xref: /linux/mm/migrate.c (revision 5bbfea1eacdf584d0d159e38c01ee190162706d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 #include <linux/memory.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/migrate.h>
58 
59 #include "internal.h"
60 
61 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 {
63 	struct address_space *mapping;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (unlikely(!get_page_unless_zero(page)))
75 		goto out;
76 
77 	/*
78 	 * Check PageMovable before holding a PG_lock because page's owner
79 	 * assumes anybody doesn't touch PG_lock of newly allocated page
80 	 * so unconditionally grabbing the lock ruins page's owner side.
81 	 */
82 	if (unlikely(!__PageMovable(page)))
83 		goto out_putpage;
84 	/*
85 	 * As movable pages are not isolated from LRU lists, concurrent
86 	 * compaction threads can race against page migration functions
87 	 * as well as race against the releasing a page.
88 	 *
89 	 * In order to avoid having an already isolated movable page
90 	 * being (wrongly) re-isolated while it is under migration,
91 	 * or to avoid attempting to isolate pages being released,
92 	 * lets be sure we have the page lock
93 	 * before proceeding with the movable page isolation steps.
94 	 */
95 	if (unlikely(!trylock_page(page)))
96 		goto out_putpage;
97 
98 	if (!PageMovable(page) || PageIsolated(page))
99 		goto out_no_isolated;
100 
101 	mapping = page_mapping(page);
102 	VM_BUG_ON_PAGE(!mapping, page);
103 
104 	if (!mapping->a_ops->isolate_page(page, mode))
105 		goto out_no_isolated;
106 
107 	/* Driver shouldn't use PG_isolated bit of page->flags */
108 	WARN_ON_ONCE(PageIsolated(page));
109 	__SetPageIsolated(page);
110 	unlock_page(page);
111 
112 	return 0;
113 
114 out_no_isolated:
115 	unlock_page(page);
116 out_putpage:
117 	put_page(page);
118 out:
119 	return -EBUSY;
120 }
121 
122 static void putback_movable_page(struct page *page)
123 {
124 	struct address_space *mapping;
125 
126 	mapping = page_mapping(page);
127 	mapping->a_ops->putback_page(page);
128 	__ClearPageIsolated(page);
129 }
130 
131 /*
132  * Put previously isolated pages back onto the appropriate lists
133  * from where they were once taken off for compaction/migration.
134  *
135  * This function shall be used whenever the isolated pageset has been
136  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
137  * and isolate_huge_page().
138  */
139 void putback_movable_pages(struct list_head *l)
140 {
141 	struct page *page;
142 	struct page *page2;
143 
144 	list_for_each_entry_safe(page, page2, l, lru) {
145 		if (unlikely(PageHuge(page))) {
146 			putback_active_hugepage(page);
147 			continue;
148 		}
149 		list_del(&page->lru);
150 		/*
151 		 * We isolated non-lru movable page so here we can use
152 		 * __PageMovable because LRU page's mapping cannot have
153 		 * PAGE_MAPPING_MOVABLE.
154 		 */
155 		if (unlikely(__PageMovable(page))) {
156 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
157 			lock_page(page);
158 			if (PageMovable(page))
159 				putback_movable_page(page);
160 			else
161 				__ClearPageIsolated(page);
162 			unlock_page(page);
163 			put_page(page);
164 		} else {
165 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
166 					page_is_file_lru(page), -thp_nr_pages(page));
167 			putback_lru_page(page);
168 		}
169 	}
170 }
171 
172 /*
173  * Restore a potential migration pte to a working pte entry
174  */
175 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
176 				 unsigned long addr, void *old)
177 {
178 	struct page_vma_mapped_walk pvmw = {
179 		.page = old,
180 		.vma = vma,
181 		.address = addr,
182 		.flags = PVMW_SYNC | PVMW_MIGRATION,
183 	};
184 	struct page *new;
185 	pte_t pte;
186 	swp_entry_t entry;
187 
188 	VM_BUG_ON_PAGE(PageTail(page), page);
189 	while (page_vma_mapped_walk(&pvmw)) {
190 		if (PageKsm(page))
191 			new = page;
192 		else
193 			new = page - pvmw.page->index +
194 				linear_page_index(vma, pvmw.address);
195 
196 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
197 		/* PMD-mapped THP migration entry */
198 		if (!pvmw.pte) {
199 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
200 			remove_migration_pmd(&pvmw, new);
201 			continue;
202 		}
203 #endif
204 
205 		get_page(new);
206 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
207 		if (pte_swp_soft_dirty(*pvmw.pte))
208 			pte = pte_mksoft_dirty(pte);
209 
210 		/*
211 		 * Recheck VMA as permissions can change since migration started
212 		 */
213 		entry = pte_to_swp_entry(*pvmw.pte);
214 		if (is_writable_migration_entry(entry))
215 			pte = maybe_mkwrite(pte, vma);
216 		else if (pte_swp_uffd_wp(*pvmw.pte))
217 			pte = pte_mkuffd_wp(pte);
218 
219 		if (unlikely(is_device_private_page(new))) {
220 			if (pte_write(pte))
221 				entry = make_writable_device_private_entry(
222 							page_to_pfn(new));
223 			else
224 				entry = make_readable_device_private_entry(
225 							page_to_pfn(new));
226 			pte = swp_entry_to_pte(entry);
227 			if (pte_swp_soft_dirty(*pvmw.pte))
228 				pte = pte_swp_mksoft_dirty(pte);
229 			if (pte_swp_uffd_wp(*pvmw.pte))
230 				pte = pte_swp_mkuffd_wp(pte);
231 		}
232 
233 #ifdef CONFIG_HUGETLB_PAGE
234 		if (PageHuge(new)) {
235 			unsigned int shift = huge_page_shift(hstate_vma(vma));
236 
237 			pte = pte_mkhuge(pte);
238 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
239 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240 			if (PageAnon(new))
241 				hugepage_add_anon_rmap(new, vma, pvmw.address);
242 			else
243 				page_dup_rmap(new, true);
244 		} else
245 #endif
246 		{
247 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
248 
249 			if (PageAnon(new))
250 				page_add_anon_rmap(new, vma, pvmw.address, false);
251 			else
252 				page_add_file_rmap(new, false);
253 		}
254 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
255 			mlock_vma_page(new);
256 
257 		if (PageTransHuge(page) && PageMlocked(page))
258 			clear_page_mlock(page);
259 
260 		/* No need to invalidate - it was non-present before */
261 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
262 	}
263 
264 	return true;
265 }
266 
267 /*
268  * Get rid of all migration entries and replace them by
269  * references to the indicated page.
270  */
271 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
272 {
273 	struct rmap_walk_control rwc = {
274 		.rmap_one = remove_migration_pte,
275 		.arg = old,
276 	};
277 
278 	if (locked)
279 		rmap_walk_locked(new, &rwc);
280 	else
281 		rmap_walk(new, &rwc);
282 }
283 
284 /*
285  * Something used the pte of a page under migration. We need to
286  * get to the page and wait until migration is finished.
287  * When we return from this function the fault will be retried.
288  */
289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 				spinlock_t *ptl)
291 {
292 	pte_t pte;
293 	swp_entry_t entry;
294 	struct page *page;
295 
296 	spin_lock(ptl);
297 	pte = *ptep;
298 	if (!is_swap_pte(pte))
299 		goto out;
300 
301 	entry = pte_to_swp_entry(pte);
302 	if (!is_migration_entry(entry))
303 		goto out;
304 
305 	page = pfn_swap_entry_to_page(entry);
306 	page = compound_head(page);
307 
308 	/*
309 	 * Once page cache replacement of page migration started, page_count
310 	 * is zero; but we must not call put_and_wait_on_page_locked() without
311 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
312 	 */
313 	if (!get_page_unless_zero(page))
314 		goto out;
315 	pte_unmap_unlock(ptep, ptl);
316 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
317 	return;
318 out:
319 	pte_unmap_unlock(ptep, ptl);
320 }
321 
322 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
323 				unsigned long address)
324 {
325 	spinlock_t *ptl = pte_lockptr(mm, pmd);
326 	pte_t *ptep = pte_offset_map(pmd, address);
327 	__migration_entry_wait(mm, ptep, ptl);
328 }
329 
330 void migration_entry_wait_huge(struct vm_area_struct *vma,
331 		struct mm_struct *mm, pte_t *pte)
332 {
333 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
334 	__migration_entry_wait(mm, pte, ptl);
335 }
336 
337 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
338 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
339 {
340 	spinlock_t *ptl;
341 	struct page *page;
342 
343 	ptl = pmd_lock(mm, pmd);
344 	if (!is_pmd_migration_entry(*pmd))
345 		goto unlock;
346 	page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
347 	if (!get_page_unless_zero(page))
348 		goto unlock;
349 	spin_unlock(ptl);
350 	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
351 	return;
352 unlock:
353 	spin_unlock(ptl);
354 }
355 #endif
356 
357 static int expected_page_refs(struct address_space *mapping, struct page *page)
358 {
359 	int expected_count = 1;
360 
361 	/*
362 	 * Device private pages have an extra refcount as they are
363 	 * ZONE_DEVICE pages.
364 	 */
365 	expected_count += is_device_private_page(page);
366 	if (mapping)
367 		expected_count += thp_nr_pages(page) + page_has_private(page);
368 
369 	return expected_count;
370 }
371 
372 /*
373  * Replace the page in the mapping.
374  *
375  * The number of remaining references must be:
376  * 1 for anonymous pages without a mapping
377  * 2 for pages with a mapping
378  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
379  */
380 int migrate_page_move_mapping(struct address_space *mapping,
381 		struct page *newpage, struct page *page, int extra_count)
382 {
383 	XA_STATE(xas, &mapping->i_pages, page_index(page));
384 	struct zone *oldzone, *newzone;
385 	int dirty;
386 	int expected_count = expected_page_refs(mapping, page) + extra_count;
387 	int nr = thp_nr_pages(page);
388 
389 	if (!mapping) {
390 		/* Anonymous page without mapping */
391 		if (page_count(page) != expected_count)
392 			return -EAGAIN;
393 
394 		/* No turning back from here */
395 		newpage->index = page->index;
396 		newpage->mapping = page->mapping;
397 		if (PageSwapBacked(page))
398 			__SetPageSwapBacked(newpage);
399 
400 		return MIGRATEPAGE_SUCCESS;
401 	}
402 
403 	oldzone = page_zone(page);
404 	newzone = page_zone(newpage);
405 
406 	xas_lock_irq(&xas);
407 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
408 		xas_unlock_irq(&xas);
409 		return -EAGAIN;
410 	}
411 
412 	if (!page_ref_freeze(page, expected_count)) {
413 		xas_unlock_irq(&xas);
414 		return -EAGAIN;
415 	}
416 
417 	/*
418 	 * Now we know that no one else is looking at the page:
419 	 * no turning back from here.
420 	 */
421 	newpage->index = page->index;
422 	newpage->mapping = page->mapping;
423 	page_ref_add(newpage, nr); /* add cache reference */
424 	if (PageSwapBacked(page)) {
425 		__SetPageSwapBacked(newpage);
426 		if (PageSwapCache(page)) {
427 			SetPageSwapCache(newpage);
428 			set_page_private(newpage, page_private(page));
429 		}
430 	} else {
431 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
432 	}
433 
434 	/* Move dirty while page refs frozen and newpage not yet exposed */
435 	dirty = PageDirty(page);
436 	if (dirty) {
437 		ClearPageDirty(page);
438 		SetPageDirty(newpage);
439 	}
440 
441 	xas_store(&xas, newpage);
442 	if (PageTransHuge(page)) {
443 		int i;
444 
445 		for (i = 1; i < nr; i++) {
446 			xas_next(&xas);
447 			xas_store(&xas, newpage);
448 		}
449 	}
450 
451 	/*
452 	 * Drop cache reference from old page by unfreezing
453 	 * to one less reference.
454 	 * We know this isn't the last reference.
455 	 */
456 	page_ref_unfreeze(page, expected_count - nr);
457 
458 	xas_unlock(&xas);
459 	/* Leave irq disabled to prevent preemption while updating stats */
460 
461 	/*
462 	 * If moved to a different zone then also account
463 	 * the page for that zone. Other VM counters will be
464 	 * taken care of when we establish references to the
465 	 * new page and drop references to the old page.
466 	 *
467 	 * Note that anonymous pages are accounted for
468 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
469 	 * are mapped to swap space.
470 	 */
471 	if (newzone != oldzone) {
472 		struct lruvec *old_lruvec, *new_lruvec;
473 		struct mem_cgroup *memcg;
474 
475 		memcg = page_memcg(page);
476 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
477 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
478 
479 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
480 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
481 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
482 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
483 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
484 		}
485 #ifdef CONFIG_SWAP
486 		if (PageSwapCache(page)) {
487 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
488 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
489 		}
490 #endif
491 		if (dirty && mapping_can_writeback(mapping)) {
492 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
493 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
494 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
495 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
496 		}
497 	}
498 	local_irq_enable();
499 
500 	return MIGRATEPAGE_SUCCESS;
501 }
502 EXPORT_SYMBOL(migrate_page_move_mapping);
503 
504 /*
505  * The expected number of remaining references is the same as that
506  * of migrate_page_move_mapping().
507  */
508 int migrate_huge_page_move_mapping(struct address_space *mapping,
509 				   struct page *newpage, struct page *page)
510 {
511 	XA_STATE(xas, &mapping->i_pages, page_index(page));
512 	int expected_count;
513 
514 	xas_lock_irq(&xas);
515 	expected_count = 2 + page_has_private(page);
516 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
517 		xas_unlock_irq(&xas);
518 		return -EAGAIN;
519 	}
520 
521 	if (!page_ref_freeze(page, expected_count)) {
522 		xas_unlock_irq(&xas);
523 		return -EAGAIN;
524 	}
525 
526 	newpage->index = page->index;
527 	newpage->mapping = page->mapping;
528 
529 	get_page(newpage);
530 
531 	xas_store(&xas, newpage);
532 
533 	page_ref_unfreeze(page, expected_count - 1);
534 
535 	xas_unlock_irq(&xas);
536 
537 	return MIGRATEPAGE_SUCCESS;
538 }
539 
540 /*
541  * Copy the page to its new location
542  */
543 void migrate_page_states(struct page *newpage, struct page *page)
544 {
545 	int cpupid;
546 
547 	if (PageError(page))
548 		SetPageError(newpage);
549 	if (PageReferenced(page))
550 		SetPageReferenced(newpage);
551 	if (PageUptodate(page))
552 		SetPageUptodate(newpage);
553 	if (TestClearPageActive(page)) {
554 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
555 		SetPageActive(newpage);
556 	} else if (TestClearPageUnevictable(page))
557 		SetPageUnevictable(newpage);
558 	if (PageWorkingset(page))
559 		SetPageWorkingset(newpage);
560 	if (PageChecked(page))
561 		SetPageChecked(newpage);
562 	if (PageMappedToDisk(page))
563 		SetPageMappedToDisk(newpage);
564 
565 	/* Move dirty on pages not done by migrate_page_move_mapping() */
566 	if (PageDirty(page))
567 		SetPageDirty(newpage);
568 
569 	if (page_is_young(page))
570 		set_page_young(newpage);
571 	if (page_is_idle(page))
572 		set_page_idle(newpage);
573 
574 	/*
575 	 * Copy NUMA information to the new page, to prevent over-eager
576 	 * future migrations of this same page.
577 	 */
578 	cpupid = page_cpupid_xchg_last(page, -1);
579 	page_cpupid_xchg_last(newpage, cpupid);
580 
581 	ksm_migrate_page(newpage, page);
582 	/*
583 	 * Please do not reorder this without considering how mm/ksm.c's
584 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
585 	 */
586 	if (PageSwapCache(page))
587 		ClearPageSwapCache(page);
588 	ClearPagePrivate(page);
589 
590 	/* page->private contains hugetlb specific flags */
591 	if (!PageHuge(page))
592 		set_page_private(page, 0);
593 
594 	/*
595 	 * If any waiters have accumulated on the new page then
596 	 * wake them up.
597 	 */
598 	if (PageWriteback(newpage))
599 		end_page_writeback(newpage);
600 
601 	/*
602 	 * PG_readahead shares the same bit with PG_reclaim.  The above
603 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
604 	 * bit after that.
605 	 */
606 	if (PageReadahead(page))
607 		SetPageReadahead(newpage);
608 
609 	copy_page_owner(page, newpage);
610 
611 	if (!PageHuge(page))
612 		mem_cgroup_migrate(page, newpage);
613 }
614 EXPORT_SYMBOL(migrate_page_states);
615 
616 void migrate_page_copy(struct page *newpage, struct page *page)
617 {
618 	if (PageHuge(page) || PageTransHuge(page))
619 		copy_huge_page(newpage, page);
620 	else
621 		copy_highpage(newpage, page);
622 
623 	migrate_page_states(newpage, page);
624 }
625 EXPORT_SYMBOL(migrate_page_copy);
626 
627 /************************************************************
628  *                    Migration functions
629  ***********************************************************/
630 
631 /*
632  * Common logic to directly migrate a single LRU page suitable for
633  * pages that do not use PagePrivate/PagePrivate2.
634  *
635  * Pages are locked upon entry and exit.
636  */
637 int migrate_page(struct address_space *mapping,
638 		struct page *newpage, struct page *page,
639 		enum migrate_mode mode)
640 {
641 	int rc;
642 
643 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
644 
645 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
646 
647 	if (rc != MIGRATEPAGE_SUCCESS)
648 		return rc;
649 
650 	if (mode != MIGRATE_SYNC_NO_COPY)
651 		migrate_page_copy(newpage, page);
652 	else
653 		migrate_page_states(newpage, page);
654 	return MIGRATEPAGE_SUCCESS;
655 }
656 EXPORT_SYMBOL(migrate_page);
657 
658 #ifdef CONFIG_BLOCK
659 /* Returns true if all buffers are successfully locked */
660 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
661 							enum migrate_mode mode)
662 {
663 	struct buffer_head *bh = head;
664 
665 	/* Simple case, sync compaction */
666 	if (mode != MIGRATE_ASYNC) {
667 		do {
668 			lock_buffer(bh);
669 			bh = bh->b_this_page;
670 
671 		} while (bh != head);
672 
673 		return true;
674 	}
675 
676 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
677 	do {
678 		if (!trylock_buffer(bh)) {
679 			/*
680 			 * We failed to lock the buffer and cannot stall in
681 			 * async migration. Release the taken locks
682 			 */
683 			struct buffer_head *failed_bh = bh;
684 			bh = head;
685 			while (bh != failed_bh) {
686 				unlock_buffer(bh);
687 				bh = bh->b_this_page;
688 			}
689 			return false;
690 		}
691 
692 		bh = bh->b_this_page;
693 	} while (bh != head);
694 	return true;
695 }
696 
697 static int __buffer_migrate_page(struct address_space *mapping,
698 		struct page *newpage, struct page *page, enum migrate_mode mode,
699 		bool check_refs)
700 {
701 	struct buffer_head *bh, *head;
702 	int rc;
703 	int expected_count;
704 
705 	if (!page_has_buffers(page))
706 		return migrate_page(mapping, newpage, page, mode);
707 
708 	/* Check whether page does not have extra refs before we do more work */
709 	expected_count = expected_page_refs(mapping, page);
710 	if (page_count(page) != expected_count)
711 		return -EAGAIN;
712 
713 	head = page_buffers(page);
714 	if (!buffer_migrate_lock_buffers(head, mode))
715 		return -EAGAIN;
716 
717 	if (check_refs) {
718 		bool busy;
719 		bool invalidated = false;
720 
721 recheck_buffers:
722 		busy = false;
723 		spin_lock(&mapping->private_lock);
724 		bh = head;
725 		do {
726 			if (atomic_read(&bh->b_count)) {
727 				busy = true;
728 				break;
729 			}
730 			bh = bh->b_this_page;
731 		} while (bh != head);
732 		if (busy) {
733 			if (invalidated) {
734 				rc = -EAGAIN;
735 				goto unlock_buffers;
736 			}
737 			spin_unlock(&mapping->private_lock);
738 			invalidate_bh_lrus();
739 			invalidated = true;
740 			goto recheck_buffers;
741 		}
742 	}
743 
744 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
745 	if (rc != MIGRATEPAGE_SUCCESS)
746 		goto unlock_buffers;
747 
748 	attach_page_private(newpage, detach_page_private(page));
749 
750 	bh = head;
751 	do {
752 		set_bh_page(bh, newpage, bh_offset(bh));
753 		bh = bh->b_this_page;
754 
755 	} while (bh != head);
756 
757 	if (mode != MIGRATE_SYNC_NO_COPY)
758 		migrate_page_copy(newpage, page);
759 	else
760 		migrate_page_states(newpage, page);
761 
762 	rc = MIGRATEPAGE_SUCCESS;
763 unlock_buffers:
764 	if (check_refs)
765 		spin_unlock(&mapping->private_lock);
766 	bh = head;
767 	do {
768 		unlock_buffer(bh);
769 		bh = bh->b_this_page;
770 
771 	} while (bh != head);
772 
773 	return rc;
774 }
775 
776 /*
777  * Migration function for pages with buffers. This function can only be used
778  * if the underlying filesystem guarantees that no other references to "page"
779  * exist. For example attached buffer heads are accessed only under page lock.
780  */
781 int buffer_migrate_page(struct address_space *mapping,
782 		struct page *newpage, struct page *page, enum migrate_mode mode)
783 {
784 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
785 }
786 EXPORT_SYMBOL(buffer_migrate_page);
787 
788 /*
789  * Same as above except that this variant is more careful and checks that there
790  * are also no buffer head references. This function is the right one for
791  * mappings where buffer heads are directly looked up and referenced (such as
792  * block device mappings).
793  */
794 int buffer_migrate_page_norefs(struct address_space *mapping,
795 		struct page *newpage, struct page *page, enum migrate_mode mode)
796 {
797 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
798 }
799 #endif
800 
801 /*
802  * Writeback a page to clean the dirty state
803  */
804 static int writeout(struct address_space *mapping, struct page *page)
805 {
806 	struct writeback_control wbc = {
807 		.sync_mode = WB_SYNC_NONE,
808 		.nr_to_write = 1,
809 		.range_start = 0,
810 		.range_end = LLONG_MAX,
811 		.for_reclaim = 1
812 	};
813 	int rc;
814 
815 	if (!mapping->a_ops->writepage)
816 		/* No write method for the address space */
817 		return -EINVAL;
818 
819 	if (!clear_page_dirty_for_io(page))
820 		/* Someone else already triggered a write */
821 		return -EAGAIN;
822 
823 	/*
824 	 * A dirty page may imply that the underlying filesystem has
825 	 * the page on some queue. So the page must be clean for
826 	 * migration. Writeout may mean we loose the lock and the
827 	 * page state is no longer what we checked for earlier.
828 	 * At this point we know that the migration attempt cannot
829 	 * be successful.
830 	 */
831 	remove_migration_ptes(page, page, false);
832 
833 	rc = mapping->a_ops->writepage(page, &wbc);
834 
835 	if (rc != AOP_WRITEPAGE_ACTIVATE)
836 		/* unlocked. Relock */
837 		lock_page(page);
838 
839 	return (rc < 0) ? -EIO : -EAGAIN;
840 }
841 
842 /*
843  * Default handling if a filesystem does not provide a migration function.
844  */
845 static int fallback_migrate_page(struct address_space *mapping,
846 	struct page *newpage, struct page *page, enum migrate_mode mode)
847 {
848 	if (PageDirty(page)) {
849 		/* Only writeback pages in full synchronous migration */
850 		switch (mode) {
851 		case MIGRATE_SYNC:
852 		case MIGRATE_SYNC_NO_COPY:
853 			break;
854 		default:
855 			return -EBUSY;
856 		}
857 		return writeout(mapping, page);
858 	}
859 
860 	/*
861 	 * Buffers may be managed in a filesystem specific way.
862 	 * We must have no buffers or drop them.
863 	 */
864 	if (page_has_private(page) &&
865 	    !try_to_release_page(page, GFP_KERNEL))
866 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
867 
868 	return migrate_page(mapping, newpage, page, mode);
869 }
870 
871 /*
872  * Move a page to a newly allocated page
873  * The page is locked and all ptes have been successfully removed.
874  *
875  * The new page will have replaced the old page if this function
876  * is successful.
877  *
878  * Return value:
879  *   < 0 - error code
880  *  MIGRATEPAGE_SUCCESS - success
881  */
882 static int move_to_new_page(struct page *newpage, struct page *page,
883 				enum migrate_mode mode)
884 {
885 	struct address_space *mapping;
886 	int rc = -EAGAIN;
887 	bool is_lru = !__PageMovable(page);
888 
889 	VM_BUG_ON_PAGE(!PageLocked(page), page);
890 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
891 
892 	mapping = page_mapping(page);
893 
894 	if (likely(is_lru)) {
895 		if (!mapping)
896 			rc = migrate_page(mapping, newpage, page, mode);
897 		else if (mapping->a_ops->migratepage)
898 			/*
899 			 * Most pages have a mapping and most filesystems
900 			 * provide a migratepage callback. Anonymous pages
901 			 * are part of swap space which also has its own
902 			 * migratepage callback. This is the most common path
903 			 * for page migration.
904 			 */
905 			rc = mapping->a_ops->migratepage(mapping, newpage,
906 							page, mode);
907 		else
908 			rc = fallback_migrate_page(mapping, newpage,
909 							page, mode);
910 	} else {
911 		/*
912 		 * In case of non-lru page, it could be released after
913 		 * isolation step. In that case, we shouldn't try migration.
914 		 */
915 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
916 		if (!PageMovable(page)) {
917 			rc = MIGRATEPAGE_SUCCESS;
918 			__ClearPageIsolated(page);
919 			goto out;
920 		}
921 
922 		rc = mapping->a_ops->migratepage(mapping, newpage,
923 						page, mode);
924 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
925 			!PageIsolated(page));
926 	}
927 
928 	/*
929 	 * When successful, old pagecache page->mapping must be cleared before
930 	 * page is freed; but stats require that PageAnon be left as PageAnon.
931 	 */
932 	if (rc == MIGRATEPAGE_SUCCESS) {
933 		if (__PageMovable(page)) {
934 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
935 
936 			/*
937 			 * We clear PG_movable under page_lock so any compactor
938 			 * cannot try to migrate this page.
939 			 */
940 			__ClearPageIsolated(page);
941 		}
942 
943 		/*
944 		 * Anonymous and movable page->mapping will be cleared by
945 		 * free_pages_prepare so don't reset it here for keeping
946 		 * the type to work PageAnon, for example.
947 		 */
948 		if (!PageMappingFlags(page))
949 			page->mapping = NULL;
950 
951 		if (likely(!is_zone_device_page(newpage)))
952 			flush_dcache_page(newpage);
953 
954 	}
955 out:
956 	return rc;
957 }
958 
959 static int __unmap_and_move(struct page *page, struct page *newpage,
960 				int force, enum migrate_mode mode)
961 {
962 	int rc = -EAGAIN;
963 	bool page_was_mapped = false;
964 	struct anon_vma *anon_vma = NULL;
965 	bool is_lru = !__PageMovable(page);
966 
967 	if (!trylock_page(page)) {
968 		if (!force || mode == MIGRATE_ASYNC)
969 			goto out;
970 
971 		/*
972 		 * It's not safe for direct compaction to call lock_page.
973 		 * For example, during page readahead pages are added locked
974 		 * to the LRU. Later, when the IO completes the pages are
975 		 * marked uptodate and unlocked. However, the queueing
976 		 * could be merging multiple pages for one bio (e.g.
977 		 * mpage_readahead). If an allocation happens for the
978 		 * second or third page, the process can end up locking
979 		 * the same page twice and deadlocking. Rather than
980 		 * trying to be clever about what pages can be locked,
981 		 * avoid the use of lock_page for direct compaction
982 		 * altogether.
983 		 */
984 		if (current->flags & PF_MEMALLOC)
985 			goto out;
986 
987 		lock_page(page);
988 	}
989 
990 	if (PageWriteback(page)) {
991 		/*
992 		 * Only in the case of a full synchronous migration is it
993 		 * necessary to wait for PageWriteback. In the async case,
994 		 * the retry loop is too short and in the sync-light case,
995 		 * the overhead of stalling is too much
996 		 */
997 		switch (mode) {
998 		case MIGRATE_SYNC:
999 		case MIGRATE_SYNC_NO_COPY:
1000 			break;
1001 		default:
1002 			rc = -EBUSY;
1003 			goto out_unlock;
1004 		}
1005 		if (!force)
1006 			goto out_unlock;
1007 		wait_on_page_writeback(page);
1008 	}
1009 
1010 	/*
1011 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1012 	 * we cannot notice that anon_vma is freed while we migrates a page.
1013 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1014 	 * of migration. File cache pages are no problem because of page_lock()
1015 	 * File Caches may use write_page() or lock_page() in migration, then,
1016 	 * just care Anon page here.
1017 	 *
1018 	 * Only page_get_anon_vma() understands the subtleties of
1019 	 * getting a hold on an anon_vma from outside one of its mms.
1020 	 * But if we cannot get anon_vma, then we won't need it anyway,
1021 	 * because that implies that the anon page is no longer mapped
1022 	 * (and cannot be remapped so long as we hold the page lock).
1023 	 */
1024 	if (PageAnon(page) && !PageKsm(page))
1025 		anon_vma = page_get_anon_vma(page);
1026 
1027 	/*
1028 	 * Block others from accessing the new page when we get around to
1029 	 * establishing additional references. We are usually the only one
1030 	 * holding a reference to newpage at this point. We used to have a BUG
1031 	 * here if trylock_page(newpage) fails, but would like to allow for
1032 	 * cases where there might be a race with the previous use of newpage.
1033 	 * This is much like races on refcount of oldpage: just don't BUG().
1034 	 */
1035 	if (unlikely(!trylock_page(newpage)))
1036 		goto out_unlock;
1037 
1038 	if (unlikely(!is_lru)) {
1039 		rc = move_to_new_page(newpage, page, mode);
1040 		goto out_unlock_both;
1041 	}
1042 
1043 	/*
1044 	 * Corner case handling:
1045 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1046 	 * and treated as swapcache but it has no rmap yet.
1047 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1048 	 * trigger a BUG.  So handle it here.
1049 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1050 	 * fs-private metadata. The page can be picked up due to memory
1051 	 * offlining.  Everywhere else except page reclaim, the page is
1052 	 * invisible to the vm, so the page can not be migrated.  So try to
1053 	 * free the metadata, so the page can be freed.
1054 	 */
1055 	if (!page->mapping) {
1056 		VM_BUG_ON_PAGE(PageAnon(page), page);
1057 		if (page_has_private(page)) {
1058 			try_to_free_buffers(page);
1059 			goto out_unlock_both;
1060 		}
1061 	} else if (page_mapped(page)) {
1062 		/* Establish migration ptes */
1063 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1064 				page);
1065 		try_to_migrate(page, 0);
1066 		page_was_mapped = true;
1067 	}
1068 
1069 	if (!page_mapped(page))
1070 		rc = move_to_new_page(newpage, page, mode);
1071 
1072 	if (page_was_mapped)
1073 		remove_migration_ptes(page,
1074 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1075 
1076 out_unlock_both:
1077 	unlock_page(newpage);
1078 out_unlock:
1079 	/* Drop an anon_vma reference if we took one */
1080 	if (anon_vma)
1081 		put_anon_vma(anon_vma);
1082 	unlock_page(page);
1083 out:
1084 	/*
1085 	 * If migration is successful, decrease refcount of the newpage
1086 	 * which will not free the page because new page owner increased
1087 	 * refcounter. As well, if it is LRU page, add the page to LRU
1088 	 * list in here. Use the old state of the isolated source page to
1089 	 * determine if we migrated a LRU page. newpage was already unlocked
1090 	 * and possibly modified by its owner - don't rely on the page
1091 	 * state.
1092 	 */
1093 	if (rc == MIGRATEPAGE_SUCCESS) {
1094 		if (unlikely(!is_lru))
1095 			put_page(newpage);
1096 		else
1097 			putback_lru_page(newpage);
1098 	}
1099 
1100 	return rc;
1101 }
1102 
1103 
1104 /*
1105  * node_demotion[] example:
1106  *
1107  * Consider a system with two sockets.  Each socket has
1108  * three classes of memory attached: fast, medium and slow.
1109  * Each memory class is placed in its own NUMA node.  The
1110  * CPUs are placed in the node with the "fast" memory.  The
1111  * 6 NUMA nodes (0-5) might be split among the sockets like
1112  * this:
1113  *
1114  *	Socket A: 0, 1, 2
1115  *	Socket B: 3, 4, 5
1116  *
1117  * When Node 0 fills up, its memory should be migrated to
1118  * Node 1.  When Node 1 fills up, it should be migrated to
1119  * Node 2.  The migration path start on the nodes with the
1120  * processors (since allocations default to this node) and
1121  * fast memory, progress through medium and end with the
1122  * slow memory:
1123  *
1124  *	0 -> 1 -> 2 -> stop
1125  *	3 -> 4 -> 5 -> stop
1126  *
1127  * This is represented in the node_demotion[] like this:
1128  *
1129  *	{  1, // Node 0 migrates to 1
1130  *	   2, // Node 1 migrates to 2
1131  *	  -1, // Node 2 does not migrate
1132  *	   4, // Node 3 migrates to 4
1133  *	   5, // Node 4 migrates to 5
1134  *	  -1} // Node 5 does not migrate
1135  */
1136 
1137 /*
1138  * Writes to this array occur without locking.  Cycles are
1139  * not allowed: Node X demotes to Y which demotes to X...
1140  *
1141  * If multiple reads are performed, a single rcu_read_lock()
1142  * must be held over all reads to ensure that no cycles are
1143  * observed.
1144  */
1145 static int node_demotion[MAX_NUMNODES] __read_mostly =
1146 	{[0 ...  MAX_NUMNODES - 1] = NUMA_NO_NODE};
1147 
1148 /**
1149  * next_demotion_node() - Get the next node in the demotion path
1150  * @node: The starting node to lookup the next node
1151  *
1152  * Return: node id for next memory node in the demotion path hierarchy
1153  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
1154  * @node online or guarantee that it *continues* to be the next demotion
1155  * target.
1156  */
1157 int next_demotion_node(int node)
1158 {
1159 	int target;
1160 
1161 	/*
1162 	 * node_demotion[] is updated without excluding this
1163 	 * function from running.  RCU doesn't provide any
1164 	 * compiler barriers, so the READ_ONCE() is required
1165 	 * to avoid compiler reordering or read merging.
1166 	 *
1167 	 * Make sure to use RCU over entire code blocks if
1168 	 * node_demotion[] reads need to be consistent.
1169 	 */
1170 	rcu_read_lock();
1171 	target = READ_ONCE(node_demotion[node]);
1172 	rcu_read_unlock();
1173 
1174 	return target;
1175 }
1176 
1177 /*
1178  * Obtain the lock on page, remove all ptes and migrate the page
1179  * to the newly allocated page in newpage.
1180  */
1181 static int unmap_and_move(new_page_t get_new_page,
1182 				   free_page_t put_new_page,
1183 				   unsigned long private, struct page *page,
1184 				   int force, enum migrate_mode mode,
1185 				   enum migrate_reason reason,
1186 				   struct list_head *ret)
1187 {
1188 	int rc = MIGRATEPAGE_SUCCESS;
1189 	struct page *newpage = NULL;
1190 
1191 	if (!thp_migration_supported() && PageTransHuge(page))
1192 		return -ENOSYS;
1193 
1194 	if (page_count(page) == 1) {
1195 		/* page was freed from under us. So we are done. */
1196 		ClearPageActive(page);
1197 		ClearPageUnevictable(page);
1198 		if (unlikely(__PageMovable(page))) {
1199 			lock_page(page);
1200 			if (!PageMovable(page))
1201 				__ClearPageIsolated(page);
1202 			unlock_page(page);
1203 		}
1204 		goto out;
1205 	}
1206 
1207 	newpage = get_new_page(page, private);
1208 	if (!newpage)
1209 		return -ENOMEM;
1210 
1211 	rc = __unmap_and_move(page, newpage, force, mode);
1212 	if (rc == MIGRATEPAGE_SUCCESS)
1213 		set_page_owner_migrate_reason(newpage, reason);
1214 
1215 out:
1216 	if (rc != -EAGAIN) {
1217 		/*
1218 		 * A page that has been migrated has all references
1219 		 * removed and will be freed. A page that has not been
1220 		 * migrated will have kept its references and be restored.
1221 		 */
1222 		list_del(&page->lru);
1223 	}
1224 
1225 	/*
1226 	 * If migration is successful, releases reference grabbed during
1227 	 * isolation. Otherwise, restore the page to right list unless
1228 	 * we want to retry.
1229 	 */
1230 	if (rc == MIGRATEPAGE_SUCCESS) {
1231 		/*
1232 		 * Compaction can migrate also non-LRU pages which are
1233 		 * not accounted to NR_ISOLATED_*. They can be recognized
1234 		 * as __PageMovable
1235 		 */
1236 		if (likely(!__PageMovable(page)))
1237 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1238 					page_is_file_lru(page), -thp_nr_pages(page));
1239 
1240 		if (reason != MR_MEMORY_FAILURE)
1241 			/*
1242 			 * We release the page in page_handle_poison.
1243 			 */
1244 			put_page(page);
1245 	} else {
1246 		if (rc != -EAGAIN)
1247 			list_add_tail(&page->lru, ret);
1248 
1249 		if (put_new_page)
1250 			put_new_page(newpage, private);
1251 		else
1252 			put_page(newpage);
1253 	}
1254 
1255 	return rc;
1256 }
1257 
1258 /*
1259  * Counterpart of unmap_and_move_page() for hugepage migration.
1260  *
1261  * This function doesn't wait the completion of hugepage I/O
1262  * because there is no race between I/O and migration for hugepage.
1263  * Note that currently hugepage I/O occurs only in direct I/O
1264  * where no lock is held and PG_writeback is irrelevant,
1265  * and writeback status of all subpages are counted in the reference
1266  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267  * under direct I/O, the reference of the head page is 512 and a bit more.)
1268  * This means that when we try to migrate hugepage whose subpages are
1269  * doing direct I/O, some references remain after try_to_unmap() and
1270  * hugepage migration fails without data corruption.
1271  *
1272  * There is also no race when direct I/O is issued on the page under migration,
1273  * because then pte is replaced with migration swap entry and direct I/O code
1274  * will wait in the page fault for migration to complete.
1275  */
1276 static int unmap_and_move_huge_page(new_page_t get_new_page,
1277 				free_page_t put_new_page, unsigned long private,
1278 				struct page *hpage, int force,
1279 				enum migrate_mode mode, int reason,
1280 				struct list_head *ret)
1281 {
1282 	int rc = -EAGAIN;
1283 	int page_was_mapped = 0;
1284 	struct page *new_hpage;
1285 	struct anon_vma *anon_vma = NULL;
1286 	struct address_space *mapping = NULL;
1287 
1288 	/*
1289 	 * Migratability of hugepages depends on architectures and their size.
1290 	 * This check is necessary because some callers of hugepage migration
1291 	 * like soft offline and memory hotremove don't walk through page
1292 	 * tables or check whether the hugepage is pmd-based or not before
1293 	 * kicking migration.
1294 	 */
1295 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1296 		list_move_tail(&hpage->lru, ret);
1297 		return -ENOSYS;
1298 	}
1299 
1300 	if (page_count(hpage) == 1) {
1301 		/* page was freed from under us. So we are done. */
1302 		putback_active_hugepage(hpage);
1303 		return MIGRATEPAGE_SUCCESS;
1304 	}
1305 
1306 	new_hpage = get_new_page(hpage, private);
1307 	if (!new_hpage)
1308 		return -ENOMEM;
1309 
1310 	if (!trylock_page(hpage)) {
1311 		if (!force)
1312 			goto out;
1313 		switch (mode) {
1314 		case MIGRATE_SYNC:
1315 		case MIGRATE_SYNC_NO_COPY:
1316 			break;
1317 		default:
1318 			goto out;
1319 		}
1320 		lock_page(hpage);
1321 	}
1322 
1323 	/*
1324 	 * Check for pages which are in the process of being freed.  Without
1325 	 * page_mapping() set, hugetlbfs specific move page routine will not
1326 	 * be called and we could leak usage counts for subpools.
1327 	 */
1328 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1329 		rc = -EBUSY;
1330 		goto out_unlock;
1331 	}
1332 
1333 	if (PageAnon(hpage))
1334 		anon_vma = page_get_anon_vma(hpage);
1335 
1336 	if (unlikely(!trylock_page(new_hpage)))
1337 		goto put_anon;
1338 
1339 	if (page_mapped(hpage)) {
1340 		bool mapping_locked = false;
1341 		enum ttu_flags ttu = 0;
1342 
1343 		if (!PageAnon(hpage)) {
1344 			/*
1345 			 * In shared mappings, try_to_unmap could potentially
1346 			 * call huge_pmd_unshare.  Because of this, take
1347 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1348 			 * to let lower levels know we have taken the lock.
1349 			 */
1350 			mapping = hugetlb_page_mapping_lock_write(hpage);
1351 			if (unlikely(!mapping))
1352 				goto unlock_put_anon;
1353 
1354 			mapping_locked = true;
1355 			ttu |= TTU_RMAP_LOCKED;
1356 		}
1357 
1358 		try_to_migrate(hpage, ttu);
1359 		page_was_mapped = 1;
1360 
1361 		if (mapping_locked)
1362 			i_mmap_unlock_write(mapping);
1363 	}
1364 
1365 	if (!page_mapped(hpage))
1366 		rc = move_to_new_page(new_hpage, hpage, mode);
1367 
1368 	if (page_was_mapped)
1369 		remove_migration_ptes(hpage,
1370 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1371 
1372 unlock_put_anon:
1373 	unlock_page(new_hpage);
1374 
1375 put_anon:
1376 	if (anon_vma)
1377 		put_anon_vma(anon_vma);
1378 
1379 	if (rc == MIGRATEPAGE_SUCCESS) {
1380 		move_hugetlb_state(hpage, new_hpage, reason);
1381 		put_new_page = NULL;
1382 	}
1383 
1384 out_unlock:
1385 	unlock_page(hpage);
1386 out:
1387 	if (rc == MIGRATEPAGE_SUCCESS)
1388 		putback_active_hugepage(hpage);
1389 	else if (rc != -EAGAIN)
1390 		list_move_tail(&hpage->lru, ret);
1391 
1392 	/*
1393 	 * If migration was not successful and there's a freeing callback, use
1394 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1395 	 * isolation.
1396 	 */
1397 	if (put_new_page)
1398 		put_new_page(new_hpage, private);
1399 	else
1400 		putback_active_hugepage(new_hpage);
1401 
1402 	return rc;
1403 }
1404 
1405 static inline int try_split_thp(struct page *page, struct page **page2,
1406 				struct list_head *from)
1407 {
1408 	int rc = 0;
1409 
1410 	lock_page(page);
1411 	rc = split_huge_page_to_list(page, from);
1412 	unlock_page(page);
1413 	if (!rc)
1414 		list_safe_reset_next(page, *page2, lru);
1415 
1416 	return rc;
1417 }
1418 
1419 /*
1420  * migrate_pages - migrate the pages specified in a list, to the free pages
1421  *		   supplied as the target for the page migration
1422  *
1423  * @from:		The list of pages to be migrated.
1424  * @get_new_page:	The function used to allocate free pages to be used
1425  *			as the target of the page migration.
1426  * @put_new_page:	The function used to free target pages if migration
1427  *			fails, or NULL if no special handling is necessary.
1428  * @private:		Private data to be passed on to get_new_page()
1429  * @mode:		The migration mode that specifies the constraints for
1430  *			page migration, if any.
1431  * @reason:		The reason for page migration.
1432  * @ret_succeeded:	Set to the number of pages migrated successfully if
1433  *			the caller passes a non-NULL pointer.
1434  *
1435  * The function returns after 10 attempts or if no pages are movable any more
1436  * because the list has become empty or no retryable pages exist any more.
1437  * It is caller's responsibility to call putback_movable_pages() to return pages
1438  * to the LRU or free list only if ret != 0.
1439  *
1440  * Returns the number of pages that were not migrated, or an error code.
1441  */
1442 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1443 		free_page_t put_new_page, unsigned long private,
1444 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1445 {
1446 	int retry = 1;
1447 	int thp_retry = 1;
1448 	int nr_failed = 0;
1449 	int nr_succeeded = 0;
1450 	int nr_thp_succeeded = 0;
1451 	int nr_thp_failed = 0;
1452 	int nr_thp_split = 0;
1453 	int pass = 0;
1454 	bool is_thp = false;
1455 	struct page *page;
1456 	struct page *page2;
1457 	int swapwrite = current->flags & PF_SWAPWRITE;
1458 	int rc, nr_subpages;
1459 	LIST_HEAD(ret_pages);
1460 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1461 
1462 	trace_mm_migrate_pages_start(mode, reason);
1463 
1464 	if (!swapwrite)
1465 		current->flags |= PF_SWAPWRITE;
1466 
1467 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1468 		retry = 0;
1469 		thp_retry = 0;
1470 
1471 		list_for_each_entry_safe(page, page2, from, lru) {
1472 retry:
1473 			/*
1474 			 * THP statistics is based on the source huge page.
1475 			 * Capture required information that might get lost
1476 			 * during migration.
1477 			 */
1478 			is_thp = PageTransHuge(page) && !PageHuge(page);
1479 			nr_subpages = thp_nr_pages(page);
1480 			cond_resched();
1481 
1482 			if (PageHuge(page))
1483 				rc = unmap_and_move_huge_page(get_new_page,
1484 						put_new_page, private, page,
1485 						pass > 2, mode, reason,
1486 						&ret_pages);
1487 			else
1488 				rc = unmap_and_move(get_new_page, put_new_page,
1489 						private, page, pass > 2, mode,
1490 						reason, &ret_pages);
1491 			/*
1492 			 * The rules are:
1493 			 *	Success: non hugetlb page will be freed, hugetlb
1494 			 *		 page will be put back
1495 			 *	-EAGAIN: stay on the from list
1496 			 *	-ENOMEM: stay on the from list
1497 			 *	Other errno: put on ret_pages list then splice to
1498 			 *		     from list
1499 			 */
1500 			switch(rc) {
1501 			/*
1502 			 * THP migration might be unsupported or the
1503 			 * allocation could've failed so we should
1504 			 * retry on the same page with the THP split
1505 			 * to base pages.
1506 			 *
1507 			 * Head page is retried immediately and tail
1508 			 * pages are added to the tail of the list so
1509 			 * we encounter them after the rest of the list
1510 			 * is processed.
1511 			 */
1512 			case -ENOSYS:
1513 				/* THP migration is unsupported */
1514 				if (is_thp) {
1515 					if (!try_split_thp(page, &page2, from)) {
1516 						nr_thp_split++;
1517 						goto retry;
1518 					}
1519 
1520 					nr_thp_failed++;
1521 					nr_failed += nr_subpages;
1522 					break;
1523 				}
1524 
1525 				/* Hugetlb migration is unsupported */
1526 				nr_failed++;
1527 				break;
1528 			case -ENOMEM:
1529 				/*
1530 				 * When memory is low, don't bother to try to migrate
1531 				 * other pages, just exit.
1532 				 * THP NUMA faulting doesn't split THP to retry.
1533 				 */
1534 				if (is_thp && !nosplit) {
1535 					if (!try_split_thp(page, &page2, from)) {
1536 						nr_thp_split++;
1537 						goto retry;
1538 					}
1539 
1540 					nr_thp_failed++;
1541 					nr_failed += nr_subpages;
1542 					goto out;
1543 				}
1544 				nr_failed++;
1545 				goto out;
1546 			case -EAGAIN:
1547 				if (is_thp) {
1548 					thp_retry++;
1549 					break;
1550 				}
1551 				retry++;
1552 				break;
1553 			case MIGRATEPAGE_SUCCESS:
1554 				if (is_thp) {
1555 					nr_thp_succeeded++;
1556 					nr_succeeded += nr_subpages;
1557 					break;
1558 				}
1559 				nr_succeeded++;
1560 				break;
1561 			default:
1562 				/*
1563 				 * Permanent failure (-EBUSY, etc.):
1564 				 * unlike -EAGAIN case, the failed page is
1565 				 * removed from migration page list and not
1566 				 * retried in the next outer loop.
1567 				 */
1568 				if (is_thp) {
1569 					nr_thp_failed++;
1570 					nr_failed += nr_subpages;
1571 					break;
1572 				}
1573 				nr_failed++;
1574 				break;
1575 			}
1576 		}
1577 	}
1578 	nr_failed += retry + thp_retry;
1579 	nr_thp_failed += thp_retry;
1580 	rc = nr_failed;
1581 out:
1582 	/*
1583 	 * Put the permanent failure page back to migration list, they
1584 	 * will be put back to the right list by the caller.
1585 	 */
1586 	list_splice(&ret_pages, from);
1587 
1588 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1589 	count_vm_events(PGMIGRATE_FAIL, nr_failed);
1590 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1591 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1592 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1593 	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1594 			       nr_thp_failed, nr_thp_split, mode, reason);
1595 
1596 	if (!swapwrite)
1597 		current->flags &= ~PF_SWAPWRITE;
1598 
1599 	if (ret_succeeded)
1600 		*ret_succeeded = nr_succeeded;
1601 
1602 	return rc;
1603 }
1604 
1605 struct page *alloc_migration_target(struct page *page, unsigned long private)
1606 {
1607 	struct migration_target_control *mtc;
1608 	gfp_t gfp_mask;
1609 	unsigned int order = 0;
1610 	struct page *new_page = NULL;
1611 	int nid;
1612 	int zidx;
1613 
1614 	mtc = (struct migration_target_control *)private;
1615 	gfp_mask = mtc->gfp_mask;
1616 	nid = mtc->nid;
1617 	if (nid == NUMA_NO_NODE)
1618 		nid = page_to_nid(page);
1619 
1620 	if (PageHuge(page)) {
1621 		struct hstate *h = page_hstate(compound_head(page));
1622 
1623 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1624 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1625 	}
1626 
1627 	if (PageTransHuge(page)) {
1628 		/*
1629 		 * clear __GFP_RECLAIM to make the migration callback
1630 		 * consistent with regular THP allocations.
1631 		 */
1632 		gfp_mask &= ~__GFP_RECLAIM;
1633 		gfp_mask |= GFP_TRANSHUGE;
1634 		order = HPAGE_PMD_ORDER;
1635 	}
1636 	zidx = zone_idx(page_zone(page));
1637 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1638 		gfp_mask |= __GFP_HIGHMEM;
1639 
1640 	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1641 
1642 	if (new_page && PageTransHuge(new_page))
1643 		prep_transhuge_page(new_page);
1644 
1645 	return new_page;
1646 }
1647 
1648 #ifdef CONFIG_NUMA
1649 
1650 static int store_status(int __user *status, int start, int value, int nr)
1651 {
1652 	while (nr-- > 0) {
1653 		if (put_user(value, status + start))
1654 			return -EFAULT;
1655 		start++;
1656 	}
1657 
1658 	return 0;
1659 }
1660 
1661 static int do_move_pages_to_node(struct mm_struct *mm,
1662 		struct list_head *pagelist, int node)
1663 {
1664 	int err;
1665 	struct migration_target_control mtc = {
1666 		.nid = node,
1667 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1668 	};
1669 
1670 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1671 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1672 	if (err)
1673 		putback_movable_pages(pagelist);
1674 	return err;
1675 }
1676 
1677 /*
1678  * Resolves the given address to a struct page, isolates it from the LRU and
1679  * puts it to the given pagelist.
1680  * Returns:
1681  *     errno - if the page cannot be found/isolated
1682  *     0 - when it doesn't have to be migrated because it is already on the
1683  *         target node
1684  *     1 - when it has been queued
1685  */
1686 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1687 		int node, struct list_head *pagelist, bool migrate_all)
1688 {
1689 	struct vm_area_struct *vma;
1690 	struct page *page;
1691 	unsigned int follflags;
1692 	int err;
1693 
1694 	mmap_read_lock(mm);
1695 	err = -EFAULT;
1696 	vma = find_vma(mm, addr);
1697 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1698 		goto out;
1699 
1700 	/* FOLL_DUMP to ignore special (like zero) pages */
1701 	follflags = FOLL_GET | FOLL_DUMP;
1702 	page = follow_page(vma, addr, follflags);
1703 
1704 	err = PTR_ERR(page);
1705 	if (IS_ERR(page))
1706 		goto out;
1707 
1708 	err = -ENOENT;
1709 	if (!page)
1710 		goto out;
1711 
1712 	err = 0;
1713 	if (page_to_nid(page) == node)
1714 		goto out_putpage;
1715 
1716 	err = -EACCES;
1717 	if (page_mapcount(page) > 1 && !migrate_all)
1718 		goto out_putpage;
1719 
1720 	if (PageHuge(page)) {
1721 		if (PageHead(page)) {
1722 			isolate_huge_page(page, pagelist);
1723 			err = 1;
1724 		}
1725 	} else {
1726 		struct page *head;
1727 
1728 		head = compound_head(page);
1729 		err = isolate_lru_page(head);
1730 		if (err)
1731 			goto out_putpage;
1732 
1733 		err = 1;
1734 		list_add_tail(&head->lru, pagelist);
1735 		mod_node_page_state(page_pgdat(head),
1736 			NR_ISOLATED_ANON + page_is_file_lru(head),
1737 			thp_nr_pages(head));
1738 	}
1739 out_putpage:
1740 	/*
1741 	 * Either remove the duplicate refcount from
1742 	 * isolate_lru_page() or drop the page ref if it was
1743 	 * not isolated.
1744 	 */
1745 	put_page(page);
1746 out:
1747 	mmap_read_unlock(mm);
1748 	return err;
1749 }
1750 
1751 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1752 		struct list_head *pagelist, int __user *status,
1753 		int start, int i, unsigned long nr_pages)
1754 {
1755 	int err;
1756 
1757 	if (list_empty(pagelist))
1758 		return 0;
1759 
1760 	err = do_move_pages_to_node(mm, pagelist, node);
1761 	if (err) {
1762 		/*
1763 		 * Positive err means the number of failed
1764 		 * pages to migrate.  Since we are going to
1765 		 * abort and return the number of non-migrated
1766 		 * pages, so need to include the rest of the
1767 		 * nr_pages that have not been attempted as
1768 		 * well.
1769 		 */
1770 		if (err > 0)
1771 			err += nr_pages - i - 1;
1772 		return err;
1773 	}
1774 	return store_status(status, start, node, i - start);
1775 }
1776 
1777 /*
1778  * Migrate an array of page address onto an array of nodes and fill
1779  * the corresponding array of status.
1780  */
1781 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1782 			 unsigned long nr_pages,
1783 			 const void __user * __user *pages,
1784 			 const int __user *nodes,
1785 			 int __user *status, int flags)
1786 {
1787 	int current_node = NUMA_NO_NODE;
1788 	LIST_HEAD(pagelist);
1789 	int start, i;
1790 	int err = 0, err1;
1791 
1792 	lru_cache_disable();
1793 
1794 	for (i = start = 0; i < nr_pages; i++) {
1795 		const void __user *p;
1796 		unsigned long addr;
1797 		int node;
1798 
1799 		err = -EFAULT;
1800 		if (get_user(p, pages + i))
1801 			goto out_flush;
1802 		if (get_user(node, nodes + i))
1803 			goto out_flush;
1804 		addr = (unsigned long)untagged_addr(p);
1805 
1806 		err = -ENODEV;
1807 		if (node < 0 || node >= MAX_NUMNODES)
1808 			goto out_flush;
1809 		if (!node_state(node, N_MEMORY))
1810 			goto out_flush;
1811 
1812 		err = -EACCES;
1813 		if (!node_isset(node, task_nodes))
1814 			goto out_flush;
1815 
1816 		if (current_node == NUMA_NO_NODE) {
1817 			current_node = node;
1818 			start = i;
1819 		} else if (node != current_node) {
1820 			err = move_pages_and_store_status(mm, current_node,
1821 					&pagelist, status, start, i, nr_pages);
1822 			if (err)
1823 				goto out;
1824 			start = i;
1825 			current_node = node;
1826 		}
1827 
1828 		/*
1829 		 * Errors in the page lookup or isolation are not fatal and we simply
1830 		 * report them via status
1831 		 */
1832 		err = add_page_for_migration(mm, addr, current_node,
1833 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1834 
1835 		if (err > 0) {
1836 			/* The page is successfully queued for migration */
1837 			continue;
1838 		}
1839 
1840 		/*
1841 		 * If the page is already on the target node (!err), store the
1842 		 * node, otherwise, store the err.
1843 		 */
1844 		err = store_status(status, i, err ? : current_node, 1);
1845 		if (err)
1846 			goto out_flush;
1847 
1848 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1849 				status, start, i, nr_pages);
1850 		if (err)
1851 			goto out;
1852 		current_node = NUMA_NO_NODE;
1853 	}
1854 out_flush:
1855 	/* Make sure we do not overwrite the existing error */
1856 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1857 				status, start, i, nr_pages);
1858 	if (err >= 0)
1859 		err = err1;
1860 out:
1861 	lru_cache_enable();
1862 	return err;
1863 }
1864 
1865 /*
1866  * Determine the nodes of an array of pages and store it in an array of status.
1867  */
1868 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1869 				const void __user **pages, int *status)
1870 {
1871 	unsigned long i;
1872 
1873 	mmap_read_lock(mm);
1874 
1875 	for (i = 0; i < nr_pages; i++) {
1876 		unsigned long addr = (unsigned long)(*pages);
1877 		struct vm_area_struct *vma;
1878 		struct page *page;
1879 		int err = -EFAULT;
1880 
1881 		vma = vma_lookup(mm, addr);
1882 		if (!vma)
1883 			goto set_status;
1884 
1885 		/* FOLL_DUMP to ignore special (like zero) pages */
1886 		page = follow_page(vma, addr, FOLL_DUMP);
1887 
1888 		err = PTR_ERR(page);
1889 		if (IS_ERR(page))
1890 			goto set_status;
1891 
1892 		err = page ? page_to_nid(page) : -ENOENT;
1893 set_status:
1894 		*status = err;
1895 
1896 		pages++;
1897 		status++;
1898 	}
1899 
1900 	mmap_read_unlock(mm);
1901 }
1902 
1903 static int get_compat_pages_array(const void __user *chunk_pages[],
1904 				  const void __user * __user *pages,
1905 				  unsigned long chunk_nr)
1906 {
1907 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1908 	compat_uptr_t p;
1909 	int i;
1910 
1911 	for (i = 0; i < chunk_nr; i++) {
1912 		if (get_user(p, pages32 + i))
1913 			return -EFAULT;
1914 		chunk_pages[i] = compat_ptr(p);
1915 	}
1916 
1917 	return 0;
1918 }
1919 
1920 /*
1921  * Determine the nodes of a user array of pages and store it in
1922  * a user array of status.
1923  */
1924 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1925 			 const void __user * __user *pages,
1926 			 int __user *status)
1927 {
1928 #define DO_PAGES_STAT_CHUNK_NR 16
1929 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1930 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1931 
1932 	while (nr_pages) {
1933 		unsigned long chunk_nr;
1934 
1935 		chunk_nr = nr_pages;
1936 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1937 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1938 
1939 		if (in_compat_syscall()) {
1940 			if (get_compat_pages_array(chunk_pages, pages,
1941 						   chunk_nr))
1942 				break;
1943 		} else {
1944 			if (copy_from_user(chunk_pages, pages,
1945 				      chunk_nr * sizeof(*chunk_pages)))
1946 				break;
1947 		}
1948 
1949 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1950 
1951 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1952 			break;
1953 
1954 		pages += chunk_nr;
1955 		status += chunk_nr;
1956 		nr_pages -= chunk_nr;
1957 	}
1958 	return nr_pages ? -EFAULT : 0;
1959 }
1960 
1961 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1962 {
1963 	struct task_struct *task;
1964 	struct mm_struct *mm;
1965 
1966 	/*
1967 	 * There is no need to check if current process has the right to modify
1968 	 * the specified process when they are same.
1969 	 */
1970 	if (!pid) {
1971 		mmget(current->mm);
1972 		*mem_nodes = cpuset_mems_allowed(current);
1973 		return current->mm;
1974 	}
1975 
1976 	/* Find the mm_struct */
1977 	rcu_read_lock();
1978 	task = find_task_by_vpid(pid);
1979 	if (!task) {
1980 		rcu_read_unlock();
1981 		return ERR_PTR(-ESRCH);
1982 	}
1983 	get_task_struct(task);
1984 
1985 	/*
1986 	 * Check if this process has the right to modify the specified
1987 	 * process. Use the regular "ptrace_may_access()" checks.
1988 	 */
1989 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1990 		rcu_read_unlock();
1991 		mm = ERR_PTR(-EPERM);
1992 		goto out;
1993 	}
1994 	rcu_read_unlock();
1995 
1996 	mm = ERR_PTR(security_task_movememory(task));
1997 	if (IS_ERR(mm))
1998 		goto out;
1999 	*mem_nodes = cpuset_mems_allowed(task);
2000 	mm = get_task_mm(task);
2001 out:
2002 	put_task_struct(task);
2003 	if (!mm)
2004 		mm = ERR_PTR(-EINVAL);
2005 	return mm;
2006 }
2007 
2008 /*
2009  * Move a list of pages in the address space of the currently executing
2010  * process.
2011  */
2012 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2013 			     const void __user * __user *pages,
2014 			     const int __user *nodes,
2015 			     int __user *status, int flags)
2016 {
2017 	struct mm_struct *mm;
2018 	int err;
2019 	nodemask_t task_nodes;
2020 
2021 	/* Check flags */
2022 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2023 		return -EINVAL;
2024 
2025 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2026 		return -EPERM;
2027 
2028 	mm = find_mm_struct(pid, &task_nodes);
2029 	if (IS_ERR(mm))
2030 		return PTR_ERR(mm);
2031 
2032 	if (nodes)
2033 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2034 				    nodes, status, flags);
2035 	else
2036 		err = do_pages_stat(mm, nr_pages, pages, status);
2037 
2038 	mmput(mm);
2039 	return err;
2040 }
2041 
2042 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2043 		const void __user * __user *, pages,
2044 		const int __user *, nodes,
2045 		int __user *, status, int, flags)
2046 {
2047 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2048 }
2049 
2050 #ifdef CONFIG_NUMA_BALANCING
2051 /*
2052  * Returns true if this is a safe migration target node for misplaced NUMA
2053  * pages. Currently it only checks the watermarks which crude
2054  */
2055 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2056 				   unsigned long nr_migrate_pages)
2057 {
2058 	int z;
2059 
2060 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2061 		struct zone *zone = pgdat->node_zones + z;
2062 
2063 		if (!populated_zone(zone))
2064 			continue;
2065 
2066 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2067 		if (!zone_watermark_ok(zone, 0,
2068 				       high_wmark_pages(zone) +
2069 				       nr_migrate_pages,
2070 				       ZONE_MOVABLE, 0))
2071 			continue;
2072 		return true;
2073 	}
2074 	return false;
2075 }
2076 
2077 static struct page *alloc_misplaced_dst_page(struct page *page,
2078 					   unsigned long data)
2079 {
2080 	int nid = (int) data;
2081 	struct page *newpage;
2082 
2083 	newpage = __alloc_pages_node(nid,
2084 					 (GFP_HIGHUSER_MOVABLE |
2085 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
2086 					  __GFP_NORETRY | __GFP_NOWARN) &
2087 					 ~__GFP_RECLAIM, 0);
2088 
2089 	return newpage;
2090 }
2091 
2092 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2093 						 unsigned long data)
2094 {
2095 	int nid = (int) data;
2096 	struct page *newpage;
2097 
2098 	newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2099 				   HPAGE_PMD_ORDER);
2100 	if (!newpage)
2101 		goto out;
2102 
2103 	prep_transhuge_page(newpage);
2104 
2105 out:
2106 	return newpage;
2107 }
2108 
2109 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2110 {
2111 	int page_lru;
2112 	int nr_pages = thp_nr_pages(page);
2113 
2114 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2115 
2116 	/* Do not migrate THP mapped by multiple processes */
2117 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2118 		return 0;
2119 
2120 	/* Avoid migrating to a node that is nearly full */
2121 	if (!migrate_balanced_pgdat(pgdat, nr_pages))
2122 		return 0;
2123 
2124 	if (isolate_lru_page(page))
2125 		return 0;
2126 
2127 	page_lru = page_is_file_lru(page);
2128 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2129 			    nr_pages);
2130 
2131 	/*
2132 	 * Isolating the page has taken another reference, so the
2133 	 * caller's reference can be safely dropped without the page
2134 	 * disappearing underneath us during migration.
2135 	 */
2136 	put_page(page);
2137 	return 1;
2138 }
2139 
2140 /*
2141  * Attempt to migrate a misplaced page to the specified destination
2142  * node. Caller is expected to have an elevated reference count on
2143  * the page that will be dropped by this function before returning.
2144  */
2145 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2146 			   int node)
2147 {
2148 	pg_data_t *pgdat = NODE_DATA(node);
2149 	int isolated;
2150 	int nr_remaining;
2151 	LIST_HEAD(migratepages);
2152 	new_page_t *new;
2153 	bool compound;
2154 	int nr_pages = thp_nr_pages(page);
2155 
2156 	/*
2157 	 * PTE mapped THP or HugeTLB page can't reach here so the page could
2158 	 * be either base page or THP.  And it must be head page if it is
2159 	 * THP.
2160 	 */
2161 	compound = PageTransHuge(page);
2162 
2163 	if (compound)
2164 		new = alloc_misplaced_dst_page_thp;
2165 	else
2166 		new = alloc_misplaced_dst_page;
2167 
2168 	/*
2169 	 * Don't migrate file pages that are mapped in multiple processes
2170 	 * with execute permissions as they are probably shared libraries.
2171 	 */
2172 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2173 	    (vma->vm_flags & VM_EXEC))
2174 		goto out;
2175 
2176 	/*
2177 	 * Also do not migrate dirty pages as not all filesystems can move
2178 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2179 	 */
2180 	if (page_is_file_lru(page) && PageDirty(page))
2181 		goto out;
2182 
2183 	isolated = numamigrate_isolate_page(pgdat, page);
2184 	if (!isolated)
2185 		goto out;
2186 
2187 	list_add(&page->lru, &migratepages);
2188 	nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2189 				     MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL);
2190 	if (nr_remaining) {
2191 		if (!list_empty(&migratepages)) {
2192 			list_del(&page->lru);
2193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2194 					page_is_file_lru(page), -nr_pages);
2195 			putback_lru_page(page);
2196 		}
2197 		isolated = 0;
2198 	} else
2199 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2200 	BUG_ON(!list_empty(&migratepages));
2201 	return isolated;
2202 
2203 out:
2204 	put_page(page);
2205 	return 0;
2206 }
2207 #endif /* CONFIG_NUMA_BALANCING */
2208 #endif /* CONFIG_NUMA */
2209 
2210 #ifdef CONFIG_DEVICE_PRIVATE
2211 static int migrate_vma_collect_skip(unsigned long start,
2212 				    unsigned long end,
2213 				    struct mm_walk *walk)
2214 {
2215 	struct migrate_vma *migrate = walk->private;
2216 	unsigned long addr;
2217 
2218 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2219 		migrate->dst[migrate->npages] = 0;
2220 		migrate->src[migrate->npages++] = 0;
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 static int migrate_vma_collect_hole(unsigned long start,
2227 				    unsigned long end,
2228 				    __always_unused int depth,
2229 				    struct mm_walk *walk)
2230 {
2231 	struct migrate_vma *migrate = walk->private;
2232 	unsigned long addr;
2233 
2234 	/* Only allow populating anonymous memory. */
2235 	if (!vma_is_anonymous(walk->vma))
2236 		return migrate_vma_collect_skip(start, end, walk);
2237 
2238 	for (addr = start; addr < end; addr += PAGE_SIZE) {
2239 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2240 		migrate->dst[migrate->npages] = 0;
2241 		migrate->npages++;
2242 		migrate->cpages++;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2249 				   unsigned long start,
2250 				   unsigned long end,
2251 				   struct mm_walk *walk)
2252 {
2253 	struct migrate_vma *migrate = walk->private;
2254 	struct vm_area_struct *vma = walk->vma;
2255 	struct mm_struct *mm = vma->vm_mm;
2256 	unsigned long addr = start, unmapped = 0;
2257 	spinlock_t *ptl;
2258 	pte_t *ptep;
2259 
2260 again:
2261 	if (pmd_none(*pmdp))
2262 		return migrate_vma_collect_hole(start, end, -1, walk);
2263 
2264 	if (pmd_trans_huge(*pmdp)) {
2265 		struct page *page;
2266 
2267 		ptl = pmd_lock(mm, pmdp);
2268 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2269 			spin_unlock(ptl);
2270 			goto again;
2271 		}
2272 
2273 		page = pmd_page(*pmdp);
2274 		if (is_huge_zero_page(page)) {
2275 			spin_unlock(ptl);
2276 			split_huge_pmd(vma, pmdp, addr);
2277 			if (pmd_trans_unstable(pmdp))
2278 				return migrate_vma_collect_skip(start, end,
2279 								walk);
2280 		} else {
2281 			int ret;
2282 
2283 			get_page(page);
2284 			spin_unlock(ptl);
2285 			if (unlikely(!trylock_page(page)))
2286 				return migrate_vma_collect_skip(start, end,
2287 								walk);
2288 			ret = split_huge_page(page);
2289 			unlock_page(page);
2290 			put_page(page);
2291 			if (ret)
2292 				return migrate_vma_collect_skip(start, end,
2293 								walk);
2294 			if (pmd_none(*pmdp))
2295 				return migrate_vma_collect_hole(start, end, -1,
2296 								walk);
2297 		}
2298 	}
2299 
2300 	if (unlikely(pmd_bad(*pmdp)))
2301 		return migrate_vma_collect_skip(start, end, walk);
2302 
2303 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2304 	arch_enter_lazy_mmu_mode();
2305 
2306 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2307 		unsigned long mpfn = 0, pfn;
2308 		struct page *page;
2309 		swp_entry_t entry;
2310 		pte_t pte;
2311 
2312 		pte = *ptep;
2313 
2314 		if (pte_none(pte)) {
2315 			if (vma_is_anonymous(vma)) {
2316 				mpfn = MIGRATE_PFN_MIGRATE;
2317 				migrate->cpages++;
2318 			}
2319 			goto next;
2320 		}
2321 
2322 		if (!pte_present(pte)) {
2323 			/*
2324 			 * Only care about unaddressable device page special
2325 			 * page table entry. Other special swap entries are not
2326 			 * migratable, and we ignore regular swapped page.
2327 			 */
2328 			entry = pte_to_swp_entry(pte);
2329 			if (!is_device_private_entry(entry))
2330 				goto next;
2331 
2332 			page = pfn_swap_entry_to_page(entry);
2333 			if (!(migrate->flags &
2334 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2335 			    page->pgmap->owner != migrate->pgmap_owner)
2336 				goto next;
2337 
2338 			mpfn = migrate_pfn(page_to_pfn(page)) |
2339 					MIGRATE_PFN_MIGRATE;
2340 			if (is_writable_device_private_entry(entry))
2341 				mpfn |= MIGRATE_PFN_WRITE;
2342 		} else {
2343 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2344 				goto next;
2345 			pfn = pte_pfn(pte);
2346 			if (is_zero_pfn(pfn)) {
2347 				mpfn = MIGRATE_PFN_MIGRATE;
2348 				migrate->cpages++;
2349 				goto next;
2350 			}
2351 			page = vm_normal_page(migrate->vma, addr, pte);
2352 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2353 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2354 		}
2355 
2356 		/* FIXME support THP */
2357 		if (!page || !page->mapping || PageTransCompound(page)) {
2358 			mpfn = 0;
2359 			goto next;
2360 		}
2361 
2362 		/*
2363 		 * By getting a reference on the page we pin it and that blocks
2364 		 * any kind of migration. Side effect is that it "freezes" the
2365 		 * pte.
2366 		 *
2367 		 * We drop this reference after isolating the page from the lru
2368 		 * for non device page (device page are not on the lru and thus
2369 		 * can't be dropped from it).
2370 		 */
2371 		get_page(page);
2372 		migrate->cpages++;
2373 
2374 		/*
2375 		 * Optimize for the common case where page is only mapped once
2376 		 * in one process. If we can lock the page, then we can safely
2377 		 * set up a special migration page table entry now.
2378 		 */
2379 		if (trylock_page(page)) {
2380 			pte_t swp_pte;
2381 
2382 			mpfn |= MIGRATE_PFN_LOCKED;
2383 			ptep_get_and_clear(mm, addr, ptep);
2384 
2385 			/* Setup special migration page table entry */
2386 			if (mpfn & MIGRATE_PFN_WRITE)
2387 				entry = make_writable_migration_entry(
2388 							page_to_pfn(page));
2389 			else
2390 				entry = make_readable_migration_entry(
2391 							page_to_pfn(page));
2392 			swp_pte = swp_entry_to_pte(entry);
2393 			if (pte_present(pte)) {
2394 				if (pte_soft_dirty(pte))
2395 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2396 				if (pte_uffd_wp(pte))
2397 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2398 			} else {
2399 				if (pte_swp_soft_dirty(pte))
2400 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2401 				if (pte_swp_uffd_wp(pte))
2402 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2403 			}
2404 			set_pte_at(mm, addr, ptep, swp_pte);
2405 
2406 			/*
2407 			 * This is like regular unmap: we remove the rmap and
2408 			 * drop page refcount. Page won't be freed, as we took
2409 			 * a reference just above.
2410 			 */
2411 			page_remove_rmap(page, false);
2412 			put_page(page);
2413 
2414 			if (pte_present(pte))
2415 				unmapped++;
2416 		}
2417 
2418 next:
2419 		migrate->dst[migrate->npages] = 0;
2420 		migrate->src[migrate->npages++] = mpfn;
2421 	}
2422 	arch_leave_lazy_mmu_mode();
2423 	pte_unmap_unlock(ptep - 1, ptl);
2424 
2425 	/* Only flush the TLB if we actually modified any entries */
2426 	if (unmapped)
2427 		flush_tlb_range(walk->vma, start, end);
2428 
2429 	return 0;
2430 }
2431 
2432 static const struct mm_walk_ops migrate_vma_walk_ops = {
2433 	.pmd_entry		= migrate_vma_collect_pmd,
2434 	.pte_hole		= migrate_vma_collect_hole,
2435 };
2436 
2437 /*
2438  * migrate_vma_collect() - collect pages over a range of virtual addresses
2439  * @migrate: migrate struct containing all migration information
2440  *
2441  * This will walk the CPU page table. For each virtual address backed by a
2442  * valid page, it updates the src array and takes a reference on the page, in
2443  * order to pin the page until we lock it and unmap it.
2444  */
2445 static void migrate_vma_collect(struct migrate_vma *migrate)
2446 {
2447 	struct mmu_notifier_range range;
2448 
2449 	/*
2450 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
2451 	 * that the registered device driver can skip invalidating device
2452 	 * private page mappings that won't be migrated.
2453 	 */
2454 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2455 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2456 		migrate->pgmap_owner);
2457 	mmu_notifier_invalidate_range_start(&range);
2458 
2459 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2460 			&migrate_vma_walk_ops, migrate);
2461 
2462 	mmu_notifier_invalidate_range_end(&range);
2463 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2464 }
2465 
2466 /*
2467  * migrate_vma_check_page() - check if page is pinned or not
2468  * @page: struct page to check
2469  *
2470  * Pinned pages cannot be migrated. This is the same test as in
2471  * migrate_page_move_mapping(), except that here we allow migration of a
2472  * ZONE_DEVICE page.
2473  */
2474 static bool migrate_vma_check_page(struct page *page)
2475 {
2476 	/*
2477 	 * One extra ref because caller holds an extra reference, either from
2478 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2479 	 * a device page.
2480 	 */
2481 	int extra = 1;
2482 
2483 	/*
2484 	 * FIXME support THP (transparent huge page), it is bit more complex to
2485 	 * check them than regular pages, because they can be mapped with a pmd
2486 	 * or with a pte (split pte mapping).
2487 	 */
2488 	if (PageCompound(page))
2489 		return false;
2490 
2491 	/* Page from ZONE_DEVICE have one extra reference */
2492 	if (is_zone_device_page(page)) {
2493 		/*
2494 		 * Private page can never be pin as they have no valid pte and
2495 		 * GUP will fail for those. Yet if there is a pending migration
2496 		 * a thread might try to wait on the pte migration entry and
2497 		 * will bump the page reference count. Sadly there is no way to
2498 		 * differentiate a regular pin from migration wait. Hence to
2499 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2500 		 * infinite loop (one stopping migration because the other is
2501 		 * waiting on pte migration entry). We always return true here.
2502 		 *
2503 		 * FIXME proper solution is to rework migration_entry_wait() so
2504 		 * it does not need to take a reference on page.
2505 		 */
2506 		return is_device_private_page(page);
2507 	}
2508 
2509 	/* For file back page */
2510 	if (page_mapping(page))
2511 		extra += 1 + page_has_private(page);
2512 
2513 	if ((page_count(page) - extra) > page_mapcount(page))
2514 		return false;
2515 
2516 	return true;
2517 }
2518 
2519 /*
2520  * migrate_vma_prepare() - lock pages and isolate them from the lru
2521  * @migrate: migrate struct containing all migration information
2522  *
2523  * This locks pages that have been collected by migrate_vma_collect(). Once each
2524  * page is locked it is isolated from the lru (for non-device pages). Finally,
2525  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2526  * migrated by concurrent kernel threads.
2527  */
2528 static void migrate_vma_prepare(struct migrate_vma *migrate)
2529 {
2530 	const unsigned long npages = migrate->npages;
2531 	const unsigned long start = migrate->start;
2532 	unsigned long addr, i, restore = 0;
2533 	bool allow_drain = true;
2534 
2535 	lru_add_drain();
2536 
2537 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2538 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2539 		bool remap = true;
2540 
2541 		if (!page)
2542 			continue;
2543 
2544 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2545 			/*
2546 			 * Because we are migrating several pages there can be
2547 			 * a deadlock between 2 concurrent migration where each
2548 			 * are waiting on each other page lock.
2549 			 *
2550 			 * Make migrate_vma() a best effort thing and backoff
2551 			 * for any page we can not lock right away.
2552 			 */
2553 			if (!trylock_page(page)) {
2554 				migrate->src[i] = 0;
2555 				migrate->cpages--;
2556 				put_page(page);
2557 				continue;
2558 			}
2559 			remap = false;
2560 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2561 		}
2562 
2563 		/* ZONE_DEVICE pages are not on LRU */
2564 		if (!is_zone_device_page(page)) {
2565 			if (!PageLRU(page) && allow_drain) {
2566 				/* Drain CPU's pagevec */
2567 				lru_add_drain_all();
2568 				allow_drain = false;
2569 			}
2570 
2571 			if (isolate_lru_page(page)) {
2572 				if (remap) {
2573 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2574 					migrate->cpages--;
2575 					restore++;
2576 				} else {
2577 					migrate->src[i] = 0;
2578 					unlock_page(page);
2579 					migrate->cpages--;
2580 					put_page(page);
2581 				}
2582 				continue;
2583 			}
2584 
2585 			/* Drop the reference we took in collect */
2586 			put_page(page);
2587 		}
2588 
2589 		if (!migrate_vma_check_page(page)) {
2590 			if (remap) {
2591 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2592 				migrate->cpages--;
2593 				restore++;
2594 
2595 				if (!is_zone_device_page(page)) {
2596 					get_page(page);
2597 					putback_lru_page(page);
2598 				}
2599 			} else {
2600 				migrate->src[i] = 0;
2601 				unlock_page(page);
2602 				migrate->cpages--;
2603 
2604 				if (!is_zone_device_page(page))
2605 					putback_lru_page(page);
2606 				else
2607 					put_page(page);
2608 			}
2609 		}
2610 	}
2611 
2612 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2613 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2614 
2615 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2616 			continue;
2617 
2618 		remove_migration_pte(page, migrate->vma, addr, page);
2619 
2620 		migrate->src[i] = 0;
2621 		unlock_page(page);
2622 		put_page(page);
2623 		restore--;
2624 	}
2625 }
2626 
2627 /*
2628  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2629  * @migrate: migrate struct containing all migration information
2630  *
2631  * Replace page mapping (CPU page table pte) with a special migration pte entry
2632  * and check again if it has been pinned. Pinned pages are restored because we
2633  * cannot migrate them.
2634  *
2635  * This is the last step before we call the device driver callback to allocate
2636  * destination memory and copy contents of original page over to new page.
2637  */
2638 static void migrate_vma_unmap(struct migrate_vma *migrate)
2639 {
2640 	const unsigned long npages = migrate->npages;
2641 	const unsigned long start = migrate->start;
2642 	unsigned long addr, i, restore = 0;
2643 
2644 	for (i = 0; i < npages; i++) {
2645 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2646 
2647 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2648 			continue;
2649 
2650 		if (page_mapped(page)) {
2651 			try_to_migrate(page, 0);
2652 			if (page_mapped(page))
2653 				goto restore;
2654 		}
2655 
2656 		if (migrate_vma_check_page(page))
2657 			continue;
2658 
2659 restore:
2660 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2661 		migrate->cpages--;
2662 		restore++;
2663 	}
2664 
2665 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2666 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2667 
2668 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2669 			continue;
2670 
2671 		remove_migration_ptes(page, page, false);
2672 
2673 		migrate->src[i] = 0;
2674 		unlock_page(page);
2675 		restore--;
2676 
2677 		if (is_zone_device_page(page))
2678 			put_page(page);
2679 		else
2680 			putback_lru_page(page);
2681 	}
2682 }
2683 
2684 /**
2685  * migrate_vma_setup() - prepare to migrate a range of memory
2686  * @args: contains the vma, start, and pfns arrays for the migration
2687  *
2688  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2689  * without an error.
2690  *
2691  * Prepare to migrate a range of memory virtual address range by collecting all
2692  * the pages backing each virtual address in the range, saving them inside the
2693  * src array.  Then lock those pages and unmap them. Once the pages are locked
2694  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2695  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2696  * corresponding src array entry.  Then restores any pages that are pinned, by
2697  * remapping and unlocking those pages.
2698  *
2699  * The caller should then allocate destination memory and copy source memory to
2700  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2701  * flag set).  Once these are allocated and copied, the caller must update each
2702  * corresponding entry in the dst array with the pfn value of the destination
2703  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2704  * (destination pages must have their struct pages locked, via lock_page()).
2705  *
2706  * Note that the caller does not have to migrate all the pages that are marked
2707  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2708  * device memory to system memory.  If the caller cannot migrate a device page
2709  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2710  * consequences for the userspace process, so it must be avoided if at all
2711  * possible.
2712  *
2713  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2714  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2715  * allowing the caller to allocate device memory for those unbacked virtual
2716  * addresses.  For this the caller simply has to allocate device memory and
2717  * properly set the destination entry like for regular migration.  Note that
2718  * this can still fail, and thus inside the device driver you must check if the
2719  * migration was successful for those entries after calling migrate_vma_pages(),
2720  * just like for regular migration.
2721  *
2722  * After that, the callers must call migrate_vma_pages() to go over each entry
2723  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2724  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2725  * then migrate_vma_pages() to migrate struct page information from the source
2726  * struct page to the destination struct page.  If it fails to migrate the
2727  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2728  * src array.
2729  *
2730  * At this point all successfully migrated pages have an entry in the src
2731  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2732  * array entry with MIGRATE_PFN_VALID flag set.
2733  *
2734  * Once migrate_vma_pages() returns the caller may inspect which pages were
2735  * successfully migrated, and which were not.  Successfully migrated pages will
2736  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2737  *
2738  * It is safe to update device page table after migrate_vma_pages() because
2739  * both destination and source page are still locked, and the mmap_lock is held
2740  * in read mode (hence no one can unmap the range being migrated).
2741  *
2742  * Once the caller is done cleaning up things and updating its page table (if it
2743  * chose to do so, this is not an obligation) it finally calls
2744  * migrate_vma_finalize() to update the CPU page table to point to new pages
2745  * for successfully migrated pages or otherwise restore the CPU page table to
2746  * point to the original source pages.
2747  */
2748 int migrate_vma_setup(struct migrate_vma *args)
2749 {
2750 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2751 
2752 	args->start &= PAGE_MASK;
2753 	args->end &= PAGE_MASK;
2754 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2755 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2756 		return -EINVAL;
2757 	if (nr_pages <= 0)
2758 		return -EINVAL;
2759 	if (args->start < args->vma->vm_start ||
2760 	    args->start >= args->vma->vm_end)
2761 		return -EINVAL;
2762 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2763 		return -EINVAL;
2764 	if (!args->src || !args->dst)
2765 		return -EINVAL;
2766 
2767 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2768 	args->cpages = 0;
2769 	args->npages = 0;
2770 
2771 	migrate_vma_collect(args);
2772 
2773 	if (args->cpages)
2774 		migrate_vma_prepare(args);
2775 	if (args->cpages)
2776 		migrate_vma_unmap(args);
2777 
2778 	/*
2779 	 * At this point pages are locked and unmapped, and thus they have
2780 	 * stable content and can safely be copied to destination memory that
2781 	 * is allocated by the drivers.
2782 	 */
2783 	return 0;
2784 
2785 }
2786 EXPORT_SYMBOL(migrate_vma_setup);
2787 
2788 /*
2789  * This code closely matches the code in:
2790  *   __handle_mm_fault()
2791  *     handle_pte_fault()
2792  *       do_anonymous_page()
2793  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2794  * private page.
2795  */
2796 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2797 				    unsigned long addr,
2798 				    struct page *page,
2799 				    unsigned long *src)
2800 {
2801 	struct vm_area_struct *vma = migrate->vma;
2802 	struct mm_struct *mm = vma->vm_mm;
2803 	bool flush = false;
2804 	spinlock_t *ptl;
2805 	pte_t entry;
2806 	pgd_t *pgdp;
2807 	p4d_t *p4dp;
2808 	pud_t *pudp;
2809 	pmd_t *pmdp;
2810 	pte_t *ptep;
2811 
2812 	/* Only allow populating anonymous memory */
2813 	if (!vma_is_anonymous(vma))
2814 		goto abort;
2815 
2816 	pgdp = pgd_offset(mm, addr);
2817 	p4dp = p4d_alloc(mm, pgdp, addr);
2818 	if (!p4dp)
2819 		goto abort;
2820 	pudp = pud_alloc(mm, p4dp, addr);
2821 	if (!pudp)
2822 		goto abort;
2823 	pmdp = pmd_alloc(mm, pudp, addr);
2824 	if (!pmdp)
2825 		goto abort;
2826 
2827 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2828 		goto abort;
2829 
2830 	/*
2831 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2832 	 * pte_offset_map() on pmds where a huge pmd might be created
2833 	 * from a different thread.
2834 	 *
2835 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2836 	 * parallel threads are excluded by other means.
2837 	 *
2838 	 * Here we only have mmap_read_lock(mm).
2839 	 */
2840 	if (pte_alloc(mm, pmdp))
2841 		goto abort;
2842 
2843 	/* See the comment in pte_alloc_one_map() */
2844 	if (unlikely(pmd_trans_unstable(pmdp)))
2845 		goto abort;
2846 
2847 	if (unlikely(anon_vma_prepare(vma)))
2848 		goto abort;
2849 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2850 		goto abort;
2851 
2852 	/*
2853 	 * The memory barrier inside __SetPageUptodate makes sure that
2854 	 * preceding stores to the page contents become visible before
2855 	 * the set_pte_at() write.
2856 	 */
2857 	__SetPageUptodate(page);
2858 
2859 	if (is_zone_device_page(page)) {
2860 		if (is_device_private_page(page)) {
2861 			swp_entry_t swp_entry;
2862 
2863 			if (vma->vm_flags & VM_WRITE)
2864 				swp_entry = make_writable_device_private_entry(
2865 							page_to_pfn(page));
2866 			else
2867 				swp_entry = make_readable_device_private_entry(
2868 							page_to_pfn(page));
2869 			entry = swp_entry_to_pte(swp_entry);
2870 		} else {
2871 			/*
2872 			 * For now we only support migrating to un-addressable
2873 			 * device memory.
2874 			 */
2875 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2876 			goto abort;
2877 		}
2878 	} else {
2879 		entry = mk_pte(page, vma->vm_page_prot);
2880 		if (vma->vm_flags & VM_WRITE)
2881 			entry = pte_mkwrite(pte_mkdirty(entry));
2882 	}
2883 
2884 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2885 
2886 	if (check_stable_address_space(mm))
2887 		goto unlock_abort;
2888 
2889 	if (pte_present(*ptep)) {
2890 		unsigned long pfn = pte_pfn(*ptep);
2891 
2892 		if (!is_zero_pfn(pfn))
2893 			goto unlock_abort;
2894 		flush = true;
2895 	} else if (!pte_none(*ptep))
2896 		goto unlock_abort;
2897 
2898 	/*
2899 	 * Check for userfaultfd but do not deliver the fault. Instead,
2900 	 * just back off.
2901 	 */
2902 	if (userfaultfd_missing(vma))
2903 		goto unlock_abort;
2904 
2905 	inc_mm_counter(mm, MM_ANONPAGES);
2906 	page_add_new_anon_rmap(page, vma, addr, false);
2907 	if (!is_zone_device_page(page))
2908 		lru_cache_add_inactive_or_unevictable(page, vma);
2909 	get_page(page);
2910 
2911 	if (flush) {
2912 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2913 		ptep_clear_flush_notify(vma, addr, ptep);
2914 		set_pte_at_notify(mm, addr, ptep, entry);
2915 		update_mmu_cache(vma, addr, ptep);
2916 	} else {
2917 		/* No need to invalidate - it was non-present before */
2918 		set_pte_at(mm, addr, ptep, entry);
2919 		update_mmu_cache(vma, addr, ptep);
2920 	}
2921 
2922 	pte_unmap_unlock(ptep, ptl);
2923 	*src = MIGRATE_PFN_MIGRATE;
2924 	return;
2925 
2926 unlock_abort:
2927 	pte_unmap_unlock(ptep, ptl);
2928 abort:
2929 	*src &= ~MIGRATE_PFN_MIGRATE;
2930 }
2931 
2932 /**
2933  * migrate_vma_pages() - migrate meta-data from src page to dst page
2934  * @migrate: migrate struct containing all migration information
2935  *
2936  * This migrates struct page meta-data from source struct page to destination
2937  * struct page. This effectively finishes the migration from source page to the
2938  * destination page.
2939  */
2940 void migrate_vma_pages(struct migrate_vma *migrate)
2941 {
2942 	const unsigned long npages = migrate->npages;
2943 	const unsigned long start = migrate->start;
2944 	struct mmu_notifier_range range;
2945 	unsigned long addr, i;
2946 	bool notified = false;
2947 
2948 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2949 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2950 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2951 		struct address_space *mapping;
2952 		int r;
2953 
2954 		if (!newpage) {
2955 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2956 			continue;
2957 		}
2958 
2959 		if (!page) {
2960 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2961 				continue;
2962 			if (!notified) {
2963 				notified = true;
2964 
2965 				mmu_notifier_range_init_owner(&range,
2966 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2967 					migrate->vma->vm_mm, addr, migrate->end,
2968 					migrate->pgmap_owner);
2969 				mmu_notifier_invalidate_range_start(&range);
2970 			}
2971 			migrate_vma_insert_page(migrate, addr, newpage,
2972 						&migrate->src[i]);
2973 			continue;
2974 		}
2975 
2976 		mapping = page_mapping(page);
2977 
2978 		if (is_zone_device_page(newpage)) {
2979 			if (is_device_private_page(newpage)) {
2980 				/*
2981 				 * For now only support private anonymous when
2982 				 * migrating to un-addressable device memory.
2983 				 */
2984 				if (mapping) {
2985 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2986 					continue;
2987 				}
2988 			} else {
2989 				/*
2990 				 * Other types of ZONE_DEVICE page are not
2991 				 * supported.
2992 				 */
2993 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2994 				continue;
2995 			}
2996 		}
2997 
2998 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2999 		if (r != MIGRATEPAGE_SUCCESS)
3000 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3001 	}
3002 
3003 	/*
3004 	 * No need to double call mmu_notifier->invalidate_range() callback as
3005 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3006 	 * did already call it.
3007 	 */
3008 	if (notified)
3009 		mmu_notifier_invalidate_range_only_end(&range);
3010 }
3011 EXPORT_SYMBOL(migrate_vma_pages);
3012 
3013 /**
3014  * migrate_vma_finalize() - restore CPU page table entry
3015  * @migrate: migrate struct containing all migration information
3016  *
3017  * This replaces the special migration pte entry with either a mapping to the
3018  * new page if migration was successful for that page, or to the original page
3019  * otherwise.
3020  *
3021  * This also unlocks the pages and puts them back on the lru, or drops the extra
3022  * refcount, for device pages.
3023  */
3024 void migrate_vma_finalize(struct migrate_vma *migrate)
3025 {
3026 	const unsigned long npages = migrate->npages;
3027 	unsigned long i;
3028 
3029 	for (i = 0; i < npages; i++) {
3030 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3031 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
3032 
3033 		if (!page) {
3034 			if (newpage) {
3035 				unlock_page(newpage);
3036 				put_page(newpage);
3037 			}
3038 			continue;
3039 		}
3040 
3041 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3042 			if (newpage) {
3043 				unlock_page(newpage);
3044 				put_page(newpage);
3045 			}
3046 			newpage = page;
3047 		}
3048 
3049 		remove_migration_ptes(page, newpage, false);
3050 		unlock_page(page);
3051 
3052 		if (is_zone_device_page(page))
3053 			put_page(page);
3054 		else
3055 			putback_lru_page(page);
3056 
3057 		if (newpage != page) {
3058 			unlock_page(newpage);
3059 			if (is_zone_device_page(newpage))
3060 				put_page(newpage);
3061 			else
3062 				putback_lru_page(newpage);
3063 		}
3064 	}
3065 }
3066 EXPORT_SYMBOL(migrate_vma_finalize);
3067 #endif /* CONFIG_DEVICE_PRIVATE */
3068 
3069 #if defined(CONFIG_HOTPLUG_CPU)
3070 /* Disable reclaim-based migration. */
3071 static void __disable_all_migrate_targets(void)
3072 {
3073 	int node;
3074 
3075 	for_each_online_node(node)
3076 		node_demotion[node] = NUMA_NO_NODE;
3077 }
3078 
3079 static void disable_all_migrate_targets(void)
3080 {
3081 	__disable_all_migrate_targets();
3082 
3083 	/*
3084 	 * Ensure that the "disable" is visible across the system.
3085 	 * Readers will see either a combination of before+disable
3086 	 * state or disable+after.  They will never see before and
3087 	 * after state together.
3088 	 *
3089 	 * The before+after state together might have cycles and
3090 	 * could cause readers to do things like loop until this
3091 	 * function finishes.  This ensures they can only see a
3092 	 * single "bad" read and would, for instance, only loop
3093 	 * once.
3094 	 */
3095 	synchronize_rcu();
3096 }
3097 
3098 /*
3099  * Find an automatic demotion target for 'node'.
3100  * Failing here is OK.  It might just indicate
3101  * being at the end of a chain.
3102  */
3103 static int establish_migrate_target(int node, nodemask_t *used)
3104 {
3105 	int migration_target;
3106 
3107 	/*
3108 	 * Can not set a migration target on a
3109 	 * node with it already set.
3110 	 *
3111 	 * No need for READ_ONCE() here since this
3112 	 * in the write path for node_demotion[].
3113 	 * This should be the only thread writing.
3114 	 */
3115 	if (node_demotion[node] != NUMA_NO_NODE)
3116 		return NUMA_NO_NODE;
3117 
3118 	migration_target = find_next_best_node(node, used);
3119 	if (migration_target == NUMA_NO_NODE)
3120 		return NUMA_NO_NODE;
3121 
3122 	node_demotion[node] = migration_target;
3123 
3124 	return migration_target;
3125 }
3126 
3127 /*
3128  * When memory fills up on a node, memory contents can be
3129  * automatically migrated to another node instead of
3130  * discarded at reclaim.
3131  *
3132  * Establish a "migration path" which will start at nodes
3133  * with CPUs and will follow the priorities used to build the
3134  * page allocator zonelists.
3135  *
3136  * The difference here is that cycles must be avoided.  If
3137  * node0 migrates to node1, then neither node1, nor anything
3138  * node1 migrates to can migrate to node0.
3139  *
3140  * This function can run simultaneously with readers of
3141  * node_demotion[].  However, it can not run simultaneously
3142  * with itself.  Exclusion is provided by memory hotplug events
3143  * being single-threaded.
3144  */
3145 static void __set_migration_target_nodes(void)
3146 {
3147 	nodemask_t next_pass	= NODE_MASK_NONE;
3148 	nodemask_t this_pass	= NODE_MASK_NONE;
3149 	nodemask_t used_targets = NODE_MASK_NONE;
3150 	int node;
3151 
3152 	/*
3153 	 * Avoid any oddities like cycles that could occur
3154 	 * from changes in the topology.  This will leave
3155 	 * a momentary gap when migration is disabled.
3156 	 */
3157 	disable_all_migrate_targets();
3158 
3159 	/*
3160 	 * Allocations go close to CPUs, first.  Assume that
3161 	 * the migration path starts at the nodes with CPUs.
3162 	 */
3163 	next_pass = node_states[N_CPU];
3164 again:
3165 	this_pass = next_pass;
3166 	next_pass = NODE_MASK_NONE;
3167 	/*
3168 	 * To avoid cycles in the migration "graph", ensure
3169 	 * that migration sources are not future targets by
3170 	 * setting them in 'used_targets'.  Do this only
3171 	 * once per pass so that multiple source nodes can
3172 	 * share a target node.
3173 	 *
3174 	 * 'used_targets' will become unavailable in future
3175 	 * passes.  This limits some opportunities for
3176 	 * multiple source nodes to share a destination.
3177 	 */
3178 	nodes_or(used_targets, used_targets, this_pass);
3179 	for_each_node_mask(node, this_pass) {
3180 		int target_node = establish_migrate_target(node, &used_targets);
3181 
3182 		if (target_node == NUMA_NO_NODE)
3183 			continue;
3184 
3185 		/*
3186 		 * Visit targets from this pass in the next pass.
3187 		 * Eventually, every node will have been part of
3188 		 * a pass, and will become set in 'used_targets'.
3189 		 */
3190 		node_set(target_node, next_pass);
3191 	}
3192 	/*
3193 	 * 'next_pass' contains nodes which became migration
3194 	 * targets in this pass.  Make additional passes until
3195 	 * no more migrations targets are available.
3196 	 */
3197 	if (!nodes_empty(next_pass))
3198 		goto again;
3199 }
3200 
3201 /*
3202  * For callers that do not hold get_online_mems() already.
3203  */
3204 static void set_migration_target_nodes(void)
3205 {
3206 	get_online_mems();
3207 	__set_migration_target_nodes();
3208 	put_online_mems();
3209 }
3210 
3211 /*
3212  * This leaves migrate-on-reclaim transiently disabled between
3213  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
3214  * whether reclaim-based migration is enabled or not, which
3215  * ensures that the user can turn reclaim-based migration at
3216  * any time without needing to recalculate migration targets.
3217  *
3218  * These callbacks already hold get_online_mems().  That is why
3219  * __set_migration_target_nodes() can be used as opposed to
3220  * set_migration_target_nodes().
3221  */
3222 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
3223 						 unsigned long action, void *_arg)
3224 {
3225 	struct memory_notify *arg = _arg;
3226 
3227 	/*
3228 	 * Only update the node migration order when a node is
3229 	 * changing status, like online->offline.  This avoids
3230 	 * the overhead of synchronize_rcu() in most cases.
3231 	 */
3232 	if (arg->status_change_nid < 0)
3233 		return notifier_from_errno(0);
3234 
3235 	switch (action) {
3236 	case MEM_GOING_OFFLINE:
3237 		/*
3238 		 * Make sure there are not transient states where
3239 		 * an offline node is a migration target.  This
3240 		 * will leave migration disabled until the offline
3241 		 * completes and the MEM_OFFLINE case below runs.
3242 		 */
3243 		disable_all_migrate_targets();
3244 		break;
3245 	case MEM_OFFLINE:
3246 	case MEM_ONLINE:
3247 		/*
3248 		 * Recalculate the target nodes once the node
3249 		 * reaches its final state (online or offline).
3250 		 */
3251 		__set_migration_target_nodes();
3252 		break;
3253 	case MEM_CANCEL_OFFLINE:
3254 		/*
3255 		 * MEM_GOING_OFFLINE disabled all the migration
3256 		 * targets.  Reenable them.
3257 		 */
3258 		__set_migration_target_nodes();
3259 		break;
3260 	case MEM_GOING_ONLINE:
3261 	case MEM_CANCEL_ONLINE:
3262 		break;
3263 	}
3264 
3265 	return notifier_from_errno(0);
3266 }
3267 
3268 /*
3269  * React to hotplug events that might affect the migration targets
3270  * like events that online or offline NUMA nodes.
3271  *
3272  * The ordering is also currently dependent on which nodes have
3273  * CPUs.  That means we need CPU on/offline notification too.
3274  */
3275 static int migration_online_cpu(unsigned int cpu)
3276 {
3277 	set_migration_target_nodes();
3278 	return 0;
3279 }
3280 
3281 static int migration_offline_cpu(unsigned int cpu)
3282 {
3283 	set_migration_target_nodes();
3284 	return 0;
3285 }
3286 
3287 static int __init migrate_on_reclaim_init(void)
3288 {
3289 	int ret;
3290 
3291 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline",
3292 					NULL, migration_offline_cpu);
3293 	/*
3294 	 * In the unlikely case that this fails, the automatic
3295 	 * migration targets may become suboptimal for nodes
3296 	 * where N_CPU changes.  With such a small impact in a
3297 	 * rare case, do not bother trying to do anything special.
3298 	 */
3299 	WARN_ON(ret < 0);
3300 	ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online",
3301 				migration_online_cpu, NULL);
3302 	WARN_ON(ret < 0);
3303 
3304 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
3305 	return 0;
3306 }
3307 late_initcall(migrate_on_reclaim_init);
3308 #endif /* CONFIG_HOTPLUG_CPU */
3309