1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/ksm.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/backing-dev.h> 33 #include <linux/compaction.h> 34 #include <linux/syscalls.h> 35 #include <linux/compat.h> 36 #include <linux/hugetlb.h> 37 #include <linux/gfp.h> 38 #include <linux/page_idle.h> 39 #include <linux/page_owner.h> 40 #include <linux/sched/mm.h> 41 #include <linux/ptrace.h> 42 #include <linux/memory.h> 43 #include <linux/sched/sysctl.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/pagewalk.h> 46 47 #include <asm/tlbflush.h> 48 49 #include <trace/events/migrate.h> 50 51 #include "internal.h" 52 #include "swap.h" 53 54 static const struct movable_operations *offline_movable_ops; 55 static const struct movable_operations *zsmalloc_movable_ops; 56 57 int set_movable_ops(const struct movable_operations *ops, enum pagetype type) 58 { 59 /* 60 * We only allow for selected types and don't handle concurrent 61 * registration attempts yet. 62 */ 63 switch (type) { 64 case PGTY_offline: 65 if (offline_movable_ops && ops) 66 return -EBUSY; 67 offline_movable_ops = ops; 68 break; 69 case PGTY_zsmalloc: 70 if (zsmalloc_movable_ops && ops) 71 return -EBUSY; 72 zsmalloc_movable_ops = ops; 73 break; 74 default: 75 return -EINVAL; 76 } 77 return 0; 78 } 79 EXPORT_SYMBOL_GPL(set_movable_ops); 80 81 static const struct movable_operations *page_movable_ops(struct page *page) 82 { 83 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 84 85 /* 86 * If we enable page migration for a page of a certain type by marking 87 * it as movable, the page type must be sticky until the page gets freed 88 * back to the buddy. 89 */ 90 if (PageOffline(page)) 91 /* Only balloon compaction sets PageOffline pages movable. */ 92 return offline_movable_ops; 93 if (PageZsmalloc(page)) 94 return zsmalloc_movable_ops; 95 96 return NULL; 97 } 98 99 /** 100 * isolate_movable_ops_page - isolate a movable_ops page for migration 101 * @page: The page. 102 * @mode: The isolation mode. 103 * 104 * Try to isolate a movable_ops page for migration. Will fail if the page is 105 * not a movable_ops page, if the page is already isolated for migration 106 * or if the page was just was released by its owner. 107 * 108 * Once isolated, the page cannot get freed until it is either putback 109 * or migrated. 110 * 111 * Returns true if isolation succeeded, otherwise false. 112 */ 113 bool isolate_movable_ops_page(struct page *page, isolate_mode_t mode) 114 { 115 /* 116 * TODO: these pages will not be folios in the future. All 117 * folio dependencies will have to be removed. 118 */ 119 struct folio *folio = folio_get_nontail_page(page); 120 const struct movable_operations *mops; 121 122 /* 123 * Avoid burning cycles with pages that are yet under __free_pages(), 124 * or just got freed under us. 125 * 126 * In case we 'win' a race for a movable page being freed under us and 127 * raise its refcount preventing __free_pages() from doing its job 128 * the put_page() at the end of this block will take care of 129 * release this page, thus avoiding a nasty leakage. 130 */ 131 if (!folio) 132 goto out; 133 134 /* 135 * Check for movable_ops pages before taking the page lock because 136 * we use non-atomic bitops on newly allocated page flags so 137 * unconditionally grabbing the lock ruins page's owner side. 138 * 139 * Note that once a page has movable_ops, it will stay that way 140 * until the page was freed. 141 */ 142 if (unlikely(!page_has_movable_ops(page))) 143 goto out_putfolio; 144 145 /* 146 * As movable pages are not isolated from LRU lists, concurrent 147 * compaction threads can race against page migration functions 148 * as well as race against the releasing a page. 149 * 150 * In order to avoid having an already isolated movable page 151 * being (wrongly) re-isolated while it is under migration, 152 * or to avoid attempting to isolate pages being released, 153 * lets be sure we have the page lock 154 * before proceeding with the movable page isolation steps. 155 */ 156 if (unlikely(!folio_trylock(folio))) 157 goto out_putfolio; 158 159 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 160 if (PageMovableOpsIsolated(page)) 161 goto out_no_isolated; 162 163 mops = page_movable_ops(page); 164 if (WARN_ON_ONCE(!mops)) 165 goto out_no_isolated; 166 167 if (!mops->isolate_page(page, mode)) 168 goto out_no_isolated; 169 170 /* Driver shouldn't use the isolated flag */ 171 VM_WARN_ON_ONCE_PAGE(PageMovableOpsIsolated(page), page); 172 SetPageMovableOpsIsolated(page); 173 folio_unlock(folio); 174 175 return true; 176 177 out_no_isolated: 178 folio_unlock(folio); 179 out_putfolio: 180 folio_put(folio); 181 out: 182 return false; 183 } 184 185 /** 186 * putback_movable_ops_page - putback an isolated movable_ops page 187 * @page: The isolated page. 188 * 189 * Putback an isolated movable_ops page. 190 * 191 * After the page was putback, it might get freed instantly. 192 */ 193 static void putback_movable_ops_page(struct page *page) 194 { 195 /* 196 * TODO: these pages will not be folios in the future. All 197 * folio dependencies will have to be removed. 198 */ 199 struct folio *folio = page_folio(page); 200 201 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 202 VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(page), page); 203 folio_lock(folio); 204 page_movable_ops(page)->putback_page(page); 205 ClearPageMovableOpsIsolated(page); 206 folio_unlock(folio); 207 folio_put(folio); 208 } 209 210 /** 211 * migrate_movable_ops_page - migrate an isolated movable_ops page 212 * @dst: The destination page. 213 * @src: The source page. 214 * @mode: The migration mode. 215 * 216 * Migrate an isolated movable_ops page. 217 * 218 * If the src page was already released by its owner, the src page is 219 * un-isolated (putback) and migration succeeds; the migration core will be the 220 * owner of both pages. 221 * 222 * If the src page was not released by its owner and the migration was 223 * successful, the owner of the src page and the dst page are swapped and 224 * the src page is un-isolated. 225 * 226 * If migration fails, the ownership stays unmodified and the src page 227 * remains isolated: migration may be retried later or the page can be putback. 228 * 229 * TODO: migration core will treat both pages as folios and lock them before 230 * this call to unlock them after this call. Further, the folio refcounts on 231 * src and dst are also released by migration core. These pages will not be 232 * folios in the future, so that must be reworked. 233 * 234 * Returns 0 on success, otherwise a negative error code. 235 */ 236 static int migrate_movable_ops_page(struct page *dst, struct page *src, 237 enum migrate_mode mode) 238 { 239 int rc; 240 241 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(src), src); 242 VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(src), src); 243 rc = page_movable_ops(src)->migrate_page(dst, src, mode); 244 if (!rc) 245 ClearPageMovableOpsIsolated(src); 246 return rc; 247 } 248 249 /* 250 * Put previously isolated pages back onto the appropriate lists 251 * from where they were once taken off for compaction/migration. 252 * 253 * This function shall be used whenever the isolated pageset has been 254 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 255 * and folio_isolate_hugetlb(). 256 */ 257 void putback_movable_pages(struct list_head *l) 258 { 259 struct folio *folio; 260 struct folio *folio2; 261 262 list_for_each_entry_safe(folio, folio2, l, lru) { 263 if (unlikely(folio_test_hugetlb(folio))) { 264 folio_putback_hugetlb(folio); 265 continue; 266 } 267 list_del(&folio->lru); 268 if (unlikely(page_has_movable_ops(&folio->page))) { 269 putback_movable_ops_page(&folio->page); 270 } else { 271 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 272 folio_is_file_lru(folio), -folio_nr_pages(folio)); 273 folio_putback_lru(folio); 274 } 275 } 276 } 277 278 /* Must be called with an elevated refcount on the non-hugetlb folio */ 279 bool isolate_folio_to_list(struct folio *folio, struct list_head *list) 280 { 281 if (folio_test_hugetlb(folio)) 282 return folio_isolate_hugetlb(folio, list); 283 284 if (page_has_movable_ops(&folio->page)) { 285 if (!isolate_movable_ops_page(&folio->page, 286 ISOLATE_UNEVICTABLE)) 287 return false; 288 } else { 289 if (!folio_isolate_lru(folio)) 290 return false; 291 node_stat_add_folio(folio, NR_ISOLATED_ANON + 292 folio_is_file_lru(folio)); 293 } 294 list_add(&folio->lru, list); 295 return true; 296 } 297 298 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw, 299 struct folio *folio, 300 unsigned long idx) 301 { 302 struct page *page = folio_page(folio, idx); 303 bool contains_data; 304 pte_t newpte; 305 void *addr; 306 307 if (PageCompound(page)) 308 return false; 309 VM_BUG_ON_PAGE(!PageAnon(page), page); 310 VM_BUG_ON_PAGE(!PageLocked(page), page); 311 VM_BUG_ON_PAGE(pte_present(ptep_get(pvmw->pte)), page); 312 313 if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) || 314 mm_forbids_zeropage(pvmw->vma->vm_mm)) 315 return false; 316 317 /* 318 * The pmd entry mapping the old thp was flushed and the pte mapping 319 * this subpage has been non present. If the subpage is only zero-filled 320 * then map it to the shared zeropage. 321 */ 322 addr = kmap_local_page(page); 323 contains_data = memchr_inv(addr, 0, PAGE_SIZE); 324 kunmap_local(addr); 325 326 if (contains_data) 327 return false; 328 329 newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address), 330 pvmw->vma->vm_page_prot)); 331 set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte); 332 333 dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio)); 334 return true; 335 } 336 337 struct rmap_walk_arg { 338 struct folio *folio; 339 bool map_unused_to_zeropage; 340 }; 341 342 /* 343 * Restore a potential migration pte to a working pte entry 344 */ 345 static bool remove_migration_pte(struct folio *folio, 346 struct vm_area_struct *vma, unsigned long addr, void *arg) 347 { 348 struct rmap_walk_arg *rmap_walk_arg = arg; 349 DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 350 351 while (page_vma_mapped_walk(&pvmw)) { 352 rmap_t rmap_flags = RMAP_NONE; 353 pte_t old_pte; 354 pte_t pte; 355 swp_entry_t entry; 356 struct page *new; 357 unsigned long idx = 0; 358 359 /* pgoff is invalid for ksm pages, but they are never large */ 360 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 361 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 362 new = folio_page(folio, idx); 363 364 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 365 /* PMD-mapped THP migration entry */ 366 if (!pvmw.pte) { 367 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 368 !folio_test_pmd_mappable(folio), folio); 369 remove_migration_pmd(&pvmw, new); 370 continue; 371 } 372 #endif 373 if (rmap_walk_arg->map_unused_to_zeropage && 374 try_to_map_unused_to_zeropage(&pvmw, folio, idx)) 375 continue; 376 377 folio_get(folio); 378 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 379 old_pte = ptep_get(pvmw.pte); 380 381 entry = pte_to_swp_entry(old_pte); 382 if (!is_migration_entry_young(entry)) 383 pte = pte_mkold(pte); 384 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 385 pte = pte_mkdirty(pte); 386 if (pte_swp_soft_dirty(old_pte)) 387 pte = pte_mksoft_dirty(pte); 388 else 389 pte = pte_clear_soft_dirty(pte); 390 391 if (is_writable_migration_entry(entry)) 392 pte = pte_mkwrite(pte, vma); 393 else if (pte_swp_uffd_wp(old_pte)) 394 pte = pte_mkuffd_wp(pte); 395 396 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 397 rmap_flags |= RMAP_EXCLUSIVE; 398 399 if (unlikely(is_device_private_page(new))) { 400 if (pte_write(pte)) 401 entry = make_writable_device_private_entry( 402 page_to_pfn(new)); 403 else 404 entry = make_readable_device_private_entry( 405 page_to_pfn(new)); 406 pte = swp_entry_to_pte(entry); 407 if (pte_swp_soft_dirty(old_pte)) 408 pte = pte_swp_mksoft_dirty(pte); 409 if (pte_swp_uffd_wp(old_pte)) 410 pte = pte_swp_mkuffd_wp(pte); 411 } 412 413 #ifdef CONFIG_HUGETLB_PAGE 414 if (folio_test_hugetlb(folio)) { 415 struct hstate *h = hstate_vma(vma); 416 unsigned int shift = huge_page_shift(h); 417 unsigned long psize = huge_page_size(h); 418 419 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 420 if (folio_test_anon(folio)) 421 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 422 rmap_flags); 423 else 424 hugetlb_add_file_rmap(folio); 425 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 426 psize); 427 } else 428 #endif 429 { 430 if (folio_test_anon(folio)) 431 folio_add_anon_rmap_pte(folio, new, vma, 432 pvmw.address, rmap_flags); 433 else 434 folio_add_file_rmap_pte(folio, new, vma); 435 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 436 } 437 if (READ_ONCE(vma->vm_flags) & VM_LOCKED) 438 mlock_drain_local(); 439 440 trace_remove_migration_pte(pvmw.address, pte_val(pte), 441 compound_order(new)); 442 443 /* No need to invalidate - it was non-present before */ 444 update_mmu_cache(vma, pvmw.address, pvmw.pte); 445 } 446 447 return true; 448 } 449 450 /* 451 * Get rid of all migration entries and replace them by 452 * references to the indicated page. 453 */ 454 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags) 455 { 456 struct rmap_walk_arg rmap_walk_arg = { 457 .folio = src, 458 .map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE, 459 }; 460 461 struct rmap_walk_control rwc = { 462 .rmap_one = remove_migration_pte, 463 .arg = &rmap_walk_arg, 464 }; 465 466 VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src); 467 468 if (flags & RMP_LOCKED) 469 rmap_walk_locked(dst, &rwc); 470 else 471 rmap_walk(dst, &rwc); 472 } 473 474 /* 475 * Something used the pte of a page under migration. We need to 476 * get to the page and wait until migration is finished. 477 * When we return from this function the fault will be retried. 478 */ 479 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 480 unsigned long address) 481 { 482 spinlock_t *ptl; 483 pte_t *ptep; 484 pte_t pte; 485 swp_entry_t entry; 486 487 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 488 if (!ptep) 489 return; 490 491 pte = ptep_get(ptep); 492 pte_unmap(ptep); 493 494 if (!is_swap_pte(pte)) 495 goto out; 496 497 entry = pte_to_swp_entry(pte); 498 if (!is_migration_entry(entry)) 499 goto out; 500 501 migration_entry_wait_on_locked(entry, ptl); 502 return; 503 out: 504 spin_unlock(ptl); 505 } 506 507 #ifdef CONFIG_HUGETLB_PAGE 508 /* 509 * The vma read lock must be held upon entry. Holding that lock prevents either 510 * the pte or the ptl from being freed. 511 * 512 * This function will release the vma lock before returning. 513 */ 514 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 515 { 516 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 517 pte_t pte; 518 519 hugetlb_vma_assert_locked(vma); 520 spin_lock(ptl); 521 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 522 523 if (unlikely(!is_hugetlb_entry_migration(pte))) { 524 spin_unlock(ptl); 525 hugetlb_vma_unlock_read(vma); 526 } else { 527 /* 528 * If migration entry existed, safe to release vma lock 529 * here because the pgtable page won't be freed without the 530 * pgtable lock released. See comment right above pgtable 531 * lock release in migration_entry_wait_on_locked(). 532 */ 533 hugetlb_vma_unlock_read(vma); 534 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 535 } 536 } 537 #endif 538 539 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 540 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 541 { 542 spinlock_t *ptl; 543 544 ptl = pmd_lock(mm, pmd); 545 if (!is_pmd_migration_entry(*pmd)) 546 goto unlock; 547 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 548 return; 549 unlock: 550 spin_unlock(ptl); 551 } 552 #endif 553 554 /* 555 * Replace the folio in the mapping. 556 * 557 * The number of remaining references must be: 558 * 1 for anonymous folios without a mapping 559 * 2 for folios with a mapping 560 * 3 for folios with a mapping and the private flag set. 561 */ 562 static int __folio_migrate_mapping(struct address_space *mapping, 563 struct folio *newfolio, struct folio *folio, int expected_count) 564 { 565 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 566 struct swap_cluster_info *ci = NULL; 567 struct zone *oldzone, *newzone; 568 int dirty; 569 long nr = folio_nr_pages(folio); 570 571 if (!mapping) { 572 /* Take off deferred split queue while frozen and memcg set */ 573 if (folio_test_large(folio) && 574 folio_test_large_rmappable(folio)) { 575 if (!folio_ref_freeze(folio, expected_count)) 576 return -EAGAIN; 577 folio_unqueue_deferred_split(folio); 578 folio_ref_unfreeze(folio, expected_count); 579 } 580 581 /* No turning back from here */ 582 newfolio->index = folio->index; 583 newfolio->mapping = folio->mapping; 584 if (folio_test_anon(folio) && folio_test_large(folio)) 585 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 586 if (folio_test_swapbacked(folio)) 587 __folio_set_swapbacked(newfolio); 588 589 return 0; 590 } 591 592 oldzone = folio_zone(folio); 593 newzone = folio_zone(newfolio); 594 595 if (folio_test_swapcache(folio)) 596 ci = swap_cluster_get_and_lock_irq(folio); 597 else 598 xas_lock_irq(&xas); 599 600 if (!folio_ref_freeze(folio, expected_count)) { 601 if (ci) 602 swap_cluster_unlock_irq(ci); 603 else 604 xas_unlock_irq(&xas); 605 return -EAGAIN; 606 } 607 608 /* Take off deferred split queue while frozen and memcg set */ 609 folio_unqueue_deferred_split(folio); 610 611 /* 612 * Now we know that no one else is looking at the folio: 613 * no turning back from here. 614 */ 615 newfolio->index = folio->index; 616 newfolio->mapping = folio->mapping; 617 if (folio_test_anon(folio) && folio_test_large(folio)) 618 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 619 folio_ref_add(newfolio, nr); /* add cache reference */ 620 if (folio_test_swapbacked(folio)) 621 __folio_set_swapbacked(newfolio); 622 if (folio_test_swapcache(folio)) { 623 folio_set_swapcache(newfolio); 624 newfolio->private = folio_get_private(folio); 625 } 626 627 /* Move dirty while folio refs frozen and newfolio not yet exposed */ 628 dirty = folio_test_dirty(folio); 629 if (dirty) { 630 folio_clear_dirty(folio); 631 folio_set_dirty(newfolio); 632 } 633 634 if (folio_test_swapcache(folio)) 635 __swap_cache_replace_folio(ci, folio, newfolio); 636 else 637 xas_store(&xas, newfolio); 638 639 /* 640 * Drop cache reference from old folio by unfreezing 641 * to one less reference. 642 * We know this isn't the last reference. 643 */ 644 folio_ref_unfreeze(folio, expected_count - nr); 645 646 /* Leave irq disabled to prevent preemption while updating stats */ 647 if (ci) 648 swap_cluster_unlock(ci); 649 else 650 xas_unlock(&xas); 651 652 /* 653 * If moved to a different zone then also account 654 * the folio for that zone. Other VM counters will be 655 * taken care of when we establish references to the 656 * new folio and drop references to the old folio. 657 * 658 * Note that anonymous folios are accounted for 659 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 660 * are mapped to swap space. 661 */ 662 if (newzone != oldzone) { 663 struct lruvec *old_lruvec, *new_lruvec; 664 struct mem_cgroup *memcg; 665 666 memcg = folio_memcg(folio); 667 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 668 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 669 670 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 671 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 672 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 673 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 674 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 675 676 if (folio_test_pmd_mappable(folio)) { 677 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 678 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 679 } 680 } 681 #ifdef CONFIG_SWAP 682 if (folio_test_swapcache(folio)) { 683 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 684 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 685 } 686 #endif 687 if (dirty && mapping_can_writeback(mapping)) { 688 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 689 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 690 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 691 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 692 } 693 } 694 local_irq_enable(); 695 696 return 0; 697 } 698 699 int folio_migrate_mapping(struct address_space *mapping, 700 struct folio *newfolio, struct folio *folio, int extra_count) 701 { 702 int expected_count = folio_expected_ref_count(folio) + extra_count + 1; 703 704 if (folio_ref_count(folio) != expected_count) 705 return -EAGAIN; 706 707 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count); 708 } 709 EXPORT_SYMBOL(folio_migrate_mapping); 710 711 /* 712 * The expected number of remaining references is the same as that 713 * of folio_migrate_mapping(). 714 */ 715 int migrate_huge_page_move_mapping(struct address_space *mapping, 716 struct folio *dst, struct folio *src) 717 { 718 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 719 int rc, expected_count = folio_expected_ref_count(src) + 1; 720 721 if (folio_ref_count(src) != expected_count) 722 return -EAGAIN; 723 724 rc = folio_mc_copy(dst, src); 725 if (unlikely(rc)) 726 return rc; 727 728 xas_lock_irq(&xas); 729 if (!folio_ref_freeze(src, expected_count)) { 730 xas_unlock_irq(&xas); 731 return -EAGAIN; 732 } 733 734 dst->index = src->index; 735 dst->mapping = src->mapping; 736 737 folio_ref_add(dst, folio_nr_pages(dst)); 738 739 xas_store(&xas, dst); 740 741 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 742 743 xas_unlock_irq(&xas); 744 745 return 0; 746 } 747 748 /* 749 * Copy the flags and some other ancillary information 750 */ 751 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 752 { 753 int cpupid; 754 755 if (folio_test_referenced(folio)) 756 folio_set_referenced(newfolio); 757 if (folio_test_uptodate(folio)) 758 folio_mark_uptodate(newfolio); 759 if (folio_test_clear_active(folio)) { 760 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 761 folio_set_active(newfolio); 762 } else if (folio_test_clear_unevictable(folio)) 763 folio_set_unevictable(newfolio); 764 if (folio_test_workingset(folio)) 765 folio_set_workingset(newfolio); 766 if (folio_test_checked(folio)) 767 folio_set_checked(newfolio); 768 /* 769 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 770 * migration entries. We can still have PG_anon_exclusive set on an 771 * effectively unmapped and unreferenced first sub-pages of an 772 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 773 */ 774 if (folio_test_mappedtodisk(folio)) 775 folio_set_mappedtodisk(newfolio); 776 777 /* Move dirty on pages not done by folio_migrate_mapping() */ 778 if (folio_test_dirty(folio)) 779 folio_set_dirty(newfolio); 780 781 if (folio_test_young(folio)) 782 folio_set_young(newfolio); 783 if (folio_test_idle(folio)) 784 folio_set_idle(newfolio); 785 786 folio_migrate_refs(newfolio, folio); 787 /* 788 * Copy NUMA information to the new page, to prevent over-eager 789 * future migrations of this same page. 790 */ 791 cpupid = folio_xchg_last_cpupid(folio, -1); 792 /* 793 * For memory tiering mode, when migrate between slow and fast 794 * memory node, reset cpupid, because that is used to record 795 * page access time in slow memory node. 796 */ 797 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 798 bool f_toptier = node_is_toptier(folio_nid(folio)); 799 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 800 801 if (f_toptier != t_toptier) 802 cpupid = -1; 803 } 804 folio_xchg_last_cpupid(newfolio, cpupid); 805 806 folio_migrate_ksm(newfolio, folio); 807 /* 808 * Please do not reorder this without considering how mm/ksm.c's 809 * ksm_get_folio() depends upon ksm_migrate_page() and the 810 * swapcache flag. 811 */ 812 if (folio_test_swapcache(folio)) 813 folio_clear_swapcache(folio); 814 folio_clear_private(folio); 815 816 /* page->private contains hugetlb specific flags */ 817 if (!folio_test_hugetlb(folio)) 818 folio->private = NULL; 819 820 /* 821 * If any waiters have accumulated on the new page then 822 * wake them up. 823 */ 824 if (folio_test_writeback(newfolio)) 825 folio_end_writeback(newfolio); 826 827 /* 828 * PG_readahead shares the same bit with PG_reclaim. The above 829 * end_page_writeback() may clear PG_readahead mistakenly, so set the 830 * bit after that. 831 */ 832 if (folio_test_readahead(folio)) 833 folio_set_readahead(newfolio); 834 835 folio_copy_owner(newfolio, folio); 836 pgalloc_tag_swap(newfolio, folio); 837 838 mem_cgroup_migrate(folio, newfolio); 839 } 840 EXPORT_SYMBOL(folio_migrate_flags); 841 842 /************************************************************ 843 * Migration functions 844 ***********************************************************/ 845 846 static int __migrate_folio(struct address_space *mapping, struct folio *dst, 847 struct folio *src, void *src_private, 848 enum migrate_mode mode) 849 { 850 int rc, expected_count = folio_expected_ref_count(src) + 1; 851 852 /* Check whether src does not have extra refs before we do more work */ 853 if (folio_ref_count(src) != expected_count) 854 return -EAGAIN; 855 856 rc = folio_mc_copy(dst, src); 857 if (unlikely(rc)) 858 return rc; 859 860 rc = __folio_migrate_mapping(mapping, dst, src, expected_count); 861 if (rc) 862 return rc; 863 864 if (src_private) 865 folio_attach_private(dst, folio_detach_private(src)); 866 867 folio_migrate_flags(dst, src); 868 return 0; 869 } 870 871 /** 872 * migrate_folio() - Simple folio migration. 873 * @mapping: The address_space containing the folio. 874 * @dst: The folio to migrate the data to. 875 * @src: The folio containing the current data. 876 * @mode: How to migrate the page. 877 * 878 * Common logic to directly migrate a single LRU folio suitable for 879 * folios that do not have private data. 880 * 881 * Folios are locked upon entry and exit. 882 */ 883 int migrate_folio(struct address_space *mapping, struct folio *dst, 884 struct folio *src, enum migrate_mode mode) 885 { 886 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 887 return __migrate_folio(mapping, dst, src, NULL, mode); 888 } 889 EXPORT_SYMBOL(migrate_folio); 890 891 #ifdef CONFIG_BUFFER_HEAD 892 /* Returns true if all buffers are successfully locked */ 893 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 894 enum migrate_mode mode) 895 { 896 struct buffer_head *bh = head; 897 struct buffer_head *failed_bh; 898 899 do { 900 if (!trylock_buffer(bh)) { 901 if (mode == MIGRATE_ASYNC) 902 goto unlock; 903 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 904 goto unlock; 905 lock_buffer(bh); 906 } 907 908 bh = bh->b_this_page; 909 } while (bh != head); 910 911 return true; 912 913 unlock: 914 /* We failed to lock the buffer and cannot stall. */ 915 failed_bh = bh; 916 bh = head; 917 while (bh != failed_bh) { 918 unlock_buffer(bh); 919 bh = bh->b_this_page; 920 } 921 922 return false; 923 } 924 925 static int __buffer_migrate_folio(struct address_space *mapping, 926 struct folio *dst, struct folio *src, enum migrate_mode mode, 927 bool check_refs) 928 { 929 struct buffer_head *bh, *head; 930 int rc; 931 int expected_count; 932 933 head = folio_buffers(src); 934 if (!head) 935 return migrate_folio(mapping, dst, src, mode); 936 937 /* Check whether page does not have extra refs before we do more work */ 938 expected_count = folio_expected_ref_count(src) + 1; 939 if (folio_ref_count(src) != expected_count) 940 return -EAGAIN; 941 942 if (!buffer_migrate_lock_buffers(head, mode)) 943 return -EAGAIN; 944 945 if (check_refs) { 946 bool busy, migrating; 947 bool invalidated = false; 948 949 migrating = test_and_set_bit_lock(BH_Migrate, &head->b_state); 950 VM_WARN_ON_ONCE(migrating); 951 recheck_buffers: 952 busy = false; 953 spin_lock(&mapping->i_private_lock); 954 bh = head; 955 do { 956 if (atomic_read(&bh->b_count)) { 957 busy = true; 958 break; 959 } 960 bh = bh->b_this_page; 961 } while (bh != head); 962 spin_unlock(&mapping->i_private_lock); 963 if (busy) { 964 if (invalidated) { 965 rc = -EAGAIN; 966 goto unlock_buffers; 967 } 968 invalidate_bh_lrus(); 969 invalidated = true; 970 goto recheck_buffers; 971 } 972 } 973 974 rc = filemap_migrate_folio(mapping, dst, src, mode); 975 if (rc) 976 goto unlock_buffers; 977 978 bh = head; 979 do { 980 folio_set_bh(bh, dst, bh_offset(bh)); 981 bh = bh->b_this_page; 982 } while (bh != head); 983 984 unlock_buffers: 985 if (check_refs) 986 clear_bit_unlock(BH_Migrate, &head->b_state); 987 bh = head; 988 do { 989 unlock_buffer(bh); 990 bh = bh->b_this_page; 991 } while (bh != head); 992 993 return rc; 994 } 995 996 /** 997 * buffer_migrate_folio() - Migration function for folios with buffers. 998 * @mapping: The address space containing @src. 999 * @dst: The folio to migrate to. 1000 * @src: The folio to migrate from. 1001 * @mode: How to migrate the folio. 1002 * 1003 * This function can only be used if the underlying filesystem guarantees 1004 * that no other references to @src exist. For example attached buffer 1005 * heads are accessed only under the folio lock. If your filesystem cannot 1006 * provide this guarantee, buffer_migrate_folio_norefs() may be more 1007 * appropriate. 1008 * 1009 * Return: 0 on success or a negative errno on failure. 1010 */ 1011 int buffer_migrate_folio(struct address_space *mapping, 1012 struct folio *dst, struct folio *src, enum migrate_mode mode) 1013 { 1014 return __buffer_migrate_folio(mapping, dst, src, mode, false); 1015 } 1016 EXPORT_SYMBOL(buffer_migrate_folio); 1017 1018 /** 1019 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 1020 * @mapping: The address space containing @src. 1021 * @dst: The folio to migrate to. 1022 * @src: The folio to migrate from. 1023 * @mode: How to migrate the folio. 1024 * 1025 * Like buffer_migrate_folio() except that this variant is more careful 1026 * and checks that there are also no buffer head references. This function 1027 * is the right one for mappings where buffer heads are directly looked 1028 * up and referenced (such as block device mappings). 1029 * 1030 * Return: 0 on success or a negative errno on failure. 1031 */ 1032 int buffer_migrate_folio_norefs(struct address_space *mapping, 1033 struct folio *dst, struct folio *src, enum migrate_mode mode) 1034 { 1035 return __buffer_migrate_folio(mapping, dst, src, mode, true); 1036 } 1037 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 1038 #endif /* CONFIG_BUFFER_HEAD */ 1039 1040 int filemap_migrate_folio(struct address_space *mapping, 1041 struct folio *dst, struct folio *src, enum migrate_mode mode) 1042 { 1043 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode); 1044 } 1045 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 1046 1047 /* 1048 * Default handling if a filesystem does not provide a migration function. 1049 */ 1050 static int fallback_migrate_folio(struct address_space *mapping, 1051 struct folio *dst, struct folio *src, enum migrate_mode mode) 1052 { 1053 WARN_ONCE(mapping->a_ops->writepages, 1054 "%ps does not implement migrate_folio\n", 1055 mapping->a_ops); 1056 if (folio_test_dirty(src)) 1057 return -EBUSY; 1058 1059 /* 1060 * Filesystem may have private data at folio->private that we 1061 * can't migrate automatically. 1062 */ 1063 if (!filemap_release_folio(src, GFP_KERNEL)) 1064 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 1065 1066 return migrate_folio(mapping, dst, src, mode); 1067 } 1068 1069 /* 1070 * Move a src folio to a newly allocated dst folio. 1071 * 1072 * The src and dst folios are locked and the src folios was unmapped from 1073 * the page tables. 1074 * 1075 * On success, the src folio was replaced by the dst folio. 1076 * 1077 * Return value: 1078 * < 0 - error code 1079 * 0 - success 1080 */ 1081 static int move_to_new_folio(struct folio *dst, struct folio *src, 1082 enum migrate_mode mode) 1083 { 1084 struct address_space *mapping = folio_mapping(src); 1085 int rc = -EAGAIN; 1086 1087 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 1088 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 1089 1090 if (!mapping) 1091 rc = migrate_folio(mapping, dst, src, mode); 1092 else if (mapping_inaccessible(mapping)) 1093 rc = -EOPNOTSUPP; 1094 else if (mapping->a_ops->migrate_folio) 1095 /* 1096 * Most folios have a mapping and most filesystems 1097 * provide a migrate_folio callback. Anonymous folios 1098 * are part of swap space which also has its own 1099 * migrate_folio callback. This is the most common path 1100 * for page migration. 1101 */ 1102 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 1103 mode); 1104 else 1105 rc = fallback_migrate_folio(mapping, dst, src, mode); 1106 1107 if (!rc) { 1108 /* 1109 * For pagecache folios, src->mapping must be cleared before src 1110 * is freed. Anonymous folios must stay anonymous until freed. 1111 */ 1112 if (!folio_test_anon(src)) 1113 src->mapping = NULL; 1114 1115 if (likely(!folio_is_zone_device(dst))) 1116 flush_dcache_folio(dst); 1117 } 1118 return rc; 1119 } 1120 1121 /* 1122 * To record some information during migration, we use unused private 1123 * field of struct folio of the newly allocated destination folio. 1124 * This is safe because nobody is using it except us. 1125 */ 1126 enum { 1127 PAGE_WAS_MAPPED = BIT(0), 1128 PAGE_WAS_MLOCKED = BIT(1), 1129 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1130 }; 1131 1132 static void __migrate_folio_record(struct folio *dst, 1133 int old_page_state, 1134 struct anon_vma *anon_vma) 1135 { 1136 dst->private = (void *)anon_vma + old_page_state; 1137 } 1138 1139 static void __migrate_folio_extract(struct folio *dst, 1140 int *old_page_state, 1141 struct anon_vma **anon_vmap) 1142 { 1143 unsigned long private = (unsigned long)dst->private; 1144 1145 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1146 *old_page_state = private & PAGE_OLD_STATES; 1147 dst->private = NULL; 1148 } 1149 1150 /* Restore the source folio to the original state upon failure */ 1151 static void migrate_folio_undo_src(struct folio *src, 1152 int page_was_mapped, 1153 struct anon_vma *anon_vma, 1154 bool locked, 1155 struct list_head *ret) 1156 { 1157 if (page_was_mapped) 1158 remove_migration_ptes(src, src, 0); 1159 /* Drop an anon_vma reference if we took one */ 1160 if (anon_vma) 1161 put_anon_vma(anon_vma); 1162 if (locked) 1163 folio_unlock(src); 1164 if (ret) 1165 list_move_tail(&src->lru, ret); 1166 } 1167 1168 /* Restore the destination folio to the original state upon failure */ 1169 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1170 free_folio_t put_new_folio, unsigned long private) 1171 { 1172 if (locked) 1173 folio_unlock(dst); 1174 if (put_new_folio) 1175 put_new_folio(dst, private); 1176 else 1177 folio_put(dst); 1178 } 1179 1180 /* Cleanup src folio upon migration success */ 1181 static void migrate_folio_done(struct folio *src, 1182 enum migrate_reason reason) 1183 { 1184 if (likely(!page_has_movable_ops(&src->page)) && reason != MR_DEMOTION) 1185 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1186 folio_is_file_lru(src), -folio_nr_pages(src)); 1187 1188 if (reason != MR_MEMORY_FAILURE) 1189 /* We release the page in page_handle_poison. */ 1190 folio_put(src); 1191 } 1192 1193 /* Obtain the lock on page, remove all ptes. */ 1194 static int migrate_folio_unmap(new_folio_t get_new_folio, 1195 free_folio_t put_new_folio, unsigned long private, 1196 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1197 struct list_head *ret) 1198 { 1199 struct folio *dst; 1200 int rc = -EAGAIN; 1201 int old_page_state = 0; 1202 struct anon_vma *anon_vma = NULL; 1203 bool locked = false; 1204 bool dst_locked = false; 1205 1206 dst = get_new_folio(src, private); 1207 if (!dst) 1208 return -ENOMEM; 1209 *dstp = dst; 1210 1211 dst->private = NULL; 1212 1213 if (!folio_trylock(src)) { 1214 if (mode == MIGRATE_ASYNC) 1215 goto out; 1216 1217 /* 1218 * It's not safe for direct compaction to call lock_page. 1219 * For example, during page readahead pages are added locked 1220 * to the LRU. Later, when the IO completes the pages are 1221 * marked uptodate and unlocked. However, the queueing 1222 * could be merging multiple pages for one bio (e.g. 1223 * mpage_readahead). If an allocation happens for the 1224 * second or third page, the process can end up locking 1225 * the same page twice and deadlocking. Rather than 1226 * trying to be clever about what pages can be locked, 1227 * avoid the use of lock_page for direct compaction 1228 * altogether. 1229 */ 1230 if (current->flags & PF_MEMALLOC) 1231 goto out; 1232 1233 /* 1234 * In "light" mode, we can wait for transient locks (eg 1235 * inserting a page into the page table), but it's not 1236 * worth waiting for I/O. 1237 */ 1238 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1239 goto out; 1240 1241 folio_lock(src); 1242 } 1243 locked = true; 1244 if (folio_test_mlocked(src)) 1245 old_page_state |= PAGE_WAS_MLOCKED; 1246 1247 if (folio_test_writeback(src)) { 1248 /* 1249 * Only in the case of a full synchronous migration is it 1250 * necessary to wait for PageWriteback. In the async case, 1251 * the retry loop is too short and in the sync-light case, 1252 * the overhead of stalling is too much 1253 */ 1254 switch (mode) { 1255 case MIGRATE_SYNC: 1256 break; 1257 default: 1258 rc = -EBUSY; 1259 goto out; 1260 } 1261 folio_wait_writeback(src); 1262 } 1263 1264 /* 1265 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1266 * we cannot notice that anon_vma is freed while we migrate a page. 1267 * This get_anon_vma() delays freeing anon_vma pointer until the end 1268 * of migration. File cache pages are no problem because of page_lock() 1269 * File Caches may use write_page() or lock_page() in migration, then, 1270 * just care Anon page here. 1271 * 1272 * Only folio_get_anon_vma() understands the subtleties of 1273 * getting a hold on an anon_vma from outside one of its mms. 1274 * But if we cannot get anon_vma, then we won't need it anyway, 1275 * because that implies that the anon page is no longer mapped 1276 * (and cannot be remapped so long as we hold the page lock). 1277 */ 1278 if (folio_test_anon(src) && !folio_test_ksm(src)) 1279 anon_vma = folio_get_anon_vma(src); 1280 1281 /* 1282 * Block others from accessing the new page when we get around to 1283 * establishing additional references. We are usually the only one 1284 * holding a reference to dst at this point. We used to have a BUG 1285 * here if folio_trylock(dst) fails, but would like to allow for 1286 * cases where there might be a race with the previous use of dst. 1287 * This is much like races on refcount of oldpage: just don't BUG(). 1288 */ 1289 if (unlikely(!folio_trylock(dst))) 1290 goto out; 1291 dst_locked = true; 1292 1293 if (unlikely(page_has_movable_ops(&src->page))) { 1294 __migrate_folio_record(dst, old_page_state, anon_vma); 1295 return 0; 1296 } 1297 1298 /* 1299 * Corner case handling: 1300 * 1. When a new swap-cache page is read into, it is added to the LRU 1301 * and treated as swapcache but it has no rmap yet. 1302 * Calling try_to_unmap() against a src->mapping==NULL page will 1303 * trigger a BUG. So handle it here. 1304 * 2. An orphaned page (see truncate_cleanup_page) might have 1305 * fs-private metadata. The page can be picked up due to memory 1306 * offlining. Everywhere else except page reclaim, the page is 1307 * invisible to the vm, so the page can not be migrated. So try to 1308 * free the metadata, so the page can be freed. 1309 */ 1310 if (!src->mapping) { 1311 if (folio_test_private(src)) { 1312 try_to_free_buffers(src); 1313 goto out; 1314 } 1315 } else if (folio_mapped(src)) { 1316 /* Establish migration ptes */ 1317 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1318 !folio_test_ksm(src) && !anon_vma, src); 1319 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1320 old_page_state |= PAGE_WAS_MAPPED; 1321 } 1322 1323 if (!folio_mapped(src)) { 1324 __migrate_folio_record(dst, old_page_state, anon_vma); 1325 return 0; 1326 } 1327 1328 out: 1329 /* 1330 * A folio that has not been unmapped will be restored to 1331 * right list unless we want to retry. 1332 */ 1333 if (rc == -EAGAIN) 1334 ret = NULL; 1335 1336 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1337 anon_vma, locked, ret); 1338 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1339 1340 return rc; 1341 } 1342 1343 /* Migrate the folio to the newly allocated folio in dst. */ 1344 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1345 struct folio *src, struct folio *dst, 1346 enum migrate_mode mode, enum migrate_reason reason, 1347 struct list_head *ret) 1348 { 1349 int rc; 1350 int old_page_state = 0; 1351 struct anon_vma *anon_vma = NULL; 1352 struct list_head *prev; 1353 1354 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1355 prev = dst->lru.prev; 1356 list_del(&dst->lru); 1357 1358 if (unlikely(page_has_movable_ops(&src->page))) { 1359 rc = migrate_movable_ops_page(&dst->page, &src->page, mode); 1360 if (rc) 1361 goto out; 1362 goto out_unlock_both; 1363 } 1364 1365 rc = move_to_new_folio(dst, src, mode); 1366 if (rc) 1367 goto out; 1368 1369 /* 1370 * When successful, push dst to LRU immediately: so that if it 1371 * turns out to be an mlocked page, remove_migration_ptes() will 1372 * automatically build up the correct dst->mlock_count for it. 1373 * 1374 * We would like to do something similar for the old page, when 1375 * unsuccessful, and other cases when a page has been temporarily 1376 * isolated from the unevictable LRU: but this case is the easiest. 1377 */ 1378 folio_add_lru(dst); 1379 if (old_page_state & PAGE_WAS_MLOCKED) 1380 lru_add_drain(); 1381 1382 if (old_page_state & PAGE_WAS_MAPPED) 1383 remove_migration_ptes(src, dst, 0); 1384 1385 out_unlock_both: 1386 folio_unlock(dst); 1387 folio_set_owner_migrate_reason(dst, reason); 1388 /* 1389 * If migration is successful, decrease refcount of dst, 1390 * which will not free the page because new page owner increased 1391 * refcounter. 1392 */ 1393 folio_put(dst); 1394 1395 /* 1396 * A folio that has been migrated has all references removed 1397 * and will be freed. 1398 */ 1399 list_del(&src->lru); 1400 /* Drop an anon_vma reference if we took one */ 1401 if (anon_vma) 1402 put_anon_vma(anon_vma); 1403 folio_unlock(src); 1404 migrate_folio_done(src, reason); 1405 1406 return rc; 1407 out: 1408 /* 1409 * A folio that has not been migrated will be restored to 1410 * right list unless we want to retry. 1411 */ 1412 if (rc == -EAGAIN) { 1413 list_add(&dst->lru, prev); 1414 __migrate_folio_record(dst, old_page_state, anon_vma); 1415 return rc; 1416 } 1417 1418 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1419 anon_vma, true, ret); 1420 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1421 1422 return rc; 1423 } 1424 1425 /* 1426 * Counterpart of unmap_and_move_page() for hugepage migration. 1427 * 1428 * This function doesn't wait the completion of hugepage I/O 1429 * because there is no race between I/O and migration for hugepage. 1430 * Note that currently hugepage I/O occurs only in direct I/O 1431 * where no lock is held and PG_writeback is irrelevant, 1432 * and writeback status of all subpages are counted in the reference 1433 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1434 * under direct I/O, the reference of the head page is 512 and a bit more.) 1435 * This means that when we try to migrate hugepage whose subpages are 1436 * doing direct I/O, some references remain after try_to_unmap() and 1437 * hugepage migration fails without data corruption. 1438 * 1439 * There is also no race when direct I/O is issued on the page under migration, 1440 * because then pte is replaced with migration swap entry and direct I/O code 1441 * will wait in the page fault for migration to complete. 1442 */ 1443 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1444 free_folio_t put_new_folio, unsigned long private, 1445 struct folio *src, int force, enum migrate_mode mode, 1446 int reason, struct list_head *ret) 1447 { 1448 struct folio *dst; 1449 int rc = -EAGAIN; 1450 int page_was_mapped = 0; 1451 struct anon_vma *anon_vma = NULL; 1452 struct address_space *mapping = NULL; 1453 1454 if (folio_ref_count(src) == 1) { 1455 /* page was freed from under us. So we are done. */ 1456 folio_putback_hugetlb(src); 1457 return 0; 1458 } 1459 1460 dst = get_new_folio(src, private); 1461 if (!dst) 1462 return -ENOMEM; 1463 1464 if (!folio_trylock(src)) { 1465 if (!force) 1466 goto out; 1467 switch (mode) { 1468 case MIGRATE_SYNC: 1469 break; 1470 default: 1471 goto out; 1472 } 1473 folio_lock(src); 1474 } 1475 1476 /* 1477 * Check for pages which are in the process of being freed. Without 1478 * folio_mapping() set, hugetlbfs specific move page routine will not 1479 * be called and we could leak usage counts for subpools. 1480 */ 1481 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1482 rc = -EBUSY; 1483 goto out_unlock; 1484 } 1485 1486 if (folio_test_anon(src)) 1487 anon_vma = folio_get_anon_vma(src); 1488 1489 if (unlikely(!folio_trylock(dst))) 1490 goto put_anon; 1491 1492 if (folio_mapped(src)) { 1493 enum ttu_flags ttu = 0; 1494 1495 if (!folio_test_anon(src)) { 1496 /* 1497 * In shared mappings, try_to_unmap could potentially 1498 * call huge_pmd_unshare. Because of this, take 1499 * semaphore in write mode here and set TTU_RMAP_LOCKED 1500 * to let lower levels know we have taken the lock. 1501 */ 1502 mapping = hugetlb_folio_mapping_lock_write(src); 1503 if (unlikely(!mapping)) 1504 goto unlock_put_anon; 1505 1506 ttu = TTU_RMAP_LOCKED; 1507 } 1508 1509 try_to_migrate(src, ttu); 1510 page_was_mapped = 1; 1511 1512 if (ttu & TTU_RMAP_LOCKED) 1513 i_mmap_unlock_write(mapping); 1514 } 1515 1516 if (!folio_mapped(src)) 1517 rc = move_to_new_folio(dst, src, mode); 1518 1519 if (page_was_mapped) 1520 remove_migration_ptes(src, !rc ? dst : src, 0); 1521 1522 unlock_put_anon: 1523 folio_unlock(dst); 1524 1525 put_anon: 1526 if (anon_vma) 1527 put_anon_vma(anon_vma); 1528 1529 if (!rc) { 1530 move_hugetlb_state(src, dst, reason); 1531 put_new_folio = NULL; 1532 } 1533 1534 out_unlock: 1535 folio_unlock(src); 1536 out: 1537 if (!rc) 1538 folio_putback_hugetlb(src); 1539 else if (rc != -EAGAIN) 1540 list_move_tail(&src->lru, ret); 1541 1542 /* 1543 * If migration was not successful and there's a freeing callback, 1544 * return the folio to that special allocator. Otherwise, simply drop 1545 * our additional reference. 1546 */ 1547 if (put_new_folio) 1548 put_new_folio(dst, private); 1549 else 1550 folio_put(dst); 1551 1552 return rc; 1553 } 1554 1555 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios, 1556 enum migrate_mode mode) 1557 { 1558 int rc; 1559 1560 if (mode == MIGRATE_ASYNC) { 1561 if (!folio_trylock(folio)) 1562 return -EAGAIN; 1563 } else { 1564 folio_lock(folio); 1565 } 1566 rc = split_folio_to_list(folio, split_folios); 1567 folio_unlock(folio); 1568 if (!rc) 1569 list_move_tail(&folio->lru, split_folios); 1570 1571 return rc; 1572 } 1573 1574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1575 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1576 #else 1577 #define NR_MAX_BATCHED_MIGRATION 512 1578 #endif 1579 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1580 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1581 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1582 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1583 1584 struct migrate_pages_stats { 1585 int nr_succeeded; /* Normal and large folios migrated successfully, in 1586 units of base pages */ 1587 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1588 units of base pages. Untried folios aren't counted */ 1589 int nr_thp_succeeded; /* THP migrated successfully */ 1590 int nr_thp_failed; /* THP failed to be migrated */ 1591 int nr_thp_split; /* THP split before migrating */ 1592 int nr_split; /* Large folio (include THP) split before migrating */ 1593 }; 1594 1595 /* 1596 * Returns the number of hugetlb folios that were not migrated, or an error code 1597 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1598 * any more because the list has become empty or no retryable hugetlb folios 1599 * exist any more. It is caller's responsibility to call putback_movable_pages() 1600 * only if ret != 0. 1601 */ 1602 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1603 free_folio_t put_new_folio, unsigned long private, 1604 enum migrate_mode mode, int reason, 1605 struct migrate_pages_stats *stats, 1606 struct list_head *ret_folios) 1607 { 1608 int retry = 1; 1609 int nr_failed = 0; 1610 int nr_retry_pages = 0; 1611 int pass = 0; 1612 struct folio *folio, *folio2; 1613 int rc, nr_pages; 1614 1615 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1616 retry = 0; 1617 nr_retry_pages = 0; 1618 1619 list_for_each_entry_safe(folio, folio2, from, lru) { 1620 if (!folio_test_hugetlb(folio)) 1621 continue; 1622 1623 nr_pages = folio_nr_pages(folio); 1624 1625 cond_resched(); 1626 1627 /* 1628 * Migratability of hugepages depends on architectures and 1629 * their size. This check is necessary because some callers 1630 * of hugepage migration like soft offline and memory 1631 * hotremove don't walk through page tables or check whether 1632 * the hugepage is pmd-based or not before kicking migration. 1633 */ 1634 if (!hugepage_migration_supported(folio_hstate(folio))) { 1635 nr_failed++; 1636 stats->nr_failed_pages += nr_pages; 1637 list_move_tail(&folio->lru, ret_folios); 1638 continue; 1639 } 1640 1641 rc = unmap_and_move_huge_page(get_new_folio, 1642 put_new_folio, private, 1643 folio, pass > 2, mode, 1644 reason, ret_folios); 1645 /* 1646 * The rules are: 1647 * 0: hugetlb folio will be put back 1648 * -EAGAIN: stay on the from list 1649 * -ENOMEM: stay on the from list 1650 * Other errno: put on ret_folios list 1651 */ 1652 switch(rc) { 1653 case -ENOMEM: 1654 /* 1655 * When memory is low, don't bother to try to migrate 1656 * other folios, just exit. 1657 */ 1658 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1659 return -ENOMEM; 1660 case -EAGAIN: 1661 retry++; 1662 nr_retry_pages += nr_pages; 1663 break; 1664 case 0: 1665 stats->nr_succeeded += nr_pages; 1666 break; 1667 default: 1668 /* 1669 * Permanent failure (-EBUSY, etc.): 1670 * unlike -EAGAIN case, the failed folio is 1671 * removed from migration folio list and not 1672 * retried in the next outer loop. 1673 */ 1674 nr_failed++; 1675 stats->nr_failed_pages += nr_pages; 1676 break; 1677 } 1678 } 1679 } 1680 /* 1681 * nr_failed is number of hugetlb folios failed to be migrated. After 1682 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1683 * folios as failed. 1684 */ 1685 nr_failed += retry; 1686 stats->nr_failed_pages += nr_retry_pages; 1687 1688 return nr_failed; 1689 } 1690 1691 static void migrate_folios_move(struct list_head *src_folios, 1692 struct list_head *dst_folios, 1693 free_folio_t put_new_folio, unsigned long private, 1694 enum migrate_mode mode, int reason, 1695 struct list_head *ret_folios, 1696 struct migrate_pages_stats *stats, 1697 int *retry, int *thp_retry, int *nr_failed, 1698 int *nr_retry_pages) 1699 { 1700 struct folio *folio, *folio2, *dst, *dst2; 1701 bool is_thp; 1702 int nr_pages; 1703 int rc; 1704 1705 dst = list_first_entry(dst_folios, struct folio, lru); 1706 dst2 = list_next_entry(dst, lru); 1707 list_for_each_entry_safe(folio, folio2, src_folios, lru) { 1708 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1709 nr_pages = folio_nr_pages(folio); 1710 1711 cond_resched(); 1712 1713 rc = migrate_folio_move(put_new_folio, private, 1714 folio, dst, mode, 1715 reason, ret_folios); 1716 /* 1717 * The rules are: 1718 * 0: folio will be freed 1719 * -EAGAIN: stay on the unmap_folios list 1720 * Other errno: put on ret_folios list 1721 */ 1722 switch (rc) { 1723 case -EAGAIN: 1724 *retry += 1; 1725 *thp_retry += is_thp; 1726 *nr_retry_pages += nr_pages; 1727 break; 1728 case 0: 1729 stats->nr_succeeded += nr_pages; 1730 stats->nr_thp_succeeded += is_thp; 1731 break; 1732 default: 1733 *nr_failed += 1; 1734 stats->nr_thp_failed += is_thp; 1735 stats->nr_failed_pages += nr_pages; 1736 break; 1737 } 1738 dst = dst2; 1739 dst2 = list_next_entry(dst, lru); 1740 } 1741 } 1742 1743 static void migrate_folios_undo(struct list_head *src_folios, 1744 struct list_head *dst_folios, 1745 free_folio_t put_new_folio, unsigned long private, 1746 struct list_head *ret_folios) 1747 { 1748 struct folio *folio, *folio2, *dst, *dst2; 1749 1750 dst = list_first_entry(dst_folios, struct folio, lru); 1751 dst2 = list_next_entry(dst, lru); 1752 list_for_each_entry_safe(folio, folio2, src_folios, lru) { 1753 int old_page_state = 0; 1754 struct anon_vma *anon_vma = NULL; 1755 1756 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1757 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1758 anon_vma, true, ret_folios); 1759 list_del(&dst->lru); 1760 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1761 dst = dst2; 1762 dst2 = list_next_entry(dst, lru); 1763 } 1764 } 1765 1766 /* 1767 * migrate_pages_batch() first unmaps folios in the from list as many as 1768 * possible, then move the unmapped folios. 1769 * 1770 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1771 * lock or bit when we have locked more than one folio. Which may cause 1772 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1773 * length of the from list must be <= 1. 1774 */ 1775 static int migrate_pages_batch(struct list_head *from, 1776 new_folio_t get_new_folio, free_folio_t put_new_folio, 1777 unsigned long private, enum migrate_mode mode, int reason, 1778 struct list_head *ret_folios, struct list_head *split_folios, 1779 struct migrate_pages_stats *stats, int nr_pass) 1780 { 1781 int retry = 1; 1782 int thp_retry = 1; 1783 int nr_failed = 0; 1784 int nr_retry_pages = 0; 1785 int pass = 0; 1786 bool is_thp = false; 1787 bool is_large = false; 1788 struct folio *folio, *folio2, *dst = NULL; 1789 int rc, rc_saved = 0, nr_pages; 1790 LIST_HEAD(unmap_folios); 1791 LIST_HEAD(dst_folios); 1792 bool nosplit = (reason == MR_NUMA_MISPLACED); 1793 1794 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1795 !list_empty(from) && !list_is_singular(from)); 1796 1797 for (pass = 0; pass < nr_pass && retry; pass++) { 1798 retry = 0; 1799 thp_retry = 0; 1800 nr_retry_pages = 0; 1801 1802 list_for_each_entry_safe(folio, folio2, from, lru) { 1803 is_large = folio_test_large(folio); 1804 is_thp = folio_test_pmd_mappable(folio); 1805 nr_pages = folio_nr_pages(folio); 1806 1807 cond_resched(); 1808 1809 /* 1810 * The rare folio on the deferred split list should 1811 * be split now. It should not count as a failure: 1812 * but increment nr_failed because, without doing so, 1813 * migrate_pages() may report success with (split but 1814 * unmigrated) pages still on its fromlist; whereas it 1815 * always reports success when its fromlist is empty. 1816 * stats->nr_thp_failed should be increased too, 1817 * otherwise stats inconsistency will happen when 1818 * migrate_pages_batch is called via migrate_pages() 1819 * with MIGRATE_SYNC and MIGRATE_ASYNC. 1820 * 1821 * Only check it without removing it from the list. 1822 * Since the folio can be on deferred_split_scan() 1823 * local list and removing it can cause the local list 1824 * corruption. Folio split process below can handle it 1825 * with the help of folio_ref_freeze(). 1826 * 1827 * nr_pages > 2 is needed to avoid checking order-1 1828 * page cache folios. They exist, in contrast to 1829 * non-existent order-1 anonymous folios, and do not 1830 * use _deferred_list. 1831 */ 1832 if (nr_pages > 2 && 1833 !list_empty(&folio->_deferred_list) && 1834 folio_test_partially_mapped(folio)) { 1835 if (!try_split_folio(folio, split_folios, mode)) { 1836 nr_failed++; 1837 stats->nr_thp_failed += is_thp; 1838 stats->nr_thp_split += is_thp; 1839 stats->nr_split++; 1840 continue; 1841 } 1842 } 1843 1844 /* 1845 * Large folio migration might be unsupported or 1846 * the allocation might be failed so we should retry 1847 * on the same folio with the large folio split 1848 * to normal folios. 1849 * 1850 * Split folios are put in split_folios, and 1851 * we will migrate them after the rest of the 1852 * list is processed. 1853 */ 1854 if (!thp_migration_supported() && is_thp) { 1855 nr_failed++; 1856 stats->nr_thp_failed++; 1857 if (!try_split_folio(folio, split_folios, mode)) { 1858 stats->nr_thp_split++; 1859 stats->nr_split++; 1860 continue; 1861 } 1862 stats->nr_failed_pages += nr_pages; 1863 list_move_tail(&folio->lru, ret_folios); 1864 continue; 1865 } 1866 1867 /* 1868 * If we are holding the last folio reference, the folio 1869 * was freed from under us, so just drop our reference. 1870 */ 1871 if (likely(!page_has_movable_ops(&folio->page)) && 1872 folio_ref_count(folio) == 1) { 1873 folio_clear_active(folio); 1874 folio_clear_unevictable(folio); 1875 list_del(&folio->lru); 1876 migrate_folio_done(folio, reason); 1877 stats->nr_succeeded += nr_pages; 1878 stats->nr_thp_succeeded += is_thp; 1879 continue; 1880 } 1881 1882 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1883 private, folio, &dst, mode, ret_folios); 1884 /* 1885 * The rules are: 1886 * 0: folio will be put on unmap_folios list, 1887 * dst folio put on dst_folios list 1888 * -EAGAIN: stay on the from list 1889 * -ENOMEM: stay on the from list 1890 * Other errno: put on ret_folios list 1891 */ 1892 switch(rc) { 1893 case -ENOMEM: 1894 /* 1895 * When memory is low, don't bother to try to migrate 1896 * other folios, move unmapped folios, then exit. 1897 */ 1898 nr_failed++; 1899 stats->nr_thp_failed += is_thp; 1900 /* Large folio NUMA faulting doesn't split to retry. */ 1901 if (is_large && !nosplit) { 1902 int ret = try_split_folio(folio, split_folios, mode); 1903 1904 if (!ret) { 1905 stats->nr_thp_split += is_thp; 1906 stats->nr_split++; 1907 break; 1908 } else if (reason == MR_LONGTERM_PIN && 1909 ret == -EAGAIN) { 1910 /* 1911 * Try again to split large folio to 1912 * mitigate the failure of longterm pinning. 1913 */ 1914 retry++; 1915 thp_retry += is_thp; 1916 nr_retry_pages += nr_pages; 1917 /* Undo duplicated failure counting. */ 1918 nr_failed--; 1919 stats->nr_thp_failed -= is_thp; 1920 break; 1921 } 1922 } 1923 1924 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1925 /* nr_failed isn't updated for not used */ 1926 stats->nr_thp_failed += thp_retry; 1927 rc_saved = rc; 1928 if (list_empty(&unmap_folios)) 1929 goto out; 1930 else 1931 goto move; 1932 case -EAGAIN: 1933 retry++; 1934 thp_retry += is_thp; 1935 nr_retry_pages += nr_pages; 1936 break; 1937 case 0: 1938 list_move_tail(&folio->lru, &unmap_folios); 1939 list_add_tail(&dst->lru, &dst_folios); 1940 break; 1941 default: 1942 /* 1943 * Permanent failure (-EBUSY, etc.): 1944 * unlike -EAGAIN case, the failed folio is 1945 * removed from migration folio list and not 1946 * retried in the next outer loop. 1947 */ 1948 nr_failed++; 1949 stats->nr_thp_failed += is_thp; 1950 stats->nr_failed_pages += nr_pages; 1951 break; 1952 } 1953 } 1954 } 1955 nr_failed += retry; 1956 stats->nr_thp_failed += thp_retry; 1957 stats->nr_failed_pages += nr_retry_pages; 1958 move: 1959 /* Flush TLBs for all unmapped folios */ 1960 try_to_unmap_flush(); 1961 1962 retry = 1; 1963 for (pass = 0; pass < nr_pass && retry; pass++) { 1964 retry = 0; 1965 thp_retry = 0; 1966 nr_retry_pages = 0; 1967 1968 /* Move the unmapped folios */ 1969 migrate_folios_move(&unmap_folios, &dst_folios, 1970 put_new_folio, private, mode, reason, 1971 ret_folios, stats, &retry, &thp_retry, 1972 &nr_failed, &nr_retry_pages); 1973 } 1974 nr_failed += retry; 1975 stats->nr_thp_failed += thp_retry; 1976 stats->nr_failed_pages += nr_retry_pages; 1977 1978 rc = rc_saved ? : nr_failed; 1979 out: 1980 /* Cleanup remaining folios */ 1981 migrate_folios_undo(&unmap_folios, &dst_folios, 1982 put_new_folio, private, ret_folios); 1983 1984 return rc; 1985 } 1986 1987 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1988 free_folio_t put_new_folio, unsigned long private, 1989 enum migrate_mode mode, int reason, 1990 struct list_head *ret_folios, struct list_head *split_folios, 1991 struct migrate_pages_stats *stats) 1992 { 1993 int rc, nr_failed = 0; 1994 LIST_HEAD(folios); 1995 struct migrate_pages_stats astats; 1996 1997 memset(&astats, 0, sizeof(astats)); 1998 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1999 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 2000 reason, &folios, split_folios, &astats, 2001 NR_MAX_MIGRATE_ASYNC_RETRY); 2002 stats->nr_succeeded += astats.nr_succeeded; 2003 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 2004 stats->nr_thp_split += astats.nr_thp_split; 2005 stats->nr_split += astats.nr_split; 2006 if (rc < 0) { 2007 stats->nr_failed_pages += astats.nr_failed_pages; 2008 stats->nr_thp_failed += astats.nr_thp_failed; 2009 list_splice_tail(&folios, ret_folios); 2010 return rc; 2011 } 2012 stats->nr_thp_failed += astats.nr_thp_split; 2013 /* 2014 * Do not count rc, as pages will be retried below. 2015 * Count nr_split only, since it includes nr_thp_split. 2016 */ 2017 nr_failed += astats.nr_split; 2018 /* 2019 * Fall back to migrate all failed folios one by one synchronously. All 2020 * failed folios except split THPs will be retried, so their failure 2021 * isn't counted 2022 */ 2023 list_splice_tail_init(&folios, from); 2024 while (!list_empty(from)) { 2025 list_move(from->next, &folios); 2026 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2027 private, mode, reason, ret_folios, 2028 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 2029 list_splice_tail_init(&folios, ret_folios); 2030 if (rc < 0) 2031 return rc; 2032 nr_failed += rc; 2033 } 2034 2035 return nr_failed; 2036 } 2037 2038 /* 2039 * migrate_pages - migrate the folios specified in a list, to the free folios 2040 * supplied as the target for the page migration 2041 * 2042 * @from: The list of folios to be migrated. 2043 * @get_new_folio: The function used to allocate free folios to be used 2044 * as the target of the folio migration. 2045 * @put_new_folio: The function used to free target folios if migration 2046 * fails, or NULL if no special handling is necessary. 2047 * @private: Private data to be passed on to get_new_folio() 2048 * @mode: The migration mode that specifies the constraints for 2049 * folio migration, if any. 2050 * @reason: The reason for folio migration. 2051 * @ret_succeeded: Set to the number of folios migrated successfully if 2052 * the caller passes a non-NULL pointer. 2053 * 2054 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 2055 * are movable any more because the list has become empty or no retryable folios 2056 * exist any more. It is caller's responsibility to call putback_movable_pages() 2057 * only if ret != 0. 2058 * 2059 * Returns the number of {normal folio, large folio, hugetlb} that were not 2060 * migrated, or an error code. The number of large folio splits will be 2061 * considered as the number of non-migrated large folio, no matter how many 2062 * split folios of the large folio are migrated successfully. 2063 */ 2064 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 2065 free_folio_t put_new_folio, unsigned long private, 2066 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 2067 { 2068 int rc, rc_gather; 2069 int nr_pages; 2070 struct folio *folio, *folio2; 2071 LIST_HEAD(folios); 2072 LIST_HEAD(ret_folios); 2073 LIST_HEAD(split_folios); 2074 struct migrate_pages_stats stats; 2075 2076 trace_mm_migrate_pages_start(mode, reason); 2077 2078 memset(&stats, 0, sizeof(stats)); 2079 2080 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 2081 mode, reason, &stats, &ret_folios); 2082 if (rc_gather < 0) 2083 goto out; 2084 2085 again: 2086 nr_pages = 0; 2087 list_for_each_entry_safe(folio, folio2, from, lru) { 2088 /* Retried hugetlb folios will be kept in list */ 2089 if (folio_test_hugetlb(folio)) { 2090 list_move_tail(&folio->lru, &ret_folios); 2091 continue; 2092 } 2093 2094 nr_pages += folio_nr_pages(folio); 2095 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2096 break; 2097 } 2098 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2099 list_cut_before(&folios, from, &folio2->lru); 2100 else 2101 list_splice_init(from, &folios); 2102 if (mode == MIGRATE_ASYNC) 2103 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2104 private, mode, reason, &ret_folios, 2105 &split_folios, &stats, 2106 NR_MAX_MIGRATE_PAGES_RETRY); 2107 else 2108 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 2109 private, mode, reason, &ret_folios, 2110 &split_folios, &stats); 2111 list_splice_tail_init(&folios, &ret_folios); 2112 if (rc < 0) { 2113 rc_gather = rc; 2114 list_splice_tail(&split_folios, &ret_folios); 2115 goto out; 2116 } 2117 if (!list_empty(&split_folios)) { 2118 /* 2119 * Failure isn't counted since all split folios of a large folio 2120 * is counted as 1 failure already. And, we only try to migrate 2121 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 2122 */ 2123 migrate_pages_batch(&split_folios, get_new_folio, 2124 put_new_folio, private, MIGRATE_ASYNC, reason, 2125 &ret_folios, NULL, &stats, 1); 2126 list_splice_tail_init(&split_folios, &ret_folios); 2127 } 2128 rc_gather += rc; 2129 if (!list_empty(from)) 2130 goto again; 2131 out: 2132 /* 2133 * Put the permanent failure folio back to migration list, they 2134 * will be put back to the right list by the caller. 2135 */ 2136 list_splice(&ret_folios, from); 2137 2138 /* 2139 * Return 0 in case all split folios of fail-to-migrate large folios 2140 * are migrated successfully. 2141 */ 2142 if (list_empty(from)) 2143 rc_gather = 0; 2144 2145 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2146 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2147 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2148 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2149 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2150 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2151 stats.nr_thp_succeeded, stats.nr_thp_failed, 2152 stats.nr_thp_split, stats.nr_split, mode, 2153 reason); 2154 2155 if (ret_succeeded) 2156 *ret_succeeded = stats.nr_succeeded; 2157 2158 return rc_gather; 2159 } 2160 2161 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2162 { 2163 struct migration_target_control *mtc; 2164 gfp_t gfp_mask; 2165 unsigned int order = 0; 2166 int nid; 2167 int zidx; 2168 2169 mtc = (struct migration_target_control *)private; 2170 gfp_mask = mtc->gfp_mask; 2171 nid = mtc->nid; 2172 if (nid == NUMA_NO_NODE) 2173 nid = folio_nid(src); 2174 2175 if (folio_test_hugetlb(src)) { 2176 struct hstate *h = folio_hstate(src); 2177 2178 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2179 return alloc_hugetlb_folio_nodemask(h, nid, 2180 mtc->nmask, gfp_mask, 2181 htlb_allow_alloc_fallback(mtc->reason)); 2182 } 2183 2184 if (folio_test_large(src)) { 2185 /* 2186 * clear __GFP_RECLAIM to make the migration callback 2187 * consistent with regular THP allocations. 2188 */ 2189 gfp_mask &= ~__GFP_RECLAIM; 2190 gfp_mask |= GFP_TRANSHUGE; 2191 order = folio_order(src); 2192 } 2193 zidx = zone_idx(folio_zone(src)); 2194 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2195 gfp_mask |= __GFP_HIGHMEM; 2196 2197 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2198 } 2199 2200 #ifdef CONFIG_NUMA 2201 2202 static int store_status(int __user *status, int start, int value, int nr) 2203 { 2204 while (nr-- > 0) { 2205 if (put_user(value, status + start)) 2206 return -EFAULT; 2207 start++; 2208 } 2209 2210 return 0; 2211 } 2212 2213 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2214 { 2215 int err; 2216 struct migration_target_control mtc = { 2217 .nid = node, 2218 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2219 .reason = MR_SYSCALL, 2220 }; 2221 2222 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2223 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2224 if (err) 2225 putback_movable_pages(pagelist); 2226 return err; 2227 } 2228 2229 static int __add_folio_for_migration(struct folio *folio, int node, 2230 struct list_head *pagelist, bool migrate_all) 2231 { 2232 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2233 return -EFAULT; 2234 2235 if (folio_is_zone_device(folio)) 2236 return -ENOENT; 2237 2238 if (folio_nid(folio) == node) 2239 return 0; 2240 2241 if (folio_maybe_mapped_shared(folio) && !migrate_all) 2242 return -EACCES; 2243 2244 if (folio_test_hugetlb(folio)) { 2245 if (folio_isolate_hugetlb(folio, pagelist)) 2246 return 1; 2247 } else if (folio_isolate_lru(folio)) { 2248 list_add_tail(&folio->lru, pagelist); 2249 node_stat_mod_folio(folio, 2250 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2251 folio_nr_pages(folio)); 2252 return 1; 2253 } 2254 return -EBUSY; 2255 } 2256 2257 /* 2258 * Resolves the given address to a struct folio, isolates it from the LRU and 2259 * puts it to the given pagelist. 2260 * Returns: 2261 * errno - if the folio cannot be found/isolated 2262 * 0 - when it doesn't have to be migrated because it is already on the 2263 * target node 2264 * 1 - when it has been queued 2265 */ 2266 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p, 2267 int node, struct list_head *pagelist, bool migrate_all) 2268 { 2269 struct vm_area_struct *vma; 2270 struct folio_walk fw; 2271 struct folio *folio; 2272 unsigned long addr; 2273 int err = -EFAULT; 2274 2275 mmap_read_lock(mm); 2276 addr = (unsigned long)untagged_addr_remote(mm, p); 2277 2278 vma = vma_lookup(mm, addr); 2279 if (vma && vma_migratable(vma)) { 2280 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2281 if (folio) { 2282 err = __add_folio_for_migration(folio, node, pagelist, 2283 migrate_all); 2284 folio_walk_end(&fw, vma); 2285 } else { 2286 err = -ENOENT; 2287 } 2288 } 2289 mmap_read_unlock(mm); 2290 return err; 2291 } 2292 2293 static int move_pages_and_store_status(int node, 2294 struct list_head *pagelist, int __user *status, 2295 int start, int i, unsigned long nr_pages) 2296 { 2297 int err; 2298 2299 if (list_empty(pagelist)) 2300 return 0; 2301 2302 err = do_move_pages_to_node(pagelist, node); 2303 if (err) { 2304 /* 2305 * Positive err means the number of failed 2306 * pages to migrate. Since we are going to 2307 * abort and return the number of non-migrated 2308 * pages, so need to include the rest of the 2309 * nr_pages that have not been attempted as 2310 * well. 2311 */ 2312 if (err > 0) 2313 err += nr_pages - i; 2314 return err; 2315 } 2316 return store_status(status, start, node, i - start); 2317 } 2318 2319 /* 2320 * Migrate an array of page address onto an array of nodes and fill 2321 * the corresponding array of status. 2322 */ 2323 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2324 unsigned long nr_pages, 2325 const void __user * __user *pages, 2326 const int __user *nodes, 2327 int __user *status, int flags) 2328 { 2329 compat_uptr_t __user *compat_pages = (void __user *)pages; 2330 int current_node = NUMA_NO_NODE; 2331 LIST_HEAD(pagelist); 2332 int start, i; 2333 int err = 0, err1; 2334 2335 lru_cache_disable(); 2336 2337 for (i = start = 0; i < nr_pages; i++) { 2338 const void __user *p; 2339 int node; 2340 2341 err = -EFAULT; 2342 if (in_compat_syscall()) { 2343 compat_uptr_t cp; 2344 2345 if (get_user(cp, compat_pages + i)) 2346 goto out_flush; 2347 2348 p = compat_ptr(cp); 2349 } else { 2350 if (get_user(p, pages + i)) 2351 goto out_flush; 2352 } 2353 if (get_user(node, nodes + i)) 2354 goto out_flush; 2355 2356 err = -ENODEV; 2357 if (node < 0 || node >= MAX_NUMNODES) 2358 goto out_flush; 2359 if (!node_state(node, N_MEMORY)) 2360 goto out_flush; 2361 2362 err = -EACCES; 2363 if (!node_isset(node, task_nodes)) 2364 goto out_flush; 2365 2366 if (current_node == NUMA_NO_NODE) { 2367 current_node = node; 2368 start = i; 2369 } else if (node != current_node) { 2370 err = move_pages_and_store_status(current_node, 2371 &pagelist, status, start, i, nr_pages); 2372 if (err) 2373 goto out; 2374 start = i; 2375 current_node = node; 2376 } 2377 2378 /* 2379 * Errors in the page lookup or isolation are not fatal and we simply 2380 * report them via status 2381 */ 2382 err = add_folio_for_migration(mm, p, current_node, &pagelist, 2383 flags & MPOL_MF_MOVE_ALL); 2384 2385 if (err > 0) { 2386 /* The page is successfully queued for migration */ 2387 continue; 2388 } 2389 2390 /* 2391 * If the page is already on the target node (!err), store the 2392 * node, otherwise, store the err. 2393 */ 2394 err = store_status(status, i, err ? : current_node, 1); 2395 if (err) 2396 goto out_flush; 2397 2398 err = move_pages_and_store_status(current_node, &pagelist, 2399 status, start, i, nr_pages); 2400 if (err) { 2401 /* We have accounted for page i */ 2402 if (err > 0) 2403 err--; 2404 goto out; 2405 } 2406 current_node = NUMA_NO_NODE; 2407 } 2408 out_flush: 2409 /* Make sure we do not overwrite the existing error */ 2410 err1 = move_pages_and_store_status(current_node, &pagelist, 2411 status, start, i, nr_pages); 2412 if (err >= 0) 2413 err = err1; 2414 out: 2415 lru_cache_enable(); 2416 return err; 2417 } 2418 2419 /* 2420 * Determine the nodes of an array of pages and store it in an array of status. 2421 */ 2422 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2423 const void __user **pages, int *status) 2424 { 2425 unsigned long i; 2426 2427 mmap_read_lock(mm); 2428 2429 for (i = 0; i < nr_pages; i++) { 2430 unsigned long addr = (unsigned long)(*pages); 2431 struct vm_area_struct *vma; 2432 struct folio_walk fw; 2433 struct folio *folio; 2434 int err = -EFAULT; 2435 2436 vma = vma_lookup(mm, addr); 2437 if (!vma) 2438 goto set_status; 2439 2440 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2441 if (folio) { 2442 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2443 err = -EFAULT; 2444 else if (folio_is_zone_device(folio)) 2445 err = -ENOENT; 2446 else 2447 err = folio_nid(folio); 2448 folio_walk_end(&fw, vma); 2449 } else { 2450 err = -ENOENT; 2451 } 2452 set_status: 2453 *status = err; 2454 2455 pages++; 2456 status++; 2457 } 2458 2459 mmap_read_unlock(mm); 2460 } 2461 2462 static int get_compat_pages_array(const void __user *chunk_pages[], 2463 const void __user * __user *pages, 2464 unsigned long chunk_offset, 2465 unsigned long chunk_nr) 2466 { 2467 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2468 compat_uptr_t p; 2469 int i; 2470 2471 for (i = 0; i < chunk_nr; i++) { 2472 if (get_user(p, pages32 + chunk_offset + i)) 2473 return -EFAULT; 2474 chunk_pages[i] = compat_ptr(p); 2475 } 2476 2477 return 0; 2478 } 2479 2480 /* 2481 * Determine the nodes of a user array of pages and store it in 2482 * a user array of status. 2483 */ 2484 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2485 const void __user * __user *pages, 2486 int __user *status) 2487 { 2488 #define DO_PAGES_STAT_CHUNK_NR 16UL 2489 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2490 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2491 unsigned long chunk_offset = 0; 2492 2493 while (nr_pages) { 2494 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2495 2496 if (in_compat_syscall()) { 2497 if (get_compat_pages_array(chunk_pages, pages, 2498 chunk_offset, chunk_nr)) 2499 break; 2500 } else { 2501 if (copy_from_user(chunk_pages, pages + chunk_offset, 2502 chunk_nr * sizeof(*chunk_pages))) 2503 break; 2504 } 2505 2506 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2507 2508 if (copy_to_user(status + chunk_offset, chunk_status, 2509 chunk_nr * sizeof(*status))) 2510 break; 2511 2512 chunk_offset += chunk_nr; 2513 nr_pages -= chunk_nr; 2514 } 2515 return nr_pages ? -EFAULT : 0; 2516 } 2517 2518 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2519 { 2520 struct task_struct *task; 2521 struct mm_struct *mm; 2522 2523 /* 2524 * There is no need to check if current process has the right to modify 2525 * the specified process when they are same. 2526 */ 2527 if (!pid) { 2528 mmget(current->mm); 2529 *mem_nodes = cpuset_mems_allowed(current); 2530 return current->mm; 2531 } 2532 2533 task = find_get_task_by_vpid(pid); 2534 if (!task) { 2535 return ERR_PTR(-ESRCH); 2536 } 2537 2538 /* 2539 * Check if this process has the right to modify the specified 2540 * process. Use the regular "ptrace_may_access()" checks. 2541 */ 2542 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2543 mm = ERR_PTR(-EPERM); 2544 goto out; 2545 } 2546 2547 mm = ERR_PTR(security_task_movememory(task)); 2548 if (IS_ERR(mm)) 2549 goto out; 2550 *mem_nodes = cpuset_mems_allowed(task); 2551 mm = get_task_mm(task); 2552 out: 2553 put_task_struct(task); 2554 if (!mm) 2555 mm = ERR_PTR(-EINVAL); 2556 return mm; 2557 } 2558 2559 /* 2560 * Move a list of pages in the address space of the currently executing 2561 * process. 2562 */ 2563 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2564 const void __user * __user *pages, 2565 const int __user *nodes, 2566 int __user *status, int flags) 2567 { 2568 struct mm_struct *mm; 2569 int err; 2570 nodemask_t task_nodes; 2571 2572 /* Check flags */ 2573 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2574 return -EINVAL; 2575 2576 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2577 return -EPERM; 2578 2579 mm = find_mm_struct(pid, &task_nodes); 2580 if (IS_ERR(mm)) 2581 return PTR_ERR(mm); 2582 2583 if (nodes) 2584 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2585 nodes, status, flags); 2586 else 2587 err = do_pages_stat(mm, nr_pages, pages, status); 2588 2589 mmput(mm); 2590 return err; 2591 } 2592 2593 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2594 const void __user * __user *, pages, 2595 const int __user *, nodes, 2596 int __user *, status, int, flags) 2597 { 2598 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2599 } 2600 2601 #ifdef CONFIG_NUMA_BALANCING 2602 /* 2603 * Returns true if this is a safe migration target node for misplaced NUMA 2604 * pages. Currently it only checks the watermarks which is crude. 2605 */ 2606 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2607 unsigned long nr_migrate_pages) 2608 { 2609 int z; 2610 2611 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2612 struct zone *zone = pgdat->node_zones + z; 2613 2614 if (!managed_zone(zone)) 2615 continue; 2616 2617 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2618 if (!zone_watermark_ok(zone, 0, 2619 high_wmark_pages(zone) + 2620 nr_migrate_pages, 2621 ZONE_MOVABLE, ALLOC_CMA)) 2622 continue; 2623 return true; 2624 } 2625 return false; 2626 } 2627 2628 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2629 unsigned long data) 2630 { 2631 int nid = (int) data; 2632 int order = folio_order(src); 2633 gfp_t gfp = __GFP_THISNODE; 2634 2635 if (order > 0) 2636 gfp |= GFP_TRANSHUGE_LIGHT; 2637 else { 2638 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2639 __GFP_NOWARN; 2640 gfp &= ~__GFP_RECLAIM; 2641 } 2642 return __folio_alloc_node(gfp, order, nid); 2643 } 2644 2645 /* 2646 * Prepare for calling migrate_misplaced_folio() by isolating the folio if 2647 * permitted. Must be called with the PTL still held. 2648 */ 2649 int migrate_misplaced_folio_prepare(struct folio *folio, 2650 struct vm_area_struct *vma, int node) 2651 { 2652 int nr_pages = folio_nr_pages(folio); 2653 pg_data_t *pgdat = NODE_DATA(node); 2654 2655 if (folio_is_file_lru(folio)) { 2656 /* 2657 * Do not migrate file folios that are mapped in multiple 2658 * processes with execute permissions as they are probably 2659 * shared libraries. 2660 * 2661 * See folio_maybe_mapped_shared() on possible imprecision 2662 * when we cannot easily detect if a folio is shared. 2663 */ 2664 if ((vma->vm_flags & VM_EXEC) && folio_maybe_mapped_shared(folio)) 2665 return -EACCES; 2666 2667 /* 2668 * Do not migrate dirty folios as not all filesystems can move 2669 * dirty folios in MIGRATE_ASYNC mode which is a waste of 2670 * cycles. 2671 */ 2672 if (folio_test_dirty(folio)) 2673 return -EAGAIN; 2674 } 2675 2676 /* Avoid migrating to a node that is nearly full */ 2677 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2678 int z; 2679 2680 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2681 return -EAGAIN; 2682 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2683 if (managed_zone(pgdat->node_zones + z)) 2684 break; 2685 } 2686 2687 /* 2688 * If there are no managed zones, it should not proceed 2689 * further. 2690 */ 2691 if (z < 0) 2692 return -EAGAIN; 2693 2694 wakeup_kswapd(pgdat->node_zones + z, 0, 2695 folio_order(folio), ZONE_MOVABLE); 2696 return -EAGAIN; 2697 } 2698 2699 if (!folio_isolate_lru(folio)) 2700 return -EAGAIN; 2701 2702 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2703 nr_pages); 2704 return 0; 2705 } 2706 2707 /* 2708 * Attempt to migrate a misplaced folio to the specified destination 2709 * node. Caller is expected to have isolated the folio by calling 2710 * migrate_misplaced_folio_prepare(), which will result in an 2711 * elevated reference count on the folio. This function will un-isolate the 2712 * folio, dereferencing the folio before returning. 2713 */ 2714 int migrate_misplaced_folio(struct folio *folio, int node) 2715 { 2716 pg_data_t *pgdat = NODE_DATA(node); 2717 int nr_remaining; 2718 unsigned int nr_succeeded; 2719 LIST_HEAD(migratepages); 2720 struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio); 2721 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2722 2723 list_add(&folio->lru, &migratepages); 2724 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2725 NULL, node, MIGRATE_ASYNC, 2726 MR_NUMA_MISPLACED, &nr_succeeded); 2727 if (nr_remaining && !list_empty(&migratepages)) 2728 putback_movable_pages(&migratepages); 2729 if (nr_succeeded) { 2730 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2731 count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded); 2732 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 2733 && !node_is_toptier(folio_nid(folio)) 2734 && node_is_toptier(node)) 2735 mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded); 2736 } 2737 mem_cgroup_put(memcg); 2738 BUG_ON(!list_empty(&migratepages)); 2739 return nr_remaining ? -EAGAIN : 0; 2740 } 2741 #endif /* CONFIG_NUMA_BALANCING */ 2742 #endif /* CONFIG_NUMA */ 2743