xref: /linux/mm/migrate.c (revision 7a4ffec9fd54ea27395e24dff726dbf58e2fe06b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/ksm.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/backing-dev.h>
33 #include <linux/compaction.h>
34 #include <linux/syscalls.h>
35 #include <linux/compat.h>
36 #include <linux/hugetlb.h>
37 #include <linux/gfp.h>
38 #include <linux/pfn_t.h>
39 #include <linux/page_idle.h>
40 #include <linux/page_owner.h>
41 #include <linux/sched/mm.h>
42 #include <linux/ptrace.h>
43 #include <linux/memory.h>
44 #include <linux/sched/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/pagewalk.h>
47 
48 #include <asm/tlbflush.h>
49 
50 #include <trace/events/migrate.h>
51 
52 #include "internal.h"
53 
54 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
55 {
56 	struct folio *folio = folio_get_nontail_page(page);
57 	const struct movable_operations *mops;
58 
59 	/*
60 	 * Avoid burning cycles with pages that are yet under __free_pages(),
61 	 * or just got freed under us.
62 	 *
63 	 * In case we 'win' a race for a movable page being freed under us and
64 	 * raise its refcount preventing __free_pages() from doing its job
65 	 * the put_page() at the end of this block will take care of
66 	 * release this page, thus avoiding a nasty leakage.
67 	 */
68 	if (!folio)
69 		goto out;
70 
71 	if (unlikely(folio_test_slab(folio)))
72 		goto out_putfolio;
73 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
74 	smp_rmb();
75 	/*
76 	 * Check movable flag before taking the page lock because
77 	 * we use non-atomic bitops on newly allocated page flags so
78 	 * unconditionally grabbing the lock ruins page's owner side.
79 	 */
80 	if (unlikely(!__folio_test_movable(folio)))
81 		goto out_putfolio;
82 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
83 	smp_rmb();
84 	if (unlikely(folio_test_slab(folio)))
85 		goto out_putfolio;
86 
87 	/*
88 	 * As movable pages are not isolated from LRU lists, concurrent
89 	 * compaction threads can race against page migration functions
90 	 * as well as race against the releasing a page.
91 	 *
92 	 * In order to avoid having an already isolated movable page
93 	 * being (wrongly) re-isolated while it is under migration,
94 	 * or to avoid attempting to isolate pages being released,
95 	 * lets be sure we have the page lock
96 	 * before proceeding with the movable page isolation steps.
97 	 */
98 	if (unlikely(!folio_trylock(folio)))
99 		goto out_putfolio;
100 
101 	if (!folio_test_movable(folio) || folio_test_isolated(folio))
102 		goto out_no_isolated;
103 
104 	mops = folio_movable_ops(folio);
105 	VM_BUG_ON_FOLIO(!mops, folio);
106 
107 	if (!mops->isolate_page(&folio->page, mode))
108 		goto out_no_isolated;
109 
110 	/* Driver shouldn't use the isolated flag */
111 	WARN_ON_ONCE(folio_test_isolated(folio));
112 	folio_set_isolated(folio);
113 	folio_unlock(folio);
114 
115 	return true;
116 
117 out_no_isolated:
118 	folio_unlock(folio);
119 out_putfolio:
120 	folio_put(folio);
121 out:
122 	return false;
123 }
124 
125 static void putback_movable_folio(struct folio *folio)
126 {
127 	const struct movable_operations *mops = folio_movable_ops(folio);
128 
129 	mops->putback_page(&folio->page);
130 	folio_clear_isolated(folio);
131 }
132 
133 /*
134  * Put previously isolated pages back onto the appropriate lists
135  * from where they were once taken off for compaction/migration.
136  *
137  * This function shall be used whenever the isolated pageset has been
138  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
139  * and isolate_hugetlb().
140  */
141 void putback_movable_pages(struct list_head *l)
142 {
143 	struct folio *folio;
144 	struct folio *folio2;
145 
146 	list_for_each_entry_safe(folio, folio2, l, lru) {
147 		if (unlikely(folio_test_hugetlb(folio))) {
148 			folio_putback_active_hugetlb(folio);
149 			continue;
150 		}
151 		list_del(&folio->lru);
152 		/*
153 		 * We isolated non-lru movable folio so here we can use
154 		 * __folio_test_movable because LRU folio's mapping cannot
155 		 * have PAGE_MAPPING_MOVABLE.
156 		 */
157 		if (unlikely(__folio_test_movable(folio))) {
158 			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
159 			folio_lock(folio);
160 			if (folio_test_movable(folio))
161 				putback_movable_folio(folio);
162 			else
163 				folio_clear_isolated(folio);
164 			folio_unlock(folio);
165 			folio_put(folio);
166 		} else {
167 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
168 					folio_is_file_lru(folio), -folio_nr_pages(folio));
169 			folio_putback_lru(folio);
170 		}
171 	}
172 }
173 
174 /* Must be called with an elevated refcount on the non-hugetlb folio */
175 bool isolate_folio_to_list(struct folio *folio, struct list_head *list)
176 {
177 	bool isolated, lru;
178 
179 	if (folio_test_hugetlb(folio))
180 		return isolate_hugetlb(folio, list);
181 
182 	lru = !__folio_test_movable(folio);
183 	if (lru)
184 		isolated = folio_isolate_lru(folio);
185 	else
186 		isolated = isolate_movable_page(&folio->page,
187 						ISOLATE_UNEVICTABLE);
188 
189 	if (!isolated)
190 		return false;
191 
192 	list_add(&folio->lru, list);
193 	if (lru)
194 		node_stat_add_folio(folio, NR_ISOLATED_ANON +
195 				    folio_is_file_lru(folio));
196 
197 	return true;
198 }
199 
200 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw,
201 					  struct folio *folio,
202 					  unsigned long idx)
203 {
204 	struct page *page = folio_page(folio, idx);
205 	bool contains_data;
206 	pte_t newpte;
207 	void *addr;
208 
209 	VM_BUG_ON_PAGE(PageCompound(page), page);
210 	VM_BUG_ON_PAGE(!PageAnon(page), page);
211 	VM_BUG_ON_PAGE(!PageLocked(page), page);
212 	VM_BUG_ON_PAGE(pte_present(*pvmw->pte), page);
213 
214 	if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) ||
215 	    mm_forbids_zeropage(pvmw->vma->vm_mm))
216 		return false;
217 
218 	/*
219 	 * The pmd entry mapping the old thp was flushed and the pte mapping
220 	 * this subpage has been non present. If the subpage is only zero-filled
221 	 * then map it to the shared zeropage.
222 	 */
223 	addr = kmap_local_page(page);
224 	contains_data = memchr_inv(addr, 0, PAGE_SIZE);
225 	kunmap_local(addr);
226 
227 	if (contains_data)
228 		return false;
229 
230 	newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address),
231 					pvmw->vma->vm_page_prot));
232 	set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte);
233 
234 	dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio));
235 	return true;
236 }
237 
238 struct rmap_walk_arg {
239 	struct folio *folio;
240 	bool map_unused_to_zeropage;
241 };
242 
243 /*
244  * Restore a potential migration pte to a working pte entry
245  */
246 static bool remove_migration_pte(struct folio *folio,
247 		struct vm_area_struct *vma, unsigned long addr, void *arg)
248 {
249 	struct rmap_walk_arg *rmap_walk_arg = arg;
250 	DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
251 
252 	while (page_vma_mapped_walk(&pvmw)) {
253 		rmap_t rmap_flags = RMAP_NONE;
254 		pte_t old_pte;
255 		pte_t pte;
256 		swp_entry_t entry;
257 		struct page *new;
258 		unsigned long idx = 0;
259 
260 		/* pgoff is invalid for ksm pages, but they are never large */
261 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
262 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
263 		new = folio_page(folio, idx);
264 
265 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
266 		/* PMD-mapped THP migration entry */
267 		if (!pvmw.pte) {
268 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
269 					!folio_test_pmd_mappable(folio), folio);
270 			remove_migration_pmd(&pvmw, new);
271 			continue;
272 		}
273 #endif
274 		if (rmap_walk_arg->map_unused_to_zeropage &&
275 		    try_to_map_unused_to_zeropage(&pvmw, folio, idx))
276 			continue;
277 
278 		folio_get(folio);
279 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
280 		old_pte = ptep_get(pvmw.pte);
281 
282 		entry = pte_to_swp_entry(old_pte);
283 		if (!is_migration_entry_young(entry))
284 			pte = pte_mkold(pte);
285 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
286 			pte = pte_mkdirty(pte);
287 		if (pte_swp_soft_dirty(old_pte))
288 			pte = pte_mksoft_dirty(pte);
289 		else
290 			pte = pte_clear_soft_dirty(pte);
291 
292 		if (is_writable_migration_entry(entry))
293 			pte = pte_mkwrite(pte, vma);
294 		else if (pte_swp_uffd_wp(old_pte))
295 			pte = pte_mkuffd_wp(pte);
296 
297 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
298 			rmap_flags |= RMAP_EXCLUSIVE;
299 
300 		if (unlikely(is_device_private_page(new))) {
301 			if (pte_write(pte))
302 				entry = make_writable_device_private_entry(
303 							page_to_pfn(new));
304 			else
305 				entry = make_readable_device_private_entry(
306 							page_to_pfn(new));
307 			pte = swp_entry_to_pte(entry);
308 			if (pte_swp_soft_dirty(old_pte))
309 				pte = pte_swp_mksoft_dirty(pte);
310 			if (pte_swp_uffd_wp(old_pte))
311 				pte = pte_swp_mkuffd_wp(pte);
312 		}
313 
314 #ifdef CONFIG_HUGETLB_PAGE
315 		if (folio_test_hugetlb(folio)) {
316 			struct hstate *h = hstate_vma(vma);
317 			unsigned int shift = huge_page_shift(h);
318 			unsigned long psize = huge_page_size(h);
319 
320 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
321 			if (folio_test_anon(folio))
322 				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
323 						      rmap_flags);
324 			else
325 				hugetlb_add_file_rmap(folio);
326 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
327 					psize);
328 		} else
329 #endif
330 		{
331 			if (folio_test_anon(folio))
332 				folio_add_anon_rmap_pte(folio, new, vma,
333 							pvmw.address, rmap_flags);
334 			else
335 				folio_add_file_rmap_pte(folio, new, vma);
336 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
337 		}
338 		if (vma->vm_flags & VM_LOCKED)
339 			mlock_drain_local();
340 
341 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
342 					   compound_order(new));
343 
344 		/* No need to invalidate - it was non-present before */
345 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
346 	}
347 
348 	return true;
349 }
350 
351 /*
352  * Get rid of all migration entries and replace them by
353  * references to the indicated page.
354  */
355 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags)
356 {
357 	struct rmap_walk_arg rmap_walk_arg = {
358 		.folio = src,
359 		.map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE,
360 	};
361 
362 	struct rmap_walk_control rwc = {
363 		.rmap_one = remove_migration_pte,
364 		.arg = &rmap_walk_arg,
365 	};
366 
367 	VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src);
368 
369 	if (flags & RMP_LOCKED)
370 		rmap_walk_locked(dst, &rwc);
371 	else
372 		rmap_walk(dst, &rwc);
373 }
374 
375 /*
376  * Something used the pte of a page under migration. We need to
377  * get to the page and wait until migration is finished.
378  * When we return from this function the fault will be retried.
379  */
380 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
381 			  unsigned long address)
382 {
383 	spinlock_t *ptl;
384 	pte_t *ptep;
385 	pte_t pte;
386 	swp_entry_t entry;
387 
388 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
389 	if (!ptep)
390 		return;
391 
392 	pte = ptep_get(ptep);
393 	pte_unmap(ptep);
394 
395 	if (!is_swap_pte(pte))
396 		goto out;
397 
398 	entry = pte_to_swp_entry(pte);
399 	if (!is_migration_entry(entry))
400 		goto out;
401 
402 	migration_entry_wait_on_locked(entry, ptl);
403 	return;
404 out:
405 	spin_unlock(ptl);
406 }
407 
408 #ifdef CONFIG_HUGETLB_PAGE
409 /*
410  * The vma read lock must be held upon entry. Holding that lock prevents either
411  * the pte or the ptl from being freed.
412  *
413  * This function will release the vma lock before returning.
414  */
415 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
416 {
417 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
418 	pte_t pte;
419 
420 	hugetlb_vma_assert_locked(vma);
421 	spin_lock(ptl);
422 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
423 
424 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
425 		spin_unlock(ptl);
426 		hugetlb_vma_unlock_read(vma);
427 	} else {
428 		/*
429 		 * If migration entry existed, safe to release vma lock
430 		 * here because the pgtable page won't be freed without the
431 		 * pgtable lock released.  See comment right above pgtable
432 		 * lock release in migration_entry_wait_on_locked().
433 		 */
434 		hugetlb_vma_unlock_read(vma);
435 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
436 	}
437 }
438 #endif
439 
440 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
441 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
442 {
443 	spinlock_t *ptl;
444 
445 	ptl = pmd_lock(mm, pmd);
446 	if (!is_pmd_migration_entry(*pmd))
447 		goto unlock;
448 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
449 	return;
450 unlock:
451 	spin_unlock(ptl);
452 }
453 #endif
454 
455 static int folio_expected_refs(struct address_space *mapping,
456 		struct folio *folio)
457 {
458 	int refs = 1;
459 	if (!mapping)
460 		return refs;
461 
462 	refs += folio_nr_pages(folio);
463 	if (folio_test_private(folio))
464 		refs++;
465 
466 	return refs;
467 }
468 
469 /*
470  * Replace the folio in the mapping.
471  *
472  * The number of remaining references must be:
473  * 1 for anonymous folios without a mapping
474  * 2 for folios with a mapping
475  * 3 for folios with a mapping and PagePrivate/PagePrivate2 set.
476  */
477 static int __folio_migrate_mapping(struct address_space *mapping,
478 		struct folio *newfolio, struct folio *folio, int expected_count)
479 {
480 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
481 	struct zone *oldzone, *newzone;
482 	int dirty;
483 	long nr = folio_nr_pages(folio);
484 	long entries, i;
485 
486 	if (!mapping) {
487 		/* Take off deferred split queue while frozen and memcg set */
488 		if (folio_test_large(folio) &&
489 		    folio_test_large_rmappable(folio)) {
490 			if (!folio_ref_freeze(folio, expected_count))
491 				return -EAGAIN;
492 			folio_undo_large_rmappable(folio);
493 			folio_ref_unfreeze(folio, expected_count);
494 		}
495 
496 		/* No turning back from here */
497 		newfolio->index = folio->index;
498 		newfolio->mapping = folio->mapping;
499 		if (folio_test_anon(folio) && folio_test_large(folio))
500 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
501 		if (folio_test_swapbacked(folio))
502 			__folio_set_swapbacked(newfolio);
503 
504 		return MIGRATEPAGE_SUCCESS;
505 	}
506 
507 	oldzone = folio_zone(folio);
508 	newzone = folio_zone(newfolio);
509 
510 	xas_lock_irq(&xas);
511 	if (!folio_ref_freeze(folio, expected_count)) {
512 		xas_unlock_irq(&xas);
513 		return -EAGAIN;
514 	}
515 
516 	/* Take off deferred split queue while frozen and memcg set */
517 	folio_undo_large_rmappable(folio);
518 
519 	/*
520 	 * Now we know that no one else is looking at the folio:
521 	 * no turning back from here.
522 	 */
523 	newfolio->index = folio->index;
524 	newfolio->mapping = folio->mapping;
525 	if (folio_test_anon(folio) && folio_test_large(folio))
526 		mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
527 	folio_ref_add(newfolio, nr); /* add cache reference */
528 	if (folio_test_swapbacked(folio)) {
529 		__folio_set_swapbacked(newfolio);
530 		if (folio_test_swapcache(folio)) {
531 			folio_set_swapcache(newfolio);
532 			newfolio->private = folio_get_private(folio);
533 		}
534 		entries = nr;
535 	} else {
536 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
537 		entries = 1;
538 	}
539 
540 	/* Move dirty while folio refs frozen and newfolio not yet exposed */
541 	dirty = folio_test_dirty(folio);
542 	if (dirty) {
543 		folio_clear_dirty(folio);
544 		folio_set_dirty(newfolio);
545 	}
546 
547 	/* Swap cache still stores N entries instead of a high-order entry */
548 	for (i = 0; i < entries; i++) {
549 		xas_store(&xas, newfolio);
550 		xas_next(&xas);
551 	}
552 
553 	/*
554 	 * Drop cache reference from old folio by unfreezing
555 	 * to one less reference.
556 	 * We know this isn't the last reference.
557 	 */
558 	folio_ref_unfreeze(folio, expected_count - nr);
559 
560 	xas_unlock(&xas);
561 	/* Leave irq disabled to prevent preemption while updating stats */
562 
563 	/*
564 	 * If moved to a different zone then also account
565 	 * the folio for that zone. Other VM counters will be
566 	 * taken care of when we establish references to the
567 	 * new folio and drop references to the old folio.
568 	 *
569 	 * Note that anonymous folios are accounted for
570 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
571 	 * are mapped to swap space.
572 	 */
573 	if (newzone != oldzone) {
574 		struct lruvec *old_lruvec, *new_lruvec;
575 		struct mem_cgroup *memcg;
576 
577 		memcg = folio_memcg(folio);
578 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
579 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
580 
581 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
582 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
583 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
584 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
585 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
586 
587 			if (folio_test_pmd_mappable(folio)) {
588 				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
589 				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
590 			}
591 		}
592 #ifdef CONFIG_SWAP
593 		if (folio_test_swapcache(folio)) {
594 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
595 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
596 		}
597 #endif
598 		if (dirty && mapping_can_writeback(mapping)) {
599 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
600 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
601 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
602 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
603 		}
604 	}
605 	local_irq_enable();
606 
607 	return MIGRATEPAGE_SUCCESS;
608 }
609 
610 int folio_migrate_mapping(struct address_space *mapping,
611 		struct folio *newfolio, struct folio *folio, int extra_count)
612 {
613 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
614 
615 	if (folio_ref_count(folio) != expected_count)
616 		return -EAGAIN;
617 
618 	return __folio_migrate_mapping(mapping, newfolio, folio, expected_count);
619 }
620 EXPORT_SYMBOL(folio_migrate_mapping);
621 
622 /*
623  * The expected number of remaining references is the same as that
624  * of folio_migrate_mapping().
625  */
626 int migrate_huge_page_move_mapping(struct address_space *mapping,
627 				   struct folio *dst, struct folio *src)
628 {
629 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
630 	int rc, expected_count = folio_expected_refs(mapping, src);
631 
632 	if (folio_ref_count(src) != expected_count)
633 		return -EAGAIN;
634 
635 	rc = folio_mc_copy(dst, src);
636 	if (unlikely(rc))
637 		return rc;
638 
639 	xas_lock_irq(&xas);
640 	if (!folio_ref_freeze(src, expected_count)) {
641 		xas_unlock_irq(&xas);
642 		return -EAGAIN;
643 	}
644 
645 	dst->index = src->index;
646 	dst->mapping = src->mapping;
647 
648 	folio_ref_add(dst, folio_nr_pages(dst));
649 
650 	xas_store(&xas, dst);
651 
652 	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
653 
654 	xas_unlock_irq(&xas);
655 
656 	return MIGRATEPAGE_SUCCESS;
657 }
658 
659 /*
660  * Copy the flags and some other ancillary information
661  */
662 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
663 {
664 	int cpupid;
665 
666 	if (folio_test_referenced(folio))
667 		folio_set_referenced(newfolio);
668 	if (folio_test_uptodate(folio))
669 		folio_mark_uptodate(newfolio);
670 	if (folio_test_clear_active(folio)) {
671 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
672 		folio_set_active(newfolio);
673 	} else if (folio_test_clear_unevictable(folio))
674 		folio_set_unevictable(newfolio);
675 	if (folio_test_workingset(folio))
676 		folio_set_workingset(newfolio);
677 	if (folio_test_checked(folio))
678 		folio_set_checked(newfolio);
679 	/*
680 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
681 	 * migration entries. We can still have PG_anon_exclusive set on an
682 	 * effectively unmapped and unreferenced first sub-pages of an
683 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
684 	 */
685 	if (folio_test_mappedtodisk(folio))
686 		folio_set_mappedtodisk(newfolio);
687 
688 	/* Move dirty on pages not done by folio_migrate_mapping() */
689 	if (folio_test_dirty(folio))
690 		folio_set_dirty(newfolio);
691 
692 	if (folio_test_young(folio))
693 		folio_set_young(newfolio);
694 	if (folio_test_idle(folio))
695 		folio_set_idle(newfolio);
696 
697 	/*
698 	 * Copy NUMA information to the new page, to prevent over-eager
699 	 * future migrations of this same page.
700 	 */
701 	cpupid = folio_xchg_last_cpupid(folio, -1);
702 	/*
703 	 * For memory tiering mode, when migrate between slow and fast
704 	 * memory node, reset cpupid, because that is used to record
705 	 * page access time in slow memory node.
706 	 */
707 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
708 		bool f_toptier = node_is_toptier(folio_nid(folio));
709 		bool t_toptier = node_is_toptier(folio_nid(newfolio));
710 
711 		if (f_toptier != t_toptier)
712 			cpupid = -1;
713 	}
714 	folio_xchg_last_cpupid(newfolio, cpupid);
715 
716 	folio_migrate_ksm(newfolio, folio);
717 	/*
718 	 * Please do not reorder this without considering how mm/ksm.c's
719 	 * ksm_get_folio() depends upon ksm_migrate_page() and the
720 	 * swapcache flag.
721 	 */
722 	if (folio_test_swapcache(folio))
723 		folio_clear_swapcache(folio);
724 	folio_clear_private(folio);
725 
726 	/* page->private contains hugetlb specific flags */
727 	if (!folio_test_hugetlb(folio))
728 		folio->private = NULL;
729 
730 	/*
731 	 * If any waiters have accumulated on the new page then
732 	 * wake them up.
733 	 */
734 	if (folio_test_writeback(newfolio))
735 		folio_end_writeback(newfolio);
736 
737 	/*
738 	 * PG_readahead shares the same bit with PG_reclaim.  The above
739 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
740 	 * bit after that.
741 	 */
742 	if (folio_test_readahead(folio))
743 		folio_set_readahead(newfolio);
744 
745 	folio_copy_owner(newfolio, folio);
746 	pgalloc_tag_copy(newfolio, folio);
747 
748 	mem_cgroup_migrate(folio, newfolio);
749 }
750 EXPORT_SYMBOL(folio_migrate_flags);
751 
752 /************************************************************
753  *                    Migration functions
754  ***********************************************************/
755 
756 static int __migrate_folio(struct address_space *mapping, struct folio *dst,
757 			   struct folio *src, void *src_private,
758 			   enum migrate_mode mode)
759 {
760 	int rc, expected_count = folio_expected_refs(mapping, src);
761 
762 	/* Check whether src does not have extra refs before we do more work */
763 	if (folio_ref_count(src) != expected_count)
764 		return -EAGAIN;
765 
766 	rc = folio_mc_copy(dst, src);
767 	if (unlikely(rc))
768 		return rc;
769 
770 	rc = __folio_migrate_mapping(mapping, dst, src, expected_count);
771 	if (rc != MIGRATEPAGE_SUCCESS)
772 		return rc;
773 
774 	if (src_private)
775 		folio_attach_private(dst, folio_detach_private(src));
776 
777 	folio_migrate_flags(dst, src);
778 	return MIGRATEPAGE_SUCCESS;
779 }
780 
781 /**
782  * migrate_folio() - Simple folio migration.
783  * @mapping: The address_space containing the folio.
784  * @dst: The folio to migrate the data to.
785  * @src: The folio containing the current data.
786  * @mode: How to migrate the page.
787  *
788  * Common logic to directly migrate a single LRU folio suitable for
789  * folios that do not use PagePrivate/PagePrivate2.
790  *
791  * Folios are locked upon entry and exit.
792  */
793 int migrate_folio(struct address_space *mapping, struct folio *dst,
794 		  struct folio *src, enum migrate_mode mode)
795 {
796 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
797 	return __migrate_folio(mapping, dst, src, NULL, mode);
798 }
799 EXPORT_SYMBOL(migrate_folio);
800 
801 #ifdef CONFIG_BUFFER_HEAD
802 /* Returns true if all buffers are successfully locked */
803 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
804 							enum migrate_mode mode)
805 {
806 	struct buffer_head *bh = head;
807 	struct buffer_head *failed_bh;
808 
809 	do {
810 		if (!trylock_buffer(bh)) {
811 			if (mode == MIGRATE_ASYNC)
812 				goto unlock;
813 			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
814 				goto unlock;
815 			lock_buffer(bh);
816 		}
817 
818 		bh = bh->b_this_page;
819 	} while (bh != head);
820 
821 	return true;
822 
823 unlock:
824 	/* We failed to lock the buffer and cannot stall. */
825 	failed_bh = bh;
826 	bh = head;
827 	while (bh != failed_bh) {
828 		unlock_buffer(bh);
829 		bh = bh->b_this_page;
830 	}
831 
832 	return false;
833 }
834 
835 static int __buffer_migrate_folio(struct address_space *mapping,
836 		struct folio *dst, struct folio *src, enum migrate_mode mode,
837 		bool check_refs)
838 {
839 	struct buffer_head *bh, *head;
840 	int rc;
841 	int expected_count;
842 
843 	head = folio_buffers(src);
844 	if (!head)
845 		return migrate_folio(mapping, dst, src, mode);
846 
847 	/* Check whether page does not have extra refs before we do more work */
848 	expected_count = folio_expected_refs(mapping, src);
849 	if (folio_ref_count(src) != expected_count)
850 		return -EAGAIN;
851 
852 	if (!buffer_migrate_lock_buffers(head, mode))
853 		return -EAGAIN;
854 
855 	if (check_refs) {
856 		bool busy;
857 		bool invalidated = false;
858 
859 recheck_buffers:
860 		busy = false;
861 		spin_lock(&mapping->i_private_lock);
862 		bh = head;
863 		do {
864 			if (atomic_read(&bh->b_count)) {
865 				busy = true;
866 				break;
867 			}
868 			bh = bh->b_this_page;
869 		} while (bh != head);
870 		if (busy) {
871 			if (invalidated) {
872 				rc = -EAGAIN;
873 				goto unlock_buffers;
874 			}
875 			spin_unlock(&mapping->i_private_lock);
876 			invalidate_bh_lrus();
877 			invalidated = true;
878 			goto recheck_buffers;
879 		}
880 	}
881 
882 	rc = filemap_migrate_folio(mapping, dst, src, mode);
883 	if (rc != MIGRATEPAGE_SUCCESS)
884 		goto unlock_buffers;
885 
886 	bh = head;
887 	do {
888 		folio_set_bh(bh, dst, bh_offset(bh));
889 		bh = bh->b_this_page;
890 	} while (bh != head);
891 
892 unlock_buffers:
893 	if (check_refs)
894 		spin_unlock(&mapping->i_private_lock);
895 	bh = head;
896 	do {
897 		unlock_buffer(bh);
898 		bh = bh->b_this_page;
899 	} while (bh != head);
900 
901 	return rc;
902 }
903 
904 /**
905  * buffer_migrate_folio() - Migration function for folios with buffers.
906  * @mapping: The address space containing @src.
907  * @dst: The folio to migrate to.
908  * @src: The folio to migrate from.
909  * @mode: How to migrate the folio.
910  *
911  * This function can only be used if the underlying filesystem guarantees
912  * that no other references to @src exist. For example attached buffer
913  * heads are accessed only under the folio lock.  If your filesystem cannot
914  * provide this guarantee, buffer_migrate_folio_norefs() may be more
915  * appropriate.
916  *
917  * Return: 0 on success or a negative errno on failure.
918  */
919 int buffer_migrate_folio(struct address_space *mapping,
920 		struct folio *dst, struct folio *src, enum migrate_mode mode)
921 {
922 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
923 }
924 EXPORT_SYMBOL(buffer_migrate_folio);
925 
926 /**
927  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
928  * @mapping: The address space containing @src.
929  * @dst: The folio to migrate to.
930  * @src: The folio to migrate from.
931  * @mode: How to migrate the folio.
932  *
933  * Like buffer_migrate_folio() except that this variant is more careful
934  * and checks that there are also no buffer head references. This function
935  * is the right one for mappings where buffer heads are directly looked
936  * up and referenced (such as block device mappings).
937  *
938  * Return: 0 on success or a negative errno on failure.
939  */
940 int buffer_migrate_folio_norefs(struct address_space *mapping,
941 		struct folio *dst, struct folio *src, enum migrate_mode mode)
942 {
943 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
944 }
945 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
946 #endif /* CONFIG_BUFFER_HEAD */
947 
948 int filemap_migrate_folio(struct address_space *mapping,
949 		struct folio *dst, struct folio *src, enum migrate_mode mode)
950 {
951 	return __migrate_folio(mapping, dst, src, folio_get_private(src), mode);
952 }
953 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
954 
955 /*
956  * Writeback a folio to clean the dirty state
957  */
958 static int writeout(struct address_space *mapping, struct folio *folio)
959 {
960 	struct writeback_control wbc = {
961 		.sync_mode = WB_SYNC_NONE,
962 		.nr_to_write = 1,
963 		.range_start = 0,
964 		.range_end = LLONG_MAX,
965 		.for_reclaim = 1
966 	};
967 	int rc;
968 
969 	if (!mapping->a_ops->writepage)
970 		/* No write method for the address space */
971 		return -EINVAL;
972 
973 	if (!folio_clear_dirty_for_io(folio))
974 		/* Someone else already triggered a write */
975 		return -EAGAIN;
976 
977 	/*
978 	 * A dirty folio may imply that the underlying filesystem has
979 	 * the folio on some queue. So the folio must be clean for
980 	 * migration. Writeout may mean we lose the lock and the
981 	 * folio state is no longer what we checked for earlier.
982 	 * At this point we know that the migration attempt cannot
983 	 * be successful.
984 	 */
985 	remove_migration_ptes(folio, folio, 0);
986 
987 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
988 
989 	if (rc != AOP_WRITEPAGE_ACTIVATE)
990 		/* unlocked. Relock */
991 		folio_lock(folio);
992 
993 	return (rc < 0) ? -EIO : -EAGAIN;
994 }
995 
996 /*
997  * Default handling if a filesystem does not provide a migration function.
998  */
999 static int fallback_migrate_folio(struct address_space *mapping,
1000 		struct folio *dst, struct folio *src, enum migrate_mode mode)
1001 {
1002 	if (folio_test_dirty(src)) {
1003 		/* Only writeback folios in full synchronous migration */
1004 		switch (mode) {
1005 		case MIGRATE_SYNC:
1006 			break;
1007 		default:
1008 			return -EBUSY;
1009 		}
1010 		return writeout(mapping, src);
1011 	}
1012 
1013 	/*
1014 	 * Buffers may be managed in a filesystem specific way.
1015 	 * We must have no buffers or drop them.
1016 	 */
1017 	if (!filemap_release_folio(src, GFP_KERNEL))
1018 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
1019 
1020 	return migrate_folio(mapping, dst, src, mode);
1021 }
1022 
1023 /*
1024  * Move a page to a newly allocated page
1025  * The page is locked and all ptes have been successfully removed.
1026  *
1027  * The new page will have replaced the old page if this function
1028  * is successful.
1029  *
1030  * Return value:
1031  *   < 0 - error code
1032  *  MIGRATEPAGE_SUCCESS - success
1033  */
1034 static int move_to_new_folio(struct folio *dst, struct folio *src,
1035 				enum migrate_mode mode)
1036 {
1037 	int rc = -EAGAIN;
1038 	bool is_lru = !__folio_test_movable(src);
1039 
1040 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
1041 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
1042 
1043 	if (likely(is_lru)) {
1044 		struct address_space *mapping = folio_mapping(src);
1045 
1046 		if (!mapping)
1047 			rc = migrate_folio(mapping, dst, src, mode);
1048 		else if (mapping_inaccessible(mapping))
1049 			rc = -EOPNOTSUPP;
1050 		else if (mapping->a_ops->migrate_folio)
1051 			/*
1052 			 * Most folios have a mapping and most filesystems
1053 			 * provide a migrate_folio callback. Anonymous folios
1054 			 * are part of swap space which also has its own
1055 			 * migrate_folio callback. This is the most common path
1056 			 * for page migration.
1057 			 */
1058 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
1059 								mode);
1060 		else
1061 			rc = fallback_migrate_folio(mapping, dst, src, mode);
1062 	} else {
1063 		const struct movable_operations *mops;
1064 
1065 		/*
1066 		 * In case of non-lru page, it could be released after
1067 		 * isolation step. In that case, we shouldn't try migration.
1068 		 */
1069 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1070 		if (!folio_test_movable(src)) {
1071 			rc = MIGRATEPAGE_SUCCESS;
1072 			folio_clear_isolated(src);
1073 			goto out;
1074 		}
1075 
1076 		mops = folio_movable_ops(src);
1077 		rc = mops->migrate_page(&dst->page, &src->page, mode);
1078 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
1079 				!folio_test_isolated(src));
1080 	}
1081 
1082 	/*
1083 	 * When successful, old pagecache src->mapping must be cleared before
1084 	 * src is freed; but stats require that PageAnon be left as PageAnon.
1085 	 */
1086 	if (rc == MIGRATEPAGE_SUCCESS) {
1087 		if (__folio_test_movable(src)) {
1088 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1089 
1090 			/*
1091 			 * We clear PG_movable under page_lock so any compactor
1092 			 * cannot try to migrate this page.
1093 			 */
1094 			folio_clear_isolated(src);
1095 		}
1096 
1097 		/*
1098 		 * Anonymous and movable src->mapping will be cleared by
1099 		 * free_pages_prepare so don't reset it here for keeping
1100 		 * the type to work PageAnon, for example.
1101 		 */
1102 		if (!folio_mapping_flags(src))
1103 			src->mapping = NULL;
1104 
1105 		if (likely(!folio_is_zone_device(dst)))
1106 			flush_dcache_folio(dst);
1107 	}
1108 out:
1109 	return rc;
1110 }
1111 
1112 /*
1113  * To record some information during migration, we use unused private
1114  * field of struct folio of the newly allocated destination folio.
1115  * This is safe because nobody is using it except us.
1116  */
1117 enum {
1118 	PAGE_WAS_MAPPED = BIT(0),
1119 	PAGE_WAS_MLOCKED = BIT(1),
1120 	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1121 };
1122 
1123 static void __migrate_folio_record(struct folio *dst,
1124 				   int old_page_state,
1125 				   struct anon_vma *anon_vma)
1126 {
1127 	dst->private = (void *)anon_vma + old_page_state;
1128 }
1129 
1130 static void __migrate_folio_extract(struct folio *dst,
1131 				   int *old_page_state,
1132 				   struct anon_vma **anon_vmap)
1133 {
1134 	unsigned long private = (unsigned long)dst->private;
1135 
1136 	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1137 	*old_page_state = private & PAGE_OLD_STATES;
1138 	dst->private = NULL;
1139 }
1140 
1141 /* Restore the source folio to the original state upon failure */
1142 static void migrate_folio_undo_src(struct folio *src,
1143 				   int page_was_mapped,
1144 				   struct anon_vma *anon_vma,
1145 				   bool locked,
1146 				   struct list_head *ret)
1147 {
1148 	if (page_was_mapped)
1149 		remove_migration_ptes(src, src, 0);
1150 	/* Drop an anon_vma reference if we took one */
1151 	if (anon_vma)
1152 		put_anon_vma(anon_vma);
1153 	if (locked)
1154 		folio_unlock(src);
1155 	if (ret)
1156 		list_move_tail(&src->lru, ret);
1157 }
1158 
1159 /* Restore the destination folio to the original state upon failure */
1160 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1161 		free_folio_t put_new_folio, unsigned long private)
1162 {
1163 	if (locked)
1164 		folio_unlock(dst);
1165 	if (put_new_folio)
1166 		put_new_folio(dst, private);
1167 	else
1168 		folio_put(dst);
1169 }
1170 
1171 /* Cleanup src folio upon migration success */
1172 static void migrate_folio_done(struct folio *src,
1173 			       enum migrate_reason reason)
1174 {
1175 	/*
1176 	 * Compaction can migrate also non-LRU pages which are
1177 	 * not accounted to NR_ISOLATED_*. They can be recognized
1178 	 * as __folio_test_movable
1179 	 */
1180 	if (likely(!__folio_test_movable(src)))
1181 		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1182 				    folio_is_file_lru(src), -folio_nr_pages(src));
1183 
1184 	if (reason != MR_MEMORY_FAILURE)
1185 		/* We release the page in page_handle_poison. */
1186 		folio_put(src);
1187 }
1188 
1189 /* Obtain the lock on page, remove all ptes. */
1190 static int migrate_folio_unmap(new_folio_t get_new_folio,
1191 		free_folio_t put_new_folio, unsigned long private,
1192 		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1193 		enum migrate_reason reason, struct list_head *ret)
1194 {
1195 	struct folio *dst;
1196 	int rc = -EAGAIN;
1197 	int old_page_state = 0;
1198 	struct anon_vma *anon_vma = NULL;
1199 	bool is_lru = data_race(!__folio_test_movable(src));
1200 	bool locked = false;
1201 	bool dst_locked = false;
1202 
1203 	if (folio_ref_count(src) == 1) {
1204 		/* Folio was freed from under us. So we are done. */
1205 		folio_clear_active(src);
1206 		folio_clear_unevictable(src);
1207 		/* free_pages_prepare() will clear PG_isolated. */
1208 		list_del(&src->lru);
1209 		migrate_folio_done(src, reason);
1210 		return MIGRATEPAGE_SUCCESS;
1211 	}
1212 
1213 	dst = get_new_folio(src, private);
1214 	if (!dst)
1215 		return -ENOMEM;
1216 	*dstp = dst;
1217 
1218 	dst->private = NULL;
1219 
1220 	if (!folio_trylock(src)) {
1221 		if (mode == MIGRATE_ASYNC)
1222 			goto out;
1223 
1224 		/*
1225 		 * It's not safe for direct compaction to call lock_page.
1226 		 * For example, during page readahead pages are added locked
1227 		 * to the LRU. Later, when the IO completes the pages are
1228 		 * marked uptodate and unlocked. However, the queueing
1229 		 * could be merging multiple pages for one bio (e.g.
1230 		 * mpage_readahead). If an allocation happens for the
1231 		 * second or third page, the process can end up locking
1232 		 * the same page twice and deadlocking. Rather than
1233 		 * trying to be clever about what pages can be locked,
1234 		 * avoid the use of lock_page for direct compaction
1235 		 * altogether.
1236 		 */
1237 		if (current->flags & PF_MEMALLOC)
1238 			goto out;
1239 
1240 		/*
1241 		 * In "light" mode, we can wait for transient locks (eg
1242 		 * inserting a page into the page table), but it's not
1243 		 * worth waiting for I/O.
1244 		 */
1245 		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1246 			goto out;
1247 
1248 		folio_lock(src);
1249 	}
1250 	locked = true;
1251 	if (folio_test_mlocked(src))
1252 		old_page_state |= PAGE_WAS_MLOCKED;
1253 
1254 	if (folio_test_writeback(src)) {
1255 		/*
1256 		 * Only in the case of a full synchronous migration is it
1257 		 * necessary to wait for PageWriteback. In the async case,
1258 		 * the retry loop is too short and in the sync-light case,
1259 		 * the overhead of stalling is too much
1260 		 */
1261 		switch (mode) {
1262 		case MIGRATE_SYNC:
1263 			break;
1264 		default:
1265 			rc = -EBUSY;
1266 			goto out;
1267 		}
1268 		folio_wait_writeback(src);
1269 	}
1270 
1271 	/*
1272 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1273 	 * we cannot notice that anon_vma is freed while we migrate a page.
1274 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1275 	 * of migration. File cache pages are no problem because of page_lock()
1276 	 * File Caches may use write_page() or lock_page() in migration, then,
1277 	 * just care Anon page here.
1278 	 *
1279 	 * Only folio_get_anon_vma() understands the subtleties of
1280 	 * getting a hold on an anon_vma from outside one of its mms.
1281 	 * But if we cannot get anon_vma, then we won't need it anyway,
1282 	 * because that implies that the anon page is no longer mapped
1283 	 * (and cannot be remapped so long as we hold the page lock).
1284 	 */
1285 	if (folio_test_anon(src) && !folio_test_ksm(src))
1286 		anon_vma = folio_get_anon_vma(src);
1287 
1288 	/*
1289 	 * Block others from accessing the new page when we get around to
1290 	 * establishing additional references. We are usually the only one
1291 	 * holding a reference to dst at this point. We used to have a BUG
1292 	 * here if folio_trylock(dst) fails, but would like to allow for
1293 	 * cases where there might be a race with the previous use of dst.
1294 	 * This is much like races on refcount of oldpage: just don't BUG().
1295 	 */
1296 	if (unlikely(!folio_trylock(dst)))
1297 		goto out;
1298 	dst_locked = true;
1299 
1300 	if (unlikely(!is_lru)) {
1301 		__migrate_folio_record(dst, old_page_state, anon_vma);
1302 		return MIGRATEPAGE_UNMAP;
1303 	}
1304 
1305 	/*
1306 	 * Corner case handling:
1307 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1308 	 * and treated as swapcache but it has no rmap yet.
1309 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1310 	 * trigger a BUG.  So handle it here.
1311 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1312 	 * fs-private metadata. The page can be picked up due to memory
1313 	 * offlining.  Everywhere else except page reclaim, the page is
1314 	 * invisible to the vm, so the page can not be migrated.  So try to
1315 	 * free the metadata, so the page can be freed.
1316 	 */
1317 	if (!src->mapping) {
1318 		if (folio_test_private(src)) {
1319 			try_to_free_buffers(src);
1320 			goto out;
1321 		}
1322 	} else if (folio_mapped(src)) {
1323 		/* Establish migration ptes */
1324 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1325 			       !folio_test_ksm(src) && !anon_vma, src);
1326 		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1327 		old_page_state |= PAGE_WAS_MAPPED;
1328 	}
1329 
1330 	if (!folio_mapped(src)) {
1331 		__migrate_folio_record(dst, old_page_state, anon_vma);
1332 		return MIGRATEPAGE_UNMAP;
1333 	}
1334 
1335 out:
1336 	/*
1337 	 * A folio that has not been unmapped will be restored to
1338 	 * right list unless we want to retry.
1339 	 */
1340 	if (rc == -EAGAIN)
1341 		ret = NULL;
1342 
1343 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1344 			       anon_vma, locked, ret);
1345 	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1346 
1347 	return rc;
1348 }
1349 
1350 /* Migrate the folio to the newly allocated folio in dst. */
1351 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1352 			      struct folio *src, struct folio *dst,
1353 			      enum migrate_mode mode, enum migrate_reason reason,
1354 			      struct list_head *ret)
1355 {
1356 	int rc;
1357 	int old_page_state = 0;
1358 	struct anon_vma *anon_vma = NULL;
1359 	bool is_lru = !__folio_test_movable(src);
1360 	struct list_head *prev;
1361 
1362 	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1363 	prev = dst->lru.prev;
1364 	list_del(&dst->lru);
1365 
1366 	rc = move_to_new_folio(dst, src, mode);
1367 	if (rc)
1368 		goto out;
1369 
1370 	if (unlikely(!is_lru))
1371 		goto out_unlock_both;
1372 
1373 	/*
1374 	 * When successful, push dst to LRU immediately: so that if it
1375 	 * turns out to be an mlocked page, remove_migration_ptes() will
1376 	 * automatically build up the correct dst->mlock_count for it.
1377 	 *
1378 	 * We would like to do something similar for the old page, when
1379 	 * unsuccessful, and other cases when a page has been temporarily
1380 	 * isolated from the unevictable LRU: but this case is the easiest.
1381 	 */
1382 	folio_add_lru(dst);
1383 	if (old_page_state & PAGE_WAS_MLOCKED)
1384 		lru_add_drain();
1385 
1386 	if (old_page_state & PAGE_WAS_MAPPED)
1387 		remove_migration_ptes(src, dst, 0);
1388 
1389 out_unlock_both:
1390 	folio_unlock(dst);
1391 	set_page_owner_migrate_reason(&dst->page, reason);
1392 	/*
1393 	 * If migration is successful, decrease refcount of dst,
1394 	 * which will not free the page because new page owner increased
1395 	 * refcounter.
1396 	 */
1397 	folio_put(dst);
1398 
1399 	/*
1400 	 * A folio that has been migrated has all references removed
1401 	 * and will be freed.
1402 	 */
1403 	list_del(&src->lru);
1404 	/* Drop an anon_vma reference if we took one */
1405 	if (anon_vma)
1406 		put_anon_vma(anon_vma);
1407 	folio_unlock(src);
1408 	migrate_folio_done(src, reason);
1409 
1410 	return rc;
1411 out:
1412 	/*
1413 	 * A folio that has not been migrated will be restored to
1414 	 * right list unless we want to retry.
1415 	 */
1416 	if (rc == -EAGAIN) {
1417 		list_add(&dst->lru, prev);
1418 		__migrate_folio_record(dst, old_page_state, anon_vma);
1419 		return rc;
1420 	}
1421 
1422 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1423 			       anon_vma, true, ret);
1424 	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1425 
1426 	return rc;
1427 }
1428 
1429 /*
1430  * Counterpart of unmap_and_move_page() for hugepage migration.
1431  *
1432  * This function doesn't wait the completion of hugepage I/O
1433  * because there is no race between I/O and migration for hugepage.
1434  * Note that currently hugepage I/O occurs only in direct I/O
1435  * where no lock is held and PG_writeback is irrelevant,
1436  * and writeback status of all subpages are counted in the reference
1437  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1438  * under direct I/O, the reference of the head page is 512 and a bit more.)
1439  * This means that when we try to migrate hugepage whose subpages are
1440  * doing direct I/O, some references remain after try_to_unmap() and
1441  * hugepage migration fails without data corruption.
1442  *
1443  * There is also no race when direct I/O is issued on the page under migration,
1444  * because then pte is replaced with migration swap entry and direct I/O code
1445  * will wait in the page fault for migration to complete.
1446  */
1447 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1448 		free_folio_t put_new_folio, unsigned long private,
1449 		struct folio *src, int force, enum migrate_mode mode,
1450 		int reason, struct list_head *ret)
1451 {
1452 	struct folio *dst;
1453 	int rc = -EAGAIN;
1454 	int page_was_mapped = 0;
1455 	struct anon_vma *anon_vma = NULL;
1456 	struct address_space *mapping = NULL;
1457 
1458 	if (folio_ref_count(src) == 1) {
1459 		/* page was freed from under us. So we are done. */
1460 		folio_putback_active_hugetlb(src);
1461 		return MIGRATEPAGE_SUCCESS;
1462 	}
1463 
1464 	dst = get_new_folio(src, private);
1465 	if (!dst)
1466 		return -ENOMEM;
1467 
1468 	if (!folio_trylock(src)) {
1469 		if (!force)
1470 			goto out;
1471 		switch (mode) {
1472 		case MIGRATE_SYNC:
1473 			break;
1474 		default:
1475 			goto out;
1476 		}
1477 		folio_lock(src);
1478 	}
1479 
1480 	/*
1481 	 * Check for pages which are in the process of being freed.  Without
1482 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1483 	 * be called and we could leak usage counts for subpools.
1484 	 */
1485 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1486 		rc = -EBUSY;
1487 		goto out_unlock;
1488 	}
1489 
1490 	if (folio_test_anon(src))
1491 		anon_vma = folio_get_anon_vma(src);
1492 
1493 	if (unlikely(!folio_trylock(dst)))
1494 		goto put_anon;
1495 
1496 	if (folio_mapped(src)) {
1497 		enum ttu_flags ttu = 0;
1498 
1499 		if (!folio_test_anon(src)) {
1500 			/*
1501 			 * In shared mappings, try_to_unmap could potentially
1502 			 * call huge_pmd_unshare.  Because of this, take
1503 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1504 			 * to let lower levels know we have taken the lock.
1505 			 */
1506 			mapping = hugetlb_folio_mapping_lock_write(src);
1507 			if (unlikely(!mapping))
1508 				goto unlock_put_anon;
1509 
1510 			ttu = TTU_RMAP_LOCKED;
1511 		}
1512 
1513 		try_to_migrate(src, ttu);
1514 		page_was_mapped = 1;
1515 
1516 		if (ttu & TTU_RMAP_LOCKED)
1517 			i_mmap_unlock_write(mapping);
1518 	}
1519 
1520 	if (!folio_mapped(src))
1521 		rc = move_to_new_folio(dst, src, mode);
1522 
1523 	if (page_was_mapped)
1524 		remove_migration_ptes(src,
1525 			rc == MIGRATEPAGE_SUCCESS ? dst : src, 0);
1526 
1527 unlock_put_anon:
1528 	folio_unlock(dst);
1529 
1530 put_anon:
1531 	if (anon_vma)
1532 		put_anon_vma(anon_vma);
1533 
1534 	if (rc == MIGRATEPAGE_SUCCESS) {
1535 		move_hugetlb_state(src, dst, reason);
1536 		put_new_folio = NULL;
1537 	}
1538 
1539 out_unlock:
1540 	folio_unlock(src);
1541 out:
1542 	if (rc == MIGRATEPAGE_SUCCESS)
1543 		folio_putback_active_hugetlb(src);
1544 	else if (rc != -EAGAIN)
1545 		list_move_tail(&src->lru, ret);
1546 
1547 	/*
1548 	 * If migration was not successful and there's a freeing callback, use
1549 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1550 	 * isolation.
1551 	 */
1552 	if (put_new_folio)
1553 		put_new_folio(dst, private);
1554 	else
1555 		folio_putback_active_hugetlb(dst);
1556 
1557 	return rc;
1558 }
1559 
1560 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios,
1561 				  enum migrate_mode mode)
1562 {
1563 	int rc;
1564 
1565 	if (mode == MIGRATE_ASYNC) {
1566 		if (!folio_trylock(folio))
1567 			return -EAGAIN;
1568 	} else {
1569 		folio_lock(folio);
1570 	}
1571 	rc = split_folio_to_list(folio, split_folios);
1572 	folio_unlock(folio);
1573 	if (!rc)
1574 		list_move_tail(&folio->lru, split_folios);
1575 
1576 	return rc;
1577 }
1578 
1579 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1580 #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1581 #else
1582 #define NR_MAX_BATCHED_MIGRATION	512
1583 #endif
1584 #define NR_MAX_MIGRATE_PAGES_RETRY	10
1585 #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1586 #define NR_MAX_MIGRATE_SYNC_RETRY					\
1587 	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1588 
1589 struct migrate_pages_stats {
1590 	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1591 				   units of base pages */
1592 	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1593 				   units of base pages.  Untried folios aren't counted */
1594 	int nr_thp_succeeded;	/* THP migrated successfully */
1595 	int nr_thp_failed;	/* THP failed to be migrated */
1596 	int nr_thp_split;	/* THP split before migrating */
1597 	int nr_split;	/* Large folio (include THP) split before migrating */
1598 };
1599 
1600 /*
1601  * Returns the number of hugetlb folios that were not migrated, or an error code
1602  * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1603  * any more because the list has become empty or no retryable hugetlb folios
1604  * exist any more. It is caller's responsibility to call putback_movable_pages()
1605  * only if ret != 0.
1606  */
1607 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1608 			    free_folio_t put_new_folio, unsigned long private,
1609 			    enum migrate_mode mode, int reason,
1610 			    struct migrate_pages_stats *stats,
1611 			    struct list_head *ret_folios)
1612 {
1613 	int retry = 1;
1614 	int nr_failed = 0;
1615 	int nr_retry_pages = 0;
1616 	int pass = 0;
1617 	struct folio *folio, *folio2;
1618 	int rc, nr_pages;
1619 
1620 	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1621 		retry = 0;
1622 		nr_retry_pages = 0;
1623 
1624 		list_for_each_entry_safe(folio, folio2, from, lru) {
1625 			if (!folio_test_hugetlb(folio))
1626 				continue;
1627 
1628 			nr_pages = folio_nr_pages(folio);
1629 
1630 			cond_resched();
1631 
1632 			/*
1633 			 * Migratability of hugepages depends on architectures and
1634 			 * their size.  This check is necessary because some callers
1635 			 * of hugepage migration like soft offline and memory
1636 			 * hotremove don't walk through page tables or check whether
1637 			 * the hugepage is pmd-based or not before kicking migration.
1638 			 */
1639 			if (!hugepage_migration_supported(folio_hstate(folio))) {
1640 				nr_failed++;
1641 				stats->nr_failed_pages += nr_pages;
1642 				list_move_tail(&folio->lru, ret_folios);
1643 				continue;
1644 			}
1645 
1646 			rc = unmap_and_move_huge_page(get_new_folio,
1647 						      put_new_folio, private,
1648 						      folio, pass > 2, mode,
1649 						      reason, ret_folios);
1650 			/*
1651 			 * The rules are:
1652 			 *	Success: hugetlb folio will be put back
1653 			 *	-EAGAIN: stay on the from list
1654 			 *	-ENOMEM: stay on the from list
1655 			 *	Other errno: put on ret_folios list
1656 			 */
1657 			switch(rc) {
1658 			case -ENOMEM:
1659 				/*
1660 				 * When memory is low, don't bother to try to migrate
1661 				 * other folios, just exit.
1662 				 */
1663 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1664 				return -ENOMEM;
1665 			case -EAGAIN:
1666 				retry++;
1667 				nr_retry_pages += nr_pages;
1668 				break;
1669 			case MIGRATEPAGE_SUCCESS:
1670 				stats->nr_succeeded += nr_pages;
1671 				break;
1672 			default:
1673 				/*
1674 				 * Permanent failure (-EBUSY, etc.):
1675 				 * unlike -EAGAIN case, the failed folio is
1676 				 * removed from migration folio list and not
1677 				 * retried in the next outer loop.
1678 				 */
1679 				nr_failed++;
1680 				stats->nr_failed_pages += nr_pages;
1681 				break;
1682 			}
1683 		}
1684 	}
1685 	/*
1686 	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1687 	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1688 	 * folios as failed.
1689 	 */
1690 	nr_failed += retry;
1691 	stats->nr_failed_pages += nr_retry_pages;
1692 
1693 	return nr_failed;
1694 }
1695 
1696 /*
1697  * migrate_pages_batch() first unmaps folios in the from list as many as
1698  * possible, then move the unmapped folios.
1699  *
1700  * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1701  * lock or bit when we have locked more than one folio.  Which may cause
1702  * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1703  * length of the from list must be <= 1.
1704  */
1705 static int migrate_pages_batch(struct list_head *from,
1706 		new_folio_t get_new_folio, free_folio_t put_new_folio,
1707 		unsigned long private, enum migrate_mode mode, int reason,
1708 		struct list_head *ret_folios, struct list_head *split_folios,
1709 		struct migrate_pages_stats *stats, int nr_pass)
1710 {
1711 	int retry = 1;
1712 	int thp_retry = 1;
1713 	int nr_failed = 0;
1714 	int nr_retry_pages = 0;
1715 	int pass = 0;
1716 	bool is_thp = false;
1717 	bool is_large = false;
1718 	struct folio *folio, *folio2, *dst = NULL, *dst2;
1719 	int rc, rc_saved = 0, nr_pages;
1720 	LIST_HEAD(unmap_folios);
1721 	LIST_HEAD(dst_folios);
1722 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1723 
1724 	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1725 			!list_empty(from) && !list_is_singular(from));
1726 
1727 	for (pass = 0; pass < nr_pass && retry; pass++) {
1728 		retry = 0;
1729 		thp_retry = 0;
1730 		nr_retry_pages = 0;
1731 
1732 		list_for_each_entry_safe(folio, folio2, from, lru) {
1733 			is_large = folio_test_large(folio);
1734 			is_thp = is_large && folio_test_pmd_mappable(folio);
1735 			nr_pages = folio_nr_pages(folio);
1736 
1737 			cond_resched();
1738 
1739 			/*
1740 			 * The rare folio on the deferred split list should
1741 			 * be split now. It should not count as a failure:
1742 			 * but increment nr_failed because, without doing so,
1743 			 * migrate_pages() may report success with (split but
1744 			 * unmigrated) pages still on its fromlist; whereas it
1745 			 * always reports success when its fromlist is empty.
1746 			 * stats->nr_thp_failed should be increased too,
1747 			 * otherwise stats inconsistency will happen when
1748 			 * migrate_pages_batch is called via migrate_pages()
1749 			 * with MIGRATE_SYNC and MIGRATE_ASYNC.
1750 			 *
1751 			 * Only check it without removing it from the list.
1752 			 * Since the folio can be on deferred_split_scan()
1753 			 * local list and removing it can cause the local list
1754 			 * corruption. Folio split process below can handle it
1755 			 * with the help of folio_ref_freeze().
1756 			 *
1757 			 * nr_pages > 2 is needed to avoid checking order-1
1758 			 * page cache folios. They exist, in contrast to
1759 			 * non-existent order-1 anonymous folios, and do not
1760 			 * use _deferred_list.
1761 			 */
1762 			if (nr_pages > 2 &&
1763 			   !list_empty(&folio->_deferred_list) &&
1764 			   folio_test_partially_mapped(folio)) {
1765 				if (!try_split_folio(folio, split_folios, mode)) {
1766 					nr_failed++;
1767 					stats->nr_thp_failed += is_thp;
1768 					stats->nr_thp_split += is_thp;
1769 					stats->nr_split++;
1770 					continue;
1771 				}
1772 			}
1773 
1774 			/*
1775 			 * Large folio migration might be unsupported or
1776 			 * the allocation might be failed so we should retry
1777 			 * on the same folio with the large folio split
1778 			 * to normal folios.
1779 			 *
1780 			 * Split folios are put in split_folios, and
1781 			 * we will migrate them after the rest of the
1782 			 * list is processed.
1783 			 */
1784 			if (!thp_migration_supported() && is_thp) {
1785 				nr_failed++;
1786 				stats->nr_thp_failed++;
1787 				if (!try_split_folio(folio, split_folios, mode)) {
1788 					stats->nr_thp_split++;
1789 					stats->nr_split++;
1790 					continue;
1791 				}
1792 				stats->nr_failed_pages += nr_pages;
1793 				list_move_tail(&folio->lru, ret_folios);
1794 				continue;
1795 			}
1796 
1797 			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1798 					private, folio, &dst, mode, reason,
1799 					ret_folios);
1800 			/*
1801 			 * The rules are:
1802 			 *	Success: folio will be freed
1803 			 *	Unmap: folio will be put on unmap_folios list,
1804 			 *	       dst folio put on dst_folios list
1805 			 *	-EAGAIN: stay on the from list
1806 			 *	-ENOMEM: stay on the from list
1807 			 *	Other errno: put on ret_folios list
1808 			 */
1809 			switch(rc) {
1810 			case -ENOMEM:
1811 				/*
1812 				 * When memory is low, don't bother to try to migrate
1813 				 * other folios, move unmapped folios, then exit.
1814 				 */
1815 				nr_failed++;
1816 				stats->nr_thp_failed += is_thp;
1817 				/* Large folio NUMA faulting doesn't split to retry. */
1818 				if (is_large && !nosplit) {
1819 					int ret = try_split_folio(folio, split_folios, mode);
1820 
1821 					if (!ret) {
1822 						stats->nr_thp_split += is_thp;
1823 						stats->nr_split++;
1824 						break;
1825 					} else if (reason == MR_LONGTERM_PIN &&
1826 						   ret == -EAGAIN) {
1827 						/*
1828 						 * Try again to split large folio to
1829 						 * mitigate the failure of longterm pinning.
1830 						 */
1831 						retry++;
1832 						thp_retry += is_thp;
1833 						nr_retry_pages += nr_pages;
1834 						/* Undo duplicated failure counting. */
1835 						nr_failed--;
1836 						stats->nr_thp_failed -= is_thp;
1837 						break;
1838 					}
1839 				}
1840 
1841 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1842 				/* nr_failed isn't updated for not used */
1843 				stats->nr_thp_failed += thp_retry;
1844 				rc_saved = rc;
1845 				if (list_empty(&unmap_folios))
1846 					goto out;
1847 				else
1848 					goto move;
1849 			case -EAGAIN:
1850 				retry++;
1851 				thp_retry += is_thp;
1852 				nr_retry_pages += nr_pages;
1853 				break;
1854 			case MIGRATEPAGE_SUCCESS:
1855 				stats->nr_succeeded += nr_pages;
1856 				stats->nr_thp_succeeded += is_thp;
1857 				break;
1858 			case MIGRATEPAGE_UNMAP:
1859 				list_move_tail(&folio->lru, &unmap_folios);
1860 				list_add_tail(&dst->lru, &dst_folios);
1861 				break;
1862 			default:
1863 				/*
1864 				 * Permanent failure (-EBUSY, etc.):
1865 				 * unlike -EAGAIN case, the failed folio is
1866 				 * removed from migration folio list and not
1867 				 * retried in the next outer loop.
1868 				 */
1869 				nr_failed++;
1870 				stats->nr_thp_failed += is_thp;
1871 				stats->nr_failed_pages += nr_pages;
1872 				break;
1873 			}
1874 		}
1875 	}
1876 	nr_failed += retry;
1877 	stats->nr_thp_failed += thp_retry;
1878 	stats->nr_failed_pages += nr_retry_pages;
1879 move:
1880 	/* Flush TLBs for all unmapped folios */
1881 	try_to_unmap_flush();
1882 
1883 	retry = 1;
1884 	for (pass = 0; pass < nr_pass && retry; pass++) {
1885 		retry = 0;
1886 		thp_retry = 0;
1887 		nr_retry_pages = 0;
1888 
1889 		dst = list_first_entry(&dst_folios, struct folio, lru);
1890 		dst2 = list_next_entry(dst, lru);
1891 		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1892 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1893 			nr_pages = folio_nr_pages(folio);
1894 
1895 			cond_resched();
1896 
1897 			rc = migrate_folio_move(put_new_folio, private,
1898 						folio, dst, mode,
1899 						reason, ret_folios);
1900 			/*
1901 			 * The rules are:
1902 			 *	Success: folio will be freed
1903 			 *	-EAGAIN: stay on the unmap_folios list
1904 			 *	Other errno: put on ret_folios list
1905 			 */
1906 			switch(rc) {
1907 			case -EAGAIN:
1908 				retry++;
1909 				thp_retry += is_thp;
1910 				nr_retry_pages += nr_pages;
1911 				break;
1912 			case MIGRATEPAGE_SUCCESS:
1913 				stats->nr_succeeded += nr_pages;
1914 				stats->nr_thp_succeeded += is_thp;
1915 				break;
1916 			default:
1917 				nr_failed++;
1918 				stats->nr_thp_failed += is_thp;
1919 				stats->nr_failed_pages += nr_pages;
1920 				break;
1921 			}
1922 			dst = dst2;
1923 			dst2 = list_next_entry(dst, lru);
1924 		}
1925 	}
1926 	nr_failed += retry;
1927 	stats->nr_thp_failed += thp_retry;
1928 	stats->nr_failed_pages += nr_retry_pages;
1929 
1930 	rc = rc_saved ? : nr_failed;
1931 out:
1932 	/* Cleanup remaining folios */
1933 	dst = list_first_entry(&dst_folios, struct folio, lru);
1934 	dst2 = list_next_entry(dst, lru);
1935 	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1936 		int old_page_state = 0;
1937 		struct anon_vma *anon_vma = NULL;
1938 
1939 		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1940 		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1941 				       anon_vma, true, ret_folios);
1942 		list_del(&dst->lru);
1943 		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1944 		dst = dst2;
1945 		dst2 = list_next_entry(dst, lru);
1946 	}
1947 
1948 	return rc;
1949 }
1950 
1951 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1952 		free_folio_t put_new_folio, unsigned long private,
1953 		enum migrate_mode mode, int reason,
1954 		struct list_head *ret_folios, struct list_head *split_folios,
1955 		struct migrate_pages_stats *stats)
1956 {
1957 	int rc, nr_failed = 0;
1958 	LIST_HEAD(folios);
1959 	struct migrate_pages_stats astats;
1960 
1961 	memset(&astats, 0, sizeof(astats));
1962 	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1963 	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1964 				 reason, &folios, split_folios, &astats,
1965 				 NR_MAX_MIGRATE_ASYNC_RETRY);
1966 	stats->nr_succeeded += astats.nr_succeeded;
1967 	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1968 	stats->nr_thp_split += astats.nr_thp_split;
1969 	stats->nr_split += astats.nr_split;
1970 	if (rc < 0) {
1971 		stats->nr_failed_pages += astats.nr_failed_pages;
1972 		stats->nr_thp_failed += astats.nr_thp_failed;
1973 		list_splice_tail(&folios, ret_folios);
1974 		return rc;
1975 	}
1976 	stats->nr_thp_failed += astats.nr_thp_split;
1977 	/*
1978 	 * Do not count rc, as pages will be retried below.
1979 	 * Count nr_split only, since it includes nr_thp_split.
1980 	 */
1981 	nr_failed += astats.nr_split;
1982 	/*
1983 	 * Fall back to migrate all failed folios one by one synchronously. All
1984 	 * failed folios except split THPs will be retried, so their failure
1985 	 * isn't counted
1986 	 */
1987 	list_splice_tail_init(&folios, from);
1988 	while (!list_empty(from)) {
1989 		list_move(from->next, &folios);
1990 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1991 					 private, mode, reason, ret_folios,
1992 					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1993 		list_splice_tail_init(&folios, ret_folios);
1994 		if (rc < 0)
1995 			return rc;
1996 		nr_failed += rc;
1997 	}
1998 
1999 	return nr_failed;
2000 }
2001 
2002 /*
2003  * migrate_pages - migrate the folios specified in a list, to the free folios
2004  *		   supplied as the target for the page migration
2005  *
2006  * @from:		The list of folios to be migrated.
2007  * @get_new_folio:	The function used to allocate free folios to be used
2008  *			as the target of the folio migration.
2009  * @put_new_folio:	The function used to free target folios if migration
2010  *			fails, or NULL if no special handling is necessary.
2011  * @private:		Private data to be passed on to get_new_folio()
2012  * @mode:		The migration mode that specifies the constraints for
2013  *			folio migration, if any.
2014  * @reason:		The reason for folio migration.
2015  * @ret_succeeded:	Set to the number of folios migrated successfully if
2016  *			the caller passes a non-NULL pointer.
2017  *
2018  * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
2019  * are movable any more because the list has become empty or no retryable folios
2020  * exist any more. It is caller's responsibility to call putback_movable_pages()
2021  * only if ret != 0.
2022  *
2023  * Returns the number of {normal folio, large folio, hugetlb} that were not
2024  * migrated, or an error code. The number of large folio splits will be
2025  * considered as the number of non-migrated large folio, no matter how many
2026  * split folios of the large folio are migrated successfully.
2027  */
2028 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
2029 		free_folio_t put_new_folio, unsigned long private,
2030 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
2031 {
2032 	int rc, rc_gather;
2033 	int nr_pages;
2034 	struct folio *folio, *folio2;
2035 	LIST_HEAD(folios);
2036 	LIST_HEAD(ret_folios);
2037 	LIST_HEAD(split_folios);
2038 	struct migrate_pages_stats stats;
2039 
2040 	trace_mm_migrate_pages_start(mode, reason);
2041 
2042 	memset(&stats, 0, sizeof(stats));
2043 
2044 	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
2045 				     mode, reason, &stats, &ret_folios);
2046 	if (rc_gather < 0)
2047 		goto out;
2048 
2049 again:
2050 	nr_pages = 0;
2051 	list_for_each_entry_safe(folio, folio2, from, lru) {
2052 		/* Retried hugetlb folios will be kept in list  */
2053 		if (folio_test_hugetlb(folio)) {
2054 			list_move_tail(&folio->lru, &ret_folios);
2055 			continue;
2056 		}
2057 
2058 		nr_pages += folio_nr_pages(folio);
2059 		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2060 			break;
2061 	}
2062 	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2063 		list_cut_before(&folios, from, &folio2->lru);
2064 	else
2065 		list_splice_init(from, &folios);
2066 	if (mode == MIGRATE_ASYNC)
2067 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
2068 				private, mode, reason, &ret_folios,
2069 				&split_folios, &stats,
2070 				NR_MAX_MIGRATE_PAGES_RETRY);
2071 	else
2072 		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
2073 				private, mode, reason, &ret_folios,
2074 				&split_folios, &stats);
2075 	list_splice_tail_init(&folios, &ret_folios);
2076 	if (rc < 0) {
2077 		rc_gather = rc;
2078 		list_splice_tail(&split_folios, &ret_folios);
2079 		goto out;
2080 	}
2081 	if (!list_empty(&split_folios)) {
2082 		/*
2083 		 * Failure isn't counted since all split folios of a large folio
2084 		 * is counted as 1 failure already.  And, we only try to migrate
2085 		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
2086 		 */
2087 		migrate_pages_batch(&split_folios, get_new_folio,
2088 				put_new_folio, private, MIGRATE_ASYNC, reason,
2089 				&ret_folios, NULL, &stats, 1);
2090 		list_splice_tail_init(&split_folios, &ret_folios);
2091 	}
2092 	rc_gather += rc;
2093 	if (!list_empty(from))
2094 		goto again;
2095 out:
2096 	/*
2097 	 * Put the permanent failure folio back to migration list, they
2098 	 * will be put back to the right list by the caller.
2099 	 */
2100 	list_splice(&ret_folios, from);
2101 
2102 	/*
2103 	 * Return 0 in case all split folios of fail-to-migrate large folios
2104 	 * are migrated successfully.
2105 	 */
2106 	if (list_empty(from))
2107 		rc_gather = 0;
2108 
2109 	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2110 	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2111 	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2112 	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2113 	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2114 	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2115 			       stats.nr_thp_succeeded, stats.nr_thp_failed,
2116 			       stats.nr_thp_split, stats.nr_split, mode,
2117 			       reason);
2118 
2119 	if (ret_succeeded)
2120 		*ret_succeeded = stats.nr_succeeded;
2121 
2122 	return rc_gather;
2123 }
2124 
2125 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2126 {
2127 	struct migration_target_control *mtc;
2128 	gfp_t gfp_mask;
2129 	unsigned int order = 0;
2130 	int nid;
2131 	int zidx;
2132 
2133 	mtc = (struct migration_target_control *)private;
2134 	gfp_mask = mtc->gfp_mask;
2135 	nid = mtc->nid;
2136 	if (nid == NUMA_NO_NODE)
2137 		nid = folio_nid(src);
2138 
2139 	if (folio_test_hugetlb(src)) {
2140 		struct hstate *h = folio_hstate(src);
2141 
2142 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2143 		return alloc_hugetlb_folio_nodemask(h, nid,
2144 						mtc->nmask, gfp_mask,
2145 						htlb_allow_alloc_fallback(mtc->reason));
2146 	}
2147 
2148 	if (folio_test_large(src)) {
2149 		/*
2150 		 * clear __GFP_RECLAIM to make the migration callback
2151 		 * consistent with regular THP allocations.
2152 		 */
2153 		gfp_mask &= ~__GFP_RECLAIM;
2154 		gfp_mask |= GFP_TRANSHUGE;
2155 		order = folio_order(src);
2156 	}
2157 	zidx = zone_idx(folio_zone(src));
2158 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2159 		gfp_mask |= __GFP_HIGHMEM;
2160 
2161 	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2162 }
2163 
2164 #ifdef CONFIG_NUMA
2165 
2166 static int store_status(int __user *status, int start, int value, int nr)
2167 {
2168 	while (nr-- > 0) {
2169 		if (put_user(value, status + start))
2170 			return -EFAULT;
2171 		start++;
2172 	}
2173 
2174 	return 0;
2175 }
2176 
2177 static int do_move_pages_to_node(struct list_head *pagelist, int node)
2178 {
2179 	int err;
2180 	struct migration_target_control mtc = {
2181 		.nid = node,
2182 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2183 		.reason = MR_SYSCALL,
2184 	};
2185 
2186 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2187 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2188 	if (err)
2189 		putback_movable_pages(pagelist);
2190 	return err;
2191 }
2192 
2193 static int __add_folio_for_migration(struct folio *folio, int node,
2194 		struct list_head *pagelist, bool migrate_all)
2195 {
2196 	if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2197 		return -EFAULT;
2198 
2199 	if (folio_is_zone_device(folio))
2200 		return -ENOENT;
2201 
2202 	if (folio_nid(folio) == node)
2203 		return 0;
2204 
2205 	if (folio_likely_mapped_shared(folio) && !migrate_all)
2206 		return -EACCES;
2207 
2208 	if (folio_test_hugetlb(folio)) {
2209 		if (isolate_hugetlb(folio, pagelist))
2210 			return 1;
2211 	} else if (folio_isolate_lru(folio)) {
2212 		list_add_tail(&folio->lru, pagelist);
2213 		node_stat_mod_folio(folio,
2214 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2215 			folio_nr_pages(folio));
2216 		return 1;
2217 	}
2218 	return -EBUSY;
2219 }
2220 
2221 /*
2222  * Resolves the given address to a struct folio, isolates it from the LRU and
2223  * puts it to the given pagelist.
2224  * Returns:
2225  *     errno - if the folio cannot be found/isolated
2226  *     0 - when it doesn't have to be migrated because it is already on the
2227  *         target node
2228  *     1 - when it has been queued
2229  */
2230 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p,
2231 		int node, struct list_head *pagelist, bool migrate_all)
2232 {
2233 	struct vm_area_struct *vma;
2234 	struct folio_walk fw;
2235 	struct folio *folio;
2236 	unsigned long addr;
2237 	int err = -EFAULT;
2238 
2239 	mmap_read_lock(mm);
2240 	addr = (unsigned long)untagged_addr_remote(mm, p);
2241 
2242 	vma = vma_lookup(mm, addr);
2243 	if (vma && vma_migratable(vma)) {
2244 		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2245 		if (folio) {
2246 			err = __add_folio_for_migration(folio, node, pagelist,
2247 							migrate_all);
2248 			folio_walk_end(&fw, vma);
2249 		} else {
2250 			err = -ENOENT;
2251 		}
2252 	}
2253 	mmap_read_unlock(mm);
2254 	return err;
2255 }
2256 
2257 static int move_pages_and_store_status(int node,
2258 		struct list_head *pagelist, int __user *status,
2259 		int start, int i, unsigned long nr_pages)
2260 {
2261 	int err;
2262 
2263 	if (list_empty(pagelist))
2264 		return 0;
2265 
2266 	err = do_move_pages_to_node(pagelist, node);
2267 	if (err) {
2268 		/*
2269 		 * Positive err means the number of failed
2270 		 * pages to migrate.  Since we are going to
2271 		 * abort and return the number of non-migrated
2272 		 * pages, so need to include the rest of the
2273 		 * nr_pages that have not been attempted as
2274 		 * well.
2275 		 */
2276 		if (err > 0)
2277 			err += nr_pages - i;
2278 		return err;
2279 	}
2280 	return store_status(status, start, node, i - start);
2281 }
2282 
2283 /*
2284  * Migrate an array of page address onto an array of nodes and fill
2285  * the corresponding array of status.
2286  */
2287 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2288 			 unsigned long nr_pages,
2289 			 const void __user * __user *pages,
2290 			 const int __user *nodes,
2291 			 int __user *status, int flags)
2292 {
2293 	compat_uptr_t __user *compat_pages = (void __user *)pages;
2294 	int current_node = NUMA_NO_NODE;
2295 	LIST_HEAD(pagelist);
2296 	int start, i;
2297 	int err = 0, err1;
2298 
2299 	lru_cache_disable();
2300 
2301 	for (i = start = 0; i < nr_pages; i++) {
2302 		const void __user *p;
2303 		int node;
2304 
2305 		err = -EFAULT;
2306 		if (in_compat_syscall()) {
2307 			compat_uptr_t cp;
2308 
2309 			if (get_user(cp, compat_pages + i))
2310 				goto out_flush;
2311 
2312 			p = compat_ptr(cp);
2313 		} else {
2314 			if (get_user(p, pages + i))
2315 				goto out_flush;
2316 		}
2317 		if (get_user(node, nodes + i))
2318 			goto out_flush;
2319 
2320 		err = -ENODEV;
2321 		if (node < 0 || node >= MAX_NUMNODES)
2322 			goto out_flush;
2323 		if (!node_state(node, N_MEMORY))
2324 			goto out_flush;
2325 
2326 		err = -EACCES;
2327 		if (!node_isset(node, task_nodes))
2328 			goto out_flush;
2329 
2330 		if (current_node == NUMA_NO_NODE) {
2331 			current_node = node;
2332 			start = i;
2333 		} else if (node != current_node) {
2334 			err = move_pages_and_store_status(current_node,
2335 					&pagelist, status, start, i, nr_pages);
2336 			if (err)
2337 				goto out;
2338 			start = i;
2339 			current_node = node;
2340 		}
2341 
2342 		/*
2343 		 * Errors in the page lookup or isolation are not fatal and we simply
2344 		 * report them via status
2345 		 */
2346 		err = add_folio_for_migration(mm, p, current_node, &pagelist,
2347 					      flags & MPOL_MF_MOVE_ALL);
2348 
2349 		if (err > 0) {
2350 			/* The page is successfully queued for migration */
2351 			continue;
2352 		}
2353 
2354 		/*
2355 		 * The move_pages() man page does not have an -EEXIST choice, so
2356 		 * use -EFAULT instead.
2357 		 */
2358 		if (err == -EEXIST)
2359 			err = -EFAULT;
2360 
2361 		/*
2362 		 * If the page is already on the target node (!err), store the
2363 		 * node, otherwise, store the err.
2364 		 */
2365 		err = store_status(status, i, err ? : current_node, 1);
2366 		if (err)
2367 			goto out_flush;
2368 
2369 		err = move_pages_and_store_status(current_node, &pagelist,
2370 				status, start, i, nr_pages);
2371 		if (err) {
2372 			/* We have accounted for page i */
2373 			if (err > 0)
2374 				err--;
2375 			goto out;
2376 		}
2377 		current_node = NUMA_NO_NODE;
2378 	}
2379 out_flush:
2380 	/* Make sure we do not overwrite the existing error */
2381 	err1 = move_pages_and_store_status(current_node, &pagelist,
2382 				status, start, i, nr_pages);
2383 	if (err >= 0)
2384 		err = err1;
2385 out:
2386 	lru_cache_enable();
2387 	return err;
2388 }
2389 
2390 /*
2391  * Determine the nodes of an array of pages and store it in an array of status.
2392  */
2393 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2394 				const void __user **pages, int *status)
2395 {
2396 	unsigned long i;
2397 
2398 	mmap_read_lock(mm);
2399 
2400 	for (i = 0; i < nr_pages; i++) {
2401 		unsigned long addr = (unsigned long)(*pages);
2402 		struct vm_area_struct *vma;
2403 		struct folio_walk fw;
2404 		struct folio *folio;
2405 		int err = -EFAULT;
2406 
2407 		vma = vma_lookup(mm, addr);
2408 		if (!vma)
2409 			goto set_status;
2410 
2411 		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2412 		if (folio) {
2413 			if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2414 				err = -EFAULT;
2415 			else if (folio_is_zone_device(folio))
2416 				err = -ENOENT;
2417 			else
2418 				err = folio_nid(folio);
2419 			folio_walk_end(&fw, vma);
2420 		} else {
2421 			err = -ENOENT;
2422 		}
2423 set_status:
2424 		*status = err;
2425 
2426 		pages++;
2427 		status++;
2428 	}
2429 
2430 	mmap_read_unlock(mm);
2431 }
2432 
2433 static int get_compat_pages_array(const void __user *chunk_pages[],
2434 				  const void __user * __user *pages,
2435 				  unsigned long chunk_nr)
2436 {
2437 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2438 	compat_uptr_t p;
2439 	int i;
2440 
2441 	for (i = 0; i < chunk_nr; i++) {
2442 		if (get_user(p, pages32 + i))
2443 			return -EFAULT;
2444 		chunk_pages[i] = compat_ptr(p);
2445 	}
2446 
2447 	return 0;
2448 }
2449 
2450 /*
2451  * Determine the nodes of a user array of pages and store it in
2452  * a user array of status.
2453  */
2454 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2455 			 const void __user * __user *pages,
2456 			 int __user *status)
2457 {
2458 #define DO_PAGES_STAT_CHUNK_NR 16UL
2459 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2460 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2461 
2462 	while (nr_pages) {
2463 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2464 
2465 		if (in_compat_syscall()) {
2466 			if (get_compat_pages_array(chunk_pages, pages,
2467 						   chunk_nr))
2468 				break;
2469 		} else {
2470 			if (copy_from_user(chunk_pages, pages,
2471 				      chunk_nr * sizeof(*chunk_pages)))
2472 				break;
2473 		}
2474 
2475 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2476 
2477 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2478 			break;
2479 
2480 		pages += chunk_nr;
2481 		status += chunk_nr;
2482 		nr_pages -= chunk_nr;
2483 	}
2484 	return nr_pages ? -EFAULT : 0;
2485 }
2486 
2487 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2488 {
2489 	struct task_struct *task;
2490 	struct mm_struct *mm;
2491 
2492 	/*
2493 	 * There is no need to check if current process has the right to modify
2494 	 * the specified process when they are same.
2495 	 */
2496 	if (!pid) {
2497 		mmget(current->mm);
2498 		*mem_nodes = cpuset_mems_allowed(current);
2499 		return current->mm;
2500 	}
2501 
2502 	task = find_get_task_by_vpid(pid);
2503 	if (!task) {
2504 		return ERR_PTR(-ESRCH);
2505 	}
2506 
2507 	/*
2508 	 * Check if this process has the right to modify the specified
2509 	 * process. Use the regular "ptrace_may_access()" checks.
2510 	 */
2511 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2512 		mm = ERR_PTR(-EPERM);
2513 		goto out;
2514 	}
2515 
2516 	mm = ERR_PTR(security_task_movememory(task));
2517 	if (IS_ERR(mm))
2518 		goto out;
2519 	*mem_nodes = cpuset_mems_allowed(task);
2520 	mm = get_task_mm(task);
2521 out:
2522 	put_task_struct(task);
2523 	if (!mm)
2524 		mm = ERR_PTR(-EINVAL);
2525 	return mm;
2526 }
2527 
2528 /*
2529  * Move a list of pages in the address space of the currently executing
2530  * process.
2531  */
2532 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2533 			     const void __user * __user *pages,
2534 			     const int __user *nodes,
2535 			     int __user *status, int flags)
2536 {
2537 	struct mm_struct *mm;
2538 	int err;
2539 	nodemask_t task_nodes;
2540 
2541 	/* Check flags */
2542 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2543 		return -EINVAL;
2544 
2545 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2546 		return -EPERM;
2547 
2548 	mm = find_mm_struct(pid, &task_nodes);
2549 	if (IS_ERR(mm))
2550 		return PTR_ERR(mm);
2551 
2552 	if (nodes)
2553 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2554 				    nodes, status, flags);
2555 	else
2556 		err = do_pages_stat(mm, nr_pages, pages, status);
2557 
2558 	mmput(mm);
2559 	return err;
2560 }
2561 
2562 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2563 		const void __user * __user *, pages,
2564 		const int __user *, nodes,
2565 		int __user *, status, int, flags)
2566 {
2567 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2568 }
2569 
2570 #ifdef CONFIG_NUMA_BALANCING
2571 /*
2572  * Returns true if this is a safe migration target node for misplaced NUMA
2573  * pages. Currently it only checks the watermarks which is crude.
2574  */
2575 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2576 				   unsigned long nr_migrate_pages)
2577 {
2578 	int z;
2579 
2580 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2581 		struct zone *zone = pgdat->node_zones + z;
2582 
2583 		if (!managed_zone(zone))
2584 			continue;
2585 
2586 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2587 		if (!zone_watermark_ok(zone, 0,
2588 				       high_wmark_pages(zone) +
2589 				       nr_migrate_pages,
2590 				       ZONE_MOVABLE, ALLOC_CMA))
2591 			continue;
2592 		return true;
2593 	}
2594 	return false;
2595 }
2596 
2597 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2598 					   unsigned long data)
2599 {
2600 	int nid = (int) data;
2601 	int order = folio_order(src);
2602 	gfp_t gfp = __GFP_THISNODE;
2603 
2604 	if (order > 0)
2605 		gfp |= GFP_TRANSHUGE_LIGHT;
2606 	else {
2607 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2608 			__GFP_NOWARN;
2609 		gfp &= ~__GFP_RECLAIM;
2610 	}
2611 	return __folio_alloc_node(gfp, order, nid);
2612 }
2613 
2614 /*
2615  * Prepare for calling migrate_misplaced_folio() by isolating the folio if
2616  * permitted. Must be called with the PTL still held.
2617  */
2618 int migrate_misplaced_folio_prepare(struct folio *folio,
2619 		struct vm_area_struct *vma, int node)
2620 {
2621 	int nr_pages = folio_nr_pages(folio);
2622 	pg_data_t *pgdat = NODE_DATA(node);
2623 
2624 	if (folio_is_file_lru(folio)) {
2625 		/*
2626 		 * Do not migrate file folios that are mapped in multiple
2627 		 * processes with execute permissions as they are probably
2628 		 * shared libraries.
2629 		 *
2630 		 * See folio_likely_mapped_shared() on possible imprecision
2631 		 * when we cannot easily detect if a folio is shared.
2632 		 */
2633 		if ((vma->vm_flags & VM_EXEC) &&
2634 		    folio_likely_mapped_shared(folio))
2635 			return -EACCES;
2636 
2637 		/*
2638 		 * Do not migrate dirty folios as not all filesystems can move
2639 		 * dirty folios in MIGRATE_ASYNC mode which is a waste of
2640 		 * cycles.
2641 		 */
2642 		if (folio_test_dirty(folio))
2643 			return -EAGAIN;
2644 	}
2645 
2646 	/* Avoid migrating to a node that is nearly full */
2647 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2648 		int z;
2649 
2650 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2651 			return -EAGAIN;
2652 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2653 			if (managed_zone(pgdat->node_zones + z))
2654 				break;
2655 		}
2656 
2657 		/*
2658 		 * If there are no managed zones, it should not proceed
2659 		 * further.
2660 		 */
2661 		if (z < 0)
2662 			return -EAGAIN;
2663 
2664 		wakeup_kswapd(pgdat->node_zones + z, 0,
2665 			      folio_order(folio), ZONE_MOVABLE);
2666 		return -EAGAIN;
2667 	}
2668 
2669 	if (!folio_isolate_lru(folio))
2670 		return -EAGAIN;
2671 
2672 	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2673 			    nr_pages);
2674 	return 0;
2675 }
2676 
2677 /*
2678  * Attempt to migrate a misplaced folio to the specified destination
2679  * node. Caller is expected to have isolated the folio by calling
2680  * migrate_misplaced_folio_prepare(), which will result in an
2681  * elevated reference count on the folio. This function will un-isolate the
2682  * folio, dereferencing the folio before returning.
2683  */
2684 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2685 			    int node)
2686 {
2687 	pg_data_t *pgdat = NODE_DATA(node);
2688 	int nr_remaining;
2689 	unsigned int nr_succeeded;
2690 	LIST_HEAD(migratepages);
2691 	struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio);
2692 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2693 
2694 	list_add(&folio->lru, &migratepages);
2695 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2696 				     NULL, node, MIGRATE_ASYNC,
2697 				     MR_NUMA_MISPLACED, &nr_succeeded);
2698 	if (nr_remaining && !list_empty(&migratepages))
2699 		putback_movable_pages(&migratepages);
2700 	if (nr_succeeded) {
2701 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2702 		count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded);
2703 		if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
2704 		    && !node_is_toptier(folio_nid(folio))
2705 		    && node_is_toptier(node))
2706 			mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded);
2707 	}
2708 	mem_cgroup_put(memcg);
2709 	BUG_ON(!list_empty(&migratepages));
2710 	return nr_remaining ? -EAGAIN : 0;
2711 }
2712 #endif /* CONFIG_NUMA_BALANCING */
2713 #endif /* CONFIG_NUMA */
2714