1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/ksm.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/backing-dev.h> 33 #include <linux/compaction.h> 34 #include <linux/syscalls.h> 35 #include <linux/compat.h> 36 #include <linux/hugetlb.h> 37 #include <linux/gfp.h> 38 #include <linux/pfn_t.h> 39 #include <linux/page_idle.h> 40 #include <linux/page_owner.h> 41 #include <linux/sched/mm.h> 42 #include <linux/ptrace.h> 43 #include <linux/memory.h> 44 #include <linux/sched/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/pagewalk.h> 47 48 #include <asm/tlbflush.h> 49 50 #include <trace/events/migrate.h> 51 52 #include "internal.h" 53 54 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 55 { 56 struct folio *folio = folio_get_nontail_page(page); 57 const struct movable_operations *mops; 58 59 /* 60 * Avoid burning cycles with pages that are yet under __free_pages(), 61 * or just got freed under us. 62 * 63 * In case we 'win' a race for a movable page being freed under us and 64 * raise its refcount preventing __free_pages() from doing its job 65 * the put_page() at the end of this block will take care of 66 * release this page, thus avoiding a nasty leakage. 67 */ 68 if (!folio) 69 goto out; 70 71 if (unlikely(folio_test_slab(folio))) 72 goto out_putfolio; 73 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 74 smp_rmb(); 75 /* 76 * Check movable flag before taking the page lock because 77 * we use non-atomic bitops on newly allocated page flags so 78 * unconditionally grabbing the lock ruins page's owner side. 79 */ 80 if (unlikely(!__folio_test_movable(folio))) 81 goto out_putfolio; 82 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 83 smp_rmb(); 84 if (unlikely(folio_test_slab(folio))) 85 goto out_putfolio; 86 87 /* 88 * As movable pages are not isolated from LRU lists, concurrent 89 * compaction threads can race against page migration functions 90 * as well as race against the releasing a page. 91 * 92 * In order to avoid having an already isolated movable page 93 * being (wrongly) re-isolated while it is under migration, 94 * or to avoid attempting to isolate pages being released, 95 * lets be sure we have the page lock 96 * before proceeding with the movable page isolation steps. 97 */ 98 if (unlikely(!folio_trylock(folio))) 99 goto out_putfolio; 100 101 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 102 goto out_no_isolated; 103 104 mops = folio_movable_ops(folio); 105 VM_BUG_ON_FOLIO(!mops, folio); 106 107 if (!mops->isolate_page(&folio->page, mode)) 108 goto out_no_isolated; 109 110 /* Driver shouldn't use the isolated flag */ 111 WARN_ON_ONCE(folio_test_isolated(folio)); 112 folio_set_isolated(folio); 113 folio_unlock(folio); 114 115 return true; 116 117 out_no_isolated: 118 folio_unlock(folio); 119 out_putfolio: 120 folio_put(folio); 121 out: 122 return false; 123 } 124 125 static void putback_movable_folio(struct folio *folio) 126 { 127 const struct movable_operations *mops = folio_movable_ops(folio); 128 129 mops->putback_page(&folio->page); 130 folio_clear_isolated(folio); 131 } 132 133 /* 134 * Put previously isolated pages back onto the appropriate lists 135 * from where they were once taken off for compaction/migration. 136 * 137 * This function shall be used whenever the isolated pageset has been 138 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 139 * and isolate_hugetlb(). 140 */ 141 void putback_movable_pages(struct list_head *l) 142 { 143 struct folio *folio; 144 struct folio *folio2; 145 146 list_for_each_entry_safe(folio, folio2, l, lru) { 147 if (unlikely(folio_test_hugetlb(folio))) { 148 folio_putback_active_hugetlb(folio); 149 continue; 150 } 151 list_del(&folio->lru); 152 /* 153 * We isolated non-lru movable folio so here we can use 154 * __folio_test_movable because LRU folio's mapping cannot 155 * have PAGE_MAPPING_MOVABLE. 156 */ 157 if (unlikely(__folio_test_movable(folio))) { 158 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 159 folio_lock(folio); 160 if (folio_test_movable(folio)) 161 putback_movable_folio(folio); 162 else 163 folio_clear_isolated(folio); 164 folio_unlock(folio); 165 folio_put(folio); 166 } else { 167 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 168 folio_is_file_lru(folio), -folio_nr_pages(folio)); 169 folio_putback_lru(folio); 170 } 171 } 172 } 173 174 /* Must be called with an elevated refcount on the non-hugetlb folio */ 175 bool isolate_folio_to_list(struct folio *folio, struct list_head *list) 176 { 177 bool isolated, lru; 178 179 if (folio_test_hugetlb(folio)) 180 return isolate_hugetlb(folio, list); 181 182 lru = !__folio_test_movable(folio); 183 if (lru) 184 isolated = folio_isolate_lru(folio); 185 else 186 isolated = isolate_movable_page(&folio->page, 187 ISOLATE_UNEVICTABLE); 188 189 if (!isolated) 190 return false; 191 192 list_add(&folio->lru, list); 193 if (lru) 194 node_stat_add_folio(folio, NR_ISOLATED_ANON + 195 folio_is_file_lru(folio)); 196 197 return true; 198 } 199 200 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw, 201 struct folio *folio, 202 unsigned long idx) 203 { 204 struct page *page = folio_page(folio, idx); 205 bool contains_data; 206 pte_t newpte; 207 void *addr; 208 209 if (PageCompound(page)) 210 return false; 211 VM_BUG_ON_PAGE(!PageAnon(page), page); 212 VM_BUG_ON_PAGE(!PageLocked(page), page); 213 VM_BUG_ON_PAGE(pte_present(*pvmw->pte), page); 214 215 if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) || 216 mm_forbids_zeropage(pvmw->vma->vm_mm)) 217 return false; 218 219 /* 220 * The pmd entry mapping the old thp was flushed and the pte mapping 221 * this subpage has been non present. If the subpage is only zero-filled 222 * then map it to the shared zeropage. 223 */ 224 addr = kmap_local_page(page); 225 contains_data = memchr_inv(addr, 0, PAGE_SIZE); 226 kunmap_local(addr); 227 228 if (contains_data) 229 return false; 230 231 newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address), 232 pvmw->vma->vm_page_prot)); 233 set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte); 234 235 dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio)); 236 return true; 237 } 238 239 struct rmap_walk_arg { 240 struct folio *folio; 241 bool map_unused_to_zeropage; 242 }; 243 244 /* 245 * Restore a potential migration pte to a working pte entry 246 */ 247 static bool remove_migration_pte(struct folio *folio, 248 struct vm_area_struct *vma, unsigned long addr, void *arg) 249 { 250 struct rmap_walk_arg *rmap_walk_arg = arg; 251 DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 252 253 while (page_vma_mapped_walk(&pvmw)) { 254 rmap_t rmap_flags = RMAP_NONE; 255 pte_t old_pte; 256 pte_t pte; 257 swp_entry_t entry; 258 struct page *new; 259 unsigned long idx = 0; 260 261 /* pgoff is invalid for ksm pages, but they are never large */ 262 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 263 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 264 new = folio_page(folio, idx); 265 266 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 267 /* PMD-mapped THP migration entry */ 268 if (!pvmw.pte) { 269 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 270 !folio_test_pmd_mappable(folio), folio); 271 remove_migration_pmd(&pvmw, new); 272 continue; 273 } 274 #endif 275 if (rmap_walk_arg->map_unused_to_zeropage && 276 try_to_map_unused_to_zeropage(&pvmw, folio, idx)) 277 continue; 278 279 folio_get(folio); 280 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 281 old_pte = ptep_get(pvmw.pte); 282 283 entry = pte_to_swp_entry(old_pte); 284 if (!is_migration_entry_young(entry)) 285 pte = pte_mkold(pte); 286 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 287 pte = pte_mkdirty(pte); 288 if (pte_swp_soft_dirty(old_pte)) 289 pte = pte_mksoft_dirty(pte); 290 else 291 pte = pte_clear_soft_dirty(pte); 292 293 if (is_writable_migration_entry(entry)) 294 pte = pte_mkwrite(pte, vma); 295 else if (pte_swp_uffd_wp(old_pte)) 296 pte = pte_mkuffd_wp(pte); 297 298 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 299 rmap_flags |= RMAP_EXCLUSIVE; 300 301 if (unlikely(is_device_private_page(new))) { 302 if (pte_write(pte)) 303 entry = make_writable_device_private_entry( 304 page_to_pfn(new)); 305 else 306 entry = make_readable_device_private_entry( 307 page_to_pfn(new)); 308 pte = swp_entry_to_pte(entry); 309 if (pte_swp_soft_dirty(old_pte)) 310 pte = pte_swp_mksoft_dirty(pte); 311 if (pte_swp_uffd_wp(old_pte)) 312 pte = pte_swp_mkuffd_wp(pte); 313 } 314 315 #ifdef CONFIG_HUGETLB_PAGE 316 if (folio_test_hugetlb(folio)) { 317 struct hstate *h = hstate_vma(vma); 318 unsigned int shift = huge_page_shift(h); 319 unsigned long psize = huge_page_size(h); 320 321 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 322 if (folio_test_anon(folio)) 323 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 324 rmap_flags); 325 else 326 hugetlb_add_file_rmap(folio); 327 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 328 psize); 329 } else 330 #endif 331 { 332 if (folio_test_anon(folio)) 333 folio_add_anon_rmap_pte(folio, new, vma, 334 pvmw.address, rmap_flags); 335 else 336 folio_add_file_rmap_pte(folio, new, vma); 337 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 338 } 339 if (vma->vm_flags & VM_LOCKED) 340 mlock_drain_local(); 341 342 trace_remove_migration_pte(pvmw.address, pte_val(pte), 343 compound_order(new)); 344 345 /* No need to invalidate - it was non-present before */ 346 update_mmu_cache(vma, pvmw.address, pvmw.pte); 347 } 348 349 return true; 350 } 351 352 /* 353 * Get rid of all migration entries and replace them by 354 * references to the indicated page. 355 */ 356 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags) 357 { 358 struct rmap_walk_arg rmap_walk_arg = { 359 .folio = src, 360 .map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE, 361 }; 362 363 struct rmap_walk_control rwc = { 364 .rmap_one = remove_migration_pte, 365 .arg = &rmap_walk_arg, 366 }; 367 368 VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src); 369 370 if (flags & RMP_LOCKED) 371 rmap_walk_locked(dst, &rwc); 372 else 373 rmap_walk(dst, &rwc); 374 } 375 376 /* 377 * Something used the pte of a page under migration. We need to 378 * get to the page and wait until migration is finished. 379 * When we return from this function the fault will be retried. 380 */ 381 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 382 unsigned long address) 383 { 384 spinlock_t *ptl; 385 pte_t *ptep; 386 pte_t pte; 387 swp_entry_t entry; 388 389 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 390 if (!ptep) 391 return; 392 393 pte = ptep_get(ptep); 394 pte_unmap(ptep); 395 396 if (!is_swap_pte(pte)) 397 goto out; 398 399 entry = pte_to_swp_entry(pte); 400 if (!is_migration_entry(entry)) 401 goto out; 402 403 migration_entry_wait_on_locked(entry, ptl); 404 return; 405 out: 406 spin_unlock(ptl); 407 } 408 409 #ifdef CONFIG_HUGETLB_PAGE 410 /* 411 * The vma read lock must be held upon entry. Holding that lock prevents either 412 * the pte or the ptl from being freed. 413 * 414 * This function will release the vma lock before returning. 415 */ 416 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 417 { 418 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 419 pte_t pte; 420 421 hugetlb_vma_assert_locked(vma); 422 spin_lock(ptl); 423 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 424 425 if (unlikely(!is_hugetlb_entry_migration(pte))) { 426 spin_unlock(ptl); 427 hugetlb_vma_unlock_read(vma); 428 } else { 429 /* 430 * If migration entry existed, safe to release vma lock 431 * here because the pgtable page won't be freed without the 432 * pgtable lock released. See comment right above pgtable 433 * lock release in migration_entry_wait_on_locked(). 434 */ 435 hugetlb_vma_unlock_read(vma); 436 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 437 } 438 } 439 #endif 440 441 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 442 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 443 { 444 spinlock_t *ptl; 445 446 ptl = pmd_lock(mm, pmd); 447 if (!is_pmd_migration_entry(*pmd)) 448 goto unlock; 449 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 450 return; 451 unlock: 452 spin_unlock(ptl); 453 } 454 #endif 455 456 static int folio_expected_refs(struct address_space *mapping, 457 struct folio *folio) 458 { 459 int refs = 1; 460 if (!mapping) 461 return refs; 462 463 refs += folio_nr_pages(folio); 464 if (folio_test_private(folio)) 465 refs++; 466 467 return refs; 468 } 469 470 /* 471 * Replace the folio in the mapping. 472 * 473 * The number of remaining references must be: 474 * 1 for anonymous folios without a mapping 475 * 2 for folios with a mapping 476 * 3 for folios with a mapping and PagePrivate/PagePrivate2 set. 477 */ 478 static int __folio_migrate_mapping(struct address_space *mapping, 479 struct folio *newfolio, struct folio *folio, int expected_count) 480 { 481 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 482 struct zone *oldzone, *newzone; 483 int dirty; 484 long nr = folio_nr_pages(folio); 485 long entries, i; 486 487 if (!mapping) { 488 /* Take off deferred split queue while frozen and memcg set */ 489 if (folio_test_large(folio) && 490 folio_test_large_rmappable(folio)) { 491 if (!folio_ref_freeze(folio, expected_count)) 492 return -EAGAIN; 493 folio_unqueue_deferred_split(folio); 494 folio_ref_unfreeze(folio, expected_count); 495 } 496 497 /* No turning back from here */ 498 newfolio->index = folio->index; 499 newfolio->mapping = folio->mapping; 500 if (folio_test_anon(folio) && folio_test_large(folio)) 501 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 502 if (folio_test_swapbacked(folio)) 503 __folio_set_swapbacked(newfolio); 504 505 return MIGRATEPAGE_SUCCESS; 506 } 507 508 oldzone = folio_zone(folio); 509 newzone = folio_zone(newfolio); 510 511 xas_lock_irq(&xas); 512 if (!folio_ref_freeze(folio, expected_count)) { 513 xas_unlock_irq(&xas); 514 return -EAGAIN; 515 } 516 517 /* Take off deferred split queue while frozen and memcg set */ 518 folio_unqueue_deferred_split(folio); 519 520 /* 521 * Now we know that no one else is looking at the folio: 522 * no turning back from here. 523 */ 524 newfolio->index = folio->index; 525 newfolio->mapping = folio->mapping; 526 if (folio_test_anon(folio) && folio_test_large(folio)) 527 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 528 folio_ref_add(newfolio, nr); /* add cache reference */ 529 if (folio_test_swapbacked(folio)) { 530 __folio_set_swapbacked(newfolio); 531 if (folio_test_swapcache(folio)) { 532 folio_set_swapcache(newfolio); 533 newfolio->private = folio_get_private(folio); 534 } 535 entries = nr; 536 } else { 537 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 538 entries = 1; 539 } 540 541 /* Move dirty while folio refs frozen and newfolio not yet exposed */ 542 dirty = folio_test_dirty(folio); 543 if (dirty) { 544 folio_clear_dirty(folio); 545 folio_set_dirty(newfolio); 546 } 547 548 /* Swap cache still stores N entries instead of a high-order entry */ 549 for (i = 0; i < entries; i++) { 550 xas_store(&xas, newfolio); 551 xas_next(&xas); 552 } 553 554 /* 555 * Drop cache reference from old folio by unfreezing 556 * to one less reference. 557 * We know this isn't the last reference. 558 */ 559 folio_ref_unfreeze(folio, expected_count - nr); 560 561 xas_unlock(&xas); 562 /* Leave irq disabled to prevent preemption while updating stats */ 563 564 /* 565 * If moved to a different zone then also account 566 * the folio for that zone. Other VM counters will be 567 * taken care of when we establish references to the 568 * new folio and drop references to the old folio. 569 * 570 * Note that anonymous folios are accounted for 571 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 572 * are mapped to swap space. 573 */ 574 if (newzone != oldzone) { 575 struct lruvec *old_lruvec, *new_lruvec; 576 struct mem_cgroup *memcg; 577 578 memcg = folio_memcg(folio); 579 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 580 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 581 582 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 583 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 584 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 585 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 586 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 587 588 if (folio_test_pmd_mappable(folio)) { 589 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 590 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 591 } 592 } 593 #ifdef CONFIG_SWAP 594 if (folio_test_swapcache(folio)) { 595 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 596 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 597 } 598 #endif 599 if (dirty && mapping_can_writeback(mapping)) { 600 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 601 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 602 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 603 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 604 } 605 } 606 local_irq_enable(); 607 608 return MIGRATEPAGE_SUCCESS; 609 } 610 611 int folio_migrate_mapping(struct address_space *mapping, 612 struct folio *newfolio, struct folio *folio, int extra_count) 613 { 614 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 615 616 if (folio_ref_count(folio) != expected_count) 617 return -EAGAIN; 618 619 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count); 620 } 621 EXPORT_SYMBOL(folio_migrate_mapping); 622 623 /* 624 * The expected number of remaining references is the same as that 625 * of folio_migrate_mapping(). 626 */ 627 int migrate_huge_page_move_mapping(struct address_space *mapping, 628 struct folio *dst, struct folio *src) 629 { 630 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 631 int rc, expected_count = folio_expected_refs(mapping, src); 632 633 if (folio_ref_count(src) != expected_count) 634 return -EAGAIN; 635 636 rc = folio_mc_copy(dst, src); 637 if (unlikely(rc)) 638 return rc; 639 640 xas_lock_irq(&xas); 641 if (!folio_ref_freeze(src, expected_count)) { 642 xas_unlock_irq(&xas); 643 return -EAGAIN; 644 } 645 646 dst->index = src->index; 647 dst->mapping = src->mapping; 648 649 folio_ref_add(dst, folio_nr_pages(dst)); 650 651 xas_store(&xas, dst); 652 653 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 654 655 xas_unlock_irq(&xas); 656 657 return MIGRATEPAGE_SUCCESS; 658 } 659 660 /* 661 * Copy the flags and some other ancillary information 662 */ 663 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 664 { 665 int cpupid; 666 667 if (folio_test_referenced(folio)) 668 folio_set_referenced(newfolio); 669 if (folio_test_uptodate(folio)) 670 folio_mark_uptodate(newfolio); 671 if (folio_test_clear_active(folio)) { 672 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 673 folio_set_active(newfolio); 674 } else if (folio_test_clear_unevictable(folio)) 675 folio_set_unevictable(newfolio); 676 if (folio_test_workingset(folio)) 677 folio_set_workingset(newfolio); 678 if (folio_test_checked(folio)) 679 folio_set_checked(newfolio); 680 /* 681 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 682 * migration entries. We can still have PG_anon_exclusive set on an 683 * effectively unmapped and unreferenced first sub-pages of an 684 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 685 */ 686 if (folio_test_mappedtodisk(folio)) 687 folio_set_mappedtodisk(newfolio); 688 689 /* Move dirty on pages not done by folio_migrate_mapping() */ 690 if (folio_test_dirty(folio)) 691 folio_set_dirty(newfolio); 692 693 if (folio_test_young(folio)) 694 folio_set_young(newfolio); 695 if (folio_test_idle(folio)) 696 folio_set_idle(newfolio); 697 698 folio_migrate_refs(newfolio, folio); 699 /* 700 * Copy NUMA information to the new page, to prevent over-eager 701 * future migrations of this same page. 702 */ 703 cpupid = folio_xchg_last_cpupid(folio, -1); 704 /* 705 * For memory tiering mode, when migrate between slow and fast 706 * memory node, reset cpupid, because that is used to record 707 * page access time in slow memory node. 708 */ 709 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 710 bool f_toptier = node_is_toptier(folio_nid(folio)); 711 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 712 713 if (f_toptier != t_toptier) 714 cpupid = -1; 715 } 716 folio_xchg_last_cpupid(newfolio, cpupid); 717 718 folio_migrate_ksm(newfolio, folio); 719 /* 720 * Please do not reorder this without considering how mm/ksm.c's 721 * ksm_get_folio() depends upon ksm_migrate_page() and the 722 * swapcache flag. 723 */ 724 if (folio_test_swapcache(folio)) 725 folio_clear_swapcache(folio); 726 folio_clear_private(folio); 727 728 /* page->private contains hugetlb specific flags */ 729 if (!folio_test_hugetlb(folio)) 730 folio->private = NULL; 731 732 /* 733 * If any waiters have accumulated on the new page then 734 * wake them up. 735 */ 736 if (folio_test_writeback(newfolio)) 737 folio_end_writeback(newfolio); 738 739 /* 740 * PG_readahead shares the same bit with PG_reclaim. The above 741 * end_page_writeback() may clear PG_readahead mistakenly, so set the 742 * bit after that. 743 */ 744 if (folio_test_readahead(folio)) 745 folio_set_readahead(newfolio); 746 747 folio_copy_owner(newfolio, folio); 748 pgalloc_tag_copy(newfolio, folio); 749 750 mem_cgroup_migrate(folio, newfolio); 751 } 752 EXPORT_SYMBOL(folio_migrate_flags); 753 754 /************************************************************ 755 * Migration functions 756 ***********************************************************/ 757 758 static int __migrate_folio(struct address_space *mapping, struct folio *dst, 759 struct folio *src, void *src_private, 760 enum migrate_mode mode) 761 { 762 int rc, expected_count = folio_expected_refs(mapping, src); 763 764 /* Check whether src does not have extra refs before we do more work */ 765 if (folio_ref_count(src) != expected_count) 766 return -EAGAIN; 767 768 rc = folio_mc_copy(dst, src); 769 if (unlikely(rc)) 770 return rc; 771 772 rc = __folio_migrate_mapping(mapping, dst, src, expected_count); 773 if (rc != MIGRATEPAGE_SUCCESS) 774 return rc; 775 776 if (src_private) 777 folio_attach_private(dst, folio_detach_private(src)); 778 779 folio_migrate_flags(dst, src); 780 return MIGRATEPAGE_SUCCESS; 781 } 782 783 /** 784 * migrate_folio() - Simple folio migration. 785 * @mapping: The address_space containing the folio. 786 * @dst: The folio to migrate the data to. 787 * @src: The folio containing the current data. 788 * @mode: How to migrate the page. 789 * 790 * Common logic to directly migrate a single LRU folio suitable for 791 * folios that do not use PagePrivate/PagePrivate2. 792 * 793 * Folios are locked upon entry and exit. 794 */ 795 int migrate_folio(struct address_space *mapping, struct folio *dst, 796 struct folio *src, enum migrate_mode mode) 797 { 798 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 799 return __migrate_folio(mapping, dst, src, NULL, mode); 800 } 801 EXPORT_SYMBOL(migrate_folio); 802 803 #ifdef CONFIG_BUFFER_HEAD 804 /* Returns true if all buffers are successfully locked */ 805 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 806 enum migrate_mode mode) 807 { 808 struct buffer_head *bh = head; 809 struct buffer_head *failed_bh; 810 811 do { 812 if (!trylock_buffer(bh)) { 813 if (mode == MIGRATE_ASYNC) 814 goto unlock; 815 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 816 goto unlock; 817 lock_buffer(bh); 818 } 819 820 bh = bh->b_this_page; 821 } while (bh != head); 822 823 return true; 824 825 unlock: 826 /* We failed to lock the buffer and cannot stall. */ 827 failed_bh = bh; 828 bh = head; 829 while (bh != failed_bh) { 830 unlock_buffer(bh); 831 bh = bh->b_this_page; 832 } 833 834 return false; 835 } 836 837 static int __buffer_migrate_folio(struct address_space *mapping, 838 struct folio *dst, struct folio *src, enum migrate_mode mode, 839 bool check_refs) 840 { 841 struct buffer_head *bh, *head; 842 int rc; 843 int expected_count; 844 845 head = folio_buffers(src); 846 if (!head) 847 return migrate_folio(mapping, dst, src, mode); 848 849 /* Check whether page does not have extra refs before we do more work */ 850 expected_count = folio_expected_refs(mapping, src); 851 if (folio_ref_count(src) != expected_count) 852 return -EAGAIN; 853 854 if (!buffer_migrate_lock_buffers(head, mode)) 855 return -EAGAIN; 856 857 if (check_refs) { 858 bool busy; 859 bool invalidated = false; 860 861 recheck_buffers: 862 busy = false; 863 spin_lock(&mapping->i_private_lock); 864 bh = head; 865 do { 866 if (atomic_read(&bh->b_count)) { 867 busy = true; 868 break; 869 } 870 bh = bh->b_this_page; 871 } while (bh != head); 872 if (busy) { 873 if (invalidated) { 874 rc = -EAGAIN; 875 goto unlock_buffers; 876 } 877 spin_unlock(&mapping->i_private_lock); 878 invalidate_bh_lrus(); 879 invalidated = true; 880 goto recheck_buffers; 881 } 882 } 883 884 rc = filemap_migrate_folio(mapping, dst, src, mode); 885 if (rc != MIGRATEPAGE_SUCCESS) 886 goto unlock_buffers; 887 888 bh = head; 889 do { 890 folio_set_bh(bh, dst, bh_offset(bh)); 891 bh = bh->b_this_page; 892 } while (bh != head); 893 894 unlock_buffers: 895 if (check_refs) 896 spin_unlock(&mapping->i_private_lock); 897 bh = head; 898 do { 899 unlock_buffer(bh); 900 bh = bh->b_this_page; 901 } while (bh != head); 902 903 return rc; 904 } 905 906 /** 907 * buffer_migrate_folio() - Migration function for folios with buffers. 908 * @mapping: The address space containing @src. 909 * @dst: The folio to migrate to. 910 * @src: The folio to migrate from. 911 * @mode: How to migrate the folio. 912 * 913 * This function can only be used if the underlying filesystem guarantees 914 * that no other references to @src exist. For example attached buffer 915 * heads are accessed only under the folio lock. If your filesystem cannot 916 * provide this guarantee, buffer_migrate_folio_norefs() may be more 917 * appropriate. 918 * 919 * Return: 0 on success or a negative errno on failure. 920 */ 921 int buffer_migrate_folio(struct address_space *mapping, 922 struct folio *dst, struct folio *src, enum migrate_mode mode) 923 { 924 return __buffer_migrate_folio(mapping, dst, src, mode, false); 925 } 926 EXPORT_SYMBOL(buffer_migrate_folio); 927 928 /** 929 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 930 * @mapping: The address space containing @src. 931 * @dst: The folio to migrate to. 932 * @src: The folio to migrate from. 933 * @mode: How to migrate the folio. 934 * 935 * Like buffer_migrate_folio() except that this variant is more careful 936 * and checks that there are also no buffer head references. This function 937 * is the right one for mappings where buffer heads are directly looked 938 * up and referenced (such as block device mappings). 939 * 940 * Return: 0 on success or a negative errno on failure. 941 */ 942 int buffer_migrate_folio_norefs(struct address_space *mapping, 943 struct folio *dst, struct folio *src, enum migrate_mode mode) 944 { 945 return __buffer_migrate_folio(mapping, dst, src, mode, true); 946 } 947 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 948 #endif /* CONFIG_BUFFER_HEAD */ 949 950 int filemap_migrate_folio(struct address_space *mapping, 951 struct folio *dst, struct folio *src, enum migrate_mode mode) 952 { 953 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode); 954 } 955 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 956 957 /* 958 * Writeback a folio to clean the dirty state 959 */ 960 static int writeout(struct address_space *mapping, struct folio *folio) 961 { 962 struct writeback_control wbc = { 963 .sync_mode = WB_SYNC_NONE, 964 .nr_to_write = 1, 965 .range_start = 0, 966 .range_end = LLONG_MAX, 967 .for_reclaim = 1 968 }; 969 int rc; 970 971 if (!mapping->a_ops->writepage) 972 /* No write method for the address space */ 973 return -EINVAL; 974 975 if (!folio_clear_dirty_for_io(folio)) 976 /* Someone else already triggered a write */ 977 return -EAGAIN; 978 979 /* 980 * A dirty folio may imply that the underlying filesystem has 981 * the folio on some queue. So the folio must be clean for 982 * migration. Writeout may mean we lose the lock and the 983 * folio state is no longer what we checked for earlier. 984 * At this point we know that the migration attempt cannot 985 * be successful. 986 */ 987 remove_migration_ptes(folio, folio, 0); 988 989 rc = mapping->a_ops->writepage(&folio->page, &wbc); 990 991 if (rc != AOP_WRITEPAGE_ACTIVATE) 992 /* unlocked. Relock */ 993 folio_lock(folio); 994 995 return (rc < 0) ? -EIO : -EAGAIN; 996 } 997 998 /* 999 * Default handling if a filesystem does not provide a migration function. 1000 */ 1001 static int fallback_migrate_folio(struct address_space *mapping, 1002 struct folio *dst, struct folio *src, enum migrate_mode mode) 1003 { 1004 if (folio_test_dirty(src)) { 1005 /* Only writeback folios in full synchronous migration */ 1006 switch (mode) { 1007 case MIGRATE_SYNC: 1008 break; 1009 default: 1010 return -EBUSY; 1011 } 1012 return writeout(mapping, src); 1013 } 1014 1015 /* 1016 * Buffers may be managed in a filesystem specific way. 1017 * We must have no buffers or drop them. 1018 */ 1019 if (!filemap_release_folio(src, GFP_KERNEL)) 1020 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 1021 1022 return migrate_folio(mapping, dst, src, mode); 1023 } 1024 1025 /* 1026 * Move a page to a newly allocated page 1027 * The page is locked and all ptes have been successfully removed. 1028 * 1029 * The new page will have replaced the old page if this function 1030 * is successful. 1031 * 1032 * Return value: 1033 * < 0 - error code 1034 * MIGRATEPAGE_SUCCESS - success 1035 */ 1036 static int move_to_new_folio(struct folio *dst, struct folio *src, 1037 enum migrate_mode mode) 1038 { 1039 int rc = -EAGAIN; 1040 bool is_lru = !__folio_test_movable(src); 1041 1042 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 1043 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 1044 1045 if (likely(is_lru)) { 1046 struct address_space *mapping = folio_mapping(src); 1047 1048 if (!mapping) 1049 rc = migrate_folio(mapping, dst, src, mode); 1050 else if (mapping_inaccessible(mapping)) 1051 rc = -EOPNOTSUPP; 1052 else if (mapping->a_ops->migrate_folio) 1053 /* 1054 * Most folios have a mapping and most filesystems 1055 * provide a migrate_folio callback. Anonymous folios 1056 * are part of swap space which also has its own 1057 * migrate_folio callback. This is the most common path 1058 * for page migration. 1059 */ 1060 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 1061 mode); 1062 else 1063 rc = fallback_migrate_folio(mapping, dst, src, mode); 1064 } else { 1065 const struct movable_operations *mops; 1066 1067 /* 1068 * In case of non-lru page, it could be released after 1069 * isolation step. In that case, we shouldn't try migration. 1070 */ 1071 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1072 if (!folio_test_movable(src)) { 1073 rc = MIGRATEPAGE_SUCCESS; 1074 folio_clear_isolated(src); 1075 goto out; 1076 } 1077 1078 mops = folio_movable_ops(src); 1079 rc = mops->migrate_page(&dst->page, &src->page, mode); 1080 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 1081 !folio_test_isolated(src)); 1082 } 1083 1084 /* 1085 * When successful, old pagecache src->mapping must be cleared before 1086 * src is freed; but stats require that PageAnon be left as PageAnon. 1087 */ 1088 if (rc == MIGRATEPAGE_SUCCESS) { 1089 if (__folio_test_movable(src)) { 1090 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1091 1092 /* 1093 * We clear PG_movable under page_lock so any compactor 1094 * cannot try to migrate this page. 1095 */ 1096 folio_clear_isolated(src); 1097 } 1098 1099 /* 1100 * Anonymous and movable src->mapping will be cleared by 1101 * free_pages_prepare so don't reset it here for keeping 1102 * the type to work PageAnon, for example. 1103 */ 1104 if (!folio_mapping_flags(src)) 1105 src->mapping = NULL; 1106 1107 if (likely(!folio_is_zone_device(dst))) 1108 flush_dcache_folio(dst); 1109 } 1110 out: 1111 return rc; 1112 } 1113 1114 /* 1115 * To record some information during migration, we use unused private 1116 * field of struct folio of the newly allocated destination folio. 1117 * This is safe because nobody is using it except us. 1118 */ 1119 enum { 1120 PAGE_WAS_MAPPED = BIT(0), 1121 PAGE_WAS_MLOCKED = BIT(1), 1122 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1123 }; 1124 1125 static void __migrate_folio_record(struct folio *dst, 1126 int old_page_state, 1127 struct anon_vma *anon_vma) 1128 { 1129 dst->private = (void *)anon_vma + old_page_state; 1130 } 1131 1132 static void __migrate_folio_extract(struct folio *dst, 1133 int *old_page_state, 1134 struct anon_vma **anon_vmap) 1135 { 1136 unsigned long private = (unsigned long)dst->private; 1137 1138 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1139 *old_page_state = private & PAGE_OLD_STATES; 1140 dst->private = NULL; 1141 } 1142 1143 /* Restore the source folio to the original state upon failure */ 1144 static void migrate_folio_undo_src(struct folio *src, 1145 int page_was_mapped, 1146 struct anon_vma *anon_vma, 1147 bool locked, 1148 struct list_head *ret) 1149 { 1150 if (page_was_mapped) 1151 remove_migration_ptes(src, src, 0); 1152 /* Drop an anon_vma reference if we took one */ 1153 if (anon_vma) 1154 put_anon_vma(anon_vma); 1155 if (locked) 1156 folio_unlock(src); 1157 if (ret) 1158 list_move_tail(&src->lru, ret); 1159 } 1160 1161 /* Restore the destination folio to the original state upon failure */ 1162 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1163 free_folio_t put_new_folio, unsigned long private) 1164 { 1165 if (locked) 1166 folio_unlock(dst); 1167 if (put_new_folio) 1168 put_new_folio(dst, private); 1169 else 1170 folio_put(dst); 1171 } 1172 1173 /* Cleanup src folio upon migration success */ 1174 static void migrate_folio_done(struct folio *src, 1175 enum migrate_reason reason) 1176 { 1177 /* 1178 * Compaction can migrate also non-LRU pages which are 1179 * not accounted to NR_ISOLATED_*. They can be recognized 1180 * as __folio_test_movable 1181 */ 1182 if (likely(!__folio_test_movable(src)) && reason != MR_DEMOTION) 1183 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1184 folio_is_file_lru(src), -folio_nr_pages(src)); 1185 1186 if (reason != MR_MEMORY_FAILURE) 1187 /* We release the page in page_handle_poison. */ 1188 folio_put(src); 1189 } 1190 1191 /* Obtain the lock on page, remove all ptes. */ 1192 static int migrate_folio_unmap(new_folio_t get_new_folio, 1193 free_folio_t put_new_folio, unsigned long private, 1194 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1195 enum migrate_reason reason, struct list_head *ret) 1196 { 1197 struct folio *dst; 1198 int rc = -EAGAIN; 1199 int old_page_state = 0; 1200 struct anon_vma *anon_vma = NULL; 1201 bool is_lru = data_race(!__folio_test_movable(src)); 1202 bool locked = false; 1203 bool dst_locked = false; 1204 1205 if (folio_ref_count(src) == 1) { 1206 /* Folio was freed from under us. So we are done. */ 1207 folio_clear_active(src); 1208 folio_clear_unevictable(src); 1209 /* free_pages_prepare() will clear PG_isolated. */ 1210 list_del(&src->lru); 1211 migrate_folio_done(src, reason); 1212 return MIGRATEPAGE_SUCCESS; 1213 } 1214 1215 dst = get_new_folio(src, private); 1216 if (!dst) 1217 return -ENOMEM; 1218 *dstp = dst; 1219 1220 dst->private = NULL; 1221 1222 if (!folio_trylock(src)) { 1223 if (mode == MIGRATE_ASYNC) 1224 goto out; 1225 1226 /* 1227 * It's not safe for direct compaction to call lock_page. 1228 * For example, during page readahead pages are added locked 1229 * to the LRU. Later, when the IO completes the pages are 1230 * marked uptodate and unlocked. However, the queueing 1231 * could be merging multiple pages for one bio (e.g. 1232 * mpage_readahead). If an allocation happens for the 1233 * second or third page, the process can end up locking 1234 * the same page twice and deadlocking. Rather than 1235 * trying to be clever about what pages can be locked, 1236 * avoid the use of lock_page for direct compaction 1237 * altogether. 1238 */ 1239 if (current->flags & PF_MEMALLOC) 1240 goto out; 1241 1242 /* 1243 * In "light" mode, we can wait for transient locks (eg 1244 * inserting a page into the page table), but it's not 1245 * worth waiting for I/O. 1246 */ 1247 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1248 goto out; 1249 1250 folio_lock(src); 1251 } 1252 locked = true; 1253 if (folio_test_mlocked(src)) 1254 old_page_state |= PAGE_WAS_MLOCKED; 1255 1256 if (folio_test_writeback(src)) { 1257 /* 1258 * Only in the case of a full synchronous migration is it 1259 * necessary to wait for PageWriteback. In the async case, 1260 * the retry loop is too short and in the sync-light case, 1261 * the overhead of stalling is too much 1262 */ 1263 switch (mode) { 1264 case MIGRATE_SYNC: 1265 break; 1266 default: 1267 rc = -EBUSY; 1268 goto out; 1269 } 1270 folio_wait_writeback(src); 1271 } 1272 1273 /* 1274 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1275 * we cannot notice that anon_vma is freed while we migrate a page. 1276 * This get_anon_vma() delays freeing anon_vma pointer until the end 1277 * of migration. File cache pages are no problem because of page_lock() 1278 * File Caches may use write_page() or lock_page() in migration, then, 1279 * just care Anon page here. 1280 * 1281 * Only folio_get_anon_vma() understands the subtleties of 1282 * getting a hold on an anon_vma from outside one of its mms. 1283 * But if we cannot get anon_vma, then we won't need it anyway, 1284 * because that implies that the anon page is no longer mapped 1285 * (and cannot be remapped so long as we hold the page lock). 1286 */ 1287 if (folio_test_anon(src) && !folio_test_ksm(src)) 1288 anon_vma = folio_get_anon_vma(src); 1289 1290 /* 1291 * Block others from accessing the new page when we get around to 1292 * establishing additional references. We are usually the only one 1293 * holding a reference to dst at this point. We used to have a BUG 1294 * here if folio_trylock(dst) fails, but would like to allow for 1295 * cases where there might be a race with the previous use of dst. 1296 * This is much like races on refcount of oldpage: just don't BUG(). 1297 */ 1298 if (unlikely(!folio_trylock(dst))) 1299 goto out; 1300 dst_locked = true; 1301 1302 if (unlikely(!is_lru)) { 1303 __migrate_folio_record(dst, old_page_state, anon_vma); 1304 return MIGRATEPAGE_UNMAP; 1305 } 1306 1307 /* 1308 * Corner case handling: 1309 * 1. When a new swap-cache page is read into, it is added to the LRU 1310 * and treated as swapcache but it has no rmap yet. 1311 * Calling try_to_unmap() against a src->mapping==NULL page will 1312 * trigger a BUG. So handle it here. 1313 * 2. An orphaned page (see truncate_cleanup_page) might have 1314 * fs-private metadata. The page can be picked up due to memory 1315 * offlining. Everywhere else except page reclaim, the page is 1316 * invisible to the vm, so the page can not be migrated. So try to 1317 * free the metadata, so the page can be freed. 1318 */ 1319 if (!src->mapping) { 1320 if (folio_test_private(src)) { 1321 try_to_free_buffers(src); 1322 goto out; 1323 } 1324 } else if (folio_mapped(src)) { 1325 /* Establish migration ptes */ 1326 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1327 !folio_test_ksm(src) && !anon_vma, src); 1328 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1329 old_page_state |= PAGE_WAS_MAPPED; 1330 } 1331 1332 if (!folio_mapped(src)) { 1333 __migrate_folio_record(dst, old_page_state, anon_vma); 1334 return MIGRATEPAGE_UNMAP; 1335 } 1336 1337 out: 1338 /* 1339 * A folio that has not been unmapped will be restored to 1340 * right list unless we want to retry. 1341 */ 1342 if (rc == -EAGAIN) 1343 ret = NULL; 1344 1345 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1346 anon_vma, locked, ret); 1347 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1348 1349 return rc; 1350 } 1351 1352 /* Migrate the folio to the newly allocated folio in dst. */ 1353 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1354 struct folio *src, struct folio *dst, 1355 enum migrate_mode mode, enum migrate_reason reason, 1356 struct list_head *ret) 1357 { 1358 int rc; 1359 int old_page_state = 0; 1360 struct anon_vma *anon_vma = NULL; 1361 bool is_lru = !__folio_test_movable(src); 1362 struct list_head *prev; 1363 1364 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1365 prev = dst->lru.prev; 1366 list_del(&dst->lru); 1367 1368 rc = move_to_new_folio(dst, src, mode); 1369 if (rc) 1370 goto out; 1371 1372 if (unlikely(!is_lru)) 1373 goto out_unlock_both; 1374 1375 /* 1376 * When successful, push dst to LRU immediately: so that if it 1377 * turns out to be an mlocked page, remove_migration_ptes() will 1378 * automatically build up the correct dst->mlock_count for it. 1379 * 1380 * We would like to do something similar for the old page, when 1381 * unsuccessful, and other cases when a page has been temporarily 1382 * isolated from the unevictable LRU: but this case is the easiest. 1383 */ 1384 folio_add_lru(dst); 1385 if (old_page_state & PAGE_WAS_MLOCKED) 1386 lru_add_drain(); 1387 1388 if (old_page_state & PAGE_WAS_MAPPED) 1389 remove_migration_ptes(src, dst, 0); 1390 1391 out_unlock_both: 1392 folio_unlock(dst); 1393 set_page_owner_migrate_reason(&dst->page, reason); 1394 /* 1395 * If migration is successful, decrease refcount of dst, 1396 * which will not free the page because new page owner increased 1397 * refcounter. 1398 */ 1399 folio_put(dst); 1400 1401 /* 1402 * A folio that has been migrated has all references removed 1403 * and will be freed. 1404 */ 1405 list_del(&src->lru); 1406 /* Drop an anon_vma reference if we took one */ 1407 if (anon_vma) 1408 put_anon_vma(anon_vma); 1409 folio_unlock(src); 1410 migrate_folio_done(src, reason); 1411 1412 return rc; 1413 out: 1414 /* 1415 * A folio that has not been migrated will be restored to 1416 * right list unless we want to retry. 1417 */ 1418 if (rc == -EAGAIN) { 1419 list_add(&dst->lru, prev); 1420 __migrate_folio_record(dst, old_page_state, anon_vma); 1421 return rc; 1422 } 1423 1424 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1425 anon_vma, true, ret); 1426 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1427 1428 return rc; 1429 } 1430 1431 /* 1432 * Counterpart of unmap_and_move_page() for hugepage migration. 1433 * 1434 * This function doesn't wait the completion of hugepage I/O 1435 * because there is no race between I/O and migration for hugepage. 1436 * Note that currently hugepage I/O occurs only in direct I/O 1437 * where no lock is held and PG_writeback is irrelevant, 1438 * and writeback status of all subpages are counted in the reference 1439 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1440 * under direct I/O, the reference of the head page is 512 and a bit more.) 1441 * This means that when we try to migrate hugepage whose subpages are 1442 * doing direct I/O, some references remain after try_to_unmap() and 1443 * hugepage migration fails without data corruption. 1444 * 1445 * There is also no race when direct I/O is issued on the page under migration, 1446 * because then pte is replaced with migration swap entry and direct I/O code 1447 * will wait in the page fault for migration to complete. 1448 */ 1449 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1450 free_folio_t put_new_folio, unsigned long private, 1451 struct folio *src, int force, enum migrate_mode mode, 1452 int reason, struct list_head *ret) 1453 { 1454 struct folio *dst; 1455 int rc = -EAGAIN; 1456 int page_was_mapped = 0; 1457 struct anon_vma *anon_vma = NULL; 1458 struct address_space *mapping = NULL; 1459 1460 if (folio_ref_count(src) == 1) { 1461 /* page was freed from under us. So we are done. */ 1462 folio_putback_active_hugetlb(src); 1463 return MIGRATEPAGE_SUCCESS; 1464 } 1465 1466 dst = get_new_folio(src, private); 1467 if (!dst) 1468 return -ENOMEM; 1469 1470 if (!folio_trylock(src)) { 1471 if (!force) 1472 goto out; 1473 switch (mode) { 1474 case MIGRATE_SYNC: 1475 break; 1476 default: 1477 goto out; 1478 } 1479 folio_lock(src); 1480 } 1481 1482 /* 1483 * Check for pages which are in the process of being freed. Without 1484 * folio_mapping() set, hugetlbfs specific move page routine will not 1485 * be called and we could leak usage counts for subpools. 1486 */ 1487 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1488 rc = -EBUSY; 1489 goto out_unlock; 1490 } 1491 1492 if (folio_test_anon(src)) 1493 anon_vma = folio_get_anon_vma(src); 1494 1495 if (unlikely(!folio_trylock(dst))) 1496 goto put_anon; 1497 1498 if (folio_mapped(src)) { 1499 enum ttu_flags ttu = 0; 1500 1501 if (!folio_test_anon(src)) { 1502 /* 1503 * In shared mappings, try_to_unmap could potentially 1504 * call huge_pmd_unshare. Because of this, take 1505 * semaphore in write mode here and set TTU_RMAP_LOCKED 1506 * to let lower levels know we have taken the lock. 1507 */ 1508 mapping = hugetlb_folio_mapping_lock_write(src); 1509 if (unlikely(!mapping)) 1510 goto unlock_put_anon; 1511 1512 ttu = TTU_RMAP_LOCKED; 1513 } 1514 1515 try_to_migrate(src, ttu); 1516 page_was_mapped = 1; 1517 1518 if (ttu & TTU_RMAP_LOCKED) 1519 i_mmap_unlock_write(mapping); 1520 } 1521 1522 if (!folio_mapped(src)) 1523 rc = move_to_new_folio(dst, src, mode); 1524 1525 if (page_was_mapped) 1526 remove_migration_ptes(src, 1527 rc == MIGRATEPAGE_SUCCESS ? dst : src, 0); 1528 1529 unlock_put_anon: 1530 folio_unlock(dst); 1531 1532 put_anon: 1533 if (anon_vma) 1534 put_anon_vma(anon_vma); 1535 1536 if (rc == MIGRATEPAGE_SUCCESS) { 1537 move_hugetlb_state(src, dst, reason); 1538 put_new_folio = NULL; 1539 } 1540 1541 out_unlock: 1542 folio_unlock(src); 1543 out: 1544 if (rc == MIGRATEPAGE_SUCCESS) 1545 folio_putback_active_hugetlb(src); 1546 else if (rc != -EAGAIN) 1547 list_move_tail(&src->lru, ret); 1548 1549 /* 1550 * If migration was not successful and there's a freeing callback, use 1551 * it. Otherwise, put_page() will drop the reference grabbed during 1552 * isolation. 1553 */ 1554 if (put_new_folio) 1555 put_new_folio(dst, private); 1556 else 1557 folio_putback_active_hugetlb(dst); 1558 1559 return rc; 1560 } 1561 1562 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios, 1563 enum migrate_mode mode) 1564 { 1565 int rc; 1566 1567 if (mode == MIGRATE_ASYNC) { 1568 if (!folio_trylock(folio)) 1569 return -EAGAIN; 1570 } else { 1571 folio_lock(folio); 1572 } 1573 rc = split_folio_to_list(folio, split_folios); 1574 folio_unlock(folio); 1575 if (!rc) 1576 list_move_tail(&folio->lru, split_folios); 1577 1578 return rc; 1579 } 1580 1581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1582 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1583 #else 1584 #define NR_MAX_BATCHED_MIGRATION 512 1585 #endif 1586 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1587 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1588 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1589 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1590 1591 struct migrate_pages_stats { 1592 int nr_succeeded; /* Normal and large folios migrated successfully, in 1593 units of base pages */ 1594 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1595 units of base pages. Untried folios aren't counted */ 1596 int nr_thp_succeeded; /* THP migrated successfully */ 1597 int nr_thp_failed; /* THP failed to be migrated */ 1598 int nr_thp_split; /* THP split before migrating */ 1599 int nr_split; /* Large folio (include THP) split before migrating */ 1600 }; 1601 1602 /* 1603 * Returns the number of hugetlb folios that were not migrated, or an error code 1604 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1605 * any more because the list has become empty or no retryable hugetlb folios 1606 * exist any more. It is caller's responsibility to call putback_movable_pages() 1607 * only if ret != 0. 1608 */ 1609 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1610 free_folio_t put_new_folio, unsigned long private, 1611 enum migrate_mode mode, int reason, 1612 struct migrate_pages_stats *stats, 1613 struct list_head *ret_folios) 1614 { 1615 int retry = 1; 1616 int nr_failed = 0; 1617 int nr_retry_pages = 0; 1618 int pass = 0; 1619 struct folio *folio, *folio2; 1620 int rc, nr_pages; 1621 1622 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1623 retry = 0; 1624 nr_retry_pages = 0; 1625 1626 list_for_each_entry_safe(folio, folio2, from, lru) { 1627 if (!folio_test_hugetlb(folio)) 1628 continue; 1629 1630 nr_pages = folio_nr_pages(folio); 1631 1632 cond_resched(); 1633 1634 /* 1635 * Migratability of hugepages depends on architectures and 1636 * their size. This check is necessary because some callers 1637 * of hugepage migration like soft offline and memory 1638 * hotremove don't walk through page tables or check whether 1639 * the hugepage is pmd-based or not before kicking migration. 1640 */ 1641 if (!hugepage_migration_supported(folio_hstate(folio))) { 1642 nr_failed++; 1643 stats->nr_failed_pages += nr_pages; 1644 list_move_tail(&folio->lru, ret_folios); 1645 continue; 1646 } 1647 1648 rc = unmap_and_move_huge_page(get_new_folio, 1649 put_new_folio, private, 1650 folio, pass > 2, mode, 1651 reason, ret_folios); 1652 /* 1653 * The rules are: 1654 * Success: hugetlb folio will be put back 1655 * -EAGAIN: stay on the from list 1656 * -ENOMEM: stay on the from list 1657 * Other errno: put on ret_folios list 1658 */ 1659 switch(rc) { 1660 case -ENOMEM: 1661 /* 1662 * When memory is low, don't bother to try to migrate 1663 * other folios, just exit. 1664 */ 1665 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1666 return -ENOMEM; 1667 case -EAGAIN: 1668 retry++; 1669 nr_retry_pages += nr_pages; 1670 break; 1671 case MIGRATEPAGE_SUCCESS: 1672 stats->nr_succeeded += nr_pages; 1673 break; 1674 default: 1675 /* 1676 * Permanent failure (-EBUSY, etc.): 1677 * unlike -EAGAIN case, the failed folio is 1678 * removed from migration folio list and not 1679 * retried in the next outer loop. 1680 */ 1681 nr_failed++; 1682 stats->nr_failed_pages += nr_pages; 1683 break; 1684 } 1685 } 1686 } 1687 /* 1688 * nr_failed is number of hugetlb folios failed to be migrated. After 1689 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1690 * folios as failed. 1691 */ 1692 nr_failed += retry; 1693 stats->nr_failed_pages += nr_retry_pages; 1694 1695 return nr_failed; 1696 } 1697 1698 /* 1699 * migrate_pages_batch() first unmaps folios in the from list as many as 1700 * possible, then move the unmapped folios. 1701 * 1702 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1703 * lock or bit when we have locked more than one folio. Which may cause 1704 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1705 * length of the from list must be <= 1. 1706 */ 1707 static int migrate_pages_batch(struct list_head *from, 1708 new_folio_t get_new_folio, free_folio_t put_new_folio, 1709 unsigned long private, enum migrate_mode mode, int reason, 1710 struct list_head *ret_folios, struct list_head *split_folios, 1711 struct migrate_pages_stats *stats, int nr_pass) 1712 { 1713 int retry = 1; 1714 int thp_retry = 1; 1715 int nr_failed = 0; 1716 int nr_retry_pages = 0; 1717 int pass = 0; 1718 bool is_thp = false; 1719 bool is_large = false; 1720 struct folio *folio, *folio2, *dst = NULL, *dst2; 1721 int rc, rc_saved = 0, nr_pages; 1722 LIST_HEAD(unmap_folios); 1723 LIST_HEAD(dst_folios); 1724 bool nosplit = (reason == MR_NUMA_MISPLACED); 1725 1726 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1727 !list_empty(from) && !list_is_singular(from)); 1728 1729 for (pass = 0; pass < nr_pass && retry; pass++) { 1730 retry = 0; 1731 thp_retry = 0; 1732 nr_retry_pages = 0; 1733 1734 list_for_each_entry_safe(folio, folio2, from, lru) { 1735 is_large = folio_test_large(folio); 1736 is_thp = folio_test_pmd_mappable(folio); 1737 nr_pages = folio_nr_pages(folio); 1738 1739 cond_resched(); 1740 1741 /* 1742 * The rare folio on the deferred split list should 1743 * be split now. It should not count as a failure: 1744 * but increment nr_failed because, without doing so, 1745 * migrate_pages() may report success with (split but 1746 * unmigrated) pages still on its fromlist; whereas it 1747 * always reports success when its fromlist is empty. 1748 * stats->nr_thp_failed should be increased too, 1749 * otherwise stats inconsistency will happen when 1750 * migrate_pages_batch is called via migrate_pages() 1751 * with MIGRATE_SYNC and MIGRATE_ASYNC. 1752 * 1753 * Only check it without removing it from the list. 1754 * Since the folio can be on deferred_split_scan() 1755 * local list and removing it can cause the local list 1756 * corruption. Folio split process below can handle it 1757 * with the help of folio_ref_freeze(). 1758 * 1759 * nr_pages > 2 is needed to avoid checking order-1 1760 * page cache folios. They exist, in contrast to 1761 * non-existent order-1 anonymous folios, and do not 1762 * use _deferred_list. 1763 */ 1764 if (nr_pages > 2 && 1765 !list_empty(&folio->_deferred_list) && 1766 folio_test_partially_mapped(folio)) { 1767 if (!try_split_folio(folio, split_folios, mode)) { 1768 nr_failed++; 1769 stats->nr_thp_failed += is_thp; 1770 stats->nr_thp_split += is_thp; 1771 stats->nr_split++; 1772 continue; 1773 } 1774 } 1775 1776 /* 1777 * Large folio migration might be unsupported or 1778 * the allocation might be failed so we should retry 1779 * on the same folio with the large folio split 1780 * to normal folios. 1781 * 1782 * Split folios are put in split_folios, and 1783 * we will migrate them after the rest of the 1784 * list is processed. 1785 */ 1786 if (!thp_migration_supported() && is_thp) { 1787 nr_failed++; 1788 stats->nr_thp_failed++; 1789 if (!try_split_folio(folio, split_folios, mode)) { 1790 stats->nr_thp_split++; 1791 stats->nr_split++; 1792 continue; 1793 } 1794 stats->nr_failed_pages += nr_pages; 1795 list_move_tail(&folio->lru, ret_folios); 1796 continue; 1797 } 1798 1799 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1800 private, folio, &dst, mode, reason, 1801 ret_folios); 1802 /* 1803 * The rules are: 1804 * Success: folio will be freed 1805 * Unmap: folio will be put on unmap_folios list, 1806 * dst folio put on dst_folios list 1807 * -EAGAIN: stay on the from list 1808 * -ENOMEM: stay on the from list 1809 * Other errno: put on ret_folios list 1810 */ 1811 switch(rc) { 1812 case -ENOMEM: 1813 /* 1814 * When memory is low, don't bother to try to migrate 1815 * other folios, move unmapped folios, then exit. 1816 */ 1817 nr_failed++; 1818 stats->nr_thp_failed += is_thp; 1819 /* Large folio NUMA faulting doesn't split to retry. */ 1820 if (is_large && !nosplit) { 1821 int ret = try_split_folio(folio, split_folios, mode); 1822 1823 if (!ret) { 1824 stats->nr_thp_split += is_thp; 1825 stats->nr_split++; 1826 break; 1827 } else if (reason == MR_LONGTERM_PIN && 1828 ret == -EAGAIN) { 1829 /* 1830 * Try again to split large folio to 1831 * mitigate the failure of longterm pinning. 1832 */ 1833 retry++; 1834 thp_retry += is_thp; 1835 nr_retry_pages += nr_pages; 1836 /* Undo duplicated failure counting. */ 1837 nr_failed--; 1838 stats->nr_thp_failed -= is_thp; 1839 break; 1840 } 1841 } 1842 1843 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1844 /* nr_failed isn't updated for not used */ 1845 stats->nr_thp_failed += thp_retry; 1846 rc_saved = rc; 1847 if (list_empty(&unmap_folios)) 1848 goto out; 1849 else 1850 goto move; 1851 case -EAGAIN: 1852 retry++; 1853 thp_retry += is_thp; 1854 nr_retry_pages += nr_pages; 1855 break; 1856 case MIGRATEPAGE_SUCCESS: 1857 stats->nr_succeeded += nr_pages; 1858 stats->nr_thp_succeeded += is_thp; 1859 break; 1860 case MIGRATEPAGE_UNMAP: 1861 list_move_tail(&folio->lru, &unmap_folios); 1862 list_add_tail(&dst->lru, &dst_folios); 1863 break; 1864 default: 1865 /* 1866 * Permanent failure (-EBUSY, etc.): 1867 * unlike -EAGAIN case, the failed folio is 1868 * removed from migration folio list and not 1869 * retried in the next outer loop. 1870 */ 1871 nr_failed++; 1872 stats->nr_thp_failed += is_thp; 1873 stats->nr_failed_pages += nr_pages; 1874 break; 1875 } 1876 } 1877 } 1878 nr_failed += retry; 1879 stats->nr_thp_failed += thp_retry; 1880 stats->nr_failed_pages += nr_retry_pages; 1881 move: 1882 /* Flush TLBs for all unmapped folios */ 1883 try_to_unmap_flush(); 1884 1885 retry = 1; 1886 for (pass = 0; pass < nr_pass && retry; pass++) { 1887 retry = 0; 1888 thp_retry = 0; 1889 nr_retry_pages = 0; 1890 1891 dst = list_first_entry(&dst_folios, struct folio, lru); 1892 dst2 = list_next_entry(dst, lru); 1893 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1894 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1895 nr_pages = folio_nr_pages(folio); 1896 1897 cond_resched(); 1898 1899 rc = migrate_folio_move(put_new_folio, private, 1900 folio, dst, mode, 1901 reason, ret_folios); 1902 /* 1903 * The rules are: 1904 * Success: folio will be freed 1905 * -EAGAIN: stay on the unmap_folios list 1906 * Other errno: put on ret_folios list 1907 */ 1908 switch(rc) { 1909 case -EAGAIN: 1910 retry++; 1911 thp_retry += is_thp; 1912 nr_retry_pages += nr_pages; 1913 break; 1914 case MIGRATEPAGE_SUCCESS: 1915 stats->nr_succeeded += nr_pages; 1916 stats->nr_thp_succeeded += is_thp; 1917 break; 1918 default: 1919 nr_failed++; 1920 stats->nr_thp_failed += is_thp; 1921 stats->nr_failed_pages += nr_pages; 1922 break; 1923 } 1924 dst = dst2; 1925 dst2 = list_next_entry(dst, lru); 1926 } 1927 } 1928 nr_failed += retry; 1929 stats->nr_thp_failed += thp_retry; 1930 stats->nr_failed_pages += nr_retry_pages; 1931 1932 rc = rc_saved ? : nr_failed; 1933 out: 1934 /* Cleanup remaining folios */ 1935 dst = list_first_entry(&dst_folios, struct folio, lru); 1936 dst2 = list_next_entry(dst, lru); 1937 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1938 int old_page_state = 0; 1939 struct anon_vma *anon_vma = NULL; 1940 1941 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1942 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1943 anon_vma, true, ret_folios); 1944 list_del(&dst->lru); 1945 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1946 dst = dst2; 1947 dst2 = list_next_entry(dst, lru); 1948 } 1949 1950 return rc; 1951 } 1952 1953 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1954 free_folio_t put_new_folio, unsigned long private, 1955 enum migrate_mode mode, int reason, 1956 struct list_head *ret_folios, struct list_head *split_folios, 1957 struct migrate_pages_stats *stats) 1958 { 1959 int rc, nr_failed = 0; 1960 LIST_HEAD(folios); 1961 struct migrate_pages_stats astats; 1962 1963 memset(&astats, 0, sizeof(astats)); 1964 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1965 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1966 reason, &folios, split_folios, &astats, 1967 NR_MAX_MIGRATE_ASYNC_RETRY); 1968 stats->nr_succeeded += astats.nr_succeeded; 1969 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1970 stats->nr_thp_split += astats.nr_thp_split; 1971 stats->nr_split += astats.nr_split; 1972 if (rc < 0) { 1973 stats->nr_failed_pages += astats.nr_failed_pages; 1974 stats->nr_thp_failed += astats.nr_thp_failed; 1975 list_splice_tail(&folios, ret_folios); 1976 return rc; 1977 } 1978 stats->nr_thp_failed += astats.nr_thp_split; 1979 /* 1980 * Do not count rc, as pages will be retried below. 1981 * Count nr_split only, since it includes nr_thp_split. 1982 */ 1983 nr_failed += astats.nr_split; 1984 /* 1985 * Fall back to migrate all failed folios one by one synchronously. All 1986 * failed folios except split THPs will be retried, so their failure 1987 * isn't counted 1988 */ 1989 list_splice_tail_init(&folios, from); 1990 while (!list_empty(from)) { 1991 list_move(from->next, &folios); 1992 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1993 private, mode, reason, ret_folios, 1994 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1995 list_splice_tail_init(&folios, ret_folios); 1996 if (rc < 0) 1997 return rc; 1998 nr_failed += rc; 1999 } 2000 2001 return nr_failed; 2002 } 2003 2004 /* 2005 * migrate_pages - migrate the folios specified in a list, to the free folios 2006 * supplied as the target for the page migration 2007 * 2008 * @from: The list of folios to be migrated. 2009 * @get_new_folio: The function used to allocate free folios to be used 2010 * as the target of the folio migration. 2011 * @put_new_folio: The function used to free target folios if migration 2012 * fails, or NULL if no special handling is necessary. 2013 * @private: Private data to be passed on to get_new_folio() 2014 * @mode: The migration mode that specifies the constraints for 2015 * folio migration, if any. 2016 * @reason: The reason for folio migration. 2017 * @ret_succeeded: Set to the number of folios migrated successfully if 2018 * the caller passes a non-NULL pointer. 2019 * 2020 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 2021 * are movable any more because the list has become empty or no retryable folios 2022 * exist any more. It is caller's responsibility to call putback_movable_pages() 2023 * only if ret != 0. 2024 * 2025 * Returns the number of {normal folio, large folio, hugetlb} that were not 2026 * migrated, or an error code. The number of large folio splits will be 2027 * considered as the number of non-migrated large folio, no matter how many 2028 * split folios of the large folio are migrated successfully. 2029 */ 2030 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 2031 free_folio_t put_new_folio, unsigned long private, 2032 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 2033 { 2034 int rc, rc_gather; 2035 int nr_pages; 2036 struct folio *folio, *folio2; 2037 LIST_HEAD(folios); 2038 LIST_HEAD(ret_folios); 2039 LIST_HEAD(split_folios); 2040 struct migrate_pages_stats stats; 2041 2042 trace_mm_migrate_pages_start(mode, reason); 2043 2044 memset(&stats, 0, sizeof(stats)); 2045 2046 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 2047 mode, reason, &stats, &ret_folios); 2048 if (rc_gather < 0) 2049 goto out; 2050 2051 again: 2052 nr_pages = 0; 2053 list_for_each_entry_safe(folio, folio2, from, lru) { 2054 /* Retried hugetlb folios will be kept in list */ 2055 if (folio_test_hugetlb(folio)) { 2056 list_move_tail(&folio->lru, &ret_folios); 2057 continue; 2058 } 2059 2060 nr_pages += folio_nr_pages(folio); 2061 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2062 break; 2063 } 2064 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2065 list_cut_before(&folios, from, &folio2->lru); 2066 else 2067 list_splice_init(from, &folios); 2068 if (mode == MIGRATE_ASYNC) 2069 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2070 private, mode, reason, &ret_folios, 2071 &split_folios, &stats, 2072 NR_MAX_MIGRATE_PAGES_RETRY); 2073 else 2074 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 2075 private, mode, reason, &ret_folios, 2076 &split_folios, &stats); 2077 list_splice_tail_init(&folios, &ret_folios); 2078 if (rc < 0) { 2079 rc_gather = rc; 2080 list_splice_tail(&split_folios, &ret_folios); 2081 goto out; 2082 } 2083 if (!list_empty(&split_folios)) { 2084 /* 2085 * Failure isn't counted since all split folios of a large folio 2086 * is counted as 1 failure already. And, we only try to migrate 2087 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 2088 */ 2089 migrate_pages_batch(&split_folios, get_new_folio, 2090 put_new_folio, private, MIGRATE_ASYNC, reason, 2091 &ret_folios, NULL, &stats, 1); 2092 list_splice_tail_init(&split_folios, &ret_folios); 2093 } 2094 rc_gather += rc; 2095 if (!list_empty(from)) 2096 goto again; 2097 out: 2098 /* 2099 * Put the permanent failure folio back to migration list, they 2100 * will be put back to the right list by the caller. 2101 */ 2102 list_splice(&ret_folios, from); 2103 2104 /* 2105 * Return 0 in case all split folios of fail-to-migrate large folios 2106 * are migrated successfully. 2107 */ 2108 if (list_empty(from)) 2109 rc_gather = 0; 2110 2111 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2112 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2113 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2114 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2115 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2116 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2117 stats.nr_thp_succeeded, stats.nr_thp_failed, 2118 stats.nr_thp_split, stats.nr_split, mode, 2119 reason); 2120 2121 if (ret_succeeded) 2122 *ret_succeeded = stats.nr_succeeded; 2123 2124 return rc_gather; 2125 } 2126 2127 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2128 { 2129 struct migration_target_control *mtc; 2130 gfp_t gfp_mask; 2131 unsigned int order = 0; 2132 int nid; 2133 int zidx; 2134 2135 mtc = (struct migration_target_control *)private; 2136 gfp_mask = mtc->gfp_mask; 2137 nid = mtc->nid; 2138 if (nid == NUMA_NO_NODE) 2139 nid = folio_nid(src); 2140 2141 if (folio_test_hugetlb(src)) { 2142 struct hstate *h = folio_hstate(src); 2143 2144 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2145 return alloc_hugetlb_folio_nodemask(h, nid, 2146 mtc->nmask, gfp_mask, 2147 htlb_allow_alloc_fallback(mtc->reason)); 2148 } 2149 2150 if (folio_test_large(src)) { 2151 /* 2152 * clear __GFP_RECLAIM to make the migration callback 2153 * consistent with regular THP allocations. 2154 */ 2155 gfp_mask &= ~__GFP_RECLAIM; 2156 gfp_mask |= GFP_TRANSHUGE; 2157 order = folio_order(src); 2158 } 2159 zidx = zone_idx(folio_zone(src)); 2160 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2161 gfp_mask |= __GFP_HIGHMEM; 2162 2163 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2164 } 2165 2166 #ifdef CONFIG_NUMA 2167 2168 static int store_status(int __user *status, int start, int value, int nr) 2169 { 2170 while (nr-- > 0) { 2171 if (put_user(value, status + start)) 2172 return -EFAULT; 2173 start++; 2174 } 2175 2176 return 0; 2177 } 2178 2179 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2180 { 2181 int err; 2182 struct migration_target_control mtc = { 2183 .nid = node, 2184 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2185 .reason = MR_SYSCALL, 2186 }; 2187 2188 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2189 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2190 if (err) 2191 putback_movable_pages(pagelist); 2192 return err; 2193 } 2194 2195 static int __add_folio_for_migration(struct folio *folio, int node, 2196 struct list_head *pagelist, bool migrate_all) 2197 { 2198 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2199 return -EFAULT; 2200 2201 if (folio_is_zone_device(folio)) 2202 return -ENOENT; 2203 2204 if (folio_nid(folio) == node) 2205 return 0; 2206 2207 if (folio_likely_mapped_shared(folio) && !migrate_all) 2208 return -EACCES; 2209 2210 if (folio_test_hugetlb(folio)) { 2211 if (isolate_hugetlb(folio, pagelist)) 2212 return 1; 2213 } else if (folio_isolate_lru(folio)) { 2214 list_add_tail(&folio->lru, pagelist); 2215 node_stat_mod_folio(folio, 2216 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2217 folio_nr_pages(folio)); 2218 return 1; 2219 } 2220 return -EBUSY; 2221 } 2222 2223 /* 2224 * Resolves the given address to a struct folio, isolates it from the LRU and 2225 * puts it to the given pagelist. 2226 * Returns: 2227 * errno - if the folio cannot be found/isolated 2228 * 0 - when it doesn't have to be migrated because it is already on the 2229 * target node 2230 * 1 - when it has been queued 2231 */ 2232 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p, 2233 int node, struct list_head *pagelist, bool migrate_all) 2234 { 2235 struct vm_area_struct *vma; 2236 struct folio_walk fw; 2237 struct folio *folio; 2238 unsigned long addr; 2239 int err = -EFAULT; 2240 2241 mmap_read_lock(mm); 2242 addr = (unsigned long)untagged_addr_remote(mm, p); 2243 2244 vma = vma_lookup(mm, addr); 2245 if (vma && vma_migratable(vma)) { 2246 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2247 if (folio) { 2248 err = __add_folio_for_migration(folio, node, pagelist, 2249 migrate_all); 2250 folio_walk_end(&fw, vma); 2251 } else { 2252 err = -ENOENT; 2253 } 2254 } 2255 mmap_read_unlock(mm); 2256 return err; 2257 } 2258 2259 static int move_pages_and_store_status(int node, 2260 struct list_head *pagelist, int __user *status, 2261 int start, int i, unsigned long nr_pages) 2262 { 2263 int err; 2264 2265 if (list_empty(pagelist)) 2266 return 0; 2267 2268 err = do_move_pages_to_node(pagelist, node); 2269 if (err) { 2270 /* 2271 * Positive err means the number of failed 2272 * pages to migrate. Since we are going to 2273 * abort and return the number of non-migrated 2274 * pages, so need to include the rest of the 2275 * nr_pages that have not been attempted as 2276 * well. 2277 */ 2278 if (err > 0) 2279 err += nr_pages - i; 2280 return err; 2281 } 2282 return store_status(status, start, node, i - start); 2283 } 2284 2285 /* 2286 * Migrate an array of page address onto an array of nodes and fill 2287 * the corresponding array of status. 2288 */ 2289 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2290 unsigned long nr_pages, 2291 const void __user * __user *pages, 2292 const int __user *nodes, 2293 int __user *status, int flags) 2294 { 2295 compat_uptr_t __user *compat_pages = (void __user *)pages; 2296 int current_node = NUMA_NO_NODE; 2297 LIST_HEAD(pagelist); 2298 int start, i; 2299 int err = 0, err1; 2300 2301 lru_cache_disable(); 2302 2303 for (i = start = 0; i < nr_pages; i++) { 2304 const void __user *p; 2305 int node; 2306 2307 err = -EFAULT; 2308 if (in_compat_syscall()) { 2309 compat_uptr_t cp; 2310 2311 if (get_user(cp, compat_pages + i)) 2312 goto out_flush; 2313 2314 p = compat_ptr(cp); 2315 } else { 2316 if (get_user(p, pages + i)) 2317 goto out_flush; 2318 } 2319 if (get_user(node, nodes + i)) 2320 goto out_flush; 2321 2322 err = -ENODEV; 2323 if (node < 0 || node >= MAX_NUMNODES) 2324 goto out_flush; 2325 if (!node_state(node, N_MEMORY)) 2326 goto out_flush; 2327 2328 err = -EACCES; 2329 if (!node_isset(node, task_nodes)) 2330 goto out_flush; 2331 2332 if (current_node == NUMA_NO_NODE) { 2333 current_node = node; 2334 start = i; 2335 } else if (node != current_node) { 2336 err = move_pages_and_store_status(current_node, 2337 &pagelist, status, start, i, nr_pages); 2338 if (err) 2339 goto out; 2340 start = i; 2341 current_node = node; 2342 } 2343 2344 /* 2345 * Errors in the page lookup or isolation are not fatal and we simply 2346 * report them via status 2347 */ 2348 err = add_folio_for_migration(mm, p, current_node, &pagelist, 2349 flags & MPOL_MF_MOVE_ALL); 2350 2351 if (err > 0) { 2352 /* The page is successfully queued for migration */ 2353 continue; 2354 } 2355 2356 /* 2357 * The move_pages() man page does not have an -EEXIST choice, so 2358 * use -EFAULT instead. 2359 */ 2360 if (err == -EEXIST) 2361 err = -EFAULT; 2362 2363 /* 2364 * If the page is already on the target node (!err), store the 2365 * node, otherwise, store the err. 2366 */ 2367 err = store_status(status, i, err ? : current_node, 1); 2368 if (err) 2369 goto out_flush; 2370 2371 err = move_pages_and_store_status(current_node, &pagelist, 2372 status, start, i, nr_pages); 2373 if (err) { 2374 /* We have accounted for page i */ 2375 if (err > 0) 2376 err--; 2377 goto out; 2378 } 2379 current_node = NUMA_NO_NODE; 2380 } 2381 out_flush: 2382 /* Make sure we do not overwrite the existing error */ 2383 err1 = move_pages_and_store_status(current_node, &pagelist, 2384 status, start, i, nr_pages); 2385 if (err >= 0) 2386 err = err1; 2387 out: 2388 lru_cache_enable(); 2389 return err; 2390 } 2391 2392 /* 2393 * Determine the nodes of an array of pages and store it in an array of status. 2394 */ 2395 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2396 const void __user **pages, int *status) 2397 { 2398 unsigned long i; 2399 2400 mmap_read_lock(mm); 2401 2402 for (i = 0; i < nr_pages; i++) { 2403 unsigned long addr = (unsigned long)(*pages); 2404 struct vm_area_struct *vma; 2405 struct folio_walk fw; 2406 struct folio *folio; 2407 int err = -EFAULT; 2408 2409 vma = vma_lookup(mm, addr); 2410 if (!vma) 2411 goto set_status; 2412 2413 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2414 if (folio) { 2415 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2416 err = -EFAULT; 2417 else if (folio_is_zone_device(folio)) 2418 err = -ENOENT; 2419 else 2420 err = folio_nid(folio); 2421 folio_walk_end(&fw, vma); 2422 } else { 2423 err = -ENOENT; 2424 } 2425 set_status: 2426 *status = err; 2427 2428 pages++; 2429 status++; 2430 } 2431 2432 mmap_read_unlock(mm); 2433 } 2434 2435 static int get_compat_pages_array(const void __user *chunk_pages[], 2436 const void __user * __user *pages, 2437 unsigned long chunk_nr) 2438 { 2439 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2440 compat_uptr_t p; 2441 int i; 2442 2443 for (i = 0; i < chunk_nr; i++) { 2444 if (get_user(p, pages32 + i)) 2445 return -EFAULT; 2446 chunk_pages[i] = compat_ptr(p); 2447 } 2448 2449 return 0; 2450 } 2451 2452 /* 2453 * Determine the nodes of a user array of pages and store it in 2454 * a user array of status. 2455 */ 2456 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2457 const void __user * __user *pages, 2458 int __user *status) 2459 { 2460 #define DO_PAGES_STAT_CHUNK_NR 16UL 2461 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2462 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2463 2464 while (nr_pages) { 2465 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2466 2467 if (in_compat_syscall()) { 2468 if (get_compat_pages_array(chunk_pages, pages, 2469 chunk_nr)) 2470 break; 2471 } else { 2472 if (copy_from_user(chunk_pages, pages, 2473 chunk_nr * sizeof(*chunk_pages))) 2474 break; 2475 } 2476 2477 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2478 2479 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2480 break; 2481 2482 pages += chunk_nr; 2483 status += chunk_nr; 2484 nr_pages -= chunk_nr; 2485 } 2486 return nr_pages ? -EFAULT : 0; 2487 } 2488 2489 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2490 { 2491 struct task_struct *task; 2492 struct mm_struct *mm; 2493 2494 /* 2495 * There is no need to check if current process has the right to modify 2496 * the specified process when they are same. 2497 */ 2498 if (!pid) { 2499 mmget(current->mm); 2500 *mem_nodes = cpuset_mems_allowed(current); 2501 return current->mm; 2502 } 2503 2504 task = find_get_task_by_vpid(pid); 2505 if (!task) { 2506 return ERR_PTR(-ESRCH); 2507 } 2508 2509 /* 2510 * Check if this process has the right to modify the specified 2511 * process. Use the regular "ptrace_may_access()" checks. 2512 */ 2513 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2514 mm = ERR_PTR(-EPERM); 2515 goto out; 2516 } 2517 2518 mm = ERR_PTR(security_task_movememory(task)); 2519 if (IS_ERR(mm)) 2520 goto out; 2521 *mem_nodes = cpuset_mems_allowed(task); 2522 mm = get_task_mm(task); 2523 out: 2524 put_task_struct(task); 2525 if (!mm) 2526 mm = ERR_PTR(-EINVAL); 2527 return mm; 2528 } 2529 2530 /* 2531 * Move a list of pages in the address space of the currently executing 2532 * process. 2533 */ 2534 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2535 const void __user * __user *pages, 2536 const int __user *nodes, 2537 int __user *status, int flags) 2538 { 2539 struct mm_struct *mm; 2540 int err; 2541 nodemask_t task_nodes; 2542 2543 /* Check flags */ 2544 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2545 return -EINVAL; 2546 2547 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2548 return -EPERM; 2549 2550 mm = find_mm_struct(pid, &task_nodes); 2551 if (IS_ERR(mm)) 2552 return PTR_ERR(mm); 2553 2554 if (nodes) 2555 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2556 nodes, status, flags); 2557 else 2558 err = do_pages_stat(mm, nr_pages, pages, status); 2559 2560 mmput(mm); 2561 return err; 2562 } 2563 2564 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2565 const void __user * __user *, pages, 2566 const int __user *, nodes, 2567 int __user *, status, int, flags) 2568 { 2569 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2570 } 2571 2572 #ifdef CONFIG_NUMA_BALANCING 2573 /* 2574 * Returns true if this is a safe migration target node for misplaced NUMA 2575 * pages. Currently it only checks the watermarks which is crude. 2576 */ 2577 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2578 unsigned long nr_migrate_pages) 2579 { 2580 int z; 2581 2582 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2583 struct zone *zone = pgdat->node_zones + z; 2584 2585 if (!managed_zone(zone)) 2586 continue; 2587 2588 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2589 if (!zone_watermark_ok(zone, 0, 2590 high_wmark_pages(zone) + 2591 nr_migrate_pages, 2592 ZONE_MOVABLE, ALLOC_CMA)) 2593 continue; 2594 return true; 2595 } 2596 return false; 2597 } 2598 2599 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2600 unsigned long data) 2601 { 2602 int nid = (int) data; 2603 int order = folio_order(src); 2604 gfp_t gfp = __GFP_THISNODE; 2605 2606 if (order > 0) 2607 gfp |= GFP_TRANSHUGE_LIGHT; 2608 else { 2609 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2610 __GFP_NOWARN; 2611 gfp &= ~__GFP_RECLAIM; 2612 } 2613 return __folio_alloc_node(gfp, order, nid); 2614 } 2615 2616 /* 2617 * Prepare for calling migrate_misplaced_folio() by isolating the folio if 2618 * permitted. Must be called with the PTL still held. 2619 */ 2620 int migrate_misplaced_folio_prepare(struct folio *folio, 2621 struct vm_area_struct *vma, int node) 2622 { 2623 int nr_pages = folio_nr_pages(folio); 2624 pg_data_t *pgdat = NODE_DATA(node); 2625 2626 if (folio_is_file_lru(folio)) { 2627 /* 2628 * Do not migrate file folios that are mapped in multiple 2629 * processes with execute permissions as they are probably 2630 * shared libraries. 2631 * 2632 * See folio_likely_mapped_shared() on possible imprecision 2633 * when we cannot easily detect if a folio is shared. 2634 */ 2635 if ((vma->vm_flags & VM_EXEC) && 2636 folio_likely_mapped_shared(folio)) 2637 return -EACCES; 2638 2639 /* 2640 * Do not migrate dirty folios as not all filesystems can move 2641 * dirty folios in MIGRATE_ASYNC mode which is a waste of 2642 * cycles. 2643 */ 2644 if (folio_test_dirty(folio)) 2645 return -EAGAIN; 2646 } 2647 2648 /* Avoid migrating to a node that is nearly full */ 2649 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2650 int z; 2651 2652 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2653 return -EAGAIN; 2654 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2655 if (managed_zone(pgdat->node_zones + z)) 2656 break; 2657 } 2658 2659 /* 2660 * If there are no managed zones, it should not proceed 2661 * further. 2662 */ 2663 if (z < 0) 2664 return -EAGAIN; 2665 2666 wakeup_kswapd(pgdat->node_zones + z, 0, 2667 folio_order(folio), ZONE_MOVABLE); 2668 return -EAGAIN; 2669 } 2670 2671 if (!folio_isolate_lru(folio)) 2672 return -EAGAIN; 2673 2674 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2675 nr_pages); 2676 return 0; 2677 } 2678 2679 /* 2680 * Attempt to migrate a misplaced folio to the specified destination 2681 * node. Caller is expected to have isolated the folio by calling 2682 * migrate_misplaced_folio_prepare(), which will result in an 2683 * elevated reference count on the folio. This function will un-isolate the 2684 * folio, dereferencing the folio before returning. 2685 */ 2686 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma, 2687 int node) 2688 { 2689 pg_data_t *pgdat = NODE_DATA(node); 2690 int nr_remaining; 2691 unsigned int nr_succeeded; 2692 LIST_HEAD(migratepages); 2693 struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio); 2694 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2695 2696 list_add(&folio->lru, &migratepages); 2697 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2698 NULL, node, MIGRATE_ASYNC, 2699 MR_NUMA_MISPLACED, &nr_succeeded); 2700 if (nr_remaining && !list_empty(&migratepages)) 2701 putback_movable_pages(&migratepages); 2702 if (nr_succeeded) { 2703 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2704 count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded); 2705 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 2706 && !node_is_toptier(folio_nid(folio)) 2707 && node_is_toptier(node)) 2708 mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded); 2709 } 2710 mem_cgroup_put(memcg); 2711 BUG_ON(!list_empty(&migratepages)); 2712 return nr_remaining ? -EAGAIN : 0; 2713 } 2714 #endif /* CONFIG_NUMA_BALANCING */ 2715 #endif /* CONFIG_NUMA */ 2716