1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/page_idle.h> 46 #include <linux/page_owner.h> 47 #include <linux/sched/mm.h> 48 #include <linux/ptrace.h> 49 #include <linux/oom.h> 50 #include <linux/memory.h> 51 #include <linux/random.h> 52 #include <linux/sched/sysctl.h> 53 #include <linux/memory-tiers.h> 54 55 #include <asm/tlbflush.h> 56 57 #include <trace/events/migrate.h> 58 59 #include "internal.h" 60 61 int isolate_movable_page(struct page *page, isolate_mode_t mode) 62 { 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (unlikely(!get_page_unless_zero(page))) 75 goto out; 76 77 /* 78 * Check PageMovable before holding a PG_lock because page's owner 79 * assumes anybody doesn't touch PG_lock of newly allocated page 80 * so unconditionally grabbing the lock ruins page's owner side. 81 */ 82 if (unlikely(!__PageMovable(page))) 83 goto out_putpage; 84 /* 85 * As movable pages are not isolated from LRU lists, concurrent 86 * compaction threads can race against page migration functions 87 * as well as race against the releasing a page. 88 * 89 * In order to avoid having an already isolated movable page 90 * being (wrongly) re-isolated while it is under migration, 91 * or to avoid attempting to isolate pages being released, 92 * lets be sure we have the page lock 93 * before proceeding with the movable page isolation steps. 94 */ 95 if (unlikely(!trylock_page(page))) 96 goto out_putpage; 97 98 if (!PageMovable(page) || PageIsolated(page)) 99 goto out_no_isolated; 100 101 mops = page_movable_ops(page); 102 VM_BUG_ON_PAGE(!mops, page); 103 104 if (!mops->isolate_page(page, mode)) 105 goto out_no_isolated; 106 107 /* Driver shouldn't use PG_isolated bit of page->flags */ 108 WARN_ON_ONCE(PageIsolated(page)); 109 SetPageIsolated(page); 110 unlock_page(page); 111 112 return 0; 113 114 out_no_isolated: 115 unlock_page(page); 116 out_putpage: 117 put_page(page); 118 out: 119 return -EBUSY; 120 } 121 122 static void putback_movable_page(struct page *page) 123 { 124 const struct movable_operations *mops = page_movable_ops(page); 125 126 mops->putback_page(page); 127 ClearPageIsolated(page); 128 } 129 130 /* 131 * Put previously isolated pages back onto the appropriate lists 132 * from where they were once taken off for compaction/migration. 133 * 134 * This function shall be used whenever the isolated pageset has been 135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 136 * and isolate_hugetlb(). 137 */ 138 void putback_movable_pages(struct list_head *l) 139 { 140 struct page *page; 141 struct page *page2; 142 143 list_for_each_entry_safe(page, page2, l, lru) { 144 if (unlikely(PageHuge(page))) { 145 putback_active_hugepage(page); 146 continue; 147 } 148 list_del(&page->lru); 149 /* 150 * We isolated non-lru movable page so here we can use 151 * __PageMovable because LRU page's mapping cannot have 152 * PAGE_MAPPING_MOVABLE. 153 */ 154 if (unlikely(__PageMovable(page))) { 155 VM_BUG_ON_PAGE(!PageIsolated(page), page); 156 lock_page(page); 157 if (PageMovable(page)) 158 putback_movable_page(page); 159 else 160 ClearPageIsolated(page); 161 unlock_page(page); 162 put_page(page); 163 } else { 164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 165 page_is_file_lru(page), -thp_nr_pages(page)); 166 putback_lru_page(page); 167 } 168 } 169 } 170 171 /* 172 * Restore a potential migration pte to a working pte entry 173 */ 174 static bool remove_migration_pte(struct folio *folio, 175 struct vm_area_struct *vma, unsigned long addr, void *old) 176 { 177 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 178 179 while (page_vma_mapped_walk(&pvmw)) { 180 rmap_t rmap_flags = RMAP_NONE; 181 pte_t pte; 182 swp_entry_t entry; 183 struct page *new; 184 unsigned long idx = 0; 185 186 /* pgoff is invalid for ksm pages, but they are never large */ 187 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 188 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 189 new = folio_page(folio, idx); 190 191 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 192 /* PMD-mapped THP migration entry */ 193 if (!pvmw.pte) { 194 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 195 !folio_test_pmd_mappable(folio), folio); 196 remove_migration_pmd(&pvmw, new); 197 continue; 198 } 199 #endif 200 201 folio_get(folio); 202 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 203 if (pte_swp_soft_dirty(*pvmw.pte)) 204 pte = pte_mksoft_dirty(pte); 205 206 /* 207 * Recheck VMA as permissions can change since migration started 208 */ 209 entry = pte_to_swp_entry(*pvmw.pte); 210 if (!is_migration_entry_young(entry)) 211 pte = pte_mkold(pte); 212 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 213 pte = pte_mkdirty(pte); 214 if (is_writable_migration_entry(entry)) 215 pte = maybe_mkwrite(pte, vma); 216 else if (pte_swp_uffd_wp(*pvmw.pte)) 217 pte = pte_mkuffd_wp(pte); 218 219 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 220 rmap_flags |= RMAP_EXCLUSIVE; 221 222 if (unlikely(is_device_private_page(new))) { 223 if (pte_write(pte)) 224 entry = make_writable_device_private_entry( 225 page_to_pfn(new)); 226 else 227 entry = make_readable_device_private_entry( 228 page_to_pfn(new)); 229 pte = swp_entry_to_pte(entry); 230 if (pte_swp_soft_dirty(*pvmw.pte)) 231 pte = pte_swp_mksoft_dirty(pte); 232 if (pte_swp_uffd_wp(*pvmw.pte)) 233 pte = pte_swp_mkuffd_wp(pte); 234 } 235 236 #ifdef CONFIG_HUGETLB_PAGE 237 if (folio_test_hugetlb(folio)) { 238 unsigned int shift = huge_page_shift(hstate_vma(vma)); 239 240 pte = pte_mkhuge(pte); 241 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 242 if (folio_test_anon(folio)) 243 hugepage_add_anon_rmap(new, vma, pvmw.address, 244 rmap_flags); 245 else 246 page_dup_file_rmap(new, true); 247 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 248 } else 249 #endif 250 { 251 if (folio_test_anon(folio)) 252 page_add_anon_rmap(new, vma, pvmw.address, 253 rmap_flags); 254 else 255 page_add_file_rmap(new, vma, false); 256 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 257 } 258 if (vma->vm_flags & VM_LOCKED) 259 mlock_page_drain_local(); 260 261 trace_remove_migration_pte(pvmw.address, pte_val(pte), 262 compound_order(new)); 263 264 /* No need to invalidate - it was non-present before */ 265 update_mmu_cache(vma, pvmw.address, pvmw.pte); 266 } 267 268 return true; 269 } 270 271 /* 272 * Get rid of all migration entries and replace them by 273 * references to the indicated page. 274 */ 275 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 276 { 277 struct rmap_walk_control rwc = { 278 .rmap_one = remove_migration_pte, 279 .arg = src, 280 }; 281 282 if (locked) 283 rmap_walk_locked(dst, &rwc); 284 else 285 rmap_walk(dst, &rwc); 286 } 287 288 /* 289 * Something used the pte of a page under migration. We need to 290 * get to the page and wait until migration is finished. 291 * When we return from this function the fault will be retried. 292 */ 293 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 294 spinlock_t *ptl) 295 { 296 pte_t pte; 297 swp_entry_t entry; 298 299 spin_lock(ptl); 300 pte = *ptep; 301 if (!is_swap_pte(pte)) 302 goto out; 303 304 entry = pte_to_swp_entry(pte); 305 if (!is_migration_entry(entry)) 306 goto out; 307 308 migration_entry_wait_on_locked(entry, ptep, ptl); 309 return; 310 out: 311 pte_unmap_unlock(ptep, ptl); 312 } 313 314 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 315 unsigned long address) 316 { 317 spinlock_t *ptl = pte_lockptr(mm, pmd); 318 pte_t *ptep = pte_offset_map(pmd, address); 319 __migration_entry_wait(mm, ptep, ptl); 320 } 321 322 #ifdef CONFIG_HUGETLB_PAGE 323 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl) 324 { 325 pte_t pte; 326 327 spin_lock(ptl); 328 pte = huge_ptep_get(ptep); 329 330 if (unlikely(!is_hugetlb_entry_migration(pte))) 331 spin_unlock(ptl); 332 else 333 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl); 334 } 335 336 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) 337 { 338 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte); 339 340 __migration_entry_wait_huge(pte, ptl); 341 } 342 #endif 343 344 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 345 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 346 { 347 spinlock_t *ptl; 348 349 ptl = pmd_lock(mm, pmd); 350 if (!is_pmd_migration_entry(*pmd)) 351 goto unlock; 352 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl); 353 return; 354 unlock: 355 spin_unlock(ptl); 356 } 357 #endif 358 359 static int folio_expected_refs(struct address_space *mapping, 360 struct folio *folio) 361 { 362 int refs = 1; 363 if (!mapping) 364 return refs; 365 366 refs += folio_nr_pages(folio); 367 if (folio_test_private(folio)) 368 refs++; 369 370 return refs; 371 } 372 373 /* 374 * Replace the page in the mapping. 375 * 376 * The number of remaining references must be: 377 * 1 for anonymous pages without a mapping 378 * 2 for pages with a mapping 379 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 380 */ 381 int folio_migrate_mapping(struct address_space *mapping, 382 struct folio *newfolio, struct folio *folio, int extra_count) 383 { 384 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 385 struct zone *oldzone, *newzone; 386 int dirty; 387 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 388 long nr = folio_nr_pages(folio); 389 390 if (!mapping) { 391 /* Anonymous page without mapping */ 392 if (folio_ref_count(folio) != expected_count) 393 return -EAGAIN; 394 395 /* No turning back from here */ 396 newfolio->index = folio->index; 397 newfolio->mapping = folio->mapping; 398 if (folio_test_swapbacked(folio)) 399 __folio_set_swapbacked(newfolio); 400 401 return MIGRATEPAGE_SUCCESS; 402 } 403 404 oldzone = folio_zone(folio); 405 newzone = folio_zone(newfolio); 406 407 xas_lock_irq(&xas); 408 if (!folio_ref_freeze(folio, expected_count)) { 409 xas_unlock_irq(&xas); 410 return -EAGAIN; 411 } 412 413 /* 414 * Now we know that no one else is looking at the folio: 415 * no turning back from here. 416 */ 417 newfolio->index = folio->index; 418 newfolio->mapping = folio->mapping; 419 folio_ref_add(newfolio, nr); /* add cache reference */ 420 if (folio_test_swapbacked(folio)) { 421 __folio_set_swapbacked(newfolio); 422 if (folio_test_swapcache(folio)) { 423 folio_set_swapcache(newfolio); 424 newfolio->private = folio_get_private(folio); 425 } 426 } else { 427 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 428 } 429 430 /* Move dirty while page refs frozen and newpage not yet exposed */ 431 dirty = folio_test_dirty(folio); 432 if (dirty) { 433 folio_clear_dirty(folio); 434 folio_set_dirty(newfolio); 435 } 436 437 xas_store(&xas, newfolio); 438 439 /* 440 * Drop cache reference from old page by unfreezing 441 * to one less reference. 442 * We know this isn't the last reference. 443 */ 444 folio_ref_unfreeze(folio, expected_count - nr); 445 446 xas_unlock(&xas); 447 /* Leave irq disabled to prevent preemption while updating stats */ 448 449 /* 450 * If moved to a different zone then also account 451 * the page for that zone. Other VM counters will be 452 * taken care of when we establish references to the 453 * new page and drop references to the old page. 454 * 455 * Note that anonymous pages are accounted for 456 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 457 * are mapped to swap space. 458 */ 459 if (newzone != oldzone) { 460 struct lruvec *old_lruvec, *new_lruvec; 461 struct mem_cgroup *memcg; 462 463 memcg = folio_memcg(folio); 464 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 465 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 466 467 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 468 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 469 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 470 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 471 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 472 } 473 #ifdef CONFIG_SWAP 474 if (folio_test_swapcache(folio)) { 475 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 476 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 477 } 478 #endif 479 if (dirty && mapping_can_writeback(mapping)) { 480 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 481 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 482 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 483 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 484 } 485 } 486 local_irq_enable(); 487 488 return MIGRATEPAGE_SUCCESS; 489 } 490 EXPORT_SYMBOL(folio_migrate_mapping); 491 492 /* 493 * The expected number of remaining references is the same as that 494 * of folio_migrate_mapping(). 495 */ 496 int migrate_huge_page_move_mapping(struct address_space *mapping, 497 struct folio *dst, struct folio *src) 498 { 499 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 500 int expected_count; 501 502 xas_lock_irq(&xas); 503 expected_count = 2 + folio_has_private(src); 504 if (!folio_ref_freeze(src, expected_count)) { 505 xas_unlock_irq(&xas); 506 return -EAGAIN; 507 } 508 509 dst->index = src->index; 510 dst->mapping = src->mapping; 511 512 folio_get(dst); 513 514 xas_store(&xas, dst); 515 516 folio_ref_unfreeze(src, expected_count - 1); 517 518 xas_unlock_irq(&xas); 519 520 return MIGRATEPAGE_SUCCESS; 521 } 522 523 /* 524 * Copy the flags and some other ancillary information 525 */ 526 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 527 { 528 int cpupid; 529 530 if (folio_test_error(folio)) 531 folio_set_error(newfolio); 532 if (folio_test_referenced(folio)) 533 folio_set_referenced(newfolio); 534 if (folio_test_uptodate(folio)) 535 folio_mark_uptodate(newfolio); 536 if (folio_test_clear_active(folio)) { 537 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 538 folio_set_active(newfolio); 539 } else if (folio_test_clear_unevictable(folio)) 540 folio_set_unevictable(newfolio); 541 if (folio_test_workingset(folio)) 542 folio_set_workingset(newfolio); 543 if (folio_test_checked(folio)) 544 folio_set_checked(newfolio); 545 /* 546 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 547 * migration entries. We can still have PG_anon_exclusive set on an 548 * effectively unmapped and unreferenced first sub-pages of an 549 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 550 */ 551 if (folio_test_mappedtodisk(folio)) 552 folio_set_mappedtodisk(newfolio); 553 554 /* Move dirty on pages not done by folio_migrate_mapping() */ 555 if (folio_test_dirty(folio)) 556 folio_set_dirty(newfolio); 557 558 if (folio_test_young(folio)) 559 folio_set_young(newfolio); 560 if (folio_test_idle(folio)) 561 folio_set_idle(newfolio); 562 563 /* 564 * Copy NUMA information to the new page, to prevent over-eager 565 * future migrations of this same page. 566 */ 567 cpupid = page_cpupid_xchg_last(&folio->page, -1); 568 /* 569 * For memory tiering mode, when migrate between slow and fast 570 * memory node, reset cpupid, because that is used to record 571 * page access time in slow memory node. 572 */ 573 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 574 bool f_toptier = node_is_toptier(page_to_nid(&folio->page)); 575 bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page)); 576 577 if (f_toptier != t_toptier) 578 cpupid = -1; 579 } 580 page_cpupid_xchg_last(&newfolio->page, cpupid); 581 582 folio_migrate_ksm(newfolio, folio); 583 /* 584 * Please do not reorder this without considering how mm/ksm.c's 585 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 586 */ 587 if (folio_test_swapcache(folio)) 588 folio_clear_swapcache(folio); 589 folio_clear_private(folio); 590 591 /* page->private contains hugetlb specific flags */ 592 if (!folio_test_hugetlb(folio)) 593 folio->private = NULL; 594 595 /* 596 * If any waiters have accumulated on the new page then 597 * wake them up. 598 */ 599 if (folio_test_writeback(newfolio)) 600 folio_end_writeback(newfolio); 601 602 /* 603 * PG_readahead shares the same bit with PG_reclaim. The above 604 * end_page_writeback() may clear PG_readahead mistakenly, so set the 605 * bit after that. 606 */ 607 if (folio_test_readahead(folio)) 608 folio_set_readahead(newfolio); 609 610 folio_copy_owner(newfolio, folio); 611 612 if (!folio_test_hugetlb(folio)) 613 mem_cgroup_migrate(folio, newfolio); 614 } 615 EXPORT_SYMBOL(folio_migrate_flags); 616 617 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 618 { 619 folio_copy(newfolio, folio); 620 folio_migrate_flags(newfolio, folio); 621 } 622 EXPORT_SYMBOL(folio_migrate_copy); 623 624 /************************************************************ 625 * Migration functions 626 ***********************************************************/ 627 628 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 629 struct folio *src, enum migrate_mode mode, int extra_count) 630 { 631 int rc; 632 633 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 634 635 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 636 637 if (rc != MIGRATEPAGE_SUCCESS) 638 return rc; 639 640 if (mode != MIGRATE_SYNC_NO_COPY) 641 folio_migrate_copy(dst, src); 642 else 643 folio_migrate_flags(dst, src); 644 return MIGRATEPAGE_SUCCESS; 645 } 646 647 /** 648 * migrate_folio() - Simple folio migration. 649 * @mapping: The address_space containing the folio. 650 * @dst: The folio to migrate the data to. 651 * @src: The folio containing the current data. 652 * @mode: How to migrate the page. 653 * 654 * Common logic to directly migrate a single LRU folio suitable for 655 * folios that do not use PagePrivate/PagePrivate2. 656 * 657 * Folios are locked upon entry and exit. 658 */ 659 int migrate_folio(struct address_space *mapping, struct folio *dst, 660 struct folio *src, enum migrate_mode mode) 661 { 662 return migrate_folio_extra(mapping, dst, src, mode, 0); 663 } 664 EXPORT_SYMBOL(migrate_folio); 665 666 #ifdef CONFIG_BLOCK 667 /* Returns true if all buffers are successfully locked */ 668 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 669 enum migrate_mode mode) 670 { 671 struct buffer_head *bh = head; 672 673 /* Simple case, sync compaction */ 674 if (mode != MIGRATE_ASYNC) { 675 do { 676 lock_buffer(bh); 677 bh = bh->b_this_page; 678 679 } while (bh != head); 680 681 return true; 682 } 683 684 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 685 do { 686 if (!trylock_buffer(bh)) { 687 /* 688 * We failed to lock the buffer and cannot stall in 689 * async migration. Release the taken locks 690 */ 691 struct buffer_head *failed_bh = bh; 692 bh = head; 693 while (bh != failed_bh) { 694 unlock_buffer(bh); 695 bh = bh->b_this_page; 696 } 697 return false; 698 } 699 700 bh = bh->b_this_page; 701 } while (bh != head); 702 return true; 703 } 704 705 static int __buffer_migrate_folio(struct address_space *mapping, 706 struct folio *dst, struct folio *src, enum migrate_mode mode, 707 bool check_refs) 708 { 709 struct buffer_head *bh, *head; 710 int rc; 711 int expected_count; 712 713 head = folio_buffers(src); 714 if (!head) 715 return migrate_folio(mapping, dst, src, mode); 716 717 /* Check whether page does not have extra refs before we do more work */ 718 expected_count = folio_expected_refs(mapping, src); 719 if (folio_ref_count(src) != expected_count) 720 return -EAGAIN; 721 722 if (!buffer_migrate_lock_buffers(head, mode)) 723 return -EAGAIN; 724 725 if (check_refs) { 726 bool busy; 727 bool invalidated = false; 728 729 recheck_buffers: 730 busy = false; 731 spin_lock(&mapping->private_lock); 732 bh = head; 733 do { 734 if (atomic_read(&bh->b_count)) { 735 busy = true; 736 break; 737 } 738 bh = bh->b_this_page; 739 } while (bh != head); 740 if (busy) { 741 if (invalidated) { 742 rc = -EAGAIN; 743 goto unlock_buffers; 744 } 745 spin_unlock(&mapping->private_lock); 746 invalidate_bh_lrus(); 747 invalidated = true; 748 goto recheck_buffers; 749 } 750 } 751 752 rc = folio_migrate_mapping(mapping, dst, src, 0); 753 if (rc != MIGRATEPAGE_SUCCESS) 754 goto unlock_buffers; 755 756 folio_attach_private(dst, folio_detach_private(src)); 757 758 bh = head; 759 do { 760 set_bh_page(bh, &dst->page, bh_offset(bh)); 761 bh = bh->b_this_page; 762 } while (bh != head); 763 764 if (mode != MIGRATE_SYNC_NO_COPY) 765 folio_migrate_copy(dst, src); 766 else 767 folio_migrate_flags(dst, src); 768 769 rc = MIGRATEPAGE_SUCCESS; 770 unlock_buffers: 771 if (check_refs) 772 spin_unlock(&mapping->private_lock); 773 bh = head; 774 do { 775 unlock_buffer(bh); 776 bh = bh->b_this_page; 777 } while (bh != head); 778 779 return rc; 780 } 781 782 /** 783 * buffer_migrate_folio() - Migration function for folios with buffers. 784 * @mapping: The address space containing @src. 785 * @dst: The folio to migrate to. 786 * @src: The folio to migrate from. 787 * @mode: How to migrate the folio. 788 * 789 * This function can only be used if the underlying filesystem guarantees 790 * that no other references to @src exist. For example attached buffer 791 * heads are accessed only under the folio lock. If your filesystem cannot 792 * provide this guarantee, buffer_migrate_folio_norefs() may be more 793 * appropriate. 794 * 795 * Return: 0 on success or a negative errno on failure. 796 */ 797 int buffer_migrate_folio(struct address_space *mapping, 798 struct folio *dst, struct folio *src, enum migrate_mode mode) 799 { 800 return __buffer_migrate_folio(mapping, dst, src, mode, false); 801 } 802 EXPORT_SYMBOL(buffer_migrate_folio); 803 804 /** 805 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 806 * @mapping: The address space containing @src. 807 * @dst: The folio to migrate to. 808 * @src: The folio to migrate from. 809 * @mode: How to migrate the folio. 810 * 811 * Like buffer_migrate_folio() except that this variant is more careful 812 * and checks that there are also no buffer head references. This function 813 * is the right one for mappings where buffer heads are directly looked 814 * up and referenced (such as block device mappings). 815 * 816 * Return: 0 on success or a negative errno on failure. 817 */ 818 int buffer_migrate_folio_norefs(struct address_space *mapping, 819 struct folio *dst, struct folio *src, enum migrate_mode mode) 820 { 821 return __buffer_migrate_folio(mapping, dst, src, mode, true); 822 } 823 #endif 824 825 int filemap_migrate_folio(struct address_space *mapping, 826 struct folio *dst, struct folio *src, enum migrate_mode mode) 827 { 828 int ret; 829 830 ret = folio_migrate_mapping(mapping, dst, src, 0); 831 if (ret != MIGRATEPAGE_SUCCESS) 832 return ret; 833 834 if (folio_get_private(src)) 835 folio_attach_private(dst, folio_detach_private(src)); 836 837 if (mode != MIGRATE_SYNC_NO_COPY) 838 folio_migrate_copy(dst, src); 839 else 840 folio_migrate_flags(dst, src); 841 return MIGRATEPAGE_SUCCESS; 842 } 843 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 844 845 /* 846 * Writeback a folio to clean the dirty state 847 */ 848 static int writeout(struct address_space *mapping, struct folio *folio) 849 { 850 struct writeback_control wbc = { 851 .sync_mode = WB_SYNC_NONE, 852 .nr_to_write = 1, 853 .range_start = 0, 854 .range_end = LLONG_MAX, 855 .for_reclaim = 1 856 }; 857 int rc; 858 859 if (!mapping->a_ops->writepage) 860 /* No write method for the address space */ 861 return -EINVAL; 862 863 if (!folio_clear_dirty_for_io(folio)) 864 /* Someone else already triggered a write */ 865 return -EAGAIN; 866 867 /* 868 * A dirty folio may imply that the underlying filesystem has 869 * the folio on some queue. So the folio must be clean for 870 * migration. Writeout may mean we lose the lock and the 871 * folio state is no longer what we checked for earlier. 872 * At this point we know that the migration attempt cannot 873 * be successful. 874 */ 875 remove_migration_ptes(folio, folio, false); 876 877 rc = mapping->a_ops->writepage(&folio->page, &wbc); 878 879 if (rc != AOP_WRITEPAGE_ACTIVATE) 880 /* unlocked. Relock */ 881 folio_lock(folio); 882 883 return (rc < 0) ? -EIO : -EAGAIN; 884 } 885 886 /* 887 * Default handling if a filesystem does not provide a migration function. 888 */ 889 static int fallback_migrate_folio(struct address_space *mapping, 890 struct folio *dst, struct folio *src, enum migrate_mode mode) 891 { 892 if (folio_test_dirty(src)) { 893 /* Only writeback folios in full synchronous migration */ 894 switch (mode) { 895 case MIGRATE_SYNC: 896 case MIGRATE_SYNC_NO_COPY: 897 break; 898 default: 899 return -EBUSY; 900 } 901 return writeout(mapping, src); 902 } 903 904 /* 905 * Buffers may be managed in a filesystem specific way. 906 * We must have no buffers or drop them. 907 */ 908 if (folio_test_private(src) && 909 !filemap_release_folio(src, GFP_KERNEL)) 910 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 911 912 return migrate_folio(mapping, dst, src, mode); 913 } 914 915 /* 916 * Move a page to a newly allocated page 917 * The page is locked and all ptes have been successfully removed. 918 * 919 * The new page will have replaced the old page if this function 920 * is successful. 921 * 922 * Return value: 923 * < 0 - error code 924 * MIGRATEPAGE_SUCCESS - success 925 */ 926 static int move_to_new_folio(struct folio *dst, struct folio *src, 927 enum migrate_mode mode) 928 { 929 int rc = -EAGAIN; 930 bool is_lru = !__PageMovable(&src->page); 931 932 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 933 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 934 935 if (likely(is_lru)) { 936 struct address_space *mapping = folio_mapping(src); 937 938 if (!mapping) 939 rc = migrate_folio(mapping, dst, src, mode); 940 else if (mapping->a_ops->migrate_folio) 941 /* 942 * Most folios have a mapping and most filesystems 943 * provide a migrate_folio callback. Anonymous folios 944 * are part of swap space which also has its own 945 * migrate_folio callback. This is the most common path 946 * for page migration. 947 */ 948 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 949 mode); 950 else 951 rc = fallback_migrate_folio(mapping, dst, src, mode); 952 } else { 953 const struct movable_operations *mops; 954 955 /* 956 * In case of non-lru page, it could be released after 957 * isolation step. In that case, we shouldn't try migration. 958 */ 959 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 960 if (!folio_test_movable(src)) { 961 rc = MIGRATEPAGE_SUCCESS; 962 folio_clear_isolated(src); 963 goto out; 964 } 965 966 mops = page_movable_ops(&src->page); 967 rc = mops->migrate_page(&dst->page, &src->page, mode); 968 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 969 !folio_test_isolated(src)); 970 } 971 972 /* 973 * When successful, old pagecache src->mapping must be cleared before 974 * src is freed; but stats require that PageAnon be left as PageAnon. 975 */ 976 if (rc == MIGRATEPAGE_SUCCESS) { 977 if (__PageMovable(&src->page)) { 978 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 979 980 /* 981 * We clear PG_movable under page_lock so any compactor 982 * cannot try to migrate this page. 983 */ 984 folio_clear_isolated(src); 985 } 986 987 /* 988 * Anonymous and movable src->mapping will be cleared by 989 * free_pages_prepare so don't reset it here for keeping 990 * the type to work PageAnon, for example. 991 */ 992 if (!folio_mapping_flags(src)) 993 src->mapping = NULL; 994 995 if (likely(!folio_is_zone_device(dst))) 996 flush_dcache_folio(dst); 997 } 998 out: 999 return rc; 1000 } 1001 1002 static int __unmap_and_move(struct folio *src, struct folio *dst, 1003 int force, enum migrate_mode mode) 1004 { 1005 int rc = -EAGAIN; 1006 bool page_was_mapped = false; 1007 struct anon_vma *anon_vma = NULL; 1008 bool is_lru = !__PageMovable(&src->page); 1009 1010 if (!folio_trylock(src)) { 1011 if (!force || mode == MIGRATE_ASYNC) 1012 goto out; 1013 1014 /* 1015 * It's not safe for direct compaction to call lock_page. 1016 * For example, during page readahead pages are added locked 1017 * to the LRU. Later, when the IO completes the pages are 1018 * marked uptodate and unlocked. However, the queueing 1019 * could be merging multiple pages for one bio (e.g. 1020 * mpage_readahead). If an allocation happens for the 1021 * second or third page, the process can end up locking 1022 * the same page twice and deadlocking. Rather than 1023 * trying to be clever about what pages can be locked, 1024 * avoid the use of lock_page for direct compaction 1025 * altogether. 1026 */ 1027 if (current->flags & PF_MEMALLOC) 1028 goto out; 1029 1030 folio_lock(src); 1031 } 1032 1033 if (folio_test_writeback(src)) { 1034 /* 1035 * Only in the case of a full synchronous migration is it 1036 * necessary to wait for PageWriteback. In the async case, 1037 * the retry loop is too short and in the sync-light case, 1038 * the overhead of stalling is too much 1039 */ 1040 switch (mode) { 1041 case MIGRATE_SYNC: 1042 case MIGRATE_SYNC_NO_COPY: 1043 break; 1044 default: 1045 rc = -EBUSY; 1046 goto out_unlock; 1047 } 1048 if (!force) 1049 goto out_unlock; 1050 folio_wait_writeback(src); 1051 } 1052 1053 /* 1054 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1055 * we cannot notice that anon_vma is freed while we migrate a page. 1056 * This get_anon_vma() delays freeing anon_vma pointer until the end 1057 * of migration. File cache pages are no problem because of page_lock() 1058 * File Caches may use write_page() or lock_page() in migration, then, 1059 * just care Anon page here. 1060 * 1061 * Only folio_get_anon_vma() understands the subtleties of 1062 * getting a hold on an anon_vma from outside one of its mms. 1063 * But if we cannot get anon_vma, then we won't need it anyway, 1064 * because that implies that the anon page is no longer mapped 1065 * (and cannot be remapped so long as we hold the page lock). 1066 */ 1067 if (folio_test_anon(src) && !folio_test_ksm(src)) 1068 anon_vma = folio_get_anon_vma(src); 1069 1070 /* 1071 * Block others from accessing the new page when we get around to 1072 * establishing additional references. We are usually the only one 1073 * holding a reference to dst at this point. We used to have a BUG 1074 * here if folio_trylock(dst) fails, but would like to allow for 1075 * cases where there might be a race with the previous use of dst. 1076 * This is much like races on refcount of oldpage: just don't BUG(). 1077 */ 1078 if (unlikely(!folio_trylock(dst))) 1079 goto out_unlock; 1080 1081 if (unlikely(!is_lru)) { 1082 rc = move_to_new_folio(dst, src, mode); 1083 goto out_unlock_both; 1084 } 1085 1086 /* 1087 * Corner case handling: 1088 * 1. When a new swap-cache page is read into, it is added to the LRU 1089 * and treated as swapcache but it has no rmap yet. 1090 * Calling try_to_unmap() against a src->mapping==NULL page will 1091 * trigger a BUG. So handle it here. 1092 * 2. An orphaned page (see truncate_cleanup_page) might have 1093 * fs-private metadata. The page can be picked up due to memory 1094 * offlining. Everywhere else except page reclaim, the page is 1095 * invisible to the vm, so the page can not be migrated. So try to 1096 * free the metadata, so the page can be freed. 1097 */ 1098 if (!src->mapping) { 1099 if (folio_test_private(src)) { 1100 try_to_free_buffers(src); 1101 goto out_unlock_both; 1102 } 1103 } else if (folio_mapped(src)) { 1104 /* Establish migration ptes */ 1105 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1106 !folio_test_ksm(src) && !anon_vma, src); 1107 try_to_migrate(src, 0); 1108 page_was_mapped = true; 1109 } 1110 1111 if (!folio_mapped(src)) 1112 rc = move_to_new_folio(dst, src, mode); 1113 1114 /* 1115 * When successful, push dst to LRU immediately: so that if it 1116 * turns out to be an mlocked page, remove_migration_ptes() will 1117 * automatically build up the correct dst->mlock_count for it. 1118 * 1119 * We would like to do something similar for the old page, when 1120 * unsuccessful, and other cases when a page has been temporarily 1121 * isolated from the unevictable LRU: but this case is the easiest. 1122 */ 1123 if (rc == MIGRATEPAGE_SUCCESS) { 1124 folio_add_lru(dst); 1125 if (page_was_mapped) 1126 lru_add_drain(); 1127 } 1128 1129 if (page_was_mapped) 1130 remove_migration_ptes(src, 1131 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1132 1133 out_unlock_both: 1134 folio_unlock(dst); 1135 out_unlock: 1136 /* Drop an anon_vma reference if we took one */ 1137 if (anon_vma) 1138 put_anon_vma(anon_vma); 1139 folio_unlock(src); 1140 out: 1141 /* 1142 * If migration is successful, decrease refcount of dst, 1143 * which will not free the page because new page owner increased 1144 * refcounter. 1145 */ 1146 if (rc == MIGRATEPAGE_SUCCESS) 1147 folio_put(dst); 1148 1149 return rc; 1150 } 1151 1152 /* 1153 * Obtain the lock on page, remove all ptes and migrate the page 1154 * to the newly allocated page in newpage. 1155 */ 1156 static int unmap_and_move(new_page_t get_new_page, 1157 free_page_t put_new_page, 1158 unsigned long private, struct page *page, 1159 int force, enum migrate_mode mode, 1160 enum migrate_reason reason, 1161 struct list_head *ret) 1162 { 1163 struct folio *dst, *src = page_folio(page); 1164 int rc = MIGRATEPAGE_SUCCESS; 1165 struct page *newpage = NULL; 1166 1167 if (!thp_migration_supported() && PageTransHuge(page)) 1168 return -ENOSYS; 1169 1170 if (page_count(page) == 1) { 1171 /* Page was freed from under us. So we are done. */ 1172 ClearPageActive(page); 1173 ClearPageUnevictable(page); 1174 /* free_pages_prepare() will clear PG_isolated. */ 1175 goto out; 1176 } 1177 1178 newpage = get_new_page(page, private); 1179 if (!newpage) 1180 return -ENOMEM; 1181 dst = page_folio(newpage); 1182 1183 newpage->private = 0; 1184 rc = __unmap_and_move(src, dst, force, mode); 1185 if (rc == MIGRATEPAGE_SUCCESS) 1186 set_page_owner_migrate_reason(newpage, reason); 1187 1188 out: 1189 if (rc != -EAGAIN) { 1190 /* 1191 * A page that has been migrated has all references 1192 * removed and will be freed. A page that has not been 1193 * migrated will have kept its references and be restored. 1194 */ 1195 list_del(&page->lru); 1196 } 1197 1198 /* 1199 * If migration is successful, releases reference grabbed during 1200 * isolation. Otherwise, restore the page to right list unless 1201 * we want to retry. 1202 */ 1203 if (rc == MIGRATEPAGE_SUCCESS) { 1204 /* 1205 * Compaction can migrate also non-LRU pages which are 1206 * not accounted to NR_ISOLATED_*. They can be recognized 1207 * as __PageMovable 1208 */ 1209 if (likely(!__PageMovable(page))) 1210 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1211 page_is_file_lru(page), -thp_nr_pages(page)); 1212 1213 if (reason != MR_MEMORY_FAILURE) 1214 /* 1215 * We release the page in page_handle_poison. 1216 */ 1217 put_page(page); 1218 } else { 1219 if (rc != -EAGAIN) 1220 list_add_tail(&page->lru, ret); 1221 1222 if (put_new_page) 1223 put_new_page(newpage, private); 1224 else 1225 put_page(newpage); 1226 } 1227 1228 return rc; 1229 } 1230 1231 /* 1232 * Counterpart of unmap_and_move_page() for hugepage migration. 1233 * 1234 * This function doesn't wait the completion of hugepage I/O 1235 * because there is no race between I/O and migration for hugepage. 1236 * Note that currently hugepage I/O occurs only in direct I/O 1237 * where no lock is held and PG_writeback is irrelevant, 1238 * and writeback status of all subpages are counted in the reference 1239 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1240 * under direct I/O, the reference of the head page is 512 and a bit more.) 1241 * This means that when we try to migrate hugepage whose subpages are 1242 * doing direct I/O, some references remain after try_to_unmap() and 1243 * hugepage migration fails without data corruption. 1244 * 1245 * There is also no race when direct I/O is issued on the page under migration, 1246 * because then pte is replaced with migration swap entry and direct I/O code 1247 * will wait in the page fault for migration to complete. 1248 */ 1249 static int unmap_and_move_huge_page(new_page_t get_new_page, 1250 free_page_t put_new_page, unsigned long private, 1251 struct page *hpage, int force, 1252 enum migrate_mode mode, int reason, 1253 struct list_head *ret) 1254 { 1255 struct folio *dst, *src = page_folio(hpage); 1256 int rc = -EAGAIN; 1257 int page_was_mapped = 0; 1258 struct page *new_hpage; 1259 struct anon_vma *anon_vma = NULL; 1260 struct address_space *mapping = NULL; 1261 1262 /* 1263 * Migratability of hugepages depends on architectures and their size. 1264 * This check is necessary because some callers of hugepage migration 1265 * like soft offline and memory hotremove don't walk through page 1266 * tables or check whether the hugepage is pmd-based or not before 1267 * kicking migration. 1268 */ 1269 if (!hugepage_migration_supported(page_hstate(hpage))) 1270 return -ENOSYS; 1271 1272 if (folio_ref_count(src) == 1) { 1273 /* page was freed from under us. So we are done. */ 1274 putback_active_hugepage(hpage); 1275 return MIGRATEPAGE_SUCCESS; 1276 } 1277 1278 new_hpage = get_new_page(hpage, private); 1279 if (!new_hpage) 1280 return -ENOMEM; 1281 dst = page_folio(new_hpage); 1282 1283 if (!folio_trylock(src)) { 1284 if (!force) 1285 goto out; 1286 switch (mode) { 1287 case MIGRATE_SYNC: 1288 case MIGRATE_SYNC_NO_COPY: 1289 break; 1290 default: 1291 goto out; 1292 } 1293 folio_lock(src); 1294 } 1295 1296 /* 1297 * Check for pages which are in the process of being freed. Without 1298 * folio_mapping() set, hugetlbfs specific move page routine will not 1299 * be called and we could leak usage counts for subpools. 1300 */ 1301 if (hugetlb_page_subpool(hpage) && !folio_mapping(src)) { 1302 rc = -EBUSY; 1303 goto out_unlock; 1304 } 1305 1306 if (folio_test_anon(src)) 1307 anon_vma = folio_get_anon_vma(src); 1308 1309 if (unlikely(!folio_trylock(dst))) 1310 goto put_anon; 1311 1312 if (folio_mapped(src)) { 1313 enum ttu_flags ttu = 0; 1314 1315 if (!folio_test_anon(src)) { 1316 /* 1317 * In shared mappings, try_to_unmap could potentially 1318 * call huge_pmd_unshare. Because of this, take 1319 * semaphore in write mode here and set TTU_RMAP_LOCKED 1320 * to let lower levels know we have taken the lock. 1321 */ 1322 mapping = hugetlb_page_mapping_lock_write(hpage); 1323 if (unlikely(!mapping)) 1324 goto unlock_put_anon; 1325 1326 ttu = TTU_RMAP_LOCKED; 1327 } 1328 1329 try_to_migrate(src, ttu); 1330 page_was_mapped = 1; 1331 1332 if (ttu & TTU_RMAP_LOCKED) 1333 i_mmap_unlock_write(mapping); 1334 } 1335 1336 if (!folio_mapped(src)) 1337 rc = move_to_new_folio(dst, src, mode); 1338 1339 if (page_was_mapped) 1340 remove_migration_ptes(src, 1341 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1342 1343 unlock_put_anon: 1344 folio_unlock(dst); 1345 1346 put_anon: 1347 if (anon_vma) 1348 put_anon_vma(anon_vma); 1349 1350 if (rc == MIGRATEPAGE_SUCCESS) { 1351 move_hugetlb_state(hpage, new_hpage, reason); 1352 put_new_page = NULL; 1353 } 1354 1355 out_unlock: 1356 folio_unlock(src); 1357 out: 1358 if (rc == MIGRATEPAGE_SUCCESS) 1359 putback_active_hugepage(hpage); 1360 else if (rc != -EAGAIN) 1361 list_move_tail(&src->lru, ret); 1362 1363 /* 1364 * If migration was not successful and there's a freeing callback, use 1365 * it. Otherwise, put_page() will drop the reference grabbed during 1366 * isolation. 1367 */ 1368 if (put_new_page) 1369 put_new_page(new_hpage, private); 1370 else 1371 putback_active_hugepage(new_hpage); 1372 1373 return rc; 1374 } 1375 1376 static inline int try_split_thp(struct page *page, struct list_head *split_pages) 1377 { 1378 int rc; 1379 1380 lock_page(page); 1381 rc = split_huge_page_to_list(page, split_pages); 1382 unlock_page(page); 1383 if (!rc) 1384 list_move_tail(&page->lru, split_pages); 1385 1386 return rc; 1387 } 1388 1389 /* 1390 * migrate_pages - migrate the pages specified in a list, to the free pages 1391 * supplied as the target for the page migration 1392 * 1393 * @from: The list of pages to be migrated. 1394 * @get_new_page: The function used to allocate free pages to be used 1395 * as the target of the page migration. 1396 * @put_new_page: The function used to free target pages if migration 1397 * fails, or NULL if no special handling is necessary. 1398 * @private: Private data to be passed on to get_new_page() 1399 * @mode: The migration mode that specifies the constraints for 1400 * page migration, if any. 1401 * @reason: The reason for page migration. 1402 * @ret_succeeded: Set to the number of normal pages migrated successfully if 1403 * the caller passes a non-NULL pointer. 1404 * 1405 * The function returns after 10 attempts or if no pages are movable any more 1406 * because the list has become empty or no retryable pages exist any more. 1407 * It is caller's responsibility to call putback_movable_pages() to return pages 1408 * to the LRU or free list only if ret != 0. 1409 * 1410 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or 1411 * an error code. The number of THP splits will be considered as the number of 1412 * non-migrated THP, no matter how many subpages of the THP are migrated successfully. 1413 */ 1414 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1415 free_page_t put_new_page, unsigned long private, 1416 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1417 { 1418 int retry = 1; 1419 int thp_retry = 1; 1420 int nr_failed = 0; 1421 int nr_failed_pages = 0; 1422 int nr_retry_pages = 0; 1423 int nr_succeeded = 0; 1424 int nr_thp_succeeded = 0; 1425 int nr_thp_failed = 0; 1426 int nr_thp_split = 0; 1427 int pass = 0; 1428 bool is_thp = false; 1429 struct page *page; 1430 struct page *page2; 1431 int rc, nr_subpages; 1432 LIST_HEAD(ret_pages); 1433 LIST_HEAD(thp_split_pages); 1434 bool nosplit = (reason == MR_NUMA_MISPLACED); 1435 bool no_subpage_counting = false; 1436 1437 trace_mm_migrate_pages_start(mode, reason); 1438 1439 thp_subpage_migration: 1440 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1441 retry = 0; 1442 thp_retry = 0; 1443 nr_retry_pages = 0; 1444 1445 list_for_each_entry_safe(page, page2, from, lru) { 1446 /* 1447 * THP statistics is based on the source huge page. 1448 * Capture required information that might get lost 1449 * during migration. 1450 */ 1451 is_thp = PageTransHuge(page) && !PageHuge(page); 1452 nr_subpages = compound_nr(page); 1453 cond_resched(); 1454 1455 if (PageHuge(page)) 1456 rc = unmap_and_move_huge_page(get_new_page, 1457 put_new_page, private, page, 1458 pass > 2, mode, reason, 1459 &ret_pages); 1460 else 1461 rc = unmap_and_move(get_new_page, put_new_page, 1462 private, page, pass > 2, mode, 1463 reason, &ret_pages); 1464 /* 1465 * The rules are: 1466 * Success: non hugetlb page will be freed, hugetlb 1467 * page will be put back 1468 * -EAGAIN: stay on the from list 1469 * -ENOMEM: stay on the from list 1470 * -ENOSYS: stay on the from list 1471 * Other errno: put on ret_pages list then splice to 1472 * from list 1473 */ 1474 switch(rc) { 1475 /* 1476 * THP migration might be unsupported or the 1477 * allocation could've failed so we should 1478 * retry on the same page with the THP split 1479 * to base pages. 1480 * 1481 * Sub-pages are put in thp_split_pages, and 1482 * we will migrate them after the rest of the 1483 * list is processed. 1484 */ 1485 case -ENOSYS: 1486 /* THP migration is unsupported */ 1487 if (is_thp) { 1488 nr_thp_failed++; 1489 if (!try_split_thp(page, &thp_split_pages)) { 1490 nr_thp_split++; 1491 break; 1492 } 1493 /* Hugetlb migration is unsupported */ 1494 } else if (!no_subpage_counting) { 1495 nr_failed++; 1496 } 1497 1498 nr_failed_pages += nr_subpages; 1499 list_move_tail(&page->lru, &ret_pages); 1500 break; 1501 case -ENOMEM: 1502 /* 1503 * When memory is low, don't bother to try to migrate 1504 * other pages, just exit. 1505 */ 1506 if (is_thp) { 1507 nr_thp_failed++; 1508 /* THP NUMA faulting doesn't split THP to retry. */ 1509 if (!nosplit && !try_split_thp(page, &thp_split_pages)) { 1510 nr_thp_split++; 1511 break; 1512 } 1513 } else if (!no_subpage_counting) { 1514 nr_failed++; 1515 } 1516 1517 nr_failed_pages += nr_subpages + nr_retry_pages; 1518 /* 1519 * There might be some subpages of fail-to-migrate THPs 1520 * left in thp_split_pages list. Move them back to migration 1521 * list so that they could be put back to the right list by 1522 * the caller otherwise the page refcnt will be leaked. 1523 */ 1524 list_splice_init(&thp_split_pages, from); 1525 /* nr_failed isn't updated for not used */ 1526 nr_thp_failed += thp_retry; 1527 goto out; 1528 case -EAGAIN: 1529 if (is_thp) 1530 thp_retry++; 1531 else if (!no_subpage_counting) 1532 retry++; 1533 nr_retry_pages += nr_subpages; 1534 break; 1535 case MIGRATEPAGE_SUCCESS: 1536 nr_succeeded += nr_subpages; 1537 if (is_thp) 1538 nr_thp_succeeded++; 1539 break; 1540 default: 1541 /* 1542 * Permanent failure (-EBUSY, etc.): 1543 * unlike -EAGAIN case, the failed page is 1544 * removed from migration page list and not 1545 * retried in the next outer loop. 1546 */ 1547 if (is_thp) 1548 nr_thp_failed++; 1549 else if (!no_subpage_counting) 1550 nr_failed++; 1551 1552 nr_failed_pages += nr_subpages; 1553 break; 1554 } 1555 } 1556 } 1557 nr_failed += retry; 1558 nr_thp_failed += thp_retry; 1559 nr_failed_pages += nr_retry_pages; 1560 /* 1561 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed 1562 * counting in this round, since all subpages of a THP is counted 1563 * as 1 failure in the first round. 1564 */ 1565 if (!list_empty(&thp_split_pages)) { 1566 /* 1567 * Move non-migrated pages (after 10 retries) to ret_pages 1568 * to avoid migrating them again. 1569 */ 1570 list_splice_init(from, &ret_pages); 1571 list_splice_init(&thp_split_pages, from); 1572 no_subpage_counting = true; 1573 retry = 1; 1574 goto thp_subpage_migration; 1575 } 1576 1577 rc = nr_failed + nr_thp_failed; 1578 out: 1579 /* 1580 * Put the permanent failure page back to migration list, they 1581 * will be put back to the right list by the caller. 1582 */ 1583 list_splice(&ret_pages, from); 1584 1585 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1586 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages); 1587 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1588 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1589 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1590 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded, 1591 nr_thp_failed, nr_thp_split, mode, reason); 1592 1593 if (ret_succeeded) 1594 *ret_succeeded = nr_succeeded; 1595 1596 return rc; 1597 } 1598 1599 struct page *alloc_migration_target(struct page *page, unsigned long private) 1600 { 1601 struct folio *folio = page_folio(page); 1602 struct migration_target_control *mtc; 1603 gfp_t gfp_mask; 1604 unsigned int order = 0; 1605 struct folio *new_folio = NULL; 1606 int nid; 1607 int zidx; 1608 1609 mtc = (struct migration_target_control *)private; 1610 gfp_mask = mtc->gfp_mask; 1611 nid = mtc->nid; 1612 if (nid == NUMA_NO_NODE) 1613 nid = folio_nid(folio); 1614 1615 if (folio_test_hugetlb(folio)) { 1616 struct hstate *h = page_hstate(&folio->page); 1617 1618 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1619 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1620 } 1621 1622 if (folio_test_large(folio)) { 1623 /* 1624 * clear __GFP_RECLAIM to make the migration callback 1625 * consistent with regular THP allocations. 1626 */ 1627 gfp_mask &= ~__GFP_RECLAIM; 1628 gfp_mask |= GFP_TRANSHUGE; 1629 order = folio_order(folio); 1630 } 1631 zidx = zone_idx(folio_zone(folio)); 1632 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1633 gfp_mask |= __GFP_HIGHMEM; 1634 1635 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask); 1636 1637 return &new_folio->page; 1638 } 1639 1640 #ifdef CONFIG_NUMA 1641 1642 static int store_status(int __user *status, int start, int value, int nr) 1643 { 1644 while (nr-- > 0) { 1645 if (put_user(value, status + start)) 1646 return -EFAULT; 1647 start++; 1648 } 1649 1650 return 0; 1651 } 1652 1653 static int do_move_pages_to_node(struct mm_struct *mm, 1654 struct list_head *pagelist, int node) 1655 { 1656 int err; 1657 struct migration_target_control mtc = { 1658 .nid = node, 1659 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1660 }; 1661 1662 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1663 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1664 if (err) 1665 putback_movable_pages(pagelist); 1666 return err; 1667 } 1668 1669 /* 1670 * Resolves the given address to a struct page, isolates it from the LRU and 1671 * puts it to the given pagelist. 1672 * Returns: 1673 * errno - if the page cannot be found/isolated 1674 * 0 - when it doesn't have to be migrated because it is already on the 1675 * target node 1676 * 1 - when it has been queued 1677 */ 1678 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1679 int node, struct list_head *pagelist, bool migrate_all) 1680 { 1681 struct vm_area_struct *vma; 1682 struct page *page; 1683 int err; 1684 1685 mmap_read_lock(mm); 1686 err = -EFAULT; 1687 vma = vma_lookup(mm, addr); 1688 if (!vma || !vma_migratable(vma)) 1689 goto out; 1690 1691 /* FOLL_DUMP to ignore special (like zero) pages */ 1692 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 1693 1694 err = PTR_ERR(page); 1695 if (IS_ERR(page)) 1696 goto out; 1697 1698 err = -ENOENT; 1699 if (!page) 1700 goto out; 1701 1702 if (is_zone_device_page(page)) 1703 goto out_putpage; 1704 1705 err = 0; 1706 if (page_to_nid(page) == node) 1707 goto out_putpage; 1708 1709 err = -EACCES; 1710 if (page_mapcount(page) > 1 && !migrate_all) 1711 goto out_putpage; 1712 1713 if (PageHuge(page)) { 1714 if (PageHead(page)) { 1715 err = isolate_hugetlb(page, pagelist); 1716 if (!err) 1717 err = 1; 1718 } 1719 } else { 1720 struct page *head; 1721 1722 head = compound_head(page); 1723 err = isolate_lru_page(head); 1724 if (err) 1725 goto out_putpage; 1726 1727 err = 1; 1728 list_add_tail(&head->lru, pagelist); 1729 mod_node_page_state(page_pgdat(head), 1730 NR_ISOLATED_ANON + page_is_file_lru(head), 1731 thp_nr_pages(head)); 1732 } 1733 out_putpage: 1734 /* 1735 * Either remove the duplicate refcount from 1736 * isolate_lru_page() or drop the page ref if it was 1737 * not isolated. 1738 */ 1739 put_page(page); 1740 out: 1741 mmap_read_unlock(mm); 1742 return err; 1743 } 1744 1745 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1746 struct list_head *pagelist, int __user *status, 1747 int start, int i, unsigned long nr_pages) 1748 { 1749 int err; 1750 1751 if (list_empty(pagelist)) 1752 return 0; 1753 1754 err = do_move_pages_to_node(mm, pagelist, node); 1755 if (err) { 1756 /* 1757 * Positive err means the number of failed 1758 * pages to migrate. Since we are going to 1759 * abort and return the number of non-migrated 1760 * pages, so need to include the rest of the 1761 * nr_pages that have not been attempted as 1762 * well. 1763 */ 1764 if (err > 0) 1765 err += nr_pages - i; 1766 return err; 1767 } 1768 return store_status(status, start, node, i - start); 1769 } 1770 1771 /* 1772 * Migrate an array of page address onto an array of nodes and fill 1773 * the corresponding array of status. 1774 */ 1775 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1776 unsigned long nr_pages, 1777 const void __user * __user *pages, 1778 const int __user *nodes, 1779 int __user *status, int flags) 1780 { 1781 int current_node = NUMA_NO_NODE; 1782 LIST_HEAD(pagelist); 1783 int start, i; 1784 int err = 0, err1; 1785 1786 lru_cache_disable(); 1787 1788 for (i = start = 0; i < nr_pages; i++) { 1789 const void __user *p; 1790 unsigned long addr; 1791 int node; 1792 1793 err = -EFAULT; 1794 if (get_user(p, pages + i)) 1795 goto out_flush; 1796 if (get_user(node, nodes + i)) 1797 goto out_flush; 1798 addr = (unsigned long)untagged_addr(p); 1799 1800 err = -ENODEV; 1801 if (node < 0 || node >= MAX_NUMNODES) 1802 goto out_flush; 1803 if (!node_state(node, N_MEMORY)) 1804 goto out_flush; 1805 1806 err = -EACCES; 1807 if (!node_isset(node, task_nodes)) 1808 goto out_flush; 1809 1810 if (current_node == NUMA_NO_NODE) { 1811 current_node = node; 1812 start = i; 1813 } else if (node != current_node) { 1814 err = move_pages_and_store_status(mm, current_node, 1815 &pagelist, status, start, i, nr_pages); 1816 if (err) 1817 goto out; 1818 start = i; 1819 current_node = node; 1820 } 1821 1822 /* 1823 * Errors in the page lookup or isolation are not fatal and we simply 1824 * report them via status 1825 */ 1826 err = add_page_for_migration(mm, addr, current_node, 1827 &pagelist, flags & MPOL_MF_MOVE_ALL); 1828 1829 if (err > 0) { 1830 /* The page is successfully queued for migration */ 1831 continue; 1832 } 1833 1834 /* 1835 * The move_pages() man page does not have an -EEXIST choice, so 1836 * use -EFAULT instead. 1837 */ 1838 if (err == -EEXIST) 1839 err = -EFAULT; 1840 1841 /* 1842 * If the page is already on the target node (!err), store the 1843 * node, otherwise, store the err. 1844 */ 1845 err = store_status(status, i, err ? : current_node, 1); 1846 if (err) 1847 goto out_flush; 1848 1849 err = move_pages_and_store_status(mm, current_node, &pagelist, 1850 status, start, i, nr_pages); 1851 if (err) { 1852 /* We have accounted for page i */ 1853 if (err > 0) 1854 err--; 1855 goto out; 1856 } 1857 current_node = NUMA_NO_NODE; 1858 } 1859 out_flush: 1860 /* Make sure we do not overwrite the existing error */ 1861 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1862 status, start, i, nr_pages); 1863 if (err >= 0) 1864 err = err1; 1865 out: 1866 lru_cache_enable(); 1867 return err; 1868 } 1869 1870 /* 1871 * Determine the nodes of an array of pages and store it in an array of status. 1872 */ 1873 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1874 const void __user **pages, int *status) 1875 { 1876 unsigned long i; 1877 1878 mmap_read_lock(mm); 1879 1880 for (i = 0; i < nr_pages; i++) { 1881 unsigned long addr = (unsigned long)(*pages); 1882 unsigned int foll_flags = FOLL_DUMP; 1883 struct vm_area_struct *vma; 1884 struct page *page; 1885 int err = -EFAULT; 1886 1887 vma = vma_lookup(mm, addr); 1888 if (!vma) 1889 goto set_status; 1890 1891 /* Not all huge page follow APIs support 'FOLL_GET' */ 1892 if (!is_vm_hugetlb_page(vma)) 1893 foll_flags |= FOLL_GET; 1894 1895 /* FOLL_DUMP to ignore special (like zero) pages */ 1896 page = follow_page(vma, addr, foll_flags); 1897 1898 err = PTR_ERR(page); 1899 if (IS_ERR(page)) 1900 goto set_status; 1901 1902 err = -ENOENT; 1903 if (!page) 1904 goto set_status; 1905 1906 if (!is_zone_device_page(page)) 1907 err = page_to_nid(page); 1908 1909 if (foll_flags & FOLL_GET) 1910 put_page(page); 1911 set_status: 1912 *status = err; 1913 1914 pages++; 1915 status++; 1916 } 1917 1918 mmap_read_unlock(mm); 1919 } 1920 1921 static int get_compat_pages_array(const void __user *chunk_pages[], 1922 const void __user * __user *pages, 1923 unsigned long chunk_nr) 1924 { 1925 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 1926 compat_uptr_t p; 1927 int i; 1928 1929 for (i = 0; i < chunk_nr; i++) { 1930 if (get_user(p, pages32 + i)) 1931 return -EFAULT; 1932 chunk_pages[i] = compat_ptr(p); 1933 } 1934 1935 return 0; 1936 } 1937 1938 /* 1939 * Determine the nodes of a user array of pages and store it in 1940 * a user array of status. 1941 */ 1942 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1943 const void __user * __user *pages, 1944 int __user *status) 1945 { 1946 #define DO_PAGES_STAT_CHUNK_NR 16UL 1947 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1948 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1949 1950 while (nr_pages) { 1951 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 1952 1953 if (in_compat_syscall()) { 1954 if (get_compat_pages_array(chunk_pages, pages, 1955 chunk_nr)) 1956 break; 1957 } else { 1958 if (copy_from_user(chunk_pages, pages, 1959 chunk_nr * sizeof(*chunk_pages))) 1960 break; 1961 } 1962 1963 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1964 1965 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1966 break; 1967 1968 pages += chunk_nr; 1969 status += chunk_nr; 1970 nr_pages -= chunk_nr; 1971 } 1972 return nr_pages ? -EFAULT : 0; 1973 } 1974 1975 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1976 { 1977 struct task_struct *task; 1978 struct mm_struct *mm; 1979 1980 /* 1981 * There is no need to check if current process has the right to modify 1982 * the specified process when they are same. 1983 */ 1984 if (!pid) { 1985 mmget(current->mm); 1986 *mem_nodes = cpuset_mems_allowed(current); 1987 return current->mm; 1988 } 1989 1990 /* Find the mm_struct */ 1991 rcu_read_lock(); 1992 task = find_task_by_vpid(pid); 1993 if (!task) { 1994 rcu_read_unlock(); 1995 return ERR_PTR(-ESRCH); 1996 } 1997 get_task_struct(task); 1998 1999 /* 2000 * Check if this process has the right to modify the specified 2001 * process. Use the regular "ptrace_may_access()" checks. 2002 */ 2003 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2004 rcu_read_unlock(); 2005 mm = ERR_PTR(-EPERM); 2006 goto out; 2007 } 2008 rcu_read_unlock(); 2009 2010 mm = ERR_PTR(security_task_movememory(task)); 2011 if (IS_ERR(mm)) 2012 goto out; 2013 *mem_nodes = cpuset_mems_allowed(task); 2014 mm = get_task_mm(task); 2015 out: 2016 put_task_struct(task); 2017 if (!mm) 2018 mm = ERR_PTR(-EINVAL); 2019 return mm; 2020 } 2021 2022 /* 2023 * Move a list of pages in the address space of the currently executing 2024 * process. 2025 */ 2026 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2027 const void __user * __user *pages, 2028 const int __user *nodes, 2029 int __user *status, int flags) 2030 { 2031 struct mm_struct *mm; 2032 int err; 2033 nodemask_t task_nodes; 2034 2035 /* Check flags */ 2036 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2037 return -EINVAL; 2038 2039 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2040 return -EPERM; 2041 2042 mm = find_mm_struct(pid, &task_nodes); 2043 if (IS_ERR(mm)) 2044 return PTR_ERR(mm); 2045 2046 if (nodes) 2047 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2048 nodes, status, flags); 2049 else 2050 err = do_pages_stat(mm, nr_pages, pages, status); 2051 2052 mmput(mm); 2053 return err; 2054 } 2055 2056 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2057 const void __user * __user *, pages, 2058 const int __user *, nodes, 2059 int __user *, status, int, flags) 2060 { 2061 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2062 } 2063 2064 #ifdef CONFIG_NUMA_BALANCING 2065 /* 2066 * Returns true if this is a safe migration target node for misplaced NUMA 2067 * pages. Currently it only checks the watermarks which is crude. 2068 */ 2069 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2070 unsigned long nr_migrate_pages) 2071 { 2072 int z; 2073 2074 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2075 struct zone *zone = pgdat->node_zones + z; 2076 2077 if (!managed_zone(zone)) 2078 continue; 2079 2080 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2081 if (!zone_watermark_ok(zone, 0, 2082 high_wmark_pages(zone) + 2083 nr_migrate_pages, 2084 ZONE_MOVABLE, 0)) 2085 continue; 2086 return true; 2087 } 2088 return false; 2089 } 2090 2091 static struct page *alloc_misplaced_dst_page(struct page *page, 2092 unsigned long data) 2093 { 2094 int nid = (int) data; 2095 int order = compound_order(page); 2096 gfp_t gfp = __GFP_THISNODE; 2097 struct folio *new; 2098 2099 if (order > 0) 2100 gfp |= GFP_TRANSHUGE_LIGHT; 2101 else { 2102 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2103 __GFP_NOWARN; 2104 gfp &= ~__GFP_RECLAIM; 2105 } 2106 new = __folio_alloc_node(gfp, order, nid); 2107 2108 return &new->page; 2109 } 2110 2111 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2112 { 2113 int nr_pages = thp_nr_pages(page); 2114 int order = compound_order(page); 2115 2116 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page); 2117 2118 /* Do not migrate THP mapped by multiple processes */ 2119 if (PageTransHuge(page) && total_mapcount(page) > 1) 2120 return 0; 2121 2122 /* Avoid migrating to a node that is nearly full */ 2123 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2124 int z; 2125 2126 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2127 return 0; 2128 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2129 if (managed_zone(pgdat->node_zones + z)) 2130 break; 2131 } 2132 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE); 2133 return 0; 2134 } 2135 2136 if (isolate_lru_page(page)) 2137 return 0; 2138 2139 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), 2140 nr_pages); 2141 2142 /* 2143 * Isolating the page has taken another reference, so the 2144 * caller's reference can be safely dropped without the page 2145 * disappearing underneath us during migration. 2146 */ 2147 put_page(page); 2148 return 1; 2149 } 2150 2151 /* 2152 * Attempt to migrate a misplaced page to the specified destination 2153 * node. Caller is expected to have an elevated reference count on 2154 * the page that will be dropped by this function before returning. 2155 */ 2156 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2157 int node) 2158 { 2159 pg_data_t *pgdat = NODE_DATA(node); 2160 int isolated; 2161 int nr_remaining; 2162 unsigned int nr_succeeded; 2163 LIST_HEAD(migratepages); 2164 int nr_pages = thp_nr_pages(page); 2165 2166 /* 2167 * Don't migrate file pages that are mapped in multiple processes 2168 * with execute permissions as they are probably shared libraries. 2169 */ 2170 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2171 (vma->vm_flags & VM_EXEC)) 2172 goto out; 2173 2174 /* 2175 * Also do not migrate dirty pages as not all filesystems can move 2176 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2177 */ 2178 if (page_is_file_lru(page) && PageDirty(page)) 2179 goto out; 2180 2181 isolated = numamigrate_isolate_page(pgdat, page); 2182 if (!isolated) 2183 goto out; 2184 2185 list_add(&page->lru, &migratepages); 2186 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2187 NULL, node, MIGRATE_ASYNC, 2188 MR_NUMA_MISPLACED, &nr_succeeded); 2189 if (nr_remaining) { 2190 if (!list_empty(&migratepages)) { 2191 list_del(&page->lru); 2192 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2193 page_is_file_lru(page), -nr_pages); 2194 putback_lru_page(page); 2195 } 2196 isolated = 0; 2197 } 2198 if (nr_succeeded) { 2199 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2200 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node)) 2201 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2202 nr_succeeded); 2203 } 2204 BUG_ON(!list_empty(&migratepages)); 2205 return isolated; 2206 2207 out: 2208 put_page(page); 2209 return 0; 2210 } 2211 #endif /* CONFIG_NUMA_BALANCING */ 2212 #endif /* CONFIG_NUMA */ 2213