	set_page_private(page, 0);
460 	put_page(page);
461 	get_page(newpage);
462 
463 	bh = head;
464 	do {
465 		set_bh_page(bh, newpage, bh_offset(bh));
466 		bh = bh->b_this_page;
467 
468 	} while (bh != head);
469 
470 	SetPagePrivate(newpage);
471 
472 	migrate_page_copy(newpage, page);
473 
474 	bh = head;
475 	do {
476 		unlock_buffer(bh);
477  		put_bh(bh);
478 		bh = bh->b_this_page;
479 
480 	} while (bh != head);
481 
482 	return 0;
483 }
484 EXPORT_SYMBOL(buffer_migrate_page);
485 #endif
486 
487 /*
488  * Writeback a page to clean the dirty state
489  */
490 static int writeout(struct address_space *mapping, struct page *page)
491 {
492 	struct writeback_control wbc = {
493 		.sync_mode = WB_SYNC_NONE,
494 		.nr_to_write = 1,
495 		.range_start = 0,
496 		.range_end = LLONG_MAX,
497 		.nonblocking = 1,
498 		.for_reclaim = 1
499 	};
500 	int rc;
501 
502 	if (!mapping->a_ops->writepage)
503 		/* No write method for the address space */
504 		return -EINVAL;
505 
506 	if (!clear_page_dirty_for_io(page))
507 		/* Someone else already triggered a write */
508 		return -EAGAIN;
509 
510 	/*
511 	 * A dirty page may imply that the underlying filesystem has
512 	 * the page on some queue. So the page must be clean for
513 	 * migration. Writeout may mean we loose the lock and the
514 	 * page state is no longer what we checked for earlier.
515 	 * At this point we know that the migration attempt cannot
516 	 * be successful.
517 	 */
518 	remove_migration_ptes(page, page);
519 
520 	rc = mapping->a_ops->writepage(page, &wbc);
521 
522 	if (rc != AOP_WRITEPAGE_ACTIVATE)
523 		/* unlocked. Relock */
524 		lock_page(page);
525 
526 	return (rc < 0) ? -EIO : -EAGAIN;
527 }
528 
529 /*
530  * Default handling if a filesystem does not provide a migration function.
531  */
532 static int fallback_migrate_page(struct address_space *mapping,
533 	struct page *newpage, struct page *page)
534 {
535 	if (PageDirty(page))
536 		return writeout(mapping, page);
537 
538 	/*
539 	 * Buffers may be managed in a filesystem specific way.
540 	 * We must have no buffers or drop them.
541 	 */
542 	if (PagePrivate(page) &&
543 	    !try_to_release_page(page, GFP_KERNEL))
544 		return -EAGAIN;
545 
546 	return migrate_page(mapping, newpage, page);
547 }
548 
549 /*
550  * Move a page to a newly allocated page
551  * The page is locked and all ptes have been successfully removed.
552  *
553  * The new page will have replaced the old page if this function
554  * is successful.
555  *
556  * Return value:
557  *   < 0 - error code
558  *  == 0 - success
559  */
560 static int move_to_new_page(struct page *newpage, struct page *page)
561 {
562 	struct address_space *mapping;
563 	int rc;
564 
565 	/*
566 	 * Block others from accessing the page when we get around to
567 	 * establishing additional references. We are the only one
568 	 * holding a reference to the new page at this point.
569 	 */
570 	if (!trylock_page(newpage))
571 		BUG();
572 
573 	/* Prepare mapping for the new page.*/
574 	newpage->index = page->index;
575 	newpage->mapping = page->mapping;
576 	if (PageSwapBacked(page))
577 		SetPageSwapBacked(newpage);
578 
579 	mapping = page_mapping(page);
580 	if (!mapping)
581 		rc = migrate_page(mapping, newpage, page);
582 	else if (mapping->a_ops->migratepage)
583 		/*
584 		 * Most pages have a mapping and most filesystems
585 		 * should provide a migration function. Anonymous
586 		 * pages are part of swap space which also has its
587 		 * own migration function. This is the most common
588 		 * path for page migration.
589 		 */
590 		rc = mapping->a_ops->migratepage(mapping,
591 						newpage, page);
592 	else
593 		rc = fallback_migrate_page(mapping, newpage, page);
594 
595 	if (!rc) {
596 		remove_migration_ptes(page, newpage);
597 	} else
598 		newpage->mapping = NULL;
599 
600 	unlock_page(newpage);
601 
602 	return rc;
603 }
604 
605 /*
606  * Obtain the lock on page, remove all ptes and migrate the page
607  * to the newly allocated page in newpage.
608  */
609 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
610 			struct page *page, int force)
611 {
612 	int rc = 0;
613 	int *result = NULL;
614 	struct page *newpage = get_new_page(page, private, &result);
615 	int rcu_locked = 0;
616 	int charge = 0;
617 
618 	if (!newpage)
619 		return -ENOMEM;
620 
621 	if (page_count(page) == 1) {
622 		/* page was freed from under us. So we are done. */
623 		goto move_newpage;
624 	}
625 
626 	charge = mem_cgroup_prepare_migration(page, newpage);
627 	if (charge == -ENOMEM) {
628 		rc = -ENOMEM;
629 		goto move_newpage;
630 	}
631 	/* prepare cgroup just returns 0 or -ENOMEM */
632 	BUG_ON(charge);
633 
634 	rc = -EAGAIN;
635 	if (!trylock_page(page)) {
636 		if (!force)
637 			goto move_newpage;
638 		lock_page(page);
639 	}
640 
641 	if (PageWriteback(page)) {
642 		if (!force)
643 			goto unlock;
644 		wait_on_page_writeback(page);
645 	}
646 	/*
647 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
648 	 * we cannot notice that anon_vma is freed while we migrates a page.
649 	 * This rcu_read_lock() delays freeing anon_vma pointer until the end
650 	 * of migration. File cache pages are no problem because of page_lock()
651 	 * File Caches may use write_page() or lock_page() in migration, then,
652 	 * just care Anon page here.
653 	 */
654 	if (PageAnon(page)) {
655 		rcu_read_lock();
656 		rcu_locked = 1;
657 	}
658 
659 	/*
660 	 * Corner case handling:
661 	 * 1. When a new swap-cache page is read into, it is added to the LRU
662 	 * and treated as swapcache but it has no rmap yet.
663 	 * Calling try_to_unmap() against a page->mapping==NULL page will
664 	 * trigger a BUG.  So handle it here.
665 	 * 2. An orphaned page (see truncate_complete_page) might have
666 	 * fs-private metadata. The page can be picked up due to memory
667 	 * offlining.  Everywhere else except page reclaim, the page is
668 	 * invisible to the vm, so the page can not be migrated.  So try to
669 	 * free the metadata, so the page can be freed.
670 	 */
671 	if (!page->mapping) {
672 		if (!PageAnon(page) && PagePrivate(page)) {
673 			/*
674 			 * Go direct to try_to_free_buffers() here because
675 			 * a) that's what try_to_release_page() would do anyway
676 			 * b) we may be under rcu_read_lock() here, so we can't
677 			 *    use GFP_KERNEL which is what try_to_release_page()
678 			 *    needs to be effective.
679 			 */
680 			try_to_free_buffers(page);
681 		}
682 		goto rcu_unlock;
683 	}
684 
685 	/* Establish migration ptes or remove ptes */
686 	try_to_unmap(page, 1);
687 
688 	if (!page_mapped(page))
689 		rc = move_to_new_page(newpage, page);
690 
691 	if (rc)
692 		remove_migration_ptes(page, page);
693 rcu_unlock:
694 	if (rcu_locked)
695 		rcu_read_unlock();
696 
697 unlock:
698 	unlock_page(page);
699 
700 	if (rc != -EAGAIN) {
701  		/*
702  		 * A page that has been migrated has all references
703  		 * removed and will be freed. A page that has not been
704  		 * migrated will have kepts its references and be
705  		 * restored.
706  		 */
707  		list_del(&page->lru);
708 		putback_lru_page(page);
709 	}
710 
711 move_newpage:
712 	if (!charge)
713 		mem_cgroup_end_migration(newpage);
714 
715 	/*
716 	 * Move the new page to the LRU. If migration was not successful
717 	 * then this will free the page.
718 	 */
719 	putback_lru_page(newpage);
720 
721 	if (result) {
722 		if (rc)
723 			*result = rc;
724 		else
725 			*result = page_to_nid(newpage);
726 	}
727 	return rc;
728 }
729 
730 /*
731  * migrate_pages
732  *
733  * The function takes one list of pages to migrate and a function
734  * that determines from the page to be migrated and the private data
735  * the target of the move and allocates the page.
736  *
737  * The function returns after 10 attempts or if no pages
738  * are movable anymore because to has become empty
739  * or no retryable pages exist anymore. All pages will be
740  * returned to the LRU or freed.
741  *
742  * Return: Number of pages not migrated or error code.
743  */
744 int migrate_pages(struct list_head *from,
745 		new_page_t get_new_page, unsigned long private)
746 {
747 	int retry = 1;
748 	int nr_failed = 0;
749 	int pass = 0;
750 	struct page *page;
751 	struct page *page2;
752 	int swapwrite = current->flags & PF_SWAPWRITE;
753 	int rc;
754 
755 	if (!swapwrite)
756 		current->flags |= PF_SWAPWRITE;
757 
758 	for(pass = 0; pass < 10 && retry; pass++) {
759 		retry = 0;
760 
761 		list_for_each_entry_safe(page, page2, from, lru) {
762 			cond_resched();
763 
764 			rc = unmap_and_move(get_new_page, private,
765 						page, pass > 2);
766 
767 			switch(rc) {
768 			case -ENOMEM:
769 				goto out;
770 			case -EAGAIN:
771 				retry++;
772 				break;
773 			case 0:
774 				break;
775 			default:
776 				/* Permanent failure */
777 				nr_failed++;
778 				break;
779 			}
780 		}
781 	}
782 	rc = 0;
783 out:
784 	if (!swapwrite)
785 		current->flags &= ~PF_SWAPWRITE;
786 
787 	putback_lru_pages(from);
788 
789 	if (rc)
790 		return rc;
791 
792 	return nr_failed + retry;
793 }
794 
795 #ifdef CONFIG_NUMA
796 /*
797  * Move a list of individual pages
798  */
799 struct page_to_node {
800 	unsigned long addr;
801 	struct page *page;
802 	int node;
803 	int status;
804 };
805 
806 static struct page *new_page_node(struct page *p, unsigned long private,
807 		int **result)
808 {
809 	struct page_to_node *pm = (struct page_to_node *)private;
810 
811 	while (pm->node != MAX_NUMNODES && pm->page != p)
812 		pm++;
813 
814 	if (pm->node == MAX_NUMNODES)
815 		return NULL;
816 
817 	*result = &pm->status;
818 
819 	return alloc_pages_node(pm->node,
820 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
821 }
822 
823 /*
824  * Move a set of pages as indicated in the pm array. The addr
825  * field must be set to the virtual address of the page to be moved
826  * and the node number must contain a valid target node.
827  * The pm array ends with node = MAX_NUMNODES.
828  */
829 static int do_move_page_to_node_array(struct mm_struct *mm,
830 				      struct page_to_node *pm,
831 				      int migrate_all)
832 {
833 	int err;
834 	struct page_to_node *pp;
835 	LIST_HEAD(pagelist);
836 
837 	migrate_prep();
838 	down_read(&mm->mmap_sem);
839 
840 	/*
841 	 * Build a list of pages to migrate
842 	 */
843 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
844 		struct vm_area_struct *vma;
845 		struct page *page;
846 
847 		err = -EFAULT;
848 		vma = find_vma(mm, pp->addr);
849 		if (!vma || !vma_migratable(vma))
850 			goto set_status;
851 
852 		page = follow_page(vma, pp->addr, FOLL_GET);
853 
854 		err = PTR_ERR(page);
855 		if (IS_ERR(page))
856 			goto set_status;
857 
858 		err = -ENOENT;
859 		if (!page)
860 			goto set_status;
861 
862 		if (PageReserved(page))		/* Check for zero page */
863 			goto put_and_set;
864 
865 		pp->page = page;
866 		err = page_to_nid(page);
867 
868 		if (err == pp->node)
869 			/*
870 			 * Node already in the right place
871 			 */
872 			goto put_and_set;
873 
874 		err = -EACCES;
875 		if (page_mapcount(page) > 1 &&
876 				!migrate_all)
877 			goto put_and_set;
878 
879 		err = isolate_lru_page(page);
880 		if (!err)
881 			list_add_tail(&page->lru, &pagelist);
882 put_and_set:
883 		/*
884 		 * Either remove the duplicate refcount from
885 		 * isolate_lru_page() or drop the page ref if it was
886 		 * not isolated.
887 		 */
888 		put_page(page);
889 set_status:
890 		pp->status = err;
891 	}
892 
893 	err = 0;
894 	if (!list_empty(&pagelist))
895 		err = migrate_pages(&pagelist, new_page_node,
896 				(unsigned long)pm);
897 
898 	up_read(&mm->mmap_sem);
899 	return err;
900 }
901 
902 /*
903  * Migrate an array of page address onto an array of nodes and fill
904  * the corresponding array of status.
905  */
906 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
907 			 unsigned long nr_pages,
908 			 const void __user * __user *pages,
909 			 const int __user *nodes,
910 			 int __user *status, int flags)
911 {
912 	struct page_to_node *pm;
913 	nodemask_t task_nodes;
914 	unsigned long chunk_nr_pages;
915 	unsigned long chunk_start;
916 	int err;
917 
918 	task_nodes = cpuset_mems_allowed(task);
919 
920 	err = -ENOMEM;
921 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
922 	if (!pm)
923 		goto out;
924 	/*
925 	 * Store a chunk of page_to_node array in a page,
926 	 * but keep the last one as a marker
927 	 */
928 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
929 
930 	for (chunk_start = 0;
931 	     chunk_start < nr_pages;
932 	     chunk_start += chunk_nr_pages) {
933 		int j;
934 
935 		if (chunk_start + chunk_nr_pages > nr_pages)
936 			chunk_nr_pages = nr_pages - chunk_start;
937 
938 		/* fill the chunk pm with addrs and nodes from user-space */
939 		for (j = 0; j < chunk_nr_pages; j++) {
940 			const void __user *p;
941 			int node;
942 
943 			err = -EFAULT;
944 			if (get_user(p, pages + j + chunk_start))
945 				goto out_pm;
946 			pm[j].addr = (unsigned long) p;
947 
948 			if (get_user(node, nodes + j + chunk_start))
949 				goto out_pm;
950 
951 			err = -ENODEV;
952 			if (!node_state(node, N_HIGH_MEMORY))
953 				goto out_pm;
954 
955 			err = -EACCES;
956 			if (!node_isset(node, task_nodes))
957 				goto out_pm;
958 
959 			pm[j].node = node;
960 		}
961 
962 		/* End marker for this chunk */
963 		pm[chunk_nr_pages].node = MAX_NUMNODES;
964 
965 		/* Migrate this chunk */
966 		err = do_move_page_to_node_array(mm, pm,
967 						 flags & MPOL_MF_MOVE_ALL);
968 		if (err < 0)
969 			goto out_pm;
970 
971 		/* Return status information */
972 		for (j = 0; j < chunk_nr_pages; j++)
973 			if (put_user(pm[j].status, status + j + chunk_start)) {
974 				err = -EFAULT;
975 				goto out_pm;
976 			}
977 	}
978 	err = 0;
979 
980 out_pm:
981 	free_page((unsigned long)pm);
982 out:
983 	return err;
984 }
985 
986 /*
987  * Determine the nodes of an array of pages and store it in an array of status.
988  */
989 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
990 				const void __user **pages, int *status)
991 {
992 	unsigned long i;
993 
994 	down_read(&mm->mmap_sem);
995 
996 	for (i = 0; i < nr_pages; i++) {
997 		unsigned long addr = (unsigned long)(*pages);
998 		struct vm_area_struct *vma;
999 		struct page *page;
1000 		int err = -EFAULT;
1001 
1002 		vma = find_vma(mm, addr);
1003 		if (!vma)
1004 			goto set_status;
1005 
1006 		page = follow_page(vma, addr, 0);
1007 
1008 		err = PTR_ERR(page);
1009 		if (IS_ERR(page))
1010 			goto set_status;
1011 
1012 		err = -ENOENT;
1013 		/* Use PageReserved to check for zero page */
1014 		if (!page || PageReserved(page))
1015 			goto set_status;
1016 
1017 		err = page_to_nid(page);
1018 set_status:
1019 		*status = err;
1020 
1021 		pages++;
1022 		status++;
1023 	}
1024 
1025 	up_read(&mm->mmap_sem);
1026 }
1027 
1028 /*
1029  * Determine the nodes of a user array of pages and store it in
1030  * a user array of status.
1031  */
1032 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1033 			 const void __user * __user *pages,
1034 			 int __user *status)
1035 {
1036 #define DO_PAGES_STAT_CHUNK_NR 16
1037 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1038 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1039 	unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1040 	int err;
1041 
1042 	for (i = 0; i < nr_pages; i += chunk_nr) {
1043 		if (chunk_nr + i > nr_pages)
1044 			chunk_nr = nr_pages - i;
1045 
1046 		err = copy_from_user(chunk_pages, &pages[i],
1047 				     chunk_nr * sizeof(*chunk_pages));
1048 		if (err) {
1049 			err = -EFAULT;
1050 			goto out;
1051 		}
1052 
1053 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1054 
1055 		err = copy_to_user(&status[i], chunk_status,
1056 				   chunk_nr * sizeof(*chunk_status));
1057 		if (err) {
1058 			err = -EFAULT;
1059 			goto out;
1060 		}
1061 	}
1062 	err = 0;
1063 
1064 out:
1065 	return err;
1066 }
1067 
1068 /*
1069  * Move a list of pages in the address space of the currently executing
1070  * process.
1071  */
1072 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
1073 			const void __user * __user *pages,
1074 			const int __user *nodes,
1075 			int __user *status, int flags)
1076 {
1077 	const struct cred *cred = current_cred(), *tcred;
1078 	struct task_struct *task;
1079 	struct mm_struct *mm;
1080 	int err;
1081 
1082 	/* Check flags */
1083 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1084 		return -EINVAL;
1085 
1086 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1087 		return -EPERM;
1088 
1089 	/* Find the mm_struct */
1090 	read_lock(&tasklist_lock);
1091 	task = pid ? find_task_by_vpid(pid) : current;
1092 	if (!task) {
1093 		read_unlock(&tasklist_lock);
1094 		return -ESRCH;
1095 	}
1096 	mm = get_task_mm(task);
1097 	read_unlock(&tasklist_lock);
1098 
1099 	if (!mm)
1100 		return -EINVAL;
1101 
1102 	/*
1103 	 * Check if this process has the right to modify the specified
1104 	 * process. The right exists if the process has administrative
1105 	 * capabilities, superuser privileges or the same
1106 	 * userid as the target process.
1107 	 */
1108 	rcu_read_lock();
1109 	tcred = __task_cred(task);
1110 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1111 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1112 	    !capable(CAP_SYS_NICE)) {
1113 		rcu_read_unlock();
1114 		err = -EPERM;
1115 		goto out;
1116 	}
1117 	rcu_read_unlock();
1118 
1119  	err = security_task_movememory(task);
1120  	if (err)
1121 		goto out;
1122 
1123 	if (nodes) {
1124 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1125 				    flags);
1126 	} else {
1127 		err = do_pages_stat(mm, nr_pages, pages, status);
1128 	}
1129 
1130 out:
1131 	mmput(mm);
1132 	return err;
1133 }
1134 
1135 /*
1136  * Call migration functions in the vma_ops that may prepare
1137  * memory in a vm for migration. migration functions may perform
1138  * the migration for vmas that do not have an underlying page struct.
1139  */
1140 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1141 	const nodemask_t *from, unsigned long flags)
1142 {
1143  	struct vm_area_struct *vma;
1144  	int err = 0;
1145 
1146  	for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1147  		if (vma->vm_ops && vma->vm_ops->migrate) {
1148  			err = vma->vm_ops->migrate(vma, to, from, flags);
1149  			if (err)
1150  				break;
1151  		}
1152  	}
1153  	return err;
1154 }
1155 #endif
1156