1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 int isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct address_space *mapping; 63 64 /* 65 * Avoid burning cycles with pages that are yet under __free_pages(), 66 * or just got freed under us. 67 * 68 * In case we 'win' a race for a movable page being freed under us and 69 * raise its refcount preventing __free_pages() from doing its job 70 * the put_page() at the end of this block will take care of 71 * release this page, thus avoiding a nasty leakage. 72 */ 73 if (unlikely(!get_page_unless_zero(page))) 74 goto out; 75 76 /* 77 * Check PageMovable before holding a PG_lock because page's owner 78 * assumes anybody doesn't touch PG_lock of newly allocated page 79 * so unconditionally grabbing the lock ruins page's owner side. 80 */ 81 if (unlikely(!__PageMovable(page))) 82 goto out_putpage; 83 /* 84 * As movable pages are not isolated from LRU lists, concurrent 85 * compaction threads can race against page migration functions 86 * as well as race against the releasing a page. 87 * 88 * In order to avoid having an already isolated movable page 89 * being (wrongly) re-isolated while it is under migration, 90 * or to avoid attempting to isolate pages being released, 91 * lets be sure we have the page lock 92 * before proceeding with the movable page isolation steps. 93 */ 94 if (unlikely(!trylock_page(page))) 95 goto out_putpage; 96 97 if (!PageMovable(page) || PageIsolated(page)) 98 goto out_no_isolated; 99 100 mapping = page_mapping(page); 101 VM_BUG_ON_PAGE(!mapping, page); 102 103 if (!mapping->a_ops->isolate_page(page, mode)) 104 goto out_no_isolated; 105 106 /* Driver shouldn't use PG_isolated bit of page->flags */ 107 WARN_ON_ONCE(PageIsolated(page)); 108 __SetPageIsolated(page); 109 unlock_page(page); 110 111 return 0; 112 113 out_no_isolated: 114 unlock_page(page); 115 out_putpage: 116 put_page(page); 117 out: 118 return -EBUSY; 119 } 120 121 static void putback_movable_page(struct page *page) 122 { 123 struct address_space *mapping; 124 125 mapping = page_mapping(page); 126 mapping->a_ops->putback_page(page); 127 __ClearPageIsolated(page); 128 } 129 130 /* 131 * Put previously isolated pages back onto the appropriate lists 132 * from where they were once taken off for compaction/migration. 133 * 134 * This function shall be used whenever the isolated pageset has been 135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 136 * and isolate_huge_page(). 137 */ 138 void putback_movable_pages(struct list_head *l) 139 { 140 struct page *page; 141 struct page *page2; 142 143 list_for_each_entry_safe(page, page2, l, lru) { 144 if (unlikely(PageHuge(page))) { 145 putback_active_hugepage(page); 146 continue; 147 } 148 list_del(&page->lru); 149 /* 150 * We isolated non-lru movable page so here we can use 151 * __PageMovable because LRU page's mapping cannot have 152 * PAGE_MAPPING_MOVABLE. 153 */ 154 if (unlikely(__PageMovable(page))) { 155 VM_BUG_ON_PAGE(!PageIsolated(page), page); 156 lock_page(page); 157 if (PageMovable(page)) 158 putback_movable_page(page); 159 else 160 __ClearPageIsolated(page); 161 unlock_page(page); 162 put_page(page); 163 } else { 164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 165 page_is_file_lru(page), -thp_nr_pages(page)); 166 putback_lru_page(page); 167 } 168 } 169 } 170 171 /* 172 * Restore a potential migration pte to a working pte entry 173 */ 174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 175 unsigned long addr, void *old) 176 { 177 struct page_vma_mapped_walk pvmw = { 178 .page = old, 179 .vma = vma, 180 .address = addr, 181 .flags = PVMW_SYNC | PVMW_MIGRATION, 182 }; 183 struct page *new; 184 pte_t pte; 185 swp_entry_t entry; 186 187 VM_BUG_ON_PAGE(PageTail(page), page); 188 while (page_vma_mapped_walk(&pvmw)) { 189 if (PageKsm(page)) 190 new = page; 191 else 192 new = page - pvmw.page->index + 193 linear_page_index(vma, pvmw.address); 194 195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 196 /* PMD-mapped THP migration entry */ 197 if (!pvmw.pte) { 198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 199 remove_migration_pmd(&pvmw, new); 200 continue; 201 } 202 #endif 203 204 get_page(new); 205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 206 if (pte_swp_soft_dirty(*pvmw.pte)) 207 pte = pte_mksoft_dirty(pte); 208 209 /* 210 * Recheck VMA as permissions can change since migration started 211 */ 212 entry = pte_to_swp_entry(*pvmw.pte); 213 if (is_write_migration_entry(entry)) 214 pte = maybe_mkwrite(pte, vma); 215 else if (pte_swp_uffd_wp(*pvmw.pte)) 216 pte = pte_mkuffd_wp(pte); 217 218 if (unlikely(is_device_private_page(new))) { 219 entry = make_device_private_entry(new, pte_write(pte)); 220 pte = swp_entry_to_pte(entry); 221 if (pte_swp_soft_dirty(*pvmw.pte)) 222 pte = pte_swp_mksoft_dirty(pte); 223 if (pte_swp_uffd_wp(*pvmw.pte)) 224 pte = pte_swp_mkuffd_wp(pte); 225 } 226 227 #ifdef CONFIG_HUGETLB_PAGE 228 if (PageHuge(new)) { 229 pte = pte_mkhuge(pte); 230 pte = arch_make_huge_pte(pte, vma, new, 0); 231 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 232 if (PageAnon(new)) 233 hugepage_add_anon_rmap(new, vma, pvmw.address); 234 else 235 page_dup_rmap(new, true); 236 } else 237 #endif 238 { 239 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 240 241 if (PageAnon(new)) 242 page_add_anon_rmap(new, vma, pvmw.address, false); 243 else 244 page_add_file_rmap(new, false); 245 } 246 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 247 mlock_vma_page(new); 248 249 if (PageTransHuge(page) && PageMlocked(page)) 250 clear_page_mlock(page); 251 252 /* No need to invalidate - it was non-present before */ 253 update_mmu_cache(vma, pvmw.address, pvmw.pte); 254 } 255 256 return true; 257 } 258 259 /* 260 * Get rid of all migration entries and replace them by 261 * references to the indicated page. 262 */ 263 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 264 { 265 struct rmap_walk_control rwc = { 266 .rmap_one = remove_migration_pte, 267 .arg = old, 268 }; 269 270 if (locked) 271 rmap_walk_locked(new, &rwc); 272 else 273 rmap_walk(new, &rwc); 274 } 275 276 /* 277 * Something used the pte of a page under migration. We need to 278 * get to the page and wait until migration is finished. 279 * When we return from this function the fault will be retried. 280 */ 281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 282 spinlock_t *ptl) 283 { 284 pte_t pte; 285 swp_entry_t entry; 286 struct page *page; 287 288 spin_lock(ptl); 289 pte = *ptep; 290 if (!is_swap_pte(pte)) 291 goto out; 292 293 entry = pte_to_swp_entry(pte); 294 if (!is_migration_entry(entry)) 295 goto out; 296 297 page = migration_entry_to_page(entry); 298 299 /* 300 * Once page cache replacement of page migration started, page_count 301 * is zero; but we must not call put_and_wait_on_page_locked() without 302 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 303 */ 304 if (!get_page_unless_zero(page)) 305 goto out; 306 pte_unmap_unlock(ptep, ptl); 307 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 308 return; 309 out: 310 pte_unmap_unlock(ptep, ptl); 311 } 312 313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 314 unsigned long address) 315 { 316 spinlock_t *ptl = pte_lockptr(mm, pmd); 317 pte_t *ptep = pte_offset_map(pmd, address); 318 __migration_entry_wait(mm, ptep, ptl); 319 } 320 321 void migration_entry_wait_huge(struct vm_area_struct *vma, 322 struct mm_struct *mm, pte_t *pte) 323 { 324 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 325 __migration_entry_wait(mm, pte, ptl); 326 } 327 328 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 329 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 330 { 331 spinlock_t *ptl; 332 struct page *page; 333 334 ptl = pmd_lock(mm, pmd); 335 if (!is_pmd_migration_entry(*pmd)) 336 goto unlock; 337 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 338 if (!get_page_unless_zero(page)) 339 goto unlock; 340 spin_unlock(ptl); 341 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 342 return; 343 unlock: 344 spin_unlock(ptl); 345 } 346 #endif 347 348 static int expected_page_refs(struct address_space *mapping, struct page *page) 349 { 350 int expected_count = 1; 351 352 /* 353 * Device private pages have an extra refcount as they are 354 * ZONE_DEVICE pages. 355 */ 356 expected_count += is_device_private_page(page); 357 if (mapping) 358 expected_count += thp_nr_pages(page) + page_has_private(page); 359 360 return expected_count; 361 } 362 363 /* 364 * Replace the page in the mapping. 365 * 366 * The number of remaining references must be: 367 * 1 for anonymous pages without a mapping 368 * 2 for pages with a mapping 369 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 370 */ 371 int migrate_page_move_mapping(struct address_space *mapping, 372 struct page *newpage, struct page *page, int extra_count) 373 { 374 XA_STATE(xas, &mapping->i_pages, page_index(page)); 375 struct zone *oldzone, *newzone; 376 int dirty; 377 int expected_count = expected_page_refs(mapping, page) + extra_count; 378 int nr = thp_nr_pages(page); 379 380 if (!mapping) { 381 /* Anonymous page without mapping */ 382 if (page_count(page) != expected_count) 383 return -EAGAIN; 384 385 /* No turning back from here */ 386 newpage->index = page->index; 387 newpage->mapping = page->mapping; 388 if (PageSwapBacked(page)) 389 __SetPageSwapBacked(newpage); 390 391 return MIGRATEPAGE_SUCCESS; 392 } 393 394 oldzone = page_zone(page); 395 newzone = page_zone(newpage); 396 397 xas_lock_irq(&xas); 398 if (page_count(page) != expected_count || xas_load(&xas) != page) { 399 xas_unlock_irq(&xas); 400 return -EAGAIN; 401 } 402 403 if (!page_ref_freeze(page, expected_count)) { 404 xas_unlock_irq(&xas); 405 return -EAGAIN; 406 } 407 408 /* 409 * Now we know that no one else is looking at the page: 410 * no turning back from here. 411 */ 412 newpage->index = page->index; 413 newpage->mapping = page->mapping; 414 page_ref_add(newpage, nr); /* add cache reference */ 415 if (PageSwapBacked(page)) { 416 __SetPageSwapBacked(newpage); 417 if (PageSwapCache(page)) { 418 SetPageSwapCache(newpage); 419 set_page_private(newpage, page_private(page)); 420 } 421 } else { 422 VM_BUG_ON_PAGE(PageSwapCache(page), page); 423 } 424 425 /* Move dirty while page refs frozen and newpage not yet exposed */ 426 dirty = PageDirty(page); 427 if (dirty) { 428 ClearPageDirty(page); 429 SetPageDirty(newpage); 430 } 431 432 xas_store(&xas, newpage); 433 if (PageTransHuge(page)) { 434 int i; 435 436 for (i = 1; i < nr; i++) { 437 xas_next(&xas); 438 xas_store(&xas, newpage); 439 } 440 } 441 442 /* 443 * Drop cache reference from old page by unfreezing 444 * to one less reference. 445 * We know this isn't the last reference. 446 */ 447 page_ref_unfreeze(page, expected_count - nr); 448 449 xas_unlock(&xas); 450 /* Leave irq disabled to prevent preemption while updating stats */ 451 452 /* 453 * If moved to a different zone then also account 454 * the page for that zone. Other VM counters will be 455 * taken care of when we establish references to the 456 * new page and drop references to the old page. 457 * 458 * Note that anonymous pages are accounted for 459 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 460 * are mapped to swap space. 461 */ 462 if (newzone != oldzone) { 463 struct lruvec *old_lruvec, *new_lruvec; 464 struct mem_cgroup *memcg; 465 466 memcg = page_memcg(page); 467 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 468 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 469 470 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 471 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 472 if (PageSwapBacked(page) && !PageSwapCache(page)) { 473 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 474 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 475 } 476 #ifdef CONFIG_SWAP 477 if (PageSwapCache(page)) { 478 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 479 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 480 } 481 #endif 482 if (dirty && mapping_can_writeback(mapping)) { 483 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 484 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 485 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 486 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 487 } 488 } 489 local_irq_enable(); 490 491 return MIGRATEPAGE_SUCCESS; 492 } 493 EXPORT_SYMBOL(migrate_page_move_mapping); 494 495 /* 496 * The expected number of remaining references is the same as that 497 * of migrate_page_move_mapping(). 498 */ 499 int migrate_huge_page_move_mapping(struct address_space *mapping, 500 struct page *newpage, struct page *page) 501 { 502 XA_STATE(xas, &mapping->i_pages, page_index(page)); 503 int expected_count; 504 505 xas_lock_irq(&xas); 506 expected_count = 2 + page_has_private(page); 507 if (page_count(page) != expected_count || xas_load(&xas) != page) { 508 xas_unlock_irq(&xas); 509 return -EAGAIN; 510 } 511 512 if (!page_ref_freeze(page, expected_count)) { 513 xas_unlock_irq(&xas); 514 return -EAGAIN; 515 } 516 517 newpage->index = page->index; 518 newpage->mapping = page->mapping; 519 520 get_page(newpage); 521 522 xas_store(&xas, newpage); 523 524 page_ref_unfreeze(page, expected_count - 1); 525 526 xas_unlock_irq(&xas); 527 528 return MIGRATEPAGE_SUCCESS; 529 } 530 531 /* 532 * Gigantic pages are so large that we do not guarantee that page++ pointer 533 * arithmetic will work across the entire page. We need something more 534 * specialized. 535 */ 536 static void __copy_gigantic_page(struct page *dst, struct page *src, 537 int nr_pages) 538 { 539 int i; 540 struct page *dst_base = dst; 541 struct page *src_base = src; 542 543 for (i = 0; i < nr_pages; ) { 544 cond_resched(); 545 copy_highpage(dst, src); 546 547 i++; 548 dst = mem_map_next(dst, dst_base, i); 549 src = mem_map_next(src, src_base, i); 550 } 551 } 552 553 static void copy_huge_page(struct page *dst, struct page *src) 554 { 555 int i; 556 int nr_pages; 557 558 if (PageHuge(src)) { 559 /* hugetlbfs page */ 560 struct hstate *h = page_hstate(src); 561 nr_pages = pages_per_huge_page(h); 562 563 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 564 __copy_gigantic_page(dst, src, nr_pages); 565 return; 566 } 567 } else { 568 /* thp page */ 569 BUG_ON(!PageTransHuge(src)); 570 nr_pages = thp_nr_pages(src); 571 } 572 573 for (i = 0; i < nr_pages; i++) { 574 cond_resched(); 575 copy_highpage(dst + i, src + i); 576 } 577 } 578 579 /* 580 * Copy the page to its new location 581 */ 582 void migrate_page_states(struct page *newpage, struct page *page) 583 { 584 int cpupid; 585 586 if (PageError(page)) 587 SetPageError(newpage); 588 if (PageReferenced(page)) 589 SetPageReferenced(newpage); 590 if (PageUptodate(page)) 591 SetPageUptodate(newpage); 592 if (TestClearPageActive(page)) { 593 VM_BUG_ON_PAGE(PageUnevictable(page), page); 594 SetPageActive(newpage); 595 } else if (TestClearPageUnevictable(page)) 596 SetPageUnevictable(newpage); 597 if (PageWorkingset(page)) 598 SetPageWorkingset(newpage); 599 if (PageChecked(page)) 600 SetPageChecked(newpage); 601 if (PageMappedToDisk(page)) 602 SetPageMappedToDisk(newpage); 603 604 /* Move dirty on pages not done by migrate_page_move_mapping() */ 605 if (PageDirty(page)) 606 SetPageDirty(newpage); 607 608 if (page_is_young(page)) 609 set_page_young(newpage); 610 if (page_is_idle(page)) 611 set_page_idle(newpage); 612 613 /* 614 * Copy NUMA information to the new page, to prevent over-eager 615 * future migrations of this same page. 616 */ 617 cpupid = page_cpupid_xchg_last(page, -1); 618 page_cpupid_xchg_last(newpage, cpupid); 619 620 ksm_migrate_page(newpage, page); 621 /* 622 * Please do not reorder this without considering how mm/ksm.c's 623 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 624 */ 625 if (PageSwapCache(page)) 626 ClearPageSwapCache(page); 627 ClearPagePrivate(page); 628 set_page_private(page, 0); 629 630 /* 631 * If any waiters have accumulated on the new page then 632 * wake them up. 633 */ 634 if (PageWriteback(newpage)) 635 end_page_writeback(newpage); 636 637 /* 638 * PG_readahead shares the same bit with PG_reclaim. The above 639 * end_page_writeback() may clear PG_readahead mistakenly, so set the 640 * bit after that. 641 */ 642 if (PageReadahead(page)) 643 SetPageReadahead(newpage); 644 645 copy_page_owner(page, newpage); 646 647 if (!PageHuge(page)) 648 mem_cgroup_migrate(page, newpage); 649 } 650 EXPORT_SYMBOL(migrate_page_states); 651 652 void migrate_page_copy(struct page *newpage, struct page *page) 653 { 654 if (PageHuge(page) || PageTransHuge(page)) 655 copy_huge_page(newpage, page); 656 else 657 copy_highpage(newpage, page); 658 659 migrate_page_states(newpage, page); 660 } 661 EXPORT_SYMBOL(migrate_page_copy); 662 663 /************************************************************ 664 * Migration functions 665 ***********************************************************/ 666 667 /* 668 * Common logic to directly migrate a single LRU page suitable for 669 * pages that do not use PagePrivate/PagePrivate2. 670 * 671 * Pages are locked upon entry and exit. 672 */ 673 int migrate_page(struct address_space *mapping, 674 struct page *newpage, struct page *page, 675 enum migrate_mode mode) 676 { 677 int rc; 678 679 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 680 681 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 682 683 if (rc != MIGRATEPAGE_SUCCESS) 684 return rc; 685 686 if (mode != MIGRATE_SYNC_NO_COPY) 687 migrate_page_copy(newpage, page); 688 else 689 migrate_page_states(newpage, page); 690 return MIGRATEPAGE_SUCCESS; 691 } 692 EXPORT_SYMBOL(migrate_page); 693 694 #ifdef CONFIG_BLOCK 695 /* Returns true if all buffers are successfully locked */ 696 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 697 enum migrate_mode mode) 698 { 699 struct buffer_head *bh = head; 700 701 /* Simple case, sync compaction */ 702 if (mode != MIGRATE_ASYNC) { 703 do { 704 lock_buffer(bh); 705 bh = bh->b_this_page; 706 707 } while (bh != head); 708 709 return true; 710 } 711 712 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 713 do { 714 if (!trylock_buffer(bh)) { 715 /* 716 * We failed to lock the buffer and cannot stall in 717 * async migration. Release the taken locks 718 */ 719 struct buffer_head *failed_bh = bh; 720 bh = head; 721 while (bh != failed_bh) { 722 unlock_buffer(bh); 723 bh = bh->b_this_page; 724 } 725 return false; 726 } 727 728 bh = bh->b_this_page; 729 } while (bh != head); 730 return true; 731 } 732 733 static int __buffer_migrate_page(struct address_space *mapping, 734 struct page *newpage, struct page *page, enum migrate_mode mode, 735 bool check_refs) 736 { 737 struct buffer_head *bh, *head; 738 int rc; 739 int expected_count; 740 741 if (!page_has_buffers(page)) 742 return migrate_page(mapping, newpage, page, mode); 743 744 /* Check whether page does not have extra refs before we do more work */ 745 expected_count = expected_page_refs(mapping, page); 746 if (page_count(page) != expected_count) 747 return -EAGAIN; 748 749 head = page_buffers(page); 750 if (!buffer_migrate_lock_buffers(head, mode)) 751 return -EAGAIN; 752 753 if (check_refs) { 754 bool busy; 755 bool invalidated = false; 756 757 recheck_buffers: 758 busy = false; 759 spin_lock(&mapping->private_lock); 760 bh = head; 761 do { 762 if (atomic_read(&bh->b_count)) { 763 busy = true; 764 break; 765 } 766 bh = bh->b_this_page; 767 } while (bh != head); 768 if (busy) { 769 if (invalidated) { 770 rc = -EAGAIN; 771 goto unlock_buffers; 772 } 773 spin_unlock(&mapping->private_lock); 774 invalidate_bh_lrus(); 775 invalidated = true; 776 goto recheck_buffers; 777 } 778 } 779 780 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 781 if (rc != MIGRATEPAGE_SUCCESS) 782 goto unlock_buffers; 783 784 attach_page_private(newpage, detach_page_private(page)); 785 786 bh = head; 787 do { 788 set_bh_page(bh, newpage, bh_offset(bh)); 789 bh = bh->b_this_page; 790 791 } while (bh != head); 792 793 if (mode != MIGRATE_SYNC_NO_COPY) 794 migrate_page_copy(newpage, page); 795 else 796 migrate_page_states(newpage, page); 797 798 rc = MIGRATEPAGE_SUCCESS; 799 unlock_buffers: 800 if (check_refs) 801 spin_unlock(&mapping->private_lock); 802 bh = head; 803 do { 804 unlock_buffer(bh); 805 bh = bh->b_this_page; 806 807 } while (bh != head); 808 809 return rc; 810 } 811 812 /* 813 * Migration function for pages with buffers. This function can only be used 814 * if the underlying filesystem guarantees that no other references to "page" 815 * exist. For example attached buffer heads are accessed only under page lock. 816 */ 817 int buffer_migrate_page(struct address_space *mapping, 818 struct page *newpage, struct page *page, enum migrate_mode mode) 819 { 820 return __buffer_migrate_page(mapping, newpage, page, mode, false); 821 } 822 EXPORT_SYMBOL(buffer_migrate_page); 823 824 /* 825 * Same as above except that this variant is more careful and checks that there 826 * are also no buffer head references. This function is the right one for 827 * mappings where buffer heads are directly looked up and referenced (such as 828 * block device mappings). 829 */ 830 int buffer_migrate_page_norefs(struct address_space *mapping, 831 struct page *newpage, struct page *page, enum migrate_mode mode) 832 { 833 return __buffer_migrate_page(mapping, newpage, page, mode, true); 834 } 835 #endif 836 837 /* 838 * Writeback a page to clean the dirty state 839 */ 840 static int writeout(struct address_space *mapping, struct page *page) 841 { 842 struct writeback_control wbc = { 843 .sync_mode = WB_SYNC_NONE, 844 .nr_to_write = 1, 845 .range_start = 0, 846 .range_end = LLONG_MAX, 847 .for_reclaim = 1 848 }; 849 int rc; 850 851 if (!mapping->a_ops->writepage) 852 /* No write method for the address space */ 853 return -EINVAL; 854 855 if (!clear_page_dirty_for_io(page)) 856 /* Someone else already triggered a write */ 857 return -EAGAIN; 858 859 /* 860 * A dirty page may imply that the underlying filesystem has 861 * the page on some queue. So the page must be clean for 862 * migration. Writeout may mean we loose the lock and the 863 * page state is no longer what we checked for earlier. 864 * At this point we know that the migration attempt cannot 865 * be successful. 866 */ 867 remove_migration_ptes(page, page, false); 868 869 rc = mapping->a_ops->writepage(page, &wbc); 870 871 if (rc != AOP_WRITEPAGE_ACTIVATE) 872 /* unlocked. Relock */ 873 lock_page(page); 874 875 return (rc < 0) ? -EIO : -EAGAIN; 876 } 877 878 /* 879 * Default handling if a filesystem does not provide a migration function. 880 */ 881 static int fallback_migrate_page(struct address_space *mapping, 882 struct page *newpage, struct page *page, enum migrate_mode mode) 883 { 884 if (PageDirty(page)) { 885 /* Only writeback pages in full synchronous migration */ 886 switch (mode) { 887 case MIGRATE_SYNC: 888 case MIGRATE_SYNC_NO_COPY: 889 break; 890 default: 891 return -EBUSY; 892 } 893 return writeout(mapping, page); 894 } 895 896 /* 897 * Buffers may be managed in a filesystem specific way. 898 * We must have no buffers or drop them. 899 */ 900 if (page_has_private(page) && 901 !try_to_release_page(page, GFP_KERNEL)) 902 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 903 904 return migrate_page(mapping, newpage, page, mode); 905 } 906 907 /* 908 * Move a page to a newly allocated page 909 * The page is locked and all ptes have been successfully removed. 910 * 911 * The new page will have replaced the old page if this function 912 * is successful. 913 * 914 * Return value: 915 * < 0 - error code 916 * MIGRATEPAGE_SUCCESS - success 917 */ 918 static int move_to_new_page(struct page *newpage, struct page *page, 919 enum migrate_mode mode) 920 { 921 struct address_space *mapping; 922 int rc = -EAGAIN; 923 bool is_lru = !__PageMovable(page); 924 925 VM_BUG_ON_PAGE(!PageLocked(page), page); 926 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 927 928 mapping = page_mapping(page); 929 930 if (likely(is_lru)) { 931 if (!mapping) 932 rc = migrate_page(mapping, newpage, page, mode); 933 else if (mapping->a_ops->migratepage) 934 /* 935 * Most pages have a mapping and most filesystems 936 * provide a migratepage callback. Anonymous pages 937 * are part of swap space which also has its own 938 * migratepage callback. This is the most common path 939 * for page migration. 940 */ 941 rc = mapping->a_ops->migratepage(mapping, newpage, 942 page, mode); 943 else 944 rc = fallback_migrate_page(mapping, newpage, 945 page, mode); 946 } else { 947 /* 948 * In case of non-lru page, it could be released after 949 * isolation step. In that case, we shouldn't try migration. 950 */ 951 VM_BUG_ON_PAGE(!PageIsolated(page), page); 952 if (!PageMovable(page)) { 953 rc = MIGRATEPAGE_SUCCESS; 954 __ClearPageIsolated(page); 955 goto out; 956 } 957 958 rc = mapping->a_ops->migratepage(mapping, newpage, 959 page, mode); 960 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 961 !PageIsolated(page)); 962 } 963 964 /* 965 * When successful, old pagecache page->mapping must be cleared before 966 * page is freed; but stats require that PageAnon be left as PageAnon. 967 */ 968 if (rc == MIGRATEPAGE_SUCCESS) { 969 if (__PageMovable(page)) { 970 VM_BUG_ON_PAGE(!PageIsolated(page), page); 971 972 /* 973 * We clear PG_movable under page_lock so any compactor 974 * cannot try to migrate this page. 975 */ 976 __ClearPageIsolated(page); 977 } 978 979 /* 980 * Anonymous and movable page->mapping will be cleared by 981 * free_pages_prepare so don't reset it here for keeping 982 * the type to work PageAnon, for example. 983 */ 984 if (!PageMappingFlags(page)) 985 page->mapping = NULL; 986 987 if (likely(!is_zone_device_page(newpage))) 988 flush_dcache_page(newpage); 989 990 } 991 out: 992 return rc; 993 } 994 995 static int __unmap_and_move(struct page *page, struct page *newpage, 996 int force, enum migrate_mode mode) 997 { 998 int rc = -EAGAIN; 999 int page_was_mapped = 0; 1000 struct anon_vma *anon_vma = NULL; 1001 bool is_lru = !__PageMovable(page); 1002 1003 if (!trylock_page(page)) { 1004 if (!force || mode == MIGRATE_ASYNC) 1005 goto out; 1006 1007 /* 1008 * It's not safe for direct compaction to call lock_page. 1009 * For example, during page readahead pages are added locked 1010 * to the LRU. Later, when the IO completes the pages are 1011 * marked uptodate and unlocked. However, the queueing 1012 * could be merging multiple pages for one bio (e.g. 1013 * mpage_readahead). If an allocation happens for the 1014 * second or third page, the process can end up locking 1015 * the same page twice and deadlocking. Rather than 1016 * trying to be clever about what pages can be locked, 1017 * avoid the use of lock_page for direct compaction 1018 * altogether. 1019 */ 1020 if (current->flags & PF_MEMALLOC) 1021 goto out; 1022 1023 lock_page(page); 1024 } 1025 1026 if (PageWriteback(page)) { 1027 /* 1028 * Only in the case of a full synchronous migration is it 1029 * necessary to wait for PageWriteback. In the async case, 1030 * the retry loop is too short and in the sync-light case, 1031 * the overhead of stalling is too much 1032 */ 1033 switch (mode) { 1034 case MIGRATE_SYNC: 1035 case MIGRATE_SYNC_NO_COPY: 1036 break; 1037 default: 1038 rc = -EBUSY; 1039 goto out_unlock; 1040 } 1041 if (!force) 1042 goto out_unlock; 1043 wait_on_page_writeback(page); 1044 } 1045 1046 /* 1047 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1048 * we cannot notice that anon_vma is freed while we migrates a page. 1049 * This get_anon_vma() delays freeing anon_vma pointer until the end 1050 * of migration. File cache pages are no problem because of page_lock() 1051 * File Caches may use write_page() or lock_page() in migration, then, 1052 * just care Anon page here. 1053 * 1054 * Only page_get_anon_vma() understands the subtleties of 1055 * getting a hold on an anon_vma from outside one of its mms. 1056 * But if we cannot get anon_vma, then we won't need it anyway, 1057 * because that implies that the anon page is no longer mapped 1058 * (and cannot be remapped so long as we hold the page lock). 1059 */ 1060 if (PageAnon(page) && !PageKsm(page)) 1061 anon_vma = page_get_anon_vma(page); 1062 1063 /* 1064 * Block others from accessing the new page when we get around to 1065 * establishing additional references. We are usually the only one 1066 * holding a reference to newpage at this point. We used to have a BUG 1067 * here if trylock_page(newpage) fails, but would like to allow for 1068 * cases where there might be a race with the previous use of newpage. 1069 * This is much like races on refcount of oldpage: just don't BUG(). 1070 */ 1071 if (unlikely(!trylock_page(newpage))) 1072 goto out_unlock; 1073 1074 if (unlikely(!is_lru)) { 1075 rc = move_to_new_page(newpage, page, mode); 1076 goto out_unlock_both; 1077 } 1078 1079 /* 1080 * Corner case handling: 1081 * 1. When a new swap-cache page is read into, it is added to the LRU 1082 * and treated as swapcache but it has no rmap yet. 1083 * Calling try_to_unmap() against a page->mapping==NULL page will 1084 * trigger a BUG. So handle it here. 1085 * 2. An orphaned page (see truncate_cleanup_page) might have 1086 * fs-private metadata. The page can be picked up due to memory 1087 * offlining. Everywhere else except page reclaim, the page is 1088 * invisible to the vm, so the page can not be migrated. So try to 1089 * free the metadata, so the page can be freed. 1090 */ 1091 if (!page->mapping) { 1092 VM_BUG_ON_PAGE(PageAnon(page), page); 1093 if (page_has_private(page)) { 1094 try_to_free_buffers(page); 1095 goto out_unlock_both; 1096 } 1097 } else if (page_mapped(page)) { 1098 /* Establish migration ptes */ 1099 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1100 page); 1101 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK); 1102 page_was_mapped = 1; 1103 } 1104 1105 if (!page_mapped(page)) 1106 rc = move_to_new_page(newpage, page, mode); 1107 1108 if (page_was_mapped) 1109 remove_migration_ptes(page, 1110 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1111 1112 out_unlock_both: 1113 unlock_page(newpage); 1114 out_unlock: 1115 /* Drop an anon_vma reference if we took one */ 1116 if (anon_vma) 1117 put_anon_vma(anon_vma); 1118 unlock_page(page); 1119 out: 1120 /* 1121 * If migration is successful, decrease refcount of the newpage 1122 * which will not free the page because new page owner increased 1123 * refcounter. As well, if it is LRU page, add the page to LRU 1124 * list in here. Use the old state of the isolated source page to 1125 * determine if we migrated a LRU page. newpage was already unlocked 1126 * and possibly modified by its owner - don't rely on the page 1127 * state. 1128 */ 1129 if (rc == MIGRATEPAGE_SUCCESS) { 1130 if (unlikely(!is_lru)) 1131 put_page(newpage); 1132 else 1133 putback_lru_page(newpage); 1134 } 1135 1136 return rc; 1137 } 1138 1139 /* 1140 * Obtain the lock on page, remove all ptes and migrate the page 1141 * to the newly allocated page in newpage. 1142 */ 1143 static int unmap_and_move(new_page_t get_new_page, 1144 free_page_t put_new_page, 1145 unsigned long private, struct page *page, 1146 int force, enum migrate_mode mode, 1147 enum migrate_reason reason, 1148 struct list_head *ret) 1149 { 1150 int rc = MIGRATEPAGE_SUCCESS; 1151 struct page *newpage = NULL; 1152 1153 if (!thp_migration_supported() && PageTransHuge(page)) 1154 return -ENOSYS; 1155 1156 if (page_count(page) == 1) { 1157 /* page was freed from under us. So we are done. */ 1158 ClearPageActive(page); 1159 ClearPageUnevictable(page); 1160 if (unlikely(__PageMovable(page))) { 1161 lock_page(page); 1162 if (!PageMovable(page)) 1163 __ClearPageIsolated(page); 1164 unlock_page(page); 1165 } 1166 goto out; 1167 } 1168 1169 newpage = get_new_page(page, private); 1170 if (!newpage) 1171 return -ENOMEM; 1172 1173 rc = __unmap_and_move(page, newpage, force, mode); 1174 if (rc == MIGRATEPAGE_SUCCESS) 1175 set_page_owner_migrate_reason(newpage, reason); 1176 1177 out: 1178 if (rc != -EAGAIN) { 1179 /* 1180 * A page that has been migrated has all references 1181 * removed and will be freed. A page that has not been 1182 * migrated will have kept its references and be restored. 1183 */ 1184 list_del(&page->lru); 1185 } 1186 1187 /* 1188 * If migration is successful, releases reference grabbed during 1189 * isolation. Otherwise, restore the page to right list unless 1190 * we want to retry. 1191 */ 1192 if (rc == MIGRATEPAGE_SUCCESS) { 1193 /* 1194 * Compaction can migrate also non-LRU pages which are 1195 * not accounted to NR_ISOLATED_*. They can be recognized 1196 * as __PageMovable 1197 */ 1198 if (likely(!__PageMovable(page))) 1199 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1200 page_is_file_lru(page), -thp_nr_pages(page)); 1201 1202 if (reason != MR_MEMORY_FAILURE) 1203 /* 1204 * We release the page in page_handle_poison. 1205 */ 1206 put_page(page); 1207 } else { 1208 if (rc != -EAGAIN) 1209 list_add_tail(&page->lru, ret); 1210 1211 if (put_new_page) 1212 put_new_page(newpage, private); 1213 else 1214 put_page(newpage); 1215 } 1216 1217 return rc; 1218 } 1219 1220 /* 1221 * Counterpart of unmap_and_move_page() for hugepage migration. 1222 * 1223 * This function doesn't wait the completion of hugepage I/O 1224 * because there is no race between I/O and migration for hugepage. 1225 * Note that currently hugepage I/O occurs only in direct I/O 1226 * where no lock is held and PG_writeback is irrelevant, 1227 * and writeback status of all subpages are counted in the reference 1228 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1229 * under direct I/O, the reference of the head page is 512 and a bit more.) 1230 * This means that when we try to migrate hugepage whose subpages are 1231 * doing direct I/O, some references remain after try_to_unmap() and 1232 * hugepage migration fails without data corruption. 1233 * 1234 * There is also no race when direct I/O is issued on the page under migration, 1235 * because then pte is replaced with migration swap entry and direct I/O code 1236 * will wait in the page fault for migration to complete. 1237 */ 1238 static int unmap_and_move_huge_page(new_page_t get_new_page, 1239 free_page_t put_new_page, unsigned long private, 1240 struct page *hpage, int force, 1241 enum migrate_mode mode, int reason, 1242 struct list_head *ret) 1243 { 1244 int rc = -EAGAIN; 1245 int page_was_mapped = 0; 1246 struct page *new_hpage; 1247 struct anon_vma *anon_vma = NULL; 1248 struct address_space *mapping = NULL; 1249 1250 /* 1251 * Migratability of hugepages depends on architectures and their size. 1252 * This check is necessary because some callers of hugepage migration 1253 * like soft offline and memory hotremove don't walk through page 1254 * tables or check whether the hugepage is pmd-based or not before 1255 * kicking migration. 1256 */ 1257 if (!hugepage_migration_supported(page_hstate(hpage))) { 1258 list_move_tail(&hpage->lru, ret); 1259 return -ENOSYS; 1260 } 1261 1262 if (page_count(hpage) == 1) { 1263 /* page was freed from under us. So we are done. */ 1264 putback_active_hugepage(hpage); 1265 return MIGRATEPAGE_SUCCESS; 1266 } 1267 1268 new_hpage = get_new_page(hpage, private); 1269 if (!new_hpage) 1270 return -ENOMEM; 1271 1272 if (!trylock_page(hpage)) { 1273 if (!force) 1274 goto out; 1275 switch (mode) { 1276 case MIGRATE_SYNC: 1277 case MIGRATE_SYNC_NO_COPY: 1278 break; 1279 default: 1280 goto out; 1281 } 1282 lock_page(hpage); 1283 } 1284 1285 /* 1286 * Check for pages which are in the process of being freed. Without 1287 * page_mapping() set, hugetlbfs specific move page routine will not 1288 * be called and we could leak usage counts for subpools. 1289 */ 1290 if (page_private(hpage) && !page_mapping(hpage)) { 1291 rc = -EBUSY; 1292 goto out_unlock; 1293 } 1294 1295 if (PageAnon(hpage)) 1296 anon_vma = page_get_anon_vma(hpage); 1297 1298 if (unlikely(!trylock_page(new_hpage))) 1299 goto put_anon; 1300 1301 if (page_mapped(hpage)) { 1302 bool mapping_locked = false; 1303 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK; 1304 1305 if (!PageAnon(hpage)) { 1306 /* 1307 * In shared mappings, try_to_unmap could potentially 1308 * call huge_pmd_unshare. Because of this, take 1309 * semaphore in write mode here and set TTU_RMAP_LOCKED 1310 * to let lower levels know we have taken the lock. 1311 */ 1312 mapping = hugetlb_page_mapping_lock_write(hpage); 1313 if (unlikely(!mapping)) 1314 goto unlock_put_anon; 1315 1316 mapping_locked = true; 1317 ttu |= TTU_RMAP_LOCKED; 1318 } 1319 1320 try_to_unmap(hpage, ttu); 1321 page_was_mapped = 1; 1322 1323 if (mapping_locked) 1324 i_mmap_unlock_write(mapping); 1325 } 1326 1327 if (!page_mapped(hpage)) 1328 rc = move_to_new_page(new_hpage, hpage, mode); 1329 1330 if (page_was_mapped) 1331 remove_migration_ptes(hpage, 1332 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1333 1334 unlock_put_anon: 1335 unlock_page(new_hpage); 1336 1337 put_anon: 1338 if (anon_vma) 1339 put_anon_vma(anon_vma); 1340 1341 if (rc == MIGRATEPAGE_SUCCESS) { 1342 move_hugetlb_state(hpage, new_hpage, reason); 1343 put_new_page = NULL; 1344 } 1345 1346 out_unlock: 1347 unlock_page(hpage); 1348 out: 1349 if (rc == MIGRATEPAGE_SUCCESS) 1350 putback_active_hugepage(hpage); 1351 else if (rc != -EAGAIN) 1352 list_move_tail(&hpage->lru, ret); 1353 1354 /* 1355 * If migration was not successful and there's a freeing callback, use 1356 * it. Otherwise, put_page() will drop the reference grabbed during 1357 * isolation. 1358 */ 1359 if (put_new_page) 1360 put_new_page(new_hpage, private); 1361 else 1362 putback_active_hugepage(new_hpage); 1363 1364 return rc; 1365 } 1366 1367 static inline int try_split_thp(struct page *page, struct page **page2, 1368 struct list_head *from) 1369 { 1370 int rc = 0; 1371 1372 lock_page(page); 1373 rc = split_huge_page_to_list(page, from); 1374 unlock_page(page); 1375 if (!rc) 1376 list_safe_reset_next(page, *page2, lru); 1377 1378 return rc; 1379 } 1380 1381 /* 1382 * migrate_pages - migrate the pages specified in a list, to the free pages 1383 * supplied as the target for the page migration 1384 * 1385 * @from: The list of pages to be migrated. 1386 * @get_new_page: The function used to allocate free pages to be used 1387 * as the target of the page migration. 1388 * @put_new_page: The function used to free target pages if migration 1389 * fails, or NULL if no special handling is necessary. 1390 * @private: Private data to be passed on to get_new_page() 1391 * @mode: The migration mode that specifies the constraints for 1392 * page migration, if any. 1393 * @reason: The reason for page migration. 1394 * 1395 * The function returns after 10 attempts or if no pages are movable any more 1396 * because the list has become empty or no retryable pages exist any more. 1397 * It is caller's responsibility to call putback_movable_pages() to return pages 1398 * to the LRU or free list only if ret != 0. 1399 * 1400 * Returns the number of pages that were not migrated, or an error code. 1401 */ 1402 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1403 free_page_t put_new_page, unsigned long private, 1404 enum migrate_mode mode, int reason) 1405 { 1406 int retry = 1; 1407 int thp_retry = 1; 1408 int nr_failed = 0; 1409 int nr_succeeded = 0; 1410 int nr_thp_succeeded = 0; 1411 int nr_thp_failed = 0; 1412 int nr_thp_split = 0; 1413 int pass = 0; 1414 bool is_thp = false; 1415 struct page *page; 1416 struct page *page2; 1417 int swapwrite = current->flags & PF_SWAPWRITE; 1418 int rc, nr_subpages; 1419 LIST_HEAD(ret_pages); 1420 1421 trace_mm_migrate_pages_start(mode, reason); 1422 1423 if (!swapwrite) 1424 current->flags |= PF_SWAPWRITE; 1425 1426 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1427 retry = 0; 1428 thp_retry = 0; 1429 1430 list_for_each_entry_safe(page, page2, from, lru) { 1431 retry: 1432 /* 1433 * THP statistics is based on the source huge page. 1434 * Capture required information that might get lost 1435 * during migration. 1436 */ 1437 is_thp = PageTransHuge(page) && !PageHuge(page); 1438 nr_subpages = thp_nr_pages(page); 1439 cond_resched(); 1440 1441 if (PageHuge(page)) 1442 rc = unmap_and_move_huge_page(get_new_page, 1443 put_new_page, private, page, 1444 pass > 2, mode, reason, 1445 &ret_pages); 1446 else 1447 rc = unmap_and_move(get_new_page, put_new_page, 1448 private, page, pass > 2, mode, 1449 reason, &ret_pages); 1450 /* 1451 * The rules are: 1452 * Success: non hugetlb page will be freed, hugetlb 1453 * page will be put back 1454 * -EAGAIN: stay on the from list 1455 * -ENOMEM: stay on the from list 1456 * Other errno: put on ret_pages list then splice to 1457 * from list 1458 */ 1459 switch(rc) { 1460 /* 1461 * THP migration might be unsupported or the 1462 * allocation could've failed so we should 1463 * retry on the same page with the THP split 1464 * to base pages. 1465 * 1466 * Head page is retried immediately and tail 1467 * pages are added to the tail of the list so 1468 * we encounter them after the rest of the list 1469 * is processed. 1470 */ 1471 case -ENOSYS: 1472 /* THP migration is unsupported */ 1473 if (is_thp) { 1474 if (!try_split_thp(page, &page2, from)) { 1475 nr_thp_split++; 1476 goto retry; 1477 } 1478 1479 nr_thp_failed++; 1480 nr_failed += nr_subpages; 1481 break; 1482 } 1483 1484 /* Hugetlb migration is unsupported */ 1485 nr_failed++; 1486 break; 1487 case -ENOMEM: 1488 /* 1489 * When memory is low, don't bother to try to migrate 1490 * other pages, just exit. 1491 */ 1492 if (is_thp) { 1493 if (!try_split_thp(page, &page2, from)) { 1494 nr_thp_split++; 1495 goto retry; 1496 } 1497 1498 nr_thp_failed++; 1499 nr_failed += nr_subpages; 1500 goto out; 1501 } 1502 nr_failed++; 1503 goto out; 1504 case -EAGAIN: 1505 if (is_thp) { 1506 thp_retry++; 1507 break; 1508 } 1509 retry++; 1510 break; 1511 case MIGRATEPAGE_SUCCESS: 1512 if (is_thp) { 1513 nr_thp_succeeded++; 1514 nr_succeeded += nr_subpages; 1515 break; 1516 } 1517 nr_succeeded++; 1518 break; 1519 default: 1520 /* 1521 * Permanent failure (-EBUSY, etc.): 1522 * unlike -EAGAIN case, the failed page is 1523 * removed from migration page list and not 1524 * retried in the next outer loop. 1525 */ 1526 if (is_thp) { 1527 nr_thp_failed++; 1528 nr_failed += nr_subpages; 1529 break; 1530 } 1531 nr_failed++; 1532 break; 1533 } 1534 } 1535 } 1536 nr_failed += retry + thp_retry; 1537 nr_thp_failed += thp_retry; 1538 rc = nr_failed; 1539 out: 1540 /* 1541 * Put the permanent failure page back to migration list, they 1542 * will be put back to the right list by the caller. 1543 */ 1544 list_splice(&ret_pages, from); 1545 1546 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1547 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1548 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1549 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1550 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1551 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1552 nr_thp_failed, nr_thp_split, mode, reason); 1553 1554 if (!swapwrite) 1555 current->flags &= ~PF_SWAPWRITE; 1556 1557 return rc; 1558 } 1559 1560 struct page *alloc_migration_target(struct page *page, unsigned long private) 1561 { 1562 struct migration_target_control *mtc; 1563 gfp_t gfp_mask; 1564 unsigned int order = 0; 1565 struct page *new_page = NULL; 1566 int nid; 1567 int zidx; 1568 1569 mtc = (struct migration_target_control *)private; 1570 gfp_mask = mtc->gfp_mask; 1571 nid = mtc->nid; 1572 if (nid == NUMA_NO_NODE) 1573 nid = page_to_nid(page); 1574 1575 if (PageHuge(page)) { 1576 struct hstate *h = page_hstate(compound_head(page)); 1577 1578 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1579 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1580 } 1581 1582 if (PageTransHuge(page)) { 1583 /* 1584 * clear __GFP_RECLAIM to make the migration callback 1585 * consistent with regular THP allocations. 1586 */ 1587 gfp_mask &= ~__GFP_RECLAIM; 1588 gfp_mask |= GFP_TRANSHUGE; 1589 order = HPAGE_PMD_ORDER; 1590 } 1591 zidx = zone_idx(page_zone(page)); 1592 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1593 gfp_mask |= __GFP_HIGHMEM; 1594 1595 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask); 1596 1597 if (new_page && PageTransHuge(new_page)) 1598 prep_transhuge_page(new_page); 1599 1600 return new_page; 1601 } 1602 1603 #ifdef CONFIG_NUMA 1604 1605 static int store_status(int __user *status, int start, int value, int nr) 1606 { 1607 while (nr-- > 0) { 1608 if (put_user(value, status + start)) 1609 return -EFAULT; 1610 start++; 1611 } 1612 1613 return 0; 1614 } 1615 1616 static int do_move_pages_to_node(struct mm_struct *mm, 1617 struct list_head *pagelist, int node) 1618 { 1619 int err; 1620 struct migration_target_control mtc = { 1621 .nid = node, 1622 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1623 }; 1624 1625 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1626 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1627 if (err) 1628 putback_movable_pages(pagelist); 1629 return err; 1630 } 1631 1632 /* 1633 * Resolves the given address to a struct page, isolates it from the LRU and 1634 * puts it to the given pagelist. 1635 * Returns: 1636 * errno - if the page cannot be found/isolated 1637 * 0 - when it doesn't have to be migrated because it is already on the 1638 * target node 1639 * 1 - when it has been queued 1640 */ 1641 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1642 int node, struct list_head *pagelist, bool migrate_all) 1643 { 1644 struct vm_area_struct *vma; 1645 struct page *page; 1646 unsigned int follflags; 1647 int err; 1648 1649 mmap_read_lock(mm); 1650 err = -EFAULT; 1651 vma = find_vma(mm, addr); 1652 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1653 goto out; 1654 1655 /* FOLL_DUMP to ignore special (like zero) pages */ 1656 follflags = FOLL_GET | FOLL_DUMP; 1657 page = follow_page(vma, addr, follflags); 1658 1659 err = PTR_ERR(page); 1660 if (IS_ERR(page)) 1661 goto out; 1662 1663 err = -ENOENT; 1664 if (!page) 1665 goto out; 1666 1667 err = 0; 1668 if (page_to_nid(page) == node) 1669 goto out_putpage; 1670 1671 err = -EACCES; 1672 if (page_mapcount(page) > 1 && !migrate_all) 1673 goto out_putpage; 1674 1675 if (PageHuge(page)) { 1676 if (PageHead(page)) { 1677 isolate_huge_page(page, pagelist); 1678 err = 1; 1679 } 1680 } else { 1681 struct page *head; 1682 1683 head = compound_head(page); 1684 err = isolate_lru_page(head); 1685 if (err) 1686 goto out_putpage; 1687 1688 err = 1; 1689 list_add_tail(&head->lru, pagelist); 1690 mod_node_page_state(page_pgdat(head), 1691 NR_ISOLATED_ANON + page_is_file_lru(head), 1692 thp_nr_pages(head)); 1693 } 1694 out_putpage: 1695 /* 1696 * Either remove the duplicate refcount from 1697 * isolate_lru_page() or drop the page ref if it was 1698 * not isolated. 1699 */ 1700 put_page(page); 1701 out: 1702 mmap_read_unlock(mm); 1703 return err; 1704 } 1705 1706 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1707 struct list_head *pagelist, int __user *status, 1708 int start, int i, unsigned long nr_pages) 1709 { 1710 int err; 1711 1712 if (list_empty(pagelist)) 1713 return 0; 1714 1715 err = do_move_pages_to_node(mm, pagelist, node); 1716 if (err) { 1717 /* 1718 * Positive err means the number of failed 1719 * pages to migrate. Since we are going to 1720 * abort and return the number of non-migrated 1721 * pages, so need to include the rest of the 1722 * nr_pages that have not been attempted as 1723 * well. 1724 */ 1725 if (err > 0) 1726 err += nr_pages - i - 1; 1727 return err; 1728 } 1729 return store_status(status, start, node, i - start); 1730 } 1731 1732 /* 1733 * Migrate an array of page address onto an array of nodes and fill 1734 * the corresponding array of status. 1735 */ 1736 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1737 unsigned long nr_pages, 1738 const void __user * __user *pages, 1739 const int __user *nodes, 1740 int __user *status, int flags) 1741 { 1742 int current_node = NUMA_NO_NODE; 1743 LIST_HEAD(pagelist); 1744 int start, i; 1745 int err = 0, err1; 1746 1747 lru_cache_disable(); 1748 1749 for (i = start = 0; i < nr_pages; i++) { 1750 const void __user *p; 1751 unsigned long addr; 1752 int node; 1753 1754 err = -EFAULT; 1755 if (get_user(p, pages + i)) 1756 goto out_flush; 1757 if (get_user(node, nodes + i)) 1758 goto out_flush; 1759 addr = (unsigned long)untagged_addr(p); 1760 1761 err = -ENODEV; 1762 if (node < 0 || node >= MAX_NUMNODES) 1763 goto out_flush; 1764 if (!node_state(node, N_MEMORY)) 1765 goto out_flush; 1766 1767 err = -EACCES; 1768 if (!node_isset(node, task_nodes)) 1769 goto out_flush; 1770 1771 if (current_node == NUMA_NO_NODE) { 1772 current_node = node; 1773 start = i; 1774 } else if (node != current_node) { 1775 err = move_pages_and_store_status(mm, current_node, 1776 &pagelist, status, start, i, nr_pages); 1777 if (err) 1778 goto out; 1779 start = i; 1780 current_node = node; 1781 } 1782 1783 /* 1784 * Errors in the page lookup or isolation are not fatal and we simply 1785 * report them via status 1786 */ 1787 err = add_page_for_migration(mm, addr, current_node, 1788 &pagelist, flags & MPOL_MF_MOVE_ALL); 1789 1790 if (err > 0) { 1791 /* The page is successfully queued for migration */ 1792 continue; 1793 } 1794 1795 /* 1796 * If the page is already on the target node (!err), store the 1797 * node, otherwise, store the err. 1798 */ 1799 err = store_status(status, i, err ? : current_node, 1); 1800 if (err) 1801 goto out_flush; 1802 1803 err = move_pages_and_store_status(mm, current_node, &pagelist, 1804 status, start, i, nr_pages); 1805 if (err) 1806 goto out; 1807 current_node = NUMA_NO_NODE; 1808 } 1809 out_flush: 1810 /* Make sure we do not overwrite the existing error */ 1811 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1812 status, start, i, nr_pages); 1813 if (err >= 0) 1814 err = err1; 1815 out: 1816 lru_cache_enable(); 1817 return err; 1818 } 1819 1820 /* 1821 * Determine the nodes of an array of pages and store it in an array of status. 1822 */ 1823 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1824 const void __user **pages, int *status) 1825 { 1826 unsigned long i; 1827 1828 mmap_read_lock(mm); 1829 1830 for (i = 0; i < nr_pages; i++) { 1831 unsigned long addr = (unsigned long)(*pages); 1832 struct vm_area_struct *vma; 1833 struct page *page; 1834 int err = -EFAULT; 1835 1836 vma = find_vma(mm, addr); 1837 if (!vma || addr < vma->vm_start) 1838 goto set_status; 1839 1840 /* FOLL_DUMP to ignore special (like zero) pages */ 1841 page = follow_page(vma, addr, FOLL_DUMP); 1842 1843 err = PTR_ERR(page); 1844 if (IS_ERR(page)) 1845 goto set_status; 1846 1847 err = page ? page_to_nid(page) : -ENOENT; 1848 set_status: 1849 *status = err; 1850 1851 pages++; 1852 status++; 1853 } 1854 1855 mmap_read_unlock(mm); 1856 } 1857 1858 /* 1859 * Determine the nodes of a user array of pages and store it in 1860 * a user array of status. 1861 */ 1862 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1863 const void __user * __user *pages, 1864 int __user *status) 1865 { 1866 #define DO_PAGES_STAT_CHUNK_NR 16 1867 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1868 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1869 1870 while (nr_pages) { 1871 unsigned long chunk_nr; 1872 1873 chunk_nr = nr_pages; 1874 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1875 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1876 1877 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1878 break; 1879 1880 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1881 1882 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1883 break; 1884 1885 pages += chunk_nr; 1886 status += chunk_nr; 1887 nr_pages -= chunk_nr; 1888 } 1889 return nr_pages ? -EFAULT : 0; 1890 } 1891 1892 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1893 { 1894 struct task_struct *task; 1895 struct mm_struct *mm; 1896 1897 /* 1898 * There is no need to check if current process has the right to modify 1899 * the specified process when they are same. 1900 */ 1901 if (!pid) { 1902 mmget(current->mm); 1903 *mem_nodes = cpuset_mems_allowed(current); 1904 return current->mm; 1905 } 1906 1907 /* Find the mm_struct */ 1908 rcu_read_lock(); 1909 task = find_task_by_vpid(pid); 1910 if (!task) { 1911 rcu_read_unlock(); 1912 return ERR_PTR(-ESRCH); 1913 } 1914 get_task_struct(task); 1915 1916 /* 1917 * Check if this process has the right to modify the specified 1918 * process. Use the regular "ptrace_may_access()" checks. 1919 */ 1920 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1921 rcu_read_unlock(); 1922 mm = ERR_PTR(-EPERM); 1923 goto out; 1924 } 1925 rcu_read_unlock(); 1926 1927 mm = ERR_PTR(security_task_movememory(task)); 1928 if (IS_ERR(mm)) 1929 goto out; 1930 *mem_nodes = cpuset_mems_allowed(task); 1931 mm = get_task_mm(task); 1932 out: 1933 put_task_struct(task); 1934 if (!mm) 1935 mm = ERR_PTR(-EINVAL); 1936 return mm; 1937 } 1938 1939 /* 1940 * Move a list of pages in the address space of the currently executing 1941 * process. 1942 */ 1943 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1944 const void __user * __user *pages, 1945 const int __user *nodes, 1946 int __user *status, int flags) 1947 { 1948 struct mm_struct *mm; 1949 int err; 1950 nodemask_t task_nodes; 1951 1952 /* Check flags */ 1953 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1954 return -EINVAL; 1955 1956 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1957 return -EPERM; 1958 1959 mm = find_mm_struct(pid, &task_nodes); 1960 if (IS_ERR(mm)) 1961 return PTR_ERR(mm); 1962 1963 if (nodes) 1964 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1965 nodes, status, flags); 1966 else 1967 err = do_pages_stat(mm, nr_pages, pages, status); 1968 1969 mmput(mm); 1970 return err; 1971 } 1972 1973 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1974 const void __user * __user *, pages, 1975 const int __user *, nodes, 1976 int __user *, status, int, flags) 1977 { 1978 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1979 } 1980 1981 #ifdef CONFIG_COMPAT 1982 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1983 compat_uptr_t __user *, pages32, 1984 const int __user *, nodes, 1985 int __user *, status, 1986 int, flags) 1987 { 1988 const void __user * __user *pages; 1989 int i; 1990 1991 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1992 for (i = 0; i < nr_pages; i++) { 1993 compat_uptr_t p; 1994 1995 if (get_user(p, pages32 + i) || 1996 put_user(compat_ptr(p), pages + i)) 1997 return -EFAULT; 1998 } 1999 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2000 } 2001 #endif /* CONFIG_COMPAT */ 2002 2003 #ifdef CONFIG_NUMA_BALANCING 2004 /* 2005 * Returns true if this is a safe migration target node for misplaced NUMA 2006 * pages. Currently it only checks the watermarks which crude 2007 */ 2008 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2009 unsigned long nr_migrate_pages) 2010 { 2011 int z; 2012 2013 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2014 struct zone *zone = pgdat->node_zones + z; 2015 2016 if (!populated_zone(zone)) 2017 continue; 2018 2019 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2020 if (!zone_watermark_ok(zone, 0, 2021 high_wmark_pages(zone) + 2022 nr_migrate_pages, 2023 ZONE_MOVABLE, 0)) 2024 continue; 2025 return true; 2026 } 2027 return false; 2028 } 2029 2030 static struct page *alloc_misplaced_dst_page(struct page *page, 2031 unsigned long data) 2032 { 2033 int nid = (int) data; 2034 struct page *newpage; 2035 2036 newpage = __alloc_pages_node(nid, 2037 (GFP_HIGHUSER_MOVABLE | 2038 __GFP_THISNODE | __GFP_NOMEMALLOC | 2039 __GFP_NORETRY | __GFP_NOWARN) & 2040 ~__GFP_RECLAIM, 0); 2041 2042 return newpage; 2043 } 2044 2045 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2046 { 2047 int page_lru; 2048 2049 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2050 2051 /* Avoid migrating to a node that is nearly full */ 2052 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2053 return 0; 2054 2055 if (isolate_lru_page(page)) 2056 return 0; 2057 2058 /* 2059 * migrate_misplaced_transhuge_page() skips page migration's usual 2060 * check on page_count(), so we must do it here, now that the page 2061 * has been isolated: a GUP pin, or any other pin, prevents migration. 2062 * The expected page count is 3: 1 for page's mapcount and 1 for the 2063 * caller's pin and 1 for the reference taken by isolate_lru_page(). 2064 */ 2065 if (PageTransHuge(page) && page_count(page) != 3) { 2066 putback_lru_page(page); 2067 return 0; 2068 } 2069 2070 page_lru = page_is_file_lru(page); 2071 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2072 thp_nr_pages(page)); 2073 2074 /* 2075 * Isolating the page has taken another reference, so the 2076 * caller's reference can be safely dropped without the page 2077 * disappearing underneath us during migration. 2078 */ 2079 put_page(page); 2080 return 1; 2081 } 2082 2083 bool pmd_trans_migrating(pmd_t pmd) 2084 { 2085 struct page *page = pmd_page(pmd); 2086 return PageLocked(page); 2087 } 2088 2089 /* 2090 * Attempt to migrate a misplaced page to the specified destination 2091 * node. Caller is expected to have an elevated reference count on 2092 * the page that will be dropped by this function before returning. 2093 */ 2094 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2095 int node) 2096 { 2097 pg_data_t *pgdat = NODE_DATA(node); 2098 int isolated; 2099 int nr_remaining; 2100 LIST_HEAD(migratepages); 2101 2102 /* 2103 * Don't migrate file pages that are mapped in multiple processes 2104 * with execute permissions as they are probably shared libraries. 2105 */ 2106 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2107 (vma->vm_flags & VM_EXEC)) 2108 goto out; 2109 2110 /* 2111 * Also do not migrate dirty pages as not all filesystems can move 2112 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2113 */ 2114 if (page_is_file_lru(page) && PageDirty(page)) 2115 goto out; 2116 2117 isolated = numamigrate_isolate_page(pgdat, page); 2118 if (!isolated) 2119 goto out; 2120 2121 list_add(&page->lru, &migratepages); 2122 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2123 NULL, node, MIGRATE_ASYNC, 2124 MR_NUMA_MISPLACED); 2125 if (nr_remaining) { 2126 if (!list_empty(&migratepages)) { 2127 list_del(&page->lru); 2128 dec_node_page_state(page, NR_ISOLATED_ANON + 2129 page_is_file_lru(page)); 2130 putback_lru_page(page); 2131 } 2132 isolated = 0; 2133 } else 2134 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2135 BUG_ON(!list_empty(&migratepages)); 2136 return isolated; 2137 2138 out: 2139 put_page(page); 2140 return 0; 2141 } 2142 #endif /* CONFIG_NUMA_BALANCING */ 2143 2144 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2145 /* 2146 * Migrates a THP to a given target node. page must be locked and is unlocked 2147 * before returning. 2148 */ 2149 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2150 struct vm_area_struct *vma, 2151 pmd_t *pmd, pmd_t entry, 2152 unsigned long address, 2153 struct page *page, int node) 2154 { 2155 spinlock_t *ptl; 2156 pg_data_t *pgdat = NODE_DATA(node); 2157 int isolated = 0; 2158 struct page *new_page = NULL; 2159 int page_lru = page_is_file_lru(page); 2160 unsigned long start = address & HPAGE_PMD_MASK; 2161 2162 new_page = alloc_pages_node(node, 2163 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2164 HPAGE_PMD_ORDER); 2165 if (!new_page) 2166 goto out_fail; 2167 prep_transhuge_page(new_page); 2168 2169 isolated = numamigrate_isolate_page(pgdat, page); 2170 if (!isolated) { 2171 put_page(new_page); 2172 goto out_fail; 2173 } 2174 2175 /* Prepare a page as a migration target */ 2176 __SetPageLocked(new_page); 2177 if (PageSwapBacked(page)) 2178 __SetPageSwapBacked(new_page); 2179 2180 /* anon mapping, we can simply copy page->mapping to the new page: */ 2181 new_page->mapping = page->mapping; 2182 new_page->index = page->index; 2183 /* flush the cache before copying using the kernel virtual address */ 2184 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2185 migrate_page_copy(new_page, page); 2186 WARN_ON(PageLRU(new_page)); 2187 2188 /* Recheck the target PMD */ 2189 ptl = pmd_lock(mm, pmd); 2190 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2191 spin_unlock(ptl); 2192 2193 /* Reverse changes made by migrate_page_copy() */ 2194 if (TestClearPageActive(new_page)) 2195 SetPageActive(page); 2196 if (TestClearPageUnevictable(new_page)) 2197 SetPageUnevictable(page); 2198 2199 unlock_page(new_page); 2200 put_page(new_page); /* Free it */ 2201 2202 /* Retake the callers reference and putback on LRU */ 2203 get_page(page); 2204 putback_lru_page(page); 2205 mod_node_page_state(page_pgdat(page), 2206 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2207 2208 goto out_unlock; 2209 } 2210 2211 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2212 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2213 2214 /* 2215 * Overwrite the old entry under pagetable lock and establish 2216 * the new PTE. Any parallel GUP will either observe the old 2217 * page blocking on the page lock, block on the page table 2218 * lock or observe the new page. The SetPageUptodate on the 2219 * new page and page_add_new_anon_rmap guarantee the copy is 2220 * visible before the pagetable update. 2221 */ 2222 page_add_anon_rmap(new_page, vma, start, true); 2223 /* 2224 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2225 * has already been flushed globally. So no TLB can be currently 2226 * caching this non present pmd mapping. There's no need to clear the 2227 * pmd before doing set_pmd_at(), nor to flush the TLB after 2228 * set_pmd_at(). Clearing the pmd here would introduce a race 2229 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2230 * mmap_lock for reading. If the pmd is set to NULL at any given time, 2231 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2232 * pmd. 2233 */ 2234 set_pmd_at(mm, start, pmd, entry); 2235 update_mmu_cache_pmd(vma, address, &entry); 2236 2237 page_ref_unfreeze(page, 2); 2238 mlock_migrate_page(new_page, page); 2239 page_remove_rmap(page, true); 2240 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2241 2242 spin_unlock(ptl); 2243 2244 /* Take an "isolate" reference and put new page on the LRU. */ 2245 get_page(new_page); 2246 putback_lru_page(new_page); 2247 2248 unlock_page(new_page); 2249 unlock_page(page); 2250 put_page(page); /* Drop the rmap reference */ 2251 put_page(page); /* Drop the LRU isolation reference */ 2252 2253 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2254 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2255 2256 mod_node_page_state(page_pgdat(page), 2257 NR_ISOLATED_ANON + page_lru, 2258 -HPAGE_PMD_NR); 2259 return isolated; 2260 2261 out_fail: 2262 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2263 ptl = pmd_lock(mm, pmd); 2264 if (pmd_same(*pmd, entry)) { 2265 entry = pmd_modify(entry, vma->vm_page_prot); 2266 set_pmd_at(mm, start, pmd, entry); 2267 update_mmu_cache_pmd(vma, address, &entry); 2268 } 2269 spin_unlock(ptl); 2270 2271 out_unlock: 2272 unlock_page(page); 2273 put_page(page); 2274 return 0; 2275 } 2276 #endif /* CONFIG_NUMA_BALANCING */ 2277 2278 #endif /* CONFIG_NUMA */ 2279 2280 #ifdef CONFIG_DEVICE_PRIVATE 2281 static int migrate_vma_collect_skip(unsigned long start, 2282 unsigned long end, 2283 struct mm_walk *walk) 2284 { 2285 struct migrate_vma *migrate = walk->private; 2286 unsigned long addr; 2287 2288 for (addr = start; addr < end; addr += PAGE_SIZE) { 2289 migrate->dst[migrate->npages] = 0; 2290 migrate->src[migrate->npages++] = 0; 2291 } 2292 2293 return 0; 2294 } 2295 2296 static int migrate_vma_collect_hole(unsigned long start, 2297 unsigned long end, 2298 __always_unused int depth, 2299 struct mm_walk *walk) 2300 { 2301 struct migrate_vma *migrate = walk->private; 2302 unsigned long addr; 2303 2304 /* Only allow populating anonymous memory. */ 2305 if (!vma_is_anonymous(walk->vma)) 2306 return migrate_vma_collect_skip(start, end, walk); 2307 2308 for (addr = start; addr < end; addr += PAGE_SIZE) { 2309 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2310 migrate->dst[migrate->npages] = 0; 2311 migrate->npages++; 2312 migrate->cpages++; 2313 } 2314 2315 return 0; 2316 } 2317 2318 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2319 unsigned long start, 2320 unsigned long end, 2321 struct mm_walk *walk) 2322 { 2323 struct migrate_vma *migrate = walk->private; 2324 struct vm_area_struct *vma = walk->vma; 2325 struct mm_struct *mm = vma->vm_mm; 2326 unsigned long addr = start, unmapped = 0; 2327 spinlock_t *ptl; 2328 pte_t *ptep; 2329 2330 again: 2331 if (pmd_none(*pmdp)) 2332 return migrate_vma_collect_hole(start, end, -1, walk); 2333 2334 if (pmd_trans_huge(*pmdp)) { 2335 struct page *page; 2336 2337 ptl = pmd_lock(mm, pmdp); 2338 if (unlikely(!pmd_trans_huge(*pmdp))) { 2339 spin_unlock(ptl); 2340 goto again; 2341 } 2342 2343 page = pmd_page(*pmdp); 2344 if (is_huge_zero_page(page)) { 2345 spin_unlock(ptl); 2346 split_huge_pmd(vma, pmdp, addr); 2347 if (pmd_trans_unstable(pmdp)) 2348 return migrate_vma_collect_skip(start, end, 2349 walk); 2350 } else { 2351 int ret; 2352 2353 get_page(page); 2354 spin_unlock(ptl); 2355 if (unlikely(!trylock_page(page))) 2356 return migrate_vma_collect_skip(start, end, 2357 walk); 2358 ret = split_huge_page(page); 2359 unlock_page(page); 2360 put_page(page); 2361 if (ret) 2362 return migrate_vma_collect_skip(start, end, 2363 walk); 2364 if (pmd_none(*pmdp)) 2365 return migrate_vma_collect_hole(start, end, -1, 2366 walk); 2367 } 2368 } 2369 2370 if (unlikely(pmd_bad(*pmdp))) 2371 return migrate_vma_collect_skip(start, end, walk); 2372 2373 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2374 arch_enter_lazy_mmu_mode(); 2375 2376 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2377 unsigned long mpfn = 0, pfn; 2378 struct page *page; 2379 swp_entry_t entry; 2380 pte_t pte; 2381 2382 pte = *ptep; 2383 2384 if (pte_none(pte)) { 2385 if (vma_is_anonymous(vma)) { 2386 mpfn = MIGRATE_PFN_MIGRATE; 2387 migrate->cpages++; 2388 } 2389 goto next; 2390 } 2391 2392 if (!pte_present(pte)) { 2393 /* 2394 * Only care about unaddressable device page special 2395 * page table entry. Other special swap entries are not 2396 * migratable, and we ignore regular swapped page. 2397 */ 2398 entry = pte_to_swp_entry(pte); 2399 if (!is_device_private_entry(entry)) 2400 goto next; 2401 2402 page = device_private_entry_to_page(entry); 2403 if (!(migrate->flags & 2404 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2405 page->pgmap->owner != migrate->pgmap_owner) 2406 goto next; 2407 2408 mpfn = migrate_pfn(page_to_pfn(page)) | 2409 MIGRATE_PFN_MIGRATE; 2410 if (is_write_device_private_entry(entry)) 2411 mpfn |= MIGRATE_PFN_WRITE; 2412 } else { 2413 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2414 goto next; 2415 pfn = pte_pfn(pte); 2416 if (is_zero_pfn(pfn)) { 2417 mpfn = MIGRATE_PFN_MIGRATE; 2418 migrate->cpages++; 2419 goto next; 2420 } 2421 page = vm_normal_page(migrate->vma, addr, pte); 2422 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2423 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2424 } 2425 2426 /* FIXME support THP */ 2427 if (!page || !page->mapping || PageTransCompound(page)) { 2428 mpfn = 0; 2429 goto next; 2430 } 2431 2432 /* 2433 * By getting a reference on the page we pin it and that blocks 2434 * any kind of migration. Side effect is that it "freezes" the 2435 * pte. 2436 * 2437 * We drop this reference after isolating the page from the lru 2438 * for non device page (device page are not on the lru and thus 2439 * can't be dropped from it). 2440 */ 2441 get_page(page); 2442 migrate->cpages++; 2443 2444 /* 2445 * Optimize for the common case where page is only mapped once 2446 * in one process. If we can lock the page, then we can safely 2447 * set up a special migration page table entry now. 2448 */ 2449 if (trylock_page(page)) { 2450 pte_t swp_pte; 2451 2452 mpfn |= MIGRATE_PFN_LOCKED; 2453 ptep_get_and_clear(mm, addr, ptep); 2454 2455 /* Setup special migration page table entry */ 2456 entry = make_migration_entry(page, mpfn & 2457 MIGRATE_PFN_WRITE); 2458 swp_pte = swp_entry_to_pte(entry); 2459 if (pte_present(pte)) { 2460 if (pte_soft_dirty(pte)) 2461 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2462 if (pte_uffd_wp(pte)) 2463 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2464 } else { 2465 if (pte_swp_soft_dirty(pte)) 2466 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2467 if (pte_swp_uffd_wp(pte)) 2468 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2469 } 2470 set_pte_at(mm, addr, ptep, swp_pte); 2471 2472 /* 2473 * This is like regular unmap: we remove the rmap and 2474 * drop page refcount. Page won't be freed, as we took 2475 * a reference just above. 2476 */ 2477 page_remove_rmap(page, false); 2478 put_page(page); 2479 2480 if (pte_present(pte)) 2481 unmapped++; 2482 } 2483 2484 next: 2485 migrate->dst[migrate->npages] = 0; 2486 migrate->src[migrate->npages++] = mpfn; 2487 } 2488 arch_leave_lazy_mmu_mode(); 2489 pte_unmap_unlock(ptep - 1, ptl); 2490 2491 /* Only flush the TLB if we actually modified any entries */ 2492 if (unmapped) 2493 flush_tlb_range(walk->vma, start, end); 2494 2495 return 0; 2496 } 2497 2498 static const struct mm_walk_ops migrate_vma_walk_ops = { 2499 .pmd_entry = migrate_vma_collect_pmd, 2500 .pte_hole = migrate_vma_collect_hole, 2501 }; 2502 2503 /* 2504 * migrate_vma_collect() - collect pages over a range of virtual addresses 2505 * @migrate: migrate struct containing all migration information 2506 * 2507 * This will walk the CPU page table. For each virtual address backed by a 2508 * valid page, it updates the src array and takes a reference on the page, in 2509 * order to pin the page until we lock it and unmap it. 2510 */ 2511 static void migrate_vma_collect(struct migrate_vma *migrate) 2512 { 2513 struct mmu_notifier_range range; 2514 2515 /* 2516 * Note that the pgmap_owner is passed to the mmu notifier callback so 2517 * that the registered device driver can skip invalidating device 2518 * private page mappings that won't be migrated. 2519 */ 2520 mmu_notifier_range_init_migrate(&range, 0, migrate->vma, 2521 migrate->vma->vm_mm, migrate->start, migrate->end, 2522 migrate->pgmap_owner); 2523 mmu_notifier_invalidate_range_start(&range); 2524 2525 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2526 &migrate_vma_walk_ops, migrate); 2527 2528 mmu_notifier_invalidate_range_end(&range); 2529 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2530 } 2531 2532 /* 2533 * migrate_vma_check_page() - check if page is pinned or not 2534 * @page: struct page to check 2535 * 2536 * Pinned pages cannot be migrated. This is the same test as in 2537 * migrate_page_move_mapping(), except that here we allow migration of a 2538 * ZONE_DEVICE page. 2539 */ 2540 static bool migrate_vma_check_page(struct page *page) 2541 { 2542 /* 2543 * One extra ref because caller holds an extra reference, either from 2544 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2545 * a device page. 2546 */ 2547 int extra = 1; 2548 2549 /* 2550 * FIXME support THP (transparent huge page), it is bit more complex to 2551 * check them than regular pages, because they can be mapped with a pmd 2552 * or with a pte (split pte mapping). 2553 */ 2554 if (PageCompound(page)) 2555 return false; 2556 2557 /* Page from ZONE_DEVICE have one extra reference */ 2558 if (is_zone_device_page(page)) { 2559 /* 2560 * Private page can never be pin as they have no valid pte and 2561 * GUP will fail for those. Yet if there is a pending migration 2562 * a thread might try to wait on the pte migration entry and 2563 * will bump the page reference count. Sadly there is no way to 2564 * differentiate a regular pin from migration wait. Hence to 2565 * avoid 2 racing thread trying to migrate back to CPU to enter 2566 * infinite loop (one stopping migration because the other is 2567 * waiting on pte migration entry). We always return true here. 2568 * 2569 * FIXME proper solution is to rework migration_entry_wait() so 2570 * it does not need to take a reference on page. 2571 */ 2572 return is_device_private_page(page); 2573 } 2574 2575 /* For file back page */ 2576 if (page_mapping(page)) 2577 extra += 1 + page_has_private(page); 2578 2579 if ((page_count(page) - extra) > page_mapcount(page)) 2580 return false; 2581 2582 return true; 2583 } 2584 2585 /* 2586 * migrate_vma_prepare() - lock pages and isolate them from the lru 2587 * @migrate: migrate struct containing all migration information 2588 * 2589 * This locks pages that have been collected by migrate_vma_collect(). Once each 2590 * page is locked it is isolated from the lru (for non-device pages). Finally, 2591 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2592 * migrated by concurrent kernel threads. 2593 */ 2594 static void migrate_vma_prepare(struct migrate_vma *migrate) 2595 { 2596 const unsigned long npages = migrate->npages; 2597 const unsigned long start = migrate->start; 2598 unsigned long addr, i, restore = 0; 2599 bool allow_drain = true; 2600 2601 lru_add_drain(); 2602 2603 for (i = 0; (i < npages) && migrate->cpages; i++) { 2604 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2605 bool remap = true; 2606 2607 if (!page) 2608 continue; 2609 2610 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2611 /* 2612 * Because we are migrating several pages there can be 2613 * a deadlock between 2 concurrent migration where each 2614 * are waiting on each other page lock. 2615 * 2616 * Make migrate_vma() a best effort thing and backoff 2617 * for any page we can not lock right away. 2618 */ 2619 if (!trylock_page(page)) { 2620 migrate->src[i] = 0; 2621 migrate->cpages--; 2622 put_page(page); 2623 continue; 2624 } 2625 remap = false; 2626 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2627 } 2628 2629 /* ZONE_DEVICE pages are not on LRU */ 2630 if (!is_zone_device_page(page)) { 2631 if (!PageLRU(page) && allow_drain) { 2632 /* Drain CPU's pagevec */ 2633 lru_add_drain_all(); 2634 allow_drain = false; 2635 } 2636 2637 if (isolate_lru_page(page)) { 2638 if (remap) { 2639 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2640 migrate->cpages--; 2641 restore++; 2642 } else { 2643 migrate->src[i] = 0; 2644 unlock_page(page); 2645 migrate->cpages--; 2646 put_page(page); 2647 } 2648 continue; 2649 } 2650 2651 /* Drop the reference we took in collect */ 2652 put_page(page); 2653 } 2654 2655 if (!migrate_vma_check_page(page)) { 2656 if (remap) { 2657 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2658 migrate->cpages--; 2659 restore++; 2660 2661 if (!is_zone_device_page(page)) { 2662 get_page(page); 2663 putback_lru_page(page); 2664 } 2665 } else { 2666 migrate->src[i] = 0; 2667 unlock_page(page); 2668 migrate->cpages--; 2669 2670 if (!is_zone_device_page(page)) 2671 putback_lru_page(page); 2672 else 2673 put_page(page); 2674 } 2675 } 2676 } 2677 2678 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2679 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2680 2681 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2682 continue; 2683 2684 remove_migration_pte(page, migrate->vma, addr, page); 2685 2686 migrate->src[i] = 0; 2687 unlock_page(page); 2688 put_page(page); 2689 restore--; 2690 } 2691 } 2692 2693 /* 2694 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2695 * @migrate: migrate struct containing all migration information 2696 * 2697 * Replace page mapping (CPU page table pte) with a special migration pte entry 2698 * and check again if it has been pinned. Pinned pages are restored because we 2699 * cannot migrate them. 2700 * 2701 * This is the last step before we call the device driver callback to allocate 2702 * destination memory and copy contents of original page over to new page. 2703 */ 2704 static void migrate_vma_unmap(struct migrate_vma *migrate) 2705 { 2706 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK; 2707 const unsigned long npages = migrate->npages; 2708 const unsigned long start = migrate->start; 2709 unsigned long addr, i, restore = 0; 2710 2711 for (i = 0; i < npages; i++) { 2712 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2713 2714 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2715 continue; 2716 2717 if (page_mapped(page)) { 2718 try_to_unmap(page, flags); 2719 if (page_mapped(page)) 2720 goto restore; 2721 } 2722 2723 if (migrate_vma_check_page(page)) 2724 continue; 2725 2726 restore: 2727 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2728 migrate->cpages--; 2729 restore++; 2730 } 2731 2732 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2733 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2734 2735 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2736 continue; 2737 2738 remove_migration_ptes(page, page, false); 2739 2740 migrate->src[i] = 0; 2741 unlock_page(page); 2742 restore--; 2743 2744 if (is_zone_device_page(page)) 2745 put_page(page); 2746 else 2747 putback_lru_page(page); 2748 } 2749 } 2750 2751 /** 2752 * migrate_vma_setup() - prepare to migrate a range of memory 2753 * @args: contains the vma, start, and pfns arrays for the migration 2754 * 2755 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2756 * without an error. 2757 * 2758 * Prepare to migrate a range of memory virtual address range by collecting all 2759 * the pages backing each virtual address in the range, saving them inside the 2760 * src array. Then lock those pages and unmap them. Once the pages are locked 2761 * and unmapped, check whether each page is pinned or not. Pages that aren't 2762 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2763 * corresponding src array entry. Then restores any pages that are pinned, by 2764 * remapping and unlocking those pages. 2765 * 2766 * The caller should then allocate destination memory and copy source memory to 2767 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2768 * flag set). Once these are allocated and copied, the caller must update each 2769 * corresponding entry in the dst array with the pfn value of the destination 2770 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2771 * (destination pages must have their struct pages locked, via lock_page()). 2772 * 2773 * Note that the caller does not have to migrate all the pages that are marked 2774 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2775 * device memory to system memory. If the caller cannot migrate a device page 2776 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2777 * consequences for the userspace process, so it must be avoided if at all 2778 * possible. 2779 * 2780 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2781 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2782 * allowing the caller to allocate device memory for those unbacked virtual 2783 * addresses. For this the caller simply has to allocate device memory and 2784 * properly set the destination entry like for regular migration. Note that 2785 * this can still fail, and thus inside the device driver you must check if the 2786 * migration was successful for those entries after calling migrate_vma_pages(), 2787 * just like for regular migration. 2788 * 2789 * After that, the callers must call migrate_vma_pages() to go over each entry 2790 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2791 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2792 * then migrate_vma_pages() to migrate struct page information from the source 2793 * struct page to the destination struct page. If it fails to migrate the 2794 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2795 * src array. 2796 * 2797 * At this point all successfully migrated pages have an entry in the src 2798 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2799 * array entry with MIGRATE_PFN_VALID flag set. 2800 * 2801 * Once migrate_vma_pages() returns the caller may inspect which pages were 2802 * successfully migrated, and which were not. Successfully migrated pages will 2803 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2804 * 2805 * It is safe to update device page table after migrate_vma_pages() because 2806 * both destination and source page are still locked, and the mmap_lock is held 2807 * in read mode (hence no one can unmap the range being migrated). 2808 * 2809 * Once the caller is done cleaning up things and updating its page table (if it 2810 * chose to do so, this is not an obligation) it finally calls 2811 * migrate_vma_finalize() to update the CPU page table to point to new pages 2812 * for successfully migrated pages or otherwise restore the CPU page table to 2813 * point to the original source pages. 2814 */ 2815 int migrate_vma_setup(struct migrate_vma *args) 2816 { 2817 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2818 2819 args->start &= PAGE_MASK; 2820 args->end &= PAGE_MASK; 2821 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2822 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2823 return -EINVAL; 2824 if (nr_pages <= 0) 2825 return -EINVAL; 2826 if (args->start < args->vma->vm_start || 2827 args->start >= args->vma->vm_end) 2828 return -EINVAL; 2829 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2830 return -EINVAL; 2831 if (!args->src || !args->dst) 2832 return -EINVAL; 2833 2834 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2835 args->cpages = 0; 2836 args->npages = 0; 2837 2838 migrate_vma_collect(args); 2839 2840 if (args->cpages) 2841 migrate_vma_prepare(args); 2842 if (args->cpages) 2843 migrate_vma_unmap(args); 2844 2845 /* 2846 * At this point pages are locked and unmapped, and thus they have 2847 * stable content and can safely be copied to destination memory that 2848 * is allocated by the drivers. 2849 */ 2850 return 0; 2851 2852 } 2853 EXPORT_SYMBOL(migrate_vma_setup); 2854 2855 /* 2856 * This code closely matches the code in: 2857 * __handle_mm_fault() 2858 * handle_pte_fault() 2859 * do_anonymous_page() 2860 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2861 * private page. 2862 */ 2863 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2864 unsigned long addr, 2865 struct page *page, 2866 unsigned long *src) 2867 { 2868 struct vm_area_struct *vma = migrate->vma; 2869 struct mm_struct *mm = vma->vm_mm; 2870 bool flush = false; 2871 spinlock_t *ptl; 2872 pte_t entry; 2873 pgd_t *pgdp; 2874 p4d_t *p4dp; 2875 pud_t *pudp; 2876 pmd_t *pmdp; 2877 pte_t *ptep; 2878 2879 /* Only allow populating anonymous memory */ 2880 if (!vma_is_anonymous(vma)) 2881 goto abort; 2882 2883 pgdp = pgd_offset(mm, addr); 2884 p4dp = p4d_alloc(mm, pgdp, addr); 2885 if (!p4dp) 2886 goto abort; 2887 pudp = pud_alloc(mm, p4dp, addr); 2888 if (!pudp) 2889 goto abort; 2890 pmdp = pmd_alloc(mm, pudp, addr); 2891 if (!pmdp) 2892 goto abort; 2893 2894 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2895 goto abort; 2896 2897 /* 2898 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2899 * pte_offset_map() on pmds where a huge pmd might be created 2900 * from a different thread. 2901 * 2902 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2903 * parallel threads are excluded by other means. 2904 * 2905 * Here we only have mmap_read_lock(mm). 2906 */ 2907 if (pte_alloc(mm, pmdp)) 2908 goto abort; 2909 2910 /* See the comment in pte_alloc_one_map() */ 2911 if (unlikely(pmd_trans_unstable(pmdp))) 2912 goto abort; 2913 2914 if (unlikely(anon_vma_prepare(vma))) 2915 goto abort; 2916 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2917 goto abort; 2918 2919 /* 2920 * The memory barrier inside __SetPageUptodate makes sure that 2921 * preceding stores to the page contents become visible before 2922 * the set_pte_at() write. 2923 */ 2924 __SetPageUptodate(page); 2925 2926 if (is_zone_device_page(page)) { 2927 if (is_device_private_page(page)) { 2928 swp_entry_t swp_entry; 2929 2930 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2931 entry = swp_entry_to_pte(swp_entry); 2932 } else { 2933 /* 2934 * For now we only support migrating to un-addressable 2935 * device memory. 2936 */ 2937 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 2938 goto abort; 2939 } 2940 } else { 2941 entry = mk_pte(page, vma->vm_page_prot); 2942 if (vma->vm_flags & VM_WRITE) 2943 entry = pte_mkwrite(pte_mkdirty(entry)); 2944 } 2945 2946 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2947 2948 if (check_stable_address_space(mm)) 2949 goto unlock_abort; 2950 2951 if (pte_present(*ptep)) { 2952 unsigned long pfn = pte_pfn(*ptep); 2953 2954 if (!is_zero_pfn(pfn)) 2955 goto unlock_abort; 2956 flush = true; 2957 } else if (!pte_none(*ptep)) 2958 goto unlock_abort; 2959 2960 /* 2961 * Check for userfaultfd but do not deliver the fault. Instead, 2962 * just back off. 2963 */ 2964 if (userfaultfd_missing(vma)) 2965 goto unlock_abort; 2966 2967 inc_mm_counter(mm, MM_ANONPAGES); 2968 page_add_new_anon_rmap(page, vma, addr, false); 2969 if (!is_zone_device_page(page)) 2970 lru_cache_add_inactive_or_unevictable(page, vma); 2971 get_page(page); 2972 2973 if (flush) { 2974 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2975 ptep_clear_flush_notify(vma, addr, ptep); 2976 set_pte_at_notify(mm, addr, ptep, entry); 2977 update_mmu_cache(vma, addr, ptep); 2978 } else { 2979 /* No need to invalidate - it was non-present before */ 2980 set_pte_at(mm, addr, ptep, entry); 2981 update_mmu_cache(vma, addr, ptep); 2982 } 2983 2984 pte_unmap_unlock(ptep, ptl); 2985 *src = MIGRATE_PFN_MIGRATE; 2986 return; 2987 2988 unlock_abort: 2989 pte_unmap_unlock(ptep, ptl); 2990 abort: 2991 *src &= ~MIGRATE_PFN_MIGRATE; 2992 } 2993 2994 /** 2995 * migrate_vma_pages() - migrate meta-data from src page to dst page 2996 * @migrate: migrate struct containing all migration information 2997 * 2998 * This migrates struct page meta-data from source struct page to destination 2999 * struct page. This effectively finishes the migration from source page to the 3000 * destination page. 3001 */ 3002 void migrate_vma_pages(struct migrate_vma *migrate) 3003 { 3004 const unsigned long npages = migrate->npages; 3005 const unsigned long start = migrate->start; 3006 struct mmu_notifier_range range; 3007 unsigned long addr, i; 3008 bool notified = false; 3009 3010 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 3011 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3012 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3013 struct address_space *mapping; 3014 int r; 3015 3016 if (!newpage) { 3017 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3018 continue; 3019 } 3020 3021 if (!page) { 3022 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 3023 continue; 3024 if (!notified) { 3025 notified = true; 3026 3027 mmu_notifier_range_init_migrate(&range, 0, 3028 migrate->vma, migrate->vma->vm_mm, 3029 addr, migrate->end, 3030 migrate->pgmap_owner); 3031 mmu_notifier_invalidate_range_start(&range); 3032 } 3033 migrate_vma_insert_page(migrate, addr, newpage, 3034 &migrate->src[i]); 3035 continue; 3036 } 3037 3038 mapping = page_mapping(page); 3039 3040 if (is_zone_device_page(newpage)) { 3041 if (is_device_private_page(newpage)) { 3042 /* 3043 * For now only support private anonymous when 3044 * migrating to un-addressable device memory. 3045 */ 3046 if (mapping) { 3047 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3048 continue; 3049 } 3050 } else { 3051 /* 3052 * Other types of ZONE_DEVICE page are not 3053 * supported. 3054 */ 3055 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3056 continue; 3057 } 3058 } 3059 3060 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 3061 if (r != MIGRATEPAGE_SUCCESS) 3062 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3063 } 3064 3065 /* 3066 * No need to double call mmu_notifier->invalidate_range() callback as 3067 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3068 * did already call it. 3069 */ 3070 if (notified) 3071 mmu_notifier_invalidate_range_only_end(&range); 3072 } 3073 EXPORT_SYMBOL(migrate_vma_pages); 3074 3075 /** 3076 * migrate_vma_finalize() - restore CPU page table entry 3077 * @migrate: migrate struct containing all migration information 3078 * 3079 * This replaces the special migration pte entry with either a mapping to the 3080 * new page if migration was successful for that page, or to the original page 3081 * otherwise. 3082 * 3083 * This also unlocks the pages and puts them back on the lru, or drops the extra 3084 * refcount, for device pages. 3085 */ 3086 void migrate_vma_finalize(struct migrate_vma *migrate) 3087 { 3088 const unsigned long npages = migrate->npages; 3089 unsigned long i; 3090 3091 for (i = 0; i < npages; i++) { 3092 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3093 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3094 3095 if (!page) { 3096 if (newpage) { 3097 unlock_page(newpage); 3098 put_page(newpage); 3099 } 3100 continue; 3101 } 3102 3103 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3104 if (newpage) { 3105 unlock_page(newpage); 3106 put_page(newpage); 3107 } 3108 newpage = page; 3109 } 3110 3111 remove_migration_ptes(page, newpage, false); 3112 unlock_page(page); 3113 3114 if (is_zone_device_page(page)) 3115 put_page(page); 3116 else 3117 putback_lru_page(page); 3118 3119 if (newpage != page) { 3120 unlock_page(newpage); 3121 if (is_zone_device_page(newpage)) 3122 put_page(newpage); 3123 else 3124 putback_lru_page(newpage); 3125 } 3126 } 3127 } 3128 EXPORT_SYMBOL(migrate_vma_finalize); 3129 #endif /* CONFIG_DEVICE_PRIVATE */ 3130