1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/compat.h> 37 #include <linux/hugetlb.h> 38 #include <linux/hugetlb_cgroup.h> 39 #include <linux/gfp.h> 40 #include <linux/pfn_t.h> 41 #include <linux/memremap.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/balloon_compaction.h> 44 #include <linux/page_idle.h> 45 #include <linux/page_owner.h> 46 #include <linux/sched/mm.h> 47 #include <linux/ptrace.h> 48 #include <linux/oom.h> 49 #include <linux/memory.h> 50 #include <linux/random.h> 51 #include <linux/sched/sysctl.h> 52 #include <linux/memory-tiers.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct folio *folio = folio_get_nontail_page(page); 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (!folio) 75 goto out; 76 77 if (unlikely(folio_test_slab(folio))) 78 goto out_putfolio; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__folio_test_movable(folio))) 87 goto out_putfolio; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(folio_test_slab(folio))) 91 goto out_putfolio; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!folio_trylock(folio))) 105 goto out_putfolio; 106 107 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 108 goto out_no_isolated; 109 110 mops = folio_movable_ops(folio); 111 VM_BUG_ON_FOLIO(!mops, folio); 112 113 if (!mops->isolate_page(&folio->page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use the isolated flag */ 117 WARN_ON_ONCE(folio_test_isolated(folio)); 118 folio_set_isolated(folio); 119 folio_unlock(folio); 120 121 return true; 122 123 out_no_isolated: 124 folio_unlock(folio); 125 out_putfolio: 126 folio_put(folio); 127 out: 128 return false; 129 } 130 131 static void putback_movable_folio(struct folio *folio) 132 { 133 const struct movable_operations *mops = folio_movable_ops(folio); 134 135 mops->putback_page(&folio->page); 136 folio_clear_isolated(folio); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct folio *folio; 150 struct folio *folio2; 151 152 list_for_each_entry_safe(folio, folio2, l, lru) { 153 if (unlikely(folio_test_hugetlb(folio))) { 154 folio_putback_active_hugetlb(folio); 155 continue; 156 } 157 list_del(&folio->lru); 158 /* 159 * We isolated non-lru movable folio so here we can use 160 * __folio_test_movable because LRU folio's mapping cannot 161 * have PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__folio_test_movable(folio))) { 164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 165 folio_lock(folio); 166 if (folio_test_movable(folio)) 167 putback_movable_folio(folio); 168 else 169 folio_clear_isolated(folio); 170 folio_unlock(folio); 171 folio_put(folio); 172 } else { 173 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 174 folio_is_file_lru(folio), -folio_nr_pages(folio)); 175 folio_putback_lru(folio); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t old_pte; 191 pte_t pte; 192 swp_entry_t entry; 193 struct page *new; 194 unsigned long idx = 0; 195 196 /* pgoff is invalid for ksm pages, but they are never large */ 197 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 199 new = folio_page(folio, idx); 200 201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 202 /* PMD-mapped THP migration entry */ 203 if (!pvmw.pte) { 204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 205 !folio_test_pmd_mappable(folio), folio); 206 remove_migration_pmd(&pvmw, new); 207 continue; 208 } 209 #endif 210 211 folio_get(folio); 212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 213 old_pte = ptep_get(pvmw.pte); 214 215 entry = pte_to_swp_entry(old_pte); 216 if (!is_migration_entry_young(entry)) 217 pte = pte_mkold(pte); 218 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 219 pte = pte_mkdirty(pte); 220 if (pte_swp_soft_dirty(old_pte)) 221 pte = pte_mksoft_dirty(pte); 222 else 223 pte = pte_clear_soft_dirty(pte); 224 225 if (is_writable_migration_entry(entry)) 226 pte = pte_mkwrite(pte, vma); 227 else if (pte_swp_uffd_wp(old_pte)) 228 pte = pte_mkuffd_wp(pte); 229 230 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 231 rmap_flags |= RMAP_EXCLUSIVE; 232 233 if (unlikely(is_device_private_page(new))) { 234 if (pte_write(pte)) 235 entry = make_writable_device_private_entry( 236 page_to_pfn(new)); 237 else 238 entry = make_readable_device_private_entry( 239 page_to_pfn(new)); 240 pte = swp_entry_to_pte(entry); 241 if (pte_swp_soft_dirty(old_pte)) 242 pte = pte_swp_mksoft_dirty(pte); 243 if (pte_swp_uffd_wp(old_pte)) 244 pte = pte_swp_mkuffd_wp(pte); 245 } 246 247 #ifdef CONFIG_HUGETLB_PAGE 248 if (folio_test_hugetlb(folio)) { 249 struct hstate *h = hstate_vma(vma); 250 unsigned int shift = huge_page_shift(h); 251 unsigned long psize = huge_page_size(h); 252 253 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 254 if (folio_test_anon(folio)) 255 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 256 rmap_flags); 257 else 258 hugetlb_add_file_rmap(folio); 259 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 260 psize); 261 } else 262 #endif 263 { 264 if (folio_test_anon(folio)) 265 folio_add_anon_rmap_pte(folio, new, vma, 266 pvmw.address, rmap_flags); 267 else 268 folio_add_file_rmap_pte(folio, new, vma); 269 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 270 } 271 if (vma->vm_flags & VM_LOCKED) 272 mlock_drain_local(); 273 274 trace_remove_migration_pte(pvmw.address, pte_val(pte), 275 compound_order(new)); 276 277 /* No need to invalidate - it was non-present before */ 278 update_mmu_cache(vma, pvmw.address, pvmw.pte); 279 } 280 281 return true; 282 } 283 284 /* 285 * Get rid of all migration entries and replace them by 286 * references to the indicated page. 287 */ 288 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 289 { 290 struct rmap_walk_control rwc = { 291 .rmap_one = remove_migration_pte, 292 .arg = src, 293 }; 294 295 if (locked) 296 rmap_walk_locked(dst, &rwc); 297 else 298 rmap_walk(dst, &rwc); 299 } 300 301 /* 302 * Something used the pte of a page under migration. We need to 303 * get to the page and wait until migration is finished. 304 * When we return from this function the fault will be retried. 305 */ 306 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 307 unsigned long address) 308 { 309 spinlock_t *ptl; 310 pte_t *ptep; 311 pte_t pte; 312 swp_entry_t entry; 313 314 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 315 if (!ptep) 316 return; 317 318 pte = ptep_get(ptep); 319 pte_unmap(ptep); 320 321 if (!is_swap_pte(pte)) 322 goto out; 323 324 entry = pte_to_swp_entry(pte); 325 if (!is_migration_entry(entry)) 326 goto out; 327 328 migration_entry_wait_on_locked(entry, ptl); 329 return; 330 out: 331 spin_unlock(ptl); 332 } 333 334 #ifdef CONFIG_HUGETLB_PAGE 335 /* 336 * The vma read lock must be held upon entry. Holding that lock prevents either 337 * the pte or the ptl from being freed. 338 * 339 * This function will release the vma lock before returning. 340 */ 341 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 342 { 343 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 344 pte_t pte; 345 346 hugetlb_vma_assert_locked(vma); 347 spin_lock(ptl); 348 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 349 350 if (unlikely(!is_hugetlb_entry_migration(pte))) { 351 spin_unlock(ptl); 352 hugetlb_vma_unlock_read(vma); 353 } else { 354 /* 355 * If migration entry existed, safe to release vma lock 356 * here because the pgtable page won't be freed without the 357 * pgtable lock released. See comment right above pgtable 358 * lock release in migration_entry_wait_on_locked(). 359 */ 360 hugetlb_vma_unlock_read(vma); 361 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 362 } 363 } 364 #endif 365 366 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 367 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 368 { 369 spinlock_t *ptl; 370 371 ptl = pmd_lock(mm, pmd); 372 if (!is_pmd_migration_entry(*pmd)) 373 goto unlock; 374 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 375 return; 376 unlock: 377 spin_unlock(ptl); 378 } 379 #endif 380 381 static int folio_expected_refs(struct address_space *mapping, 382 struct folio *folio) 383 { 384 int refs = 1; 385 if (!mapping) 386 return refs; 387 388 refs += folio_nr_pages(folio); 389 if (folio_test_private(folio)) 390 refs++; 391 392 return refs; 393 } 394 395 /* 396 * Replace the folio in the mapping. 397 * 398 * The number of remaining references must be: 399 * 1 for anonymous folios without a mapping 400 * 2 for folios with a mapping 401 * 3 for folios with a mapping and PagePrivate/PagePrivate2 set. 402 */ 403 static int __folio_migrate_mapping(struct address_space *mapping, 404 struct folio *newfolio, struct folio *folio, int expected_count) 405 { 406 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 407 struct zone *oldzone, *newzone; 408 int dirty; 409 long nr = folio_nr_pages(folio); 410 long entries, i; 411 412 if (!mapping) { 413 /* Take off deferred split queue while frozen and memcg set */ 414 if (folio_test_large(folio) && 415 folio_test_large_rmappable(folio)) { 416 if (!folio_ref_freeze(folio, expected_count)) 417 return -EAGAIN; 418 folio_undo_large_rmappable(folio); 419 folio_ref_unfreeze(folio, expected_count); 420 } 421 422 /* No turning back from here */ 423 newfolio->index = folio->index; 424 newfolio->mapping = folio->mapping; 425 if (folio_test_swapbacked(folio)) 426 __folio_set_swapbacked(newfolio); 427 428 return MIGRATEPAGE_SUCCESS; 429 } 430 431 oldzone = folio_zone(folio); 432 newzone = folio_zone(newfolio); 433 434 xas_lock_irq(&xas); 435 if (!folio_ref_freeze(folio, expected_count)) { 436 xas_unlock_irq(&xas); 437 return -EAGAIN; 438 } 439 440 /* Take off deferred split queue while frozen and memcg set */ 441 folio_undo_large_rmappable(folio); 442 443 /* 444 * Now we know that no one else is looking at the folio: 445 * no turning back from here. 446 */ 447 newfolio->index = folio->index; 448 newfolio->mapping = folio->mapping; 449 folio_ref_add(newfolio, nr); /* add cache reference */ 450 if (folio_test_swapbacked(folio)) { 451 __folio_set_swapbacked(newfolio); 452 if (folio_test_swapcache(folio)) { 453 folio_set_swapcache(newfolio); 454 newfolio->private = folio_get_private(folio); 455 } 456 entries = nr; 457 } else { 458 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 459 entries = 1; 460 } 461 462 /* Move dirty while folio refs frozen and newfolio not yet exposed */ 463 dirty = folio_test_dirty(folio); 464 if (dirty) { 465 folio_clear_dirty(folio); 466 folio_set_dirty(newfolio); 467 } 468 469 /* Swap cache still stores N entries instead of a high-order entry */ 470 for (i = 0; i < entries; i++) { 471 xas_store(&xas, newfolio); 472 xas_next(&xas); 473 } 474 475 /* 476 * Drop cache reference from old folio by unfreezing 477 * to one less reference. 478 * We know this isn't the last reference. 479 */ 480 folio_ref_unfreeze(folio, expected_count - nr); 481 482 xas_unlock(&xas); 483 /* Leave irq disabled to prevent preemption while updating stats */ 484 485 /* 486 * If moved to a different zone then also account 487 * the folio for that zone. Other VM counters will be 488 * taken care of when we establish references to the 489 * new folio and drop references to the old folio. 490 * 491 * Note that anonymous folios are accounted for 492 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 493 * are mapped to swap space. 494 */ 495 if (newzone != oldzone) { 496 struct lruvec *old_lruvec, *new_lruvec; 497 struct mem_cgroup *memcg; 498 499 memcg = folio_memcg(folio); 500 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 501 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 502 503 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 504 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 505 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 506 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 507 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 508 509 if (folio_test_pmd_mappable(folio)) { 510 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 511 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 512 } 513 } 514 #ifdef CONFIG_SWAP 515 if (folio_test_swapcache(folio)) { 516 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 517 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 518 } 519 #endif 520 if (dirty && mapping_can_writeback(mapping)) { 521 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 522 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 523 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 524 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 525 } 526 } 527 local_irq_enable(); 528 529 return MIGRATEPAGE_SUCCESS; 530 } 531 532 int folio_migrate_mapping(struct address_space *mapping, 533 struct folio *newfolio, struct folio *folio, int extra_count) 534 { 535 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 536 537 if (folio_ref_count(folio) != expected_count) 538 return -EAGAIN; 539 540 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count); 541 } 542 EXPORT_SYMBOL(folio_migrate_mapping); 543 544 /* 545 * The expected number of remaining references is the same as that 546 * of folio_migrate_mapping(). 547 */ 548 int migrate_huge_page_move_mapping(struct address_space *mapping, 549 struct folio *dst, struct folio *src) 550 { 551 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 552 int rc, expected_count = folio_expected_refs(mapping, src); 553 554 if (folio_ref_count(src) != expected_count) 555 return -EAGAIN; 556 557 rc = folio_mc_copy(dst, src); 558 if (unlikely(rc)) 559 return rc; 560 561 xas_lock_irq(&xas); 562 if (!folio_ref_freeze(src, expected_count)) { 563 xas_unlock_irq(&xas); 564 return -EAGAIN; 565 } 566 567 dst->index = src->index; 568 dst->mapping = src->mapping; 569 570 folio_ref_add(dst, folio_nr_pages(dst)); 571 572 xas_store(&xas, dst); 573 574 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 575 576 xas_unlock_irq(&xas); 577 578 return MIGRATEPAGE_SUCCESS; 579 } 580 581 /* 582 * Copy the flags and some other ancillary information 583 */ 584 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 585 { 586 int cpupid; 587 588 if (folio_test_error(folio)) 589 folio_set_error(newfolio); 590 if (folio_test_referenced(folio)) 591 folio_set_referenced(newfolio); 592 if (folio_test_uptodate(folio)) 593 folio_mark_uptodate(newfolio); 594 if (folio_test_clear_active(folio)) { 595 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 596 folio_set_active(newfolio); 597 } else if (folio_test_clear_unevictable(folio)) 598 folio_set_unevictable(newfolio); 599 if (folio_test_workingset(folio)) 600 folio_set_workingset(newfolio); 601 if (folio_test_checked(folio)) 602 folio_set_checked(newfolio); 603 /* 604 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 605 * migration entries. We can still have PG_anon_exclusive set on an 606 * effectively unmapped and unreferenced first sub-pages of an 607 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 608 */ 609 if (folio_test_mappedtodisk(folio)) 610 folio_set_mappedtodisk(newfolio); 611 612 /* Move dirty on pages not done by folio_migrate_mapping() */ 613 if (folio_test_dirty(folio)) 614 folio_set_dirty(newfolio); 615 616 if (folio_test_young(folio)) 617 folio_set_young(newfolio); 618 if (folio_test_idle(folio)) 619 folio_set_idle(newfolio); 620 621 /* 622 * Copy NUMA information to the new page, to prevent over-eager 623 * future migrations of this same page. 624 */ 625 cpupid = folio_xchg_last_cpupid(folio, -1); 626 /* 627 * For memory tiering mode, when migrate between slow and fast 628 * memory node, reset cpupid, because that is used to record 629 * page access time in slow memory node. 630 */ 631 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 632 bool f_toptier = node_is_toptier(folio_nid(folio)); 633 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 634 635 if (f_toptier != t_toptier) 636 cpupid = -1; 637 } 638 folio_xchg_last_cpupid(newfolio, cpupid); 639 640 folio_migrate_ksm(newfolio, folio); 641 /* 642 * Please do not reorder this without considering how mm/ksm.c's 643 * ksm_get_folio() depends upon ksm_migrate_page() and PageSwapCache(). 644 */ 645 if (folio_test_swapcache(folio)) 646 folio_clear_swapcache(folio); 647 folio_clear_private(folio); 648 649 /* page->private contains hugetlb specific flags */ 650 if (!folio_test_hugetlb(folio)) 651 folio->private = NULL; 652 653 /* 654 * If any waiters have accumulated on the new page then 655 * wake them up. 656 */ 657 if (folio_test_writeback(newfolio)) 658 folio_end_writeback(newfolio); 659 660 /* 661 * PG_readahead shares the same bit with PG_reclaim. The above 662 * end_page_writeback() may clear PG_readahead mistakenly, so set the 663 * bit after that. 664 */ 665 if (folio_test_readahead(folio)) 666 folio_set_readahead(newfolio); 667 668 folio_copy_owner(newfolio, folio); 669 670 mem_cgroup_migrate(folio, newfolio); 671 } 672 EXPORT_SYMBOL(folio_migrate_flags); 673 674 /************************************************************ 675 * Migration functions 676 ***********************************************************/ 677 678 static int __migrate_folio(struct address_space *mapping, struct folio *dst, 679 struct folio *src, void *src_private, 680 enum migrate_mode mode) 681 { 682 int rc, expected_count = folio_expected_refs(mapping, src); 683 684 /* Check whether src does not have extra refs before we do more work */ 685 if (folio_ref_count(src) != expected_count) 686 return -EAGAIN; 687 688 rc = folio_mc_copy(dst, src); 689 if (unlikely(rc)) 690 return rc; 691 692 rc = __folio_migrate_mapping(mapping, dst, src, expected_count); 693 if (rc != MIGRATEPAGE_SUCCESS) 694 return rc; 695 696 if (src_private) 697 folio_attach_private(dst, folio_detach_private(src)); 698 699 folio_migrate_flags(dst, src); 700 return MIGRATEPAGE_SUCCESS; 701 } 702 703 /** 704 * migrate_folio() - Simple folio migration. 705 * @mapping: The address_space containing the folio. 706 * @dst: The folio to migrate the data to. 707 * @src: The folio containing the current data. 708 * @mode: How to migrate the page. 709 * 710 * Common logic to directly migrate a single LRU folio suitable for 711 * folios that do not use PagePrivate/PagePrivate2. 712 * 713 * Folios are locked upon entry and exit. 714 */ 715 int migrate_folio(struct address_space *mapping, struct folio *dst, 716 struct folio *src, enum migrate_mode mode) 717 { 718 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 719 return __migrate_folio(mapping, dst, src, NULL, mode); 720 } 721 EXPORT_SYMBOL(migrate_folio); 722 723 #ifdef CONFIG_BUFFER_HEAD 724 /* Returns true if all buffers are successfully locked */ 725 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 726 enum migrate_mode mode) 727 { 728 struct buffer_head *bh = head; 729 struct buffer_head *failed_bh; 730 731 do { 732 if (!trylock_buffer(bh)) { 733 if (mode == MIGRATE_ASYNC) 734 goto unlock; 735 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 736 goto unlock; 737 lock_buffer(bh); 738 } 739 740 bh = bh->b_this_page; 741 } while (bh != head); 742 743 return true; 744 745 unlock: 746 /* We failed to lock the buffer and cannot stall. */ 747 failed_bh = bh; 748 bh = head; 749 while (bh != failed_bh) { 750 unlock_buffer(bh); 751 bh = bh->b_this_page; 752 } 753 754 return false; 755 } 756 757 static int __buffer_migrate_folio(struct address_space *mapping, 758 struct folio *dst, struct folio *src, enum migrate_mode mode, 759 bool check_refs) 760 { 761 struct buffer_head *bh, *head; 762 int rc; 763 int expected_count; 764 765 head = folio_buffers(src); 766 if (!head) 767 return migrate_folio(mapping, dst, src, mode); 768 769 /* Check whether page does not have extra refs before we do more work */ 770 expected_count = folio_expected_refs(mapping, src); 771 if (folio_ref_count(src) != expected_count) 772 return -EAGAIN; 773 774 if (!buffer_migrate_lock_buffers(head, mode)) 775 return -EAGAIN; 776 777 if (check_refs) { 778 bool busy; 779 bool invalidated = false; 780 781 recheck_buffers: 782 busy = false; 783 spin_lock(&mapping->i_private_lock); 784 bh = head; 785 do { 786 if (atomic_read(&bh->b_count)) { 787 busy = true; 788 break; 789 } 790 bh = bh->b_this_page; 791 } while (bh != head); 792 if (busy) { 793 if (invalidated) { 794 rc = -EAGAIN; 795 goto unlock_buffers; 796 } 797 spin_unlock(&mapping->i_private_lock); 798 invalidate_bh_lrus(); 799 invalidated = true; 800 goto recheck_buffers; 801 } 802 } 803 804 rc = filemap_migrate_folio(mapping, dst, src, mode); 805 if (rc != MIGRATEPAGE_SUCCESS) 806 goto unlock_buffers; 807 808 bh = head; 809 do { 810 folio_set_bh(bh, dst, bh_offset(bh)); 811 bh = bh->b_this_page; 812 } while (bh != head); 813 814 unlock_buffers: 815 if (check_refs) 816 spin_unlock(&mapping->i_private_lock); 817 bh = head; 818 do { 819 unlock_buffer(bh); 820 bh = bh->b_this_page; 821 } while (bh != head); 822 823 return rc; 824 } 825 826 /** 827 * buffer_migrate_folio() - Migration function for folios with buffers. 828 * @mapping: The address space containing @src. 829 * @dst: The folio to migrate to. 830 * @src: The folio to migrate from. 831 * @mode: How to migrate the folio. 832 * 833 * This function can only be used if the underlying filesystem guarantees 834 * that no other references to @src exist. For example attached buffer 835 * heads are accessed only under the folio lock. If your filesystem cannot 836 * provide this guarantee, buffer_migrate_folio_norefs() may be more 837 * appropriate. 838 * 839 * Return: 0 on success or a negative errno on failure. 840 */ 841 int buffer_migrate_folio(struct address_space *mapping, 842 struct folio *dst, struct folio *src, enum migrate_mode mode) 843 { 844 return __buffer_migrate_folio(mapping, dst, src, mode, false); 845 } 846 EXPORT_SYMBOL(buffer_migrate_folio); 847 848 /** 849 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 850 * @mapping: The address space containing @src. 851 * @dst: The folio to migrate to. 852 * @src: The folio to migrate from. 853 * @mode: How to migrate the folio. 854 * 855 * Like buffer_migrate_folio() except that this variant is more careful 856 * and checks that there are also no buffer head references. This function 857 * is the right one for mappings where buffer heads are directly looked 858 * up and referenced (such as block device mappings). 859 * 860 * Return: 0 on success or a negative errno on failure. 861 */ 862 int buffer_migrate_folio_norefs(struct address_space *mapping, 863 struct folio *dst, struct folio *src, enum migrate_mode mode) 864 { 865 return __buffer_migrate_folio(mapping, dst, src, mode, true); 866 } 867 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 868 #endif /* CONFIG_BUFFER_HEAD */ 869 870 int filemap_migrate_folio(struct address_space *mapping, 871 struct folio *dst, struct folio *src, enum migrate_mode mode) 872 { 873 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode); 874 } 875 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 876 877 /* 878 * Writeback a folio to clean the dirty state 879 */ 880 static int writeout(struct address_space *mapping, struct folio *folio) 881 { 882 struct writeback_control wbc = { 883 .sync_mode = WB_SYNC_NONE, 884 .nr_to_write = 1, 885 .range_start = 0, 886 .range_end = LLONG_MAX, 887 .for_reclaim = 1 888 }; 889 int rc; 890 891 if (!mapping->a_ops->writepage) 892 /* No write method for the address space */ 893 return -EINVAL; 894 895 if (!folio_clear_dirty_for_io(folio)) 896 /* Someone else already triggered a write */ 897 return -EAGAIN; 898 899 /* 900 * A dirty folio may imply that the underlying filesystem has 901 * the folio on some queue. So the folio must be clean for 902 * migration. Writeout may mean we lose the lock and the 903 * folio state is no longer what we checked for earlier. 904 * At this point we know that the migration attempt cannot 905 * be successful. 906 */ 907 remove_migration_ptes(folio, folio, false); 908 909 rc = mapping->a_ops->writepage(&folio->page, &wbc); 910 911 if (rc != AOP_WRITEPAGE_ACTIVATE) 912 /* unlocked. Relock */ 913 folio_lock(folio); 914 915 return (rc < 0) ? -EIO : -EAGAIN; 916 } 917 918 /* 919 * Default handling if a filesystem does not provide a migration function. 920 */ 921 static int fallback_migrate_folio(struct address_space *mapping, 922 struct folio *dst, struct folio *src, enum migrate_mode mode) 923 { 924 if (folio_test_dirty(src)) { 925 /* Only writeback folios in full synchronous migration */ 926 switch (mode) { 927 case MIGRATE_SYNC: 928 break; 929 default: 930 return -EBUSY; 931 } 932 return writeout(mapping, src); 933 } 934 935 /* 936 * Buffers may be managed in a filesystem specific way. 937 * We must have no buffers or drop them. 938 */ 939 if (!filemap_release_folio(src, GFP_KERNEL)) 940 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 941 942 return migrate_folio(mapping, dst, src, mode); 943 } 944 945 /* 946 * Move a page to a newly allocated page 947 * The page is locked and all ptes have been successfully removed. 948 * 949 * The new page will have replaced the old page if this function 950 * is successful. 951 * 952 * Return value: 953 * < 0 - error code 954 * MIGRATEPAGE_SUCCESS - success 955 */ 956 static int move_to_new_folio(struct folio *dst, struct folio *src, 957 enum migrate_mode mode) 958 { 959 int rc = -EAGAIN; 960 bool is_lru = !__folio_test_movable(src); 961 962 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 963 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 964 965 if (likely(is_lru)) { 966 struct address_space *mapping = folio_mapping(src); 967 968 if (!mapping) 969 rc = migrate_folio(mapping, dst, src, mode); 970 else if (mapping_inaccessible(mapping)) 971 rc = -EOPNOTSUPP; 972 else if (mapping->a_ops->migrate_folio) 973 /* 974 * Most folios have a mapping and most filesystems 975 * provide a migrate_folio callback. Anonymous folios 976 * are part of swap space which also has its own 977 * migrate_folio callback. This is the most common path 978 * for page migration. 979 */ 980 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 981 mode); 982 else 983 rc = fallback_migrate_folio(mapping, dst, src, mode); 984 } else { 985 const struct movable_operations *mops; 986 987 /* 988 * In case of non-lru page, it could be released after 989 * isolation step. In that case, we shouldn't try migration. 990 */ 991 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 992 if (!folio_test_movable(src)) { 993 rc = MIGRATEPAGE_SUCCESS; 994 folio_clear_isolated(src); 995 goto out; 996 } 997 998 mops = folio_movable_ops(src); 999 rc = mops->migrate_page(&dst->page, &src->page, mode); 1000 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 1001 !folio_test_isolated(src)); 1002 } 1003 1004 /* 1005 * When successful, old pagecache src->mapping must be cleared before 1006 * src is freed; but stats require that PageAnon be left as PageAnon. 1007 */ 1008 if (rc == MIGRATEPAGE_SUCCESS) { 1009 if (__folio_test_movable(src)) { 1010 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1011 1012 /* 1013 * We clear PG_movable under page_lock so any compactor 1014 * cannot try to migrate this page. 1015 */ 1016 folio_clear_isolated(src); 1017 } 1018 1019 /* 1020 * Anonymous and movable src->mapping will be cleared by 1021 * free_pages_prepare so don't reset it here for keeping 1022 * the type to work PageAnon, for example. 1023 */ 1024 if (!folio_mapping_flags(src)) 1025 src->mapping = NULL; 1026 1027 if (likely(!folio_is_zone_device(dst))) 1028 flush_dcache_folio(dst); 1029 } 1030 out: 1031 return rc; 1032 } 1033 1034 /* 1035 * To record some information during migration, we use unused private 1036 * field of struct folio of the newly allocated destination folio. 1037 * This is safe because nobody is using it except us. 1038 */ 1039 enum { 1040 PAGE_WAS_MAPPED = BIT(0), 1041 PAGE_WAS_MLOCKED = BIT(1), 1042 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1043 }; 1044 1045 static void __migrate_folio_record(struct folio *dst, 1046 int old_page_state, 1047 struct anon_vma *anon_vma) 1048 { 1049 dst->private = (void *)anon_vma + old_page_state; 1050 } 1051 1052 static void __migrate_folio_extract(struct folio *dst, 1053 int *old_page_state, 1054 struct anon_vma **anon_vmap) 1055 { 1056 unsigned long private = (unsigned long)dst->private; 1057 1058 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1059 *old_page_state = private & PAGE_OLD_STATES; 1060 dst->private = NULL; 1061 } 1062 1063 /* Restore the source folio to the original state upon failure */ 1064 static void migrate_folio_undo_src(struct folio *src, 1065 int page_was_mapped, 1066 struct anon_vma *anon_vma, 1067 bool locked, 1068 struct list_head *ret) 1069 { 1070 if (page_was_mapped) 1071 remove_migration_ptes(src, src, false); 1072 /* Drop an anon_vma reference if we took one */ 1073 if (anon_vma) 1074 put_anon_vma(anon_vma); 1075 if (locked) 1076 folio_unlock(src); 1077 if (ret) 1078 list_move_tail(&src->lru, ret); 1079 } 1080 1081 /* Restore the destination folio to the original state upon failure */ 1082 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1083 free_folio_t put_new_folio, unsigned long private) 1084 { 1085 if (locked) 1086 folio_unlock(dst); 1087 if (put_new_folio) 1088 put_new_folio(dst, private); 1089 else 1090 folio_put(dst); 1091 } 1092 1093 /* Cleanup src folio upon migration success */ 1094 static void migrate_folio_done(struct folio *src, 1095 enum migrate_reason reason) 1096 { 1097 /* 1098 * Compaction can migrate also non-LRU pages which are 1099 * not accounted to NR_ISOLATED_*. They can be recognized 1100 * as __folio_test_movable 1101 */ 1102 if (likely(!__folio_test_movable(src))) 1103 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1104 folio_is_file_lru(src), -folio_nr_pages(src)); 1105 1106 if (reason != MR_MEMORY_FAILURE) 1107 /* We release the page in page_handle_poison. */ 1108 folio_put(src); 1109 } 1110 1111 /* Obtain the lock on page, remove all ptes. */ 1112 static int migrate_folio_unmap(new_folio_t get_new_folio, 1113 free_folio_t put_new_folio, unsigned long private, 1114 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1115 enum migrate_reason reason, struct list_head *ret) 1116 { 1117 struct folio *dst; 1118 int rc = -EAGAIN; 1119 int old_page_state = 0; 1120 struct anon_vma *anon_vma = NULL; 1121 bool is_lru = !__folio_test_movable(src); 1122 bool locked = false; 1123 bool dst_locked = false; 1124 1125 if (folio_ref_count(src) == 1) { 1126 /* Folio was freed from under us. So we are done. */ 1127 folio_clear_active(src); 1128 folio_clear_unevictable(src); 1129 /* free_pages_prepare() will clear PG_isolated. */ 1130 list_del(&src->lru); 1131 migrate_folio_done(src, reason); 1132 return MIGRATEPAGE_SUCCESS; 1133 } 1134 1135 dst = get_new_folio(src, private); 1136 if (!dst) 1137 return -ENOMEM; 1138 *dstp = dst; 1139 1140 dst->private = NULL; 1141 1142 if (!folio_trylock(src)) { 1143 if (mode == MIGRATE_ASYNC) 1144 goto out; 1145 1146 /* 1147 * It's not safe for direct compaction to call lock_page. 1148 * For example, during page readahead pages are added locked 1149 * to the LRU. Later, when the IO completes the pages are 1150 * marked uptodate and unlocked. However, the queueing 1151 * could be merging multiple pages for one bio (e.g. 1152 * mpage_readahead). If an allocation happens for the 1153 * second or third page, the process can end up locking 1154 * the same page twice and deadlocking. Rather than 1155 * trying to be clever about what pages can be locked, 1156 * avoid the use of lock_page for direct compaction 1157 * altogether. 1158 */ 1159 if (current->flags & PF_MEMALLOC) 1160 goto out; 1161 1162 /* 1163 * In "light" mode, we can wait for transient locks (eg 1164 * inserting a page into the page table), but it's not 1165 * worth waiting for I/O. 1166 */ 1167 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1168 goto out; 1169 1170 folio_lock(src); 1171 } 1172 locked = true; 1173 if (folio_test_mlocked(src)) 1174 old_page_state |= PAGE_WAS_MLOCKED; 1175 1176 if (folio_test_writeback(src)) { 1177 /* 1178 * Only in the case of a full synchronous migration is it 1179 * necessary to wait for PageWriteback. In the async case, 1180 * the retry loop is too short and in the sync-light case, 1181 * the overhead of stalling is too much 1182 */ 1183 switch (mode) { 1184 case MIGRATE_SYNC: 1185 break; 1186 default: 1187 rc = -EBUSY; 1188 goto out; 1189 } 1190 folio_wait_writeback(src); 1191 } 1192 1193 /* 1194 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1195 * we cannot notice that anon_vma is freed while we migrate a page. 1196 * This get_anon_vma() delays freeing anon_vma pointer until the end 1197 * of migration. File cache pages are no problem because of page_lock() 1198 * File Caches may use write_page() or lock_page() in migration, then, 1199 * just care Anon page here. 1200 * 1201 * Only folio_get_anon_vma() understands the subtleties of 1202 * getting a hold on an anon_vma from outside one of its mms. 1203 * But if we cannot get anon_vma, then we won't need it anyway, 1204 * because that implies that the anon page is no longer mapped 1205 * (and cannot be remapped so long as we hold the page lock). 1206 */ 1207 if (folio_test_anon(src) && !folio_test_ksm(src)) 1208 anon_vma = folio_get_anon_vma(src); 1209 1210 /* 1211 * Block others from accessing the new page when we get around to 1212 * establishing additional references. We are usually the only one 1213 * holding a reference to dst at this point. We used to have a BUG 1214 * here if folio_trylock(dst) fails, but would like to allow for 1215 * cases where there might be a race with the previous use of dst. 1216 * This is much like races on refcount of oldpage: just don't BUG(). 1217 */ 1218 if (unlikely(!folio_trylock(dst))) 1219 goto out; 1220 dst_locked = true; 1221 1222 if (unlikely(!is_lru)) { 1223 __migrate_folio_record(dst, old_page_state, anon_vma); 1224 return MIGRATEPAGE_UNMAP; 1225 } 1226 1227 /* 1228 * Corner case handling: 1229 * 1. When a new swap-cache page is read into, it is added to the LRU 1230 * and treated as swapcache but it has no rmap yet. 1231 * Calling try_to_unmap() against a src->mapping==NULL page will 1232 * trigger a BUG. So handle it here. 1233 * 2. An orphaned page (see truncate_cleanup_page) might have 1234 * fs-private metadata. The page can be picked up due to memory 1235 * offlining. Everywhere else except page reclaim, the page is 1236 * invisible to the vm, so the page can not be migrated. So try to 1237 * free the metadata, so the page can be freed. 1238 */ 1239 if (!src->mapping) { 1240 if (folio_test_private(src)) { 1241 try_to_free_buffers(src); 1242 goto out; 1243 } 1244 } else if (folio_mapped(src)) { 1245 /* Establish migration ptes */ 1246 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1247 !folio_test_ksm(src) && !anon_vma, src); 1248 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1249 old_page_state |= PAGE_WAS_MAPPED; 1250 } 1251 1252 if (!folio_mapped(src)) { 1253 __migrate_folio_record(dst, old_page_state, anon_vma); 1254 return MIGRATEPAGE_UNMAP; 1255 } 1256 1257 out: 1258 /* 1259 * A folio that has not been unmapped will be restored to 1260 * right list unless we want to retry. 1261 */ 1262 if (rc == -EAGAIN) 1263 ret = NULL; 1264 1265 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1266 anon_vma, locked, ret); 1267 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1268 1269 return rc; 1270 } 1271 1272 /* Migrate the folio to the newly allocated folio in dst. */ 1273 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1274 struct folio *src, struct folio *dst, 1275 enum migrate_mode mode, enum migrate_reason reason, 1276 struct list_head *ret) 1277 { 1278 int rc; 1279 int old_page_state = 0; 1280 struct anon_vma *anon_vma = NULL; 1281 bool is_lru = !__folio_test_movable(src); 1282 struct list_head *prev; 1283 1284 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1285 prev = dst->lru.prev; 1286 list_del(&dst->lru); 1287 1288 rc = move_to_new_folio(dst, src, mode); 1289 if (rc) 1290 goto out; 1291 1292 if (unlikely(!is_lru)) 1293 goto out_unlock_both; 1294 1295 /* 1296 * When successful, push dst to LRU immediately: so that if it 1297 * turns out to be an mlocked page, remove_migration_ptes() will 1298 * automatically build up the correct dst->mlock_count for it. 1299 * 1300 * We would like to do something similar for the old page, when 1301 * unsuccessful, and other cases when a page has been temporarily 1302 * isolated from the unevictable LRU: but this case is the easiest. 1303 */ 1304 folio_add_lru(dst); 1305 if (old_page_state & PAGE_WAS_MLOCKED) 1306 lru_add_drain(); 1307 1308 if (old_page_state & PAGE_WAS_MAPPED) 1309 remove_migration_ptes(src, dst, false); 1310 1311 out_unlock_both: 1312 folio_unlock(dst); 1313 set_page_owner_migrate_reason(&dst->page, reason); 1314 /* 1315 * If migration is successful, decrease refcount of dst, 1316 * which will not free the page because new page owner increased 1317 * refcounter. 1318 */ 1319 folio_put(dst); 1320 1321 /* 1322 * A folio that has been migrated has all references removed 1323 * and will be freed. 1324 */ 1325 list_del(&src->lru); 1326 /* Drop an anon_vma reference if we took one */ 1327 if (anon_vma) 1328 put_anon_vma(anon_vma); 1329 folio_unlock(src); 1330 migrate_folio_done(src, reason); 1331 1332 return rc; 1333 out: 1334 /* 1335 * A folio that has not been migrated will be restored to 1336 * right list unless we want to retry. 1337 */ 1338 if (rc == -EAGAIN) { 1339 list_add(&dst->lru, prev); 1340 __migrate_folio_record(dst, old_page_state, anon_vma); 1341 return rc; 1342 } 1343 1344 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1345 anon_vma, true, ret); 1346 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1347 1348 return rc; 1349 } 1350 1351 /* 1352 * Counterpart of unmap_and_move_page() for hugepage migration. 1353 * 1354 * This function doesn't wait the completion of hugepage I/O 1355 * because there is no race between I/O and migration for hugepage. 1356 * Note that currently hugepage I/O occurs only in direct I/O 1357 * where no lock is held and PG_writeback is irrelevant, 1358 * and writeback status of all subpages are counted in the reference 1359 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1360 * under direct I/O, the reference of the head page is 512 and a bit more.) 1361 * This means that when we try to migrate hugepage whose subpages are 1362 * doing direct I/O, some references remain after try_to_unmap() and 1363 * hugepage migration fails without data corruption. 1364 * 1365 * There is also no race when direct I/O is issued on the page under migration, 1366 * because then pte is replaced with migration swap entry and direct I/O code 1367 * will wait in the page fault for migration to complete. 1368 */ 1369 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1370 free_folio_t put_new_folio, unsigned long private, 1371 struct folio *src, int force, enum migrate_mode mode, 1372 int reason, struct list_head *ret) 1373 { 1374 struct folio *dst; 1375 int rc = -EAGAIN; 1376 int page_was_mapped = 0; 1377 struct anon_vma *anon_vma = NULL; 1378 struct address_space *mapping = NULL; 1379 1380 if (folio_ref_count(src) == 1) { 1381 /* page was freed from under us. So we are done. */ 1382 folio_putback_active_hugetlb(src); 1383 return MIGRATEPAGE_SUCCESS; 1384 } 1385 1386 dst = get_new_folio(src, private); 1387 if (!dst) 1388 return -ENOMEM; 1389 1390 if (!folio_trylock(src)) { 1391 if (!force) 1392 goto out; 1393 switch (mode) { 1394 case MIGRATE_SYNC: 1395 break; 1396 default: 1397 goto out; 1398 } 1399 folio_lock(src); 1400 } 1401 1402 /* 1403 * Check for pages which are in the process of being freed. Without 1404 * folio_mapping() set, hugetlbfs specific move page routine will not 1405 * be called and we could leak usage counts for subpools. 1406 */ 1407 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1408 rc = -EBUSY; 1409 goto out_unlock; 1410 } 1411 1412 if (folio_test_anon(src)) 1413 anon_vma = folio_get_anon_vma(src); 1414 1415 if (unlikely(!folio_trylock(dst))) 1416 goto put_anon; 1417 1418 if (folio_mapped(src)) { 1419 enum ttu_flags ttu = 0; 1420 1421 if (!folio_test_anon(src)) { 1422 /* 1423 * In shared mappings, try_to_unmap could potentially 1424 * call huge_pmd_unshare. Because of this, take 1425 * semaphore in write mode here and set TTU_RMAP_LOCKED 1426 * to let lower levels know we have taken the lock. 1427 */ 1428 mapping = hugetlb_folio_mapping_lock_write(src); 1429 if (unlikely(!mapping)) 1430 goto unlock_put_anon; 1431 1432 ttu = TTU_RMAP_LOCKED; 1433 } 1434 1435 try_to_migrate(src, ttu); 1436 page_was_mapped = 1; 1437 1438 if (ttu & TTU_RMAP_LOCKED) 1439 i_mmap_unlock_write(mapping); 1440 } 1441 1442 if (!folio_mapped(src)) 1443 rc = move_to_new_folio(dst, src, mode); 1444 1445 if (page_was_mapped) 1446 remove_migration_ptes(src, 1447 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1448 1449 unlock_put_anon: 1450 folio_unlock(dst); 1451 1452 put_anon: 1453 if (anon_vma) 1454 put_anon_vma(anon_vma); 1455 1456 if (rc == MIGRATEPAGE_SUCCESS) { 1457 move_hugetlb_state(src, dst, reason); 1458 put_new_folio = NULL; 1459 } 1460 1461 out_unlock: 1462 folio_unlock(src); 1463 out: 1464 if (rc == MIGRATEPAGE_SUCCESS) 1465 folio_putback_active_hugetlb(src); 1466 else if (rc != -EAGAIN) 1467 list_move_tail(&src->lru, ret); 1468 1469 /* 1470 * If migration was not successful and there's a freeing callback, use 1471 * it. Otherwise, put_page() will drop the reference grabbed during 1472 * isolation. 1473 */ 1474 if (put_new_folio) 1475 put_new_folio(dst, private); 1476 else 1477 folio_putback_active_hugetlb(dst); 1478 1479 return rc; 1480 } 1481 1482 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1483 { 1484 int rc; 1485 1486 folio_lock(folio); 1487 rc = split_folio_to_list(folio, split_folios); 1488 folio_unlock(folio); 1489 if (!rc) 1490 list_move_tail(&folio->lru, split_folios); 1491 1492 return rc; 1493 } 1494 1495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1496 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1497 #else 1498 #define NR_MAX_BATCHED_MIGRATION 512 1499 #endif 1500 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1501 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1502 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1503 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1504 1505 struct migrate_pages_stats { 1506 int nr_succeeded; /* Normal and large folios migrated successfully, in 1507 units of base pages */ 1508 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1509 units of base pages. Untried folios aren't counted */ 1510 int nr_thp_succeeded; /* THP migrated successfully */ 1511 int nr_thp_failed; /* THP failed to be migrated */ 1512 int nr_thp_split; /* THP split before migrating */ 1513 int nr_split; /* Large folio (include THP) split before migrating */ 1514 }; 1515 1516 /* 1517 * Returns the number of hugetlb folios that were not migrated, or an error code 1518 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1519 * any more because the list has become empty or no retryable hugetlb folios 1520 * exist any more. It is caller's responsibility to call putback_movable_pages() 1521 * only if ret != 0. 1522 */ 1523 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1524 free_folio_t put_new_folio, unsigned long private, 1525 enum migrate_mode mode, int reason, 1526 struct migrate_pages_stats *stats, 1527 struct list_head *ret_folios) 1528 { 1529 int retry = 1; 1530 int nr_failed = 0; 1531 int nr_retry_pages = 0; 1532 int pass = 0; 1533 struct folio *folio, *folio2; 1534 int rc, nr_pages; 1535 1536 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1537 retry = 0; 1538 nr_retry_pages = 0; 1539 1540 list_for_each_entry_safe(folio, folio2, from, lru) { 1541 if (!folio_test_hugetlb(folio)) 1542 continue; 1543 1544 nr_pages = folio_nr_pages(folio); 1545 1546 cond_resched(); 1547 1548 /* 1549 * Migratability of hugepages depends on architectures and 1550 * their size. This check is necessary because some callers 1551 * of hugepage migration like soft offline and memory 1552 * hotremove don't walk through page tables or check whether 1553 * the hugepage is pmd-based or not before kicking migration. 1554 */ 1555 if (!hugepage_migration_supported(folio_hstate(folio))) { 1556 nr_failed++; 1557 stats->nr_failed_pages += nr_pages; 1558 list_move_tail(&folio->lru, ret_folios); 1559 continue; 1560 } 1561 1562 rc = unmap_and_move_huge_page(get_new_folio, 1563 put_new_folio, private, 1564 folio, pass > 2, mode, 1565 reason, ret_folios); 1566 /* 1567 * The rules are: 1568 * Success: hugetlb folio will be put back 1569 * -EAGAIN: stay on the from list 1570 * -ENOMEM: stay on the from list 1571 * Other errno: put on ret_folios list 1572 */ 1573 switch(rc) { 1574 case -ENOMEM: 1575 /* 1576 * When memory is low, don't bother to try to migrate 1577 * other folios, just exit. 1578 */ 1579 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1580 return -ENOMEM; 1581 case -EAGAIN: 1582 retry++; 1583 nr_retry_pages += nr_pages; 1584 break; 1585 case MIGRATEPAGE_SUCCESS: 1586 stats->nr_succeeded += nr_pages; 1587 break; 1588 default: 1589 /* 1590 * Permanent failure (-EBUSY, etc.): 1591 * unlike -EAGAIN case, the failed folio is 1592 * removed from migration folio list and not 1593 * retried in the next outer loop. 1594 */ 1595 nr_failed++; 1596 stats->nr_failed_pages += nr_pages; 1597 break; 1598 } 1599 } 1600 } 1601 /* 1602 * nr_failed is number of hugetlb folios failed to be migrated. After 1603 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1604 * folios as failed. 1605 */ 1606 nr_failed += retry; 1607 stats->nr_failed_pages += nr_retry_pages; 1608 1609 return nr_failed; 1610 } 1611 1612 /* 1613 * migrate_pages_batch() first unmaps folios in the from list as many as 1614 * possible, then move the unmapped folios. 1615 * 1616 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1617 * lock or bit when we have locked more than one folio. Which may cause 1618 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1619 * length of the from list must be <= 1. 1620 */ 1621 static int migrate_pages_batch(struct list_head *from, 1622 new_folio_t get_new_folio, free_folio_t put_new_folio, 1623 unsigned long private, enum migrate_mode mode, int reason, 1624 struct list_head *ret_folios, struct list_head *split_folios, 1625 struct migrate_pages_stats *stats, int nr_pass) 1626 { 1627 int retry = 1; 1628 int thp_retry = 1; 1629 int nr_failed = 0; 1630 int nr_retry_pages = 0; 1631 int pass = 0; 1632 bool is_thp = false; 1633 bool is_large = false; 1634 struct folio *folio, *folio2, *dst = NULL, *dst2; 1635 int rc, rc_saved = 0, nr_pages; 1636 LIST_HEAD(unmap_folios); 1637 LIST_HEAD(dst_folios); 1638 bool nosplit = (reason == MR_NUMA_MISPLACED); 1639 1640 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1641 !list_empty(from) && !list_is_singular(from)); 1642 1643 for (pass = 0; pass < nr_pass && retry; pass++) { 1644 retry = 0; 1645 thp_retry = 0; 1646 nr_retry_pages = 0; 1647 1648 list_for_each_entry_safe(folio, folio2, from, lru) { 1649 is_large = folio_test_large(folio); 1650 is_thp = is_large && folio_test_pmd_mappable(folio); 1651 nr_pages = folio_nr_pages(folio); 1652 1653 cond_resched(); 1654 1655 /* 1656 * The rare folio on the deferred split list should 1657 * be split now. It should not count as a failure: 1658 * but increment nr_failed because, without doing so, 1659 * migrate_pages() may report success with (split but 1660 * unmigrated) pages still on its fromlist; whereas it 1661 * always reports success when its fromlist is empty. 1662 * stats->nr_thp_failed should be increased too, 1663 * otherwise stats inconsistency will happen when 1664 * migrate_pages_batch is called via migrate_pages() 1665 * with MIGRATE_SYNC and MIGRATE_ASYNC. 1666 * 1667 * Only check it without removing it from the list. 1668 * Since the folio can be on deferred_split_scan() 1669 * local list and removing it can cause the local list 1670 * corruption. Folio split process below can handle it 1671 * with the help of folio_ref_freeze(). 1672 * 1673 * nr_pages > 2 is needed to avoid checking order-1 1674 * page cache folios. They exist, in contrast to 1675 * non-existent order-1 anonymous folios, and do not 1676 * use _deferred_list. 1677 */ 1678 if (nr_pages > 2 && 1679 !list_empty(&folio->_deferred_list)) { 1680 if (try_split_folio(folio, split_folios) == 0) { 1681 nr_failed++; 1682 stats->nr_thp_failed += is_thp; 1683 stats->nr_thp_split += is_thp; 1684 stats->nr_split++; 1685 continue; 1686 } 1687 } 1688 1689 /* 1690 * Large folio migration might be unsupported or 1691 * the allocation might be failed so we should retry 1692 * on the same folio with the large folio split 1693 * to normal folios. 1694 * 1695 * Split folios are put in split_folios, and 1696 * we will migrate them after the rest of the 1697 * list is processed. 1698 */ 1699 if (!thp_migration_supported() && is_thp) { 1700 nr_failed++; 1701 stats->nr_thp_failed++; 1702 if (!try_split_folio(folio, split_folios)) { 1703 stats->nr_thp_split++; 1704 stats->nr_split++; 1705 continue; 1706 } 1707 stats->nr_failed_pages += nr_pages; 1708 list_move_tail(&folio->lru, ret_folios); 1709 continue; 1710 } 1711 1712 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1713 private, folio, &dst, mode, reason, 1714 ret_folios); 1715 /* 1716 * The rules are: 1717 * Success: folio will be freed 1718 * Unmap: folio will be put on unmap_folios list, 1719 * dst folio put on dst_folios list 1720 * -EAGAIN: stay on the from list 1721 * -ENOMEM: stay on the from list 1722 * Other errno: put on ret_folios list 1723 */ 1724 switch(rc) { 1725 case -ENOMEM: 1726 /* 1727 * When memory is low, don't bother to try to migrate 1728 * other folios, move unmapped folios, then exit. 1729 */ 1730 nr_failed++; 1731 stats->nr_thp_failed += is_thp; 1732 /* Large folio NUMA faulting doesn't split to retry. */ 1733 if (is_large && !nosplit) { 1734 int ret = try_split_folio(folio, split_folios); 1735 1736 if (!ret) { 1737 stats->nr_thp_split += is_thp; 1738 stats->nr_split++; 1739 break; 1740 } else if (reason == MR_LONGTERM_PIN && 1741 ret == -EAGAIN) { 1742 /* 1743 * Try again to split large folio to 1744 * mitigate the failure of longterm pinning. 1745 */ 1746 retry++; 1747 thp_retry += is_thp; 1748 nr_retry_pages += nr_pages; 1749 /* Undo duplicated failure counting. */ 1750 nr_failed--; 1751 stats->nr_thp_failed -= is_thp; 1752 break; 1753 } 1754 } 1755 1756 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1757 /* nr_failed isn't updated for not used */ 1758 stats->nr_thp_failed += thp_retry; 1759 rc_saved = rc; 1760 if (list_empty(&unmap_folios)) 1761 goto out; 1762 else 1763 goto move; 1764 case -EAGAIN: 1765 retry++; 1766 thp_retry += is_thp; 1767 nr_retry_pages += nr_pages; 1768 break; 1769 case MIGRATEPAGE_SUCCESS: 1770 stats->nr_succeeded += nr_pages; 1771 stats->nr_thp_succeeded += is_thp; 1772 break; 1773 case MIGRATEPAGE_UNMAP: 1774 list_move_tail(&folio->lru, &unmap_folios); 1775 list_add_tail(&dst->lru, &dst_folios); 1776 break; 1777 default: 1778 /* 1779 * Permanent failure (-EBUSY, etc.): 1780 * unlike -EAGAIN case, the failed folio is 1781 * removed from migration folio list and not 1782 * retried in the next outer loop. 1783 */ 1784 nr_failed++; 1785 stats->nr_thp_failed += is_thp; 1786 stats->nr_failed_pages += nr_pages; 1787 break; 1788 } 1789 } 1790 } 1791 nr_failed += retry; 1792 stats->nr_thp_failed += thp_retry; 1793 stats->nr_failed_pages += nr_retry_pages; 1794 move: 1795 /* Flush TLBs for all unmapped folios */ 1796 try_to_unmap_flush(); 1797 1798 retry = 1; 1799 for (pass = 0; pass < nr_pass && retry; pass++) { 1800 retry = 0; 1801 thp_retry = 0; 1802 nr_retry_pages = 0; 1803 1804 dst = list_first_entry(&dst_folios, struct folio, lru); 1805 dst2 = list_next_entry(dst, lru); 1806 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1807 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1808 nr_pages = folio_nr_pages(folio); 1809 1810 cond_resched(); 1811 1812 rc = migrate_folio_move(put_new_folio, private, 1813 folio, dst, mode, 1814 reason, ret_folios); 1815 /* 1816 * The rules are: 1817 * Success: folio will be freed 1818 * -EAGAIN: stay on the unmap_folios list 1819 * Other errno: put on ret_folios list 1820 */ 1821 switch(rc) { 1822 case -EAGAIN: 1823 retry++; 1824 thp_retry += is_thp; 1825 nr_retry_pages += nr_pages; 1826 break; 1827 case MIGRATEPAGE_SUCCESS: 1828 stats->nr_succeeded += nr_pages; 1829 stats->nr_thp_succeeded += is_thp; 1830 break; 1831 default: 1832 nr_failed++; 1833 stats->nr_thp_failed += is_thp; 1834 stats->nr_failed_pages += nr_pages; 1835 break; 1836 } 1837 dst = dst2; 1838 dst2 = list_next_entry(dst, lru); 1839 } 1840 } 1841 nr_failed += retry; 1842 stats->nr_thp_failed += thp_retry; 1843 stats->nr_failed_pages += nr_retry_pages; 1844 1845 rc = rc_saved ? : nr_failed; 1846 out: 1847 /* Cleanup remaining folios */ 1848 dst = list_first_entry(&dst_folios, struct folio, lru); 1849 dst2 = list_next_entry(dst, lru); 1850 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1851 int old_page_state = 0; 1852 struct anon_vma *anon_vma = NULL; 1853 1854 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1855 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1856 anon_vma, true, ret_folios); 1857 list_del(&dst->lru); 1858 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1859 dst = dst2; 1860 dst2 = list_next_entry(dst, lru); 1861 } 1862 1863 return rc; 1864 } 1865 1866 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1867 free_folio_t put_new_folio, unsigned long private, 1868 enum migrate_mode mode, int reason, 1869 struct list_head *ret_folios, struct list_head *split_folios, 1870 struct migrate_pages_stats *stats) 1871 { 1872 int rc, nr_failed = 0; 1873 LIST_HEAD(folios); 1874 struct migrate_pages_stats astats; 1875 1876 memset(&astats, 0, sizeof(astats)); 1877 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1878 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1879 reason, &folios, split_folios, &astats, 1880 NR_MAX_MIGRATE_ASYNC_RETRY); 1881 stats->nr_succeeded += astats.nr_succeeded; 1882 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1883 stats->nr_thp_split += astats.nr_thp_split; 1884 stats->nr_split += astats.nr_split; 1885 if (rc < 0) { 1886 stats->nr_failed_pages += astats.nr_failed_pages; 1887 stats->nr_thp_failed += astats.nr_thp_failed; 1888 list_splice_tail(&folios, ret_folios); 1889 return rc; 1890 } 1891 stats->nr_thp_failed += astats.nr_thp_split; 1892 /* 1893 * Do not count rc, as pages will be retried below. 1894 * Count nr_split only, since it includes nr_thp_split. 1895 */ 1896 nr_failed += astats.nr_split; 1897 /* 1898 * Fall back to migrate all failed folios one by one synchronously. All 1899 * failed folios except split THPs will be retried, so their failure 1900 * isn't counted 1901 */ 1902 list_splice_tail_init(&folios, from); 1903 while (!list_empty(from)) { 1904 list_move(from->next, &folios); 1905 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1906 private, mode, reason, ret_folios, 1907 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1908 list_splice_tail_init(&folios, ret_folios); 1909 if (rc < 0) 1910 return rc; 1911 nr_failed += rc; 1912 } 1913 1914 return nr_failed; 1915 } 1916 1917 /* 1918 * migrate_pages - migrate the folios specified in a list, to the free folios 1919 * supplied as the target for the page migration 1920 * 1921 * @from: The list of folios to be migrated. 1922 * @get_new_folio: The function used to allocate free folios to be used 1923 * as the target of the folio migration. 1924 * @put_new_folio: The function used to free target folios if migration 1925 * fails, or NULL if no special handling is necessary. 1926 * @private: Private data to be passed on to get_new_folio() 1927 * @mode: The migration mode that specifies the constraints for 1928 * folio migration, if any. 1929 * @reason: The reason for folio migration. 1930 * @ret_succeeded: Set to the number of folios migrated successfully if 1931 * the caller passes a non-NULL pointer. 1932 * 1933 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 1934 * are movable any more because the list has become empty or no retryable folios 1935 * exist any more. It is caller's responsibility to call putback_movable_pages() 1936 * only if ret != 0. 1937 * 1938 * Returns the number of {normal folio, large folio, hugetlb} that were not 1939 * migrated, or an error code. The number of large folio splits will be 1940 * considered as the number of non-migrated large folio, no matter how many 1941 * split folios of the large folio are migrated successfully. 1942 */ 1943 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 1944 free_folio_t put_new_folio, unsigned long private, 1945 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1946 { 1947 int rc, rc_gather; 1948 int nr_pages; 1949 struct folio *folio, *folio2; 1950 LIST_HEAD(folios); 1951 LIST_HEAD(ret_folios); 1952 LIST_HEAD(split_folios); 1953 struct migrate_pages_stats stats; 1954 1955 trace_mm_migrate_pages_start(mode, reason); 1956 1957 memset(&stats, 0, sizeof(stats)); 1958 1959 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 1960 mode, reason, &stats, &ret_folios); 1961 if (rc_gather < 0) 1962 goto out; 1963 1964 again: 1965 nr_pages = 0; 1966 list_for_each_entry_safe(folio, folio2, from, lru) { 1967 /* Retried hugetlb folios will be kept in list */ 1968 if (folio_test_hugetlb(folio)) { 1969 list_move_tail(&folio->lru, &ret_folios); 1970 continue; 1971 } 1972 1973 nr_pages += folio_nr_pages(folio); 1974 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1975 break; 1976 } 1977 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1978 list_cut_before(&folios, from, &folio2->lru); 1979 else 1980 list_splice_init(from, &folios); 1981 if (mode == MIGRATE_ASYNC) 1982 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1983 private, mode, reason, &ret_folios, 1984 &split_folios, &stats, 1985 NR_MAX_MIGRATE_PAGES_RETRY); 1986 else 1987 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 1988 private, mode, reason, &ret_folios, 1989 &split_folios, &stats); 1990 list_splice_tail_init(&folios, &ret_folios); 1991 if (rc < 0) { 1992 rc_gather = rc; 1993 list_splice_tail(&split_folios, &ret_folios); 1994 goto out; 1995 } 1996 if (!list_empty(&split_folios)) { 1997 /* 1998 * Failure isn't counted since all split folios of a large folio 1999 * is counted as 1 failure already. And, we only try to migrate 2000 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 2001 */ 2002 migrate_pages_batch(&split_folios, get_new_folio, 2003 put_new_folio, private, MIGRATE_ASYNC, reason, 2004 &ret_folios, NULL, &stats, 1); 2005 list_splice_tail_init(&split_folios, &ret_folios); 2006 } 2007 rc_gather += rc; 2008 if (!list_empty(from)) 2009 goto again; 2010 out: 2011 /* 2012 * Put the permanent failure folio back to migration list, they 2013 * will be put back to the right list by the caller. 2014 */ 2015 list_splice(&ret_folios, from); 2016 2017 /* 2018 * Return 0 in case all split folios of fail-to-migrate large folios 2019 * are migrated successfully. 2020 */ 2021 if (list_empty(from)) 2022 rc_gather = 0; 2023 2024 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2025 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2026 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2027 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2028 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2029 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2030 stats.nr_thp_succeeded, stats.nr_thp_failed, 2031 stats.nr_thp_split, stats.nr_split, mode, 2032 reason); 2033 2034 if (ret_succeeded) 2035 *ret_succeeded = stats.nr_succeeded; 2036 2037 return rc_gather; 2038 } 2039 2040 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2041 { 2042 struct migration_target_control *mtc; 2043 gfp_t gfp_mask; 2044 unsigned int order = 0; 2045 int nid; 2046 int zidx; 2047 2048 mtc = (struct migration_target_control *)private; 2049 gfp_mask = mtc->gfp_mask; 2050 nid = mtc->nid; 2051 if (nid == NUMA_NO_NODE) 2052 nid = folio_nid(src); 2053 2054 if (folio_test_hugetlb(src)) { 2055 struct hstate *h = folio_hstate(src); 2056 2057 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2058 return alloc_hugetlb_folio_nodemask(h, nid, 2059 mtc->nmask, gfp_mask, 2060 htlb_allow_alloc_fallback(mtc->reason)); 2061 } 2062 2063 if (folio_test_large(src)) { 2064 /* 2065 * clear __GFP_RECLAIM to make the migration callback 2066 * consistent with regular THP allocations. 2067 */ 2068 gfp_mask &= ~__GFP_RECLAIM; 2069 gfp_mask |= GFP_TRANSHUGE; 2070 order = folio_order(src); 2071 } 2072 zidx = zone_idx(folio_zone(src)); 2073 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2074 gfp_mask |= __GFP_HIGHMEM; 2075 2076 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2077 } 2078 2079 #ifdef CONFIG_NUMA 2080 2081 static int store_status(int __user *status, int start, int value, int nr) 2082 { 2083 while (nr-- > 0) { 2084 if (put_user(value, status + start)) 2085 return -EFAULT; 2086 start++; 2087 } 2088 2089 return 0; 2090 } 2091 2092 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2093 { 2094 int err; 2095 struct migration_target_control mtc = { 2096 .nid = node, 2097 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2098 .reason = MR_SYSCALL, 2099 }; 2100 2101 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2102 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2103 if (err) 2104 putback_movable_pages(pagelist); 2105 return err; 2106 } 2107 2108 /* 2109 * Resolves the given address to a struct page, isolates it from the LRU and 2110 * puts it to the given pagelist. 2111 * Returns: 2112 * errno - if the page cannot be found/isolated 2113 * 0 - when it doesn't have to be migrated because it is already on the 2114 * target node 2115 * 1 - when it has been queued 2116 */ 2117 static int add_page_for_migration(struct mm_struct *mm, const void __user *p, 2118 int node, struct list_head *pagelist, bool migrate_all) 2119 { 2120 struct vm_area_struct *vma; 2121 unsigned long addr; 2122 struct page *page; 2123 struct folio *folio; 2124 int err; 2125 2126 mmap_read_lock(mm); 2127 addr = (unsigned long)untagged_addr_remote(mm, p); 2128 2129 err = -EFAULT; 2130 vma = vma_lookup(mm, addr); 2131 if (!vma || !vma_migratable(vma)) 2132 goto out; 2133 2134 /* FOLL_DUMP to ignore special (like zero) pages */ 2135 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2136 2137 err = PTR_ERR(page); 2138 if (IS_ERR(page)) 2139 goto out; 2140 2141 err = -ENOENT; 2142 if (!page) 2143 goto out; 2144 2145 folio = page_folio(page); 2146 if (folio_is_zone_device(folio)) 2147 goto out_putfolio; 2148 2149 err = 0; 2150 if (folio_nid(folio) == node) 2151 goto out_putfolio; 2152 2153 err = -EACCES; 2154 if (folio_likely_mapped_shared(folio) && !migrate_all) 2155 goto out_putfolio; 2156 2157 err = -EBUSY; 2158 if (folio_test_hugetlb(folio)) { 2159 if (isolate_hugetlb(folio, pagelist)) 2160 err = 1; 2161 } else { 2162 if (!folio_isolate_lru(folio)) 2163 goto out_putfolio; 2164 2165 err = 1; 2166 list_add_tail(&folio->lru, pagelist); 2167 node_stat_mod_folio(folio, 2168 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2169 folio_nr_pages(folio)); 2170 } 2171 out_putfolio: 2172 /* 2173 * Either remove the duplicate refcount from folio_isolate_lru() 2174 * or drop the folio ref if it was not isolated. 2175 */ 2176 folio_put(folio); 2177 out: 2178 mmap_read_unlock(mm); 2179 return err; 2180 } 2181 2182 static int move_pages_and_store_status(int node, 2183 struct list_head *pagelist, int __user *status, 2184 int start, int i, unsigned long nr_pages) 2185 { 2186 int err; 2187 2188 if (list_empty(pagelist)) 2189 return 0; 2190 2191 err = do_move_pages_to_node(pagelist, node); 2192 if (err) { 2193 /* 2194 * Positive err means the number of failed 2195 * pages to migrate. Since we are going to 2196 * abort and return the number of non-migrated 2197 * pages, so need to include the rest of the 2198 * nr_pages that have not been attempted as 2199 * well. 2200 */ 2201 if (err > 0) 2202 err += nr_pages - i; 2203 return err; 2204 } 2205 return store_status(status, start, node, i - start); 2206 } 2207 2208 /* 2209 * Migrate an array of page address onto an array of nodes and fill 2210 * the corresponding array of status. 2211 */ 2212 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2213 unsigned long nr_pages, 2214 const void __user * __user *pages, 2215 const int __user *nodes, 2216 int __user *status, int flags) 2217 { 2218 compat_uptr_t __user *compat_pages = (void __user *)pages; 2219 int current_node = NUMA_NO_NODE; 2220 LIST_HEAD(pagelist); 2221 int start, i; 2222 int err = 0, err1; 2223 2224 lru_cache_disable(); 2225 2226 for (i = start = 0; i < nr_pages; i++) { 2227 const void __user *p; 2228 int node; 2229 2230 err = -EFAULT; 2231 if (in_compat_syscall()) { 2232 compat_uptr_t cp; 2233 2234 if (get_user(cp, compat_pages + i)) 2235 goto out_flush; 2236 2237 p = compat_ptr(cp); 2238 } else { 2239 if (get_user(p, pages + i)) 2240 goto out_flush; 2241 } 2242 if (get_user(node, nodes + i)) 2243 goto out_flush; 2244 2245 err = -ENODEV; 2246 if (node < 0 || node >= MAX_NUMNODES) 2247 goto out_flush; 2248 if (!node_state(node, N_MEMORY)) 2249 goto out_flush; 2250 2251 err = -EACCES; 2252 if (!node_isset(node, task_nodes)) 2253 goto out_flush; 2254 2255 if (current_node == NUMA_NO_NODE) { 2256 current_node = node; 2257 start = i; 2258 } else if (node != current_node) { 2259 err = move_pages_and_store_status(current_node, 2260 &pagelist, status, start, i, nr_pages); 2261 if (err) 2262 goto out; 2263 start = i; 2264 current_node = node; 2265 } 2266 2267 /* 2268 * Errors in the page lookup or isolation are not fatal and we simply 2269 * report them via status 2270 */ 2271 err = add_page_for_migration(mm, p, current_node, &pagelist, 2272 flags & MPOL_MF_MOVE_ALL); 2273 2274 if (err > 0) { 2275 /* The page is successfully queued for migration */ 2276 continue; 2277 } 2278 2279 /* 2280 * The move_pages() man page does not have an -EEXIST choice, so 2281 * use -EFAULT instead. 2282 */ 2283 if (err == -EEXIST) 2284 err = -EFAULT; 2285 2286 /* 2287 * If the page is already on the target node (!err), store the 2288 * node, otherwise, store the err. 2289 */ 2290 err = store_status(status, i, err ? : current_node, 1); 2291 if (err) 2292 goto out_flush; 2293 2294 err = move_pages_and_store_status(current_node, &pagelist, 2295 status, start, i, nr_pages); 2296 if (err) { 2297 /* We have accounted for page i */ 2298 if (err > 0) 2299 err--; 2300 goto out; 2301 } 2302 current_node = NUMA_NO_NODE; 2303 } 2304 out_flush: 2305 /* Make sure we do not overwrite the existing error */ 2306 err1 = move_pages_and_store_status(current_node, &pagelist, 2307 status, start, i, nr_pages); 2308 if (err >= 0) 2309 err = err1; 2310 out: 2311 lru_cache_enable(); 2312 return err; 2313 } 2314 2315 /* 2316 * Determine the nodes of an array of pages and store it in an array of status. 2317 */ 2318 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2319 const void __user **pages, int *status) 2320 { 2321 unsigned long i; 2322 2323 mmap_read_lock(mm); 2324 2325 for (i = 0; i < nr_pages; i++) { 2326 unsigned long addr = (unsigned long)(*pages); 2327 struct vm_area_struct *vma; 2328 struct page *page; 2329 int err = -EFAULT; 2330 2331 vma = vma_lookup(mm, addr); 2332 if (!vma) 2333 goto set_status; 2334 2335 /* FOLL_DUMP to ignore special (like zero) pages */ 2336 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2337 2338 err = PTR_ERR(page); 2339 if (IS_ERR(page)) 2340 goto set_status; 2341 2342 err = -ENOENT; 2343 if (!page) 2344 goto set_status; 2345 2346 if (!is_zone_device_page(page)) 2347 err = page_to_nid(page); 2348 2349 put_page(page); 2350 set_status: 2351 *status = err; 2352 2353 pages++; 2354 status++; 2355 } 2356 2357 mmap_read_unlock(mm); 2358 } 2359 2360 static int get_compat_pages_array(const void __user *chunk_pages[], 2361 const void __user * __user *pages, 2362 unsigned long chunk_nr) 2363 { 2364 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2365 compat_uptr_t p; 2366 int i; 2367 2368 for (i = 0; i < chunk_nr; i++) { 2369 if (get_user(p, pages32 + i)) 2370 return -EFAULT; 2371 chunk_pages[i] = compat_ptr(p); 2372 } 2373 2374 return 0; 2375 } 2376 2377 /* 2378 * Determine the nodes of a user array of pages and store it in 2379 * a user array of status. 2380 */ 2381 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2382 const void __user * __user *pages, 2383 int __user *status) 2384 { 2385 #define DO_PAGES_STAT_CHUNK_NR 16UL 2386 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2387 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2388 2389 while (nr_pages) { 2390 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2391 2392 if (in_compat_syscall()) { 2393 if (get_compat_pages_array(chunk_pages, pages, 2394 chunk_nr)) 2395 break; 2396 } else { 2397 if (copy_from_user(chunk_pages, pages, 2398 chunk_nr * sizeof(*chunk_pages))) 2399 break; 2400 } 2401 2402 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2403 2404 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2405 break; 2406 2407 pages += chunk_nr; 2408 status += chunk_nr; 2409 nr_pages -= chunk_nr; 2410 } 2411 return nr_pages ? -EFAULT : 0; 2412 } 2413 2414 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2415 { 2416 struct task_struct *task; 2417 struct mm_struct *mm; 2418 2419 /* 2420 * There is no need to check if current process has the right to modify 2421 * the specified process when they are same. 2422 */ 2423 if (!pid) { 2424 mmget(current->mm); 2425 *mem_nodes = cpuset_mems_allowed(current); 2426 return current->mm; 2427 } 2428 2429 /* Find the mm_struct */ 2430 rcu_read_lock(); 2431 task = find_task_by_vpid(pid); 2432 if (!task) { 2433 rcu_read_unlock(); 2434 return ERR_PTR(-ESRCH); 2435 } 2436 get_task_struct(task); 2437 2438 /* 2439 * Check if this process has the right to modify the specified 2440 * process. Use the regular "ptrace_may_access()" checks. 2441 */ 2442 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2443 rcu_read_unlock(); 2444 mm = ERR_PTR(-EPERM); 2445 goto out; 2446 } 2447 rcu_read_unlock(); 2448 2449 mm = ERR_PTR(security_task_movememory(task)); 2450 if (IS_ERR(mm)) 2451 goto out; 2452 *mem_nodes = cpuset_mems_allowed(task); 2453 mm = get_task_mm(task); 2454 out: 2455 put_task_struct(task); 2456 if (!mm) 2457 mm = ERR_PTR(-EINVAL); 2458 return mm; 2459 } 2460 2461 /* 2462 * Move a list of pages in the address space of the currently executing 2463 * process. 2464 */ 2465 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2466 const void __user * __user *pages, 2467 const int __user *nodes, 2468 int __user *status, int flags) 2469 { 2470 struct mm_struct *mm; 2471 int err; 2472 nodemask_t task_nodes; 2473 2474 /* Check flags */ 2475 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2476 return -EINVAL; 2477 2478 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2479 return -EPERM; 2480 2481 mm = find_mm_struct(pid, &task_nodes); 2482 if (IS_ERR(mm)) 2483 return PTR_ERR(mm); 2484 2485 if (nodes) 2486 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2487 nodes, status, flags); 2488 else 2489 err = do_pages_stat(mm, nr_pages, pages, status); 2490 2491 mmput(mm); 2492 return err; 2493 } 2494 2495 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2496 const void __user * __user *, pages, 2497 const int __user *, nodes, 2498 int __user *, status, int, flags) 2499 { 2500 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2501 } 2502 2503 #ifdef CONFIG_NUMA_BALANCING 2504 /* 2505 * Returns true if this is a safe migration target node for misplaced NUMA 2506 * pages. Currently it only checks the watermarks which is crude. 2507 */ 2508 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2509 unsigned long nr_migrate_pages) 2510 { 2511 int z; 2512 2513 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2514 struct zone *zone = pgdat->node_zones + z; 2515 2516 if (!managed_zone(zone)) 2517 continue; 2518 2519 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2520 if (!zone_watermark_ok(zone, 0, 2521 high_wmark_pages(zone) + 2522 nr_migrate_pages, 2523 ZONE_MOVABLE, 0)) 2524 continue; 2525 return true; 2526 } 2527 return false; 2528 } 2529 2530 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2531 unsigned long data) 2532 { 2533 int nid = (int) data; 2534 int order = folio_order(src); 2535 gfp_t gfp = __GFP_THISNODE; 2536 2537 if (order > 0) 2538 gfp |= GFP_TRANSHUGE_LIGHT; 2539 else { 2540 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2541 __GFP_NOWARN; 2542 gfp &= ~__GFP_RECLAIM; 2543 } 2544 return __folio_alloc_node(gfp, order, nid); 2545 } 2546 2547 /* 2548 * Prepare for calling migrate_misplaced_folio() by isolating the folio if 2549 * permitted. Must be called with the PTL still held. 2550 */ 2551 int migrate_misplaced_folio_prepare(struct folio *folio, 2552 struct vm_area_struct *vma, int node) 2553 { 2554 int nr_pages = folio_nr_pages(folio); 2555 pg_data_t *pgdat = NODE_DATA(node); 2556 2557 if (folio_is_file_lru(folio)) { 2558 /* 2559 * Do not migrate file folios that are mapped in multiple 2560 * processes with execute permissions as they are probably 2561 * shared libraries. 2562 * 2563 * See folio_likely_mapped_shared() on possible imprecision 2564 * when we cannot easily detect if a folio is shared. 2565 */ 2566 if ((vma->vm_flags & VM_EXEC) && 2567 folio_likely_mapped_shared(folio)) 2568 return -EACCES; 2569 2570 /* 2571 * Do not migrate dirty folios as not all filesystems can move 2572 * dirty folios in MIGRATE_ASYNC mode which is a waste of 2573 * cycles. 2574 */ 2575 if (folio_test_dirty(folio)) 2576 return -EAGAIN; 2577 } 2578 2579 /* Avoid migrating to a node that is nearly full */ 2580 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2581 int z; 2582 2583 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2584 return -EAGAIN; 2585 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2586 if (managed_zone(pgdat->node_zones + z)) 2587 break; 2588 } 2589 2590 /* 2591 * If there are no managed zones, it should not proceed 2592 * further. 2593 */ 2594 if (z < 0) 2595 return -EAGAIN; 2596 2597 wakeup_kswapd(pgdat->node_zones + z, 0, 2598 folio_order(folio), ZONE_MOVABLE); 2599 return -EAGAIN; 2600 } 2601 2602 if (!folio_isolate_lru(folio)) 2603 return -EAGAIN; 2604 2605 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2606 nr_pages); 2607 return 0; 2608 } 2609 2610 /* 2611 * Attempt to migrate a misplaced folio to the specified destination 2612 * node. Caller is expected to have isolated the folio by calling 2613 * migrate_misplaced_folio_prepare(), which will result in an 2614 * elevated reference count on the folio. This function will un-isolate the 2615 * folio, dereferencing the folio before returning. 2616 */ 2617 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma, 2618 int node) 2619 { 2620 pg_data_t *pgdat = NODE_DATA(node); 2621 int nr_remaining; 2622 unsigned int nr_succeeded; 2623 LIST_HEAD(migratepages); 2624 2625 list_add(&folio->lru, &migratepages); 2626 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2627 NULL, node, MIGRATE_ASYNC, 2628 MR_NUMA_MISPLACED, &nr_succeeded); 2629 if (nr_remaining && !list_empty(&migratepages)) 2630 putback_movable_pages(&migratepages); 2631 if (nr_succeeded) { 2632 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2633 if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node)) 2634 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2635 nr_succeeded); 2636 } 2637 BUG_ON(!list_empty(&migratepages)); 2638 return nr_remaining ? -EAGAIN : 0; 2639 } 2640 #endif /* CONFIG_NUMA_BALANCING */ 2641 #endif /* CONFIG_NUMA */ 2642