1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 40 #include <asm/tlbflush.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/migrate.h> 44 45 #include "internal.h" 46 47 /* 48 * migrate_prep() needs to be called before we start compiling a list of pages 49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 50 * undesirable, use migrate_prep_local() 51 */ 52 int migrate_prep(void) 53 { 54 /* 55 * Clear the LRU lists so pages can be isolated. 56 * Note that pages may be moved off the LRU after we have 57 * drained them. Those pages will fail to migrate like other 58 * pages that may be busy. 59 */ 60 lru_add_drain_all(); 61 62 return 0; 63 } 64 65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 66 int migrate_prep_local(void) 67 { 68 lru_add_drain(); 69 70 return 0; 71 } 72 73 /* 74 * Add isolated pages on the list back to the LRU under page lock 75 * to avoid leaking evictable pages back onto unevictable list. 76 */ 77 void putback_lru_pages(struct list_head *l) 78 { 79 struct page *page; 80 struct page *page2; 81 82 list_for_each_entry_safe(page, page2, l, lru) { 83 list_del(&page->lru); 84 dec_zone_page_state(page, NR_ISOLATED_ANON + 85 page_is_file_cache(page)); 86 putback_lru_page(page); 87 } 88 } 89 90 /* 91 * Put previously isolated pages back onto the appropriate lists 92 * from where they were once taken off for compaction/migration. 93 * 94 * This function shall be used instead of putback_lru_pages(), 95 * whenever the isolated pageset has been built by isolate_migratepages_range() 96 */ 97 void putback_movable_pages(struct list_head *l) 98 { 99 struct page *page; 100 struct page *page2; 101 102 list_for_each_entry_safe(page, page2, l, lru) { 103 if (unlikely(PageHuge(page))) { 104 putback_active_hugepage(page); 105 continue; 106 } 107 list_del(&page->lru); 108 dec_zone_page_state(page, NR_ISOLATED_ANON + 109 page_is_file_cache(page)); 110 if (unlikely(isolated_balloon_page(page))) 111 balloon_page_putback(page); 112 else 113 putback_lru_page(page); 114 } 115 } 116 117 /* 118 * Restore a potential migration pte to a working pte entry 119 */ 120 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 121 unsigned long addr, void *old) 122 { 123 struct mm_struct *mm = vma->vm_mm; 124 swp_entry_t entry; 125 pmd_t *pmd; 126 pte_t *ptep, pte; 127 spinlock_t *ptl; 128 129 if (unlikely(PageHuge(new))) { 130 ptep = huge_pte_offset(mm, addr); 131 if (!ptep) 132 goto out; 133 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep); 134 } else { 135 pmd = mm_find_pmd(mm, addr); 136 if (!pmd) 137 goto out; 138 if (pmd_trans_huge(*pmd)) 139 goto out; 140 141 ptep = pte_offset_map(pmd, addr); 142 143 /* 144 * Peek to check is_swap_pte() before taking ptlock? No, we 145 * can race mremap's move_ptes(), which skips anon_vma lock. 146 */ 147 148 ptl = pte_lockptr(mm, pmd); 149 } 150 151 spin_lock(ptl); 152 pte = *ptep; 153 if (!is_swap_pte(pte)) 154 goto unlock; 155 156 entry = pte_to_swp_entry(pte); 157 158 if (!is_migration_entry(entry) || 159 migration_entry_to_page(entry) != old) 160 goto unlock; 161 162 get_page(new); 163 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 164 if (pte_swp_soft_dirty(*ptep)) 165 pte = pte_mksoft_dirty(pte); 166 if (is_write_migration_entry(entry)) 167 pte = pte_mkwrite(pte); 168 #ifdef CONFIG_HUGETLB_PAGE 169 if (PageHuge(new)) { 170 pte = pte_mkhuge(pte); 171 pte = arch_make_huge_pte(pte, vma, new, 0); 172 } 173 #endif 174 flush_dcache_page(new); 175 set_pte_at(mm, addr, ptep, pte); 176 177 if (PageHuge(new)) { 178 if (PageAnon(new)) 179 hugepage_add_anon_rmap(new, vma, addr); 180 else 181 page_dup_rmap(new); 182 } else if (PageAnon(new)) 183 page_add_anon_rmap(new, vma, addr); 184 else 185 page_add_file_rmap(new); 186 187 /* No need to invalidate - it was non-present before */ 188 update_mmu_cache(vma, addr, ptep); 189 unlock: 190 pte_unmap_unlock(ptep, ptl); 191 out: 192 return SWAP_AGAIN; 193 } 194 195 /* 196 * Get rid of all migration entries and replace them by 197 * references to the indicated page. 198 */ 199 static void remove_migration_ptes(struct page *old, struct page *new) 200 { 201 rmap_walk(new, remove_migration_pte, old); 202 } 203 204 /* 205 * Something used the pte of a page under migration. We need to 206 * get to the page and wait until migration is finished. 207 * When we return from this function the fault will be retried. 208 */ 209 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 210 spinlock_t *ptl) 211 { 212 pte_t pte; 213 swp_entry_t entry; 214 struct page *page; 215 216 spin_lock(ptl); 217 pte = *ptep; 218 if (!is_swap_pte(pte)) 219 goto out; 220 221 entry = pte_to_swp_entry(pte); 222 if (!is_migration_entry(entry)) 223 goto out; 224 225 page = migration_entry_to_page(entry); 226 227 /* 228 * Once radix-tree replacement of page migration started, page_count 229 * *must* be zero. And, we don't want to call wait_on_page_locked() 230 * against a page without get_page(). 231 * So, we use get_page_unless_zero(), here. Even failed, page fault 232 * will occur again. 233 */ 234 if (!get_page_unless_zero(page)) 235 goto out; 236 pte_unmap_unlock(ptep, ptl); 237 wait_on_page_locked(page); 238 put_page(page); 239 return; 240 out: 241 pte_unmap_unlock(ptep, ptl); 242 } 243 244 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 245 unsigned long address) 246 { 247 spinlock_t *ptl = pte_lockptr(mm, pmd); 248 pte_t *ptep = pte_offset_map(pmd, address); 249 __migration_entry_wait(mm, ptep, ptl); 250 } 251 252 void migration_entry_wait_huge(struct vm_area_struct *vma, 253 struct mm_struct *mm, pte_t *pte) 254 { 255 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 256 __migration_entry_wait(mm, pte, ptl); 257 } 258 259 #ifdef CONFIG_BLOCK 260 /* Returns true if all buffers are successfully locked */ 261 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 262 enum migrate_mode mode) 263 { 264 struct buffer_head *bh = head; 265 266 /* Simple case, sync compaction */ 267 if (mode != MIGRATE_ASYNC) { 268 do { 269 get_bh(bh); 270 lock_buffer(bh); 271 bh = bh->b_this_page; 272 273 } while (bh != head); 274 275 return true; 276 } 277 278 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 279 do { 280 get_bh(bh); 281 if (!trylock_buffer(bh)) { 282 /* 283 * We failed to lock the buffer and cannot stall in 284 * async migration. Release the taken locks 285 */ 286 struct buffer_head *failed_bh = bh; 287 put_bh(failed_bh); 288 bh = head; 289 while (bh != failed_bh) { 290 unlock_buffer(bh); 291 put_bh(bh); 292 bh = bh->b_this_page; 293 } 294 return false; 295 } 296 297 bh = bh->b_this_page; 298 } while (bh != head); 299 return true; 300 } 301 #else 302 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 303 enum migrate_mode mode) 304 { 305 return true; 306 } 307 #endif /* CONFIG_BLOCK */ 308 309 /* 310 * Replace the page in the mapping. 311 * 312 * The number of remaining references must be: 313 * 1 for anonymous pages without a mapping 314 * 2 for pages with a mapping 315 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 316 */ 317 int migrate_page_move_mapping(struct address_space *mapping, 318 struct page *newpage, struct page *page, 319 struct buffer_head *head, enum migrate_mode mode) 320 { 321 int expected_count = 0; 322 void **pslot; 323 324 if (!mapping) { 325 /* Anonymous page without mapping */ 326 if (page_count(page) != 1) 327 return -EAGAIN; 328 return MIGRATEPAGE_SUCCESS; 329 } 330 331 spin_lock_irq(&mapping->tree_lock); 332 333 pslot = radix_tree_lookup_slot(&mapping->page_tree, 334 page_index(page)); 335 336 expected_count = 2 + page_has_private(page); 337 if (page_count(page) != expected_count || 338 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 339 spin_unlock_irq(&mapping->tree_lock); 340 return -EAGAIN; 341 } 342 343 if (!page_freeze_refs(page, expected_count)) { 344 spin_unlock_irq(&mapping->tree_lock); 345 return -EAGAIN; 346 } 347 348 /* 349 * In the async migration case of moving a page with buffers, lock the 350 * buffers using trylock before the mapping is moved. If the mapping 351 * was moved, we later failed to lock the buffers and could not move 352 * the mapping back due to an elevated page count, we would have to 353 * block waiting on other references to be dropped. 354 */ 355 if (mode == MIGRATE_ASYNC && head && 356 !buffer_migrate_lock_buffers(head, mode)) { 357 page_unfreeze_refs(page, expected_count); 358 spin_unlock_irq(&mapping->tree_lock); 359 return -EAGAIN; 360 } 361 362 /* 363 * Now we know that no one else is looking at the page. 364 */ 365 get_page(newpage); /* add cache reference */ 366 if (PageSwapCache(page)) { 367 SetPageSwapCache(newpage); 368 set_page_private(newpage, page_private(page)); 369 } 370 371 radix_tree_replace_slot(pslot, newpage); 372 373 /* 374 * Drop cache reference from old page by unfreezing 375 * to one less reference. 376 * We know this isn't the last reference. 377 */ 378 page_unfreeze_refs(page, expected_count - 1); 379 380 /* 381 * If moved to a different zone then also account 382 * the page for that zone. Other VM counters will be 383 * taken care of when we establish references to the 384 * new page and drop references to the old page. 385 * 386 * Note that anonymous pages are accounted for 387 * via NR_FILE_PAGES and NR_ANON_PAGES if they 388 * are mapped to swap space. 389 */ 390 __dec_zone_page_state(page, NR_FILE_PAGES); 391 __inc_zone_page_state(newpage, NR_FILE_PAGES); 392 if (!PageSwapCache(page) && PageSwapBacked(page)) { 393 __dec_zone_page_state(page, NR_SHMEM); 394 __inc_zone_page_state(newpage, NR_SHMEM); 395 } 396 spin_unlock_irq(&mapping->tree_lock); 397 398 return MIGRATEPAGE_SUCCESS; 399 } 400 401 /* 402 * The expected number of remaining references is the same as that 403 * of migrate_page_move_mapping(). 404 */ 405 int migrate_huge_page_move_mapping(struct address_space *mapping, 406 struct page *newpage, struct page *page) 407 { 408 int expected_count; 409 void **pslot; 410 411 if (!mapping) { 412 if (page_count(page) != 1) 413 return -EAGAIN; 414 return MIGRATEPAGE_SUCCESS; 415 } 416 417 spin_lock_irq(&mapping->tree_lock); 418 419 pslot = radix_tree_lookup_slot(&mapping->page_tree, 420 page_index(page)); 421 422 expected_count = 2 + page_has_private(page); 423 if (page_count(page) != expected_count || 424 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 425 spin_unlock_irq(&mapping->tree_lock); 426 return -EAGAIN; 427 } 428 429 if (!page_freeze_refs(page, expected_count)) { 430 spin_unlock_irq(&mapping->tree_lock); 431 return -EAGAIN; 432 } 433 434 get_page(newpage); 435 436 radix_tree_replace_slot(pslot, newpage); 437 438 page_unfreeze_refs(page, expected_count - 1); 439 440 spin_unlock_irq(&mapping->tree_lock); 441 return MIGRATEPAGE_SUCCESS; 442 } 443 444 /* 445 * Copy the page to its new location 446 */ 447 void migrate_page_copy(struct page *newpage, struct page *page) 448 { 449 int cpupid; 450 451 if (PageHuge(page) || PageTransHuge(page)) 452 copy_huge_page(newpage, page); 453 else 454 copy_highpage(newpage, page); 455 456 if (PageError(page)) 457 SetPageError(newpage); 458 if (PageReferenced(page)) 459 SetPageReferenced(newpage); 460 if (PageUptodate(page)) 461 SetPageUptodate(newpage); 462 if (TestClearPageActive(page)) { 463 VM_BUG_ON(PageUnevictable(page)); 464 SetPageActive(newpage); 465 } else if (TestClearPageUnevictable(page)) 466 SetPageUnevictable(newpage); 467 if (PageChecked(page)) 468 SetPageChecked(newpage); 469 if (PageMappedToDisk(page)) 470 SetPageMappedToDisk(newpage); 471 472 if (PageDirty(page)) { 473 clear_page_dirty_for_io(page); 474 /* 475 * Want to mark the page and the radix tree as dirty, and 476 * redo the accounting that clear_page_dirty_for_io undid, 477 * but we can't use set_page_dirty because that function 478 * is actually a signal that all of the page has become dirty. 479 * Whereas only part of our page may be dirty. 480 */ 481 if (PageSwapBacked(page)) 482 SetPageDirty(newpage); 483 else 484 __set_page_dirty_nobuffers(newpage); 485 } 486 487 /* 488 * Copy NUMA information to the new page, to prevent over-eager 489 * future migrations of this same page. 490 */ 491 cpupid = page_cpupid_xchg_last(page, -1); 492 page_cpupid_xchg_last(newpage, cpupid); 493 494 mlock_migrate_page(newpage, page); 495 ksm_migrate_page(newpage, page); 496 /* 497 * Please do not reorder this without considering how mm/ksm.c's 498 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 499 */ 500 ClearPageSwapCache(page); 501 ClearPagePrivate(page); 502 set_page_private(page, 0); 503 504 /* 505 * If any waiters have accumulated on the new page then 506 * wake them up. 507 */ 508 if (PageWriteback(newpage)) 509 end_page_writeback(newpage); 510 } 511 512 /************************************************************ 513 * Migration functions 514 ***********************************************************/ 515 516 /* Always fail migration. Used for mappings that are not movable */ 517 int fail_migrate_page(struct address_space *mapping, 518 struct page *newpage, struct page *page) 519 { 520 return -EIO; 521 } 522 EXPORT_SYMBOL(fail_migrate_page); 523 524 /* 525 * Common logic to directly migrate a single page suitable for 526 * pages that do not use PagePrivate/PagePrivate2. 527 * 528 * Pages are locked upon entry and exit. 529 */ 530 int migrate_page(struct address_space *mapping, 531 struct page *newpage, struct page *page, 532 enum migrate_mode mode) 533 { 534 int rc; 535 536 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 537 538 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode); 539 540 if (rc != MIGRATEPAGE_SUCCESS) 541 return rc; 542 543 migrate_page_copy(newpage, page); 544 return MIGRATEPAGE_SUCCESS; 545 } 546 EXPORT_SYMBOL(migrate_page); 547 548 #ifdef CONFIG_BLOCK 549 /* 550 * Migration function for pages with buffers. This function can only be used 551 * if the underlying filesystem guarantees that no other references to "page" 552 * exist. 553 */ 554 int buffer_migrate_page(struct address_space *mapping, 555 struct page *newpage, struct page *page, enum migrate_mode mode) 556 { 557 struct buffer_head *bh, *head; 558 int rc; 559 560 if (!page_has_buffers(page)) 561 return migrate_page(mapping, newpage, page, mode); 562 563 head = page_buffers(page); 564 565 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode); 566 567 if (rc != MIGRATEPAGE_SUCCESS) 568 return rc; 569 570 /* 571 * In the async case, migrate_page_move_mapping locked the buffers 572 * with an IRQ-safe spinlock held. In the sync case, the buffers 573 * need to be locked now 574 */ 575 if (mode != MIGRATE_ASYNC) 576 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 577 578 ClearPagePrivate(page); 579 set_page_private(newpage, page_private(page)); 580 set_page_private(page, 0); 581 put_page(page); 582 get_page(newpage); 583 584 bh = head; 585 do { 586 set_bh_page(bh, newpage, bh_offset(bh)); 587 bh = bh->b_this_page; 588 589 } while (bh != head); 590 591 SetPagePrivate(newpage); 592 593 migrate_page_copy(newpage, page); 594 595 bh = head; 596 do { 597 unlock_buffer(bh); 598 put_bh(bh); 599 bh = bh->b_this_page; 600 601 } while (bh != head); 602 603 return MIGRATEPAGE_SUCCESS; 604 } 605 EXPORT_SYMBOL(buffer_migrate_page); 606 #endif 607 608 /* 609 * Writeback a page to clean the dirty state 610 */ 611 static int writeout(struct address_space *mapping, struct page *page) 612 { 613 struct writeback_control wbc = { 614 .sync_mode = WB_SYNC_NONE, 615 .nr_to_write = 1, 616 .range_start = 0, 617 .range_end = LLONG_MAX, 618 .for_reclaim = 1 619 }; 620 int rc; 621 622 if (!mapping->a_ops->writepage) 623 /* No write method for the address space */ 624 return -EINVAL; 625 626 if (!clear_page_dirty_for_io(page)) 627 /* Someone else already triggered a write */ 628 return -EAGAIN; 629 630 /* 631 * A dirty page may imply that the underlying filesystem has 632 * the page on some queue. So the page must be clean for 633 * migration. Writeout may mean we loose the lock and the 634 * page state is no longer what we checked for earlier. 635 * At this point we know that the migration attempt cannot 636 * be successful. 637 */ 638 remove_migration_ptes(page, page); 639 640 rc = mapping->a_ops->writepage(page, &wbc); 641 642 if (rc != AOP_WRITEPAGE_ACTIVATE) 643 /* unlocked. Relock */ 644 lock_page(page); 645 646 return (rc < 0) ? -EIO : -EAGAIN; 647 } 648 649 /* 650 * Default handling if a filesystem does not provide a migration function. 651 */ 652 static int fallback_migrate_page(struct address_space *mapping, 653 struct page *newpage, struct page *page, enum migrate_mode mode) 654 { 655 if (PageDirty(page)) { 656 /* Only writeback pages in full synchronous migration */ 657 if (mode != MIGRATE_SYNC) 658 return -EBUSY; 659 return writeout(mapping, page); 660 } 661 662 /* 663 * Buffers may be managed in a filesystem specific way. 664 * We must have no buffers or drop them. 665 */ 666 if (page_has_private(page) && 667 !try_to_release_page(page, GFP_KERNEL)) 668 return -EAGAIN; 669 670 return migrate_page(mapping, newpage, page, mode); 671 } 672 673 /* 674 * Move a page to a newly allocated page 675 * The page is locked and all ptes have been successfully removed. 676 * 677 * The new page will have replaced the old page if this function 678 * is successful. 679 * 680 * Return value: 681 * < 0 - error code 682 * MIGRATEPAGE_SUCCESS - success 683 */ 684 static int move_to_new_page(struct page *newpage, struct page *page, 685 int remap_swapcache, enum migrate_mode mode) 686 { 687 struct address_space *mapping; 688 int rc; 689 690 /* 691 * Block others from accessing the page when we get around to 692 * establishing additional references. We are the only one 693 * holding a reference to the new page at this point. 694 */ 695 if (!trylock_page(newpage)) 696 BUG(); 697 698 /* Prepare mapping for the new page.*/ 699 newpage->index = page->index; 700 newpage->mapping = page->mapping; 701 if (PageSwapBacked(page)) 702 SetPageSwapBacked(newpage); 703 704 mapping = page_mapping(page); 705 if (!mapping) 706 rc = migrate_page(mapping, newpage, page, mode); 707 else if (mapping->a_ops->migratepage) 708 /* 709 * Most pages have a mapping and most filesystems provide a 710 * migratepage callback. Anonymous pages are part of swap 711 * space which also has its own migratepage callback. This 712 * is the most common path for page migration. 713 */ 714 rc = mapping->a_ops->migratepage(mapping, 715 newpage, page, mode); 716 else 717 rc = fallback_migrate_page(mapping, newpage, page, mode); 718 719 if (rc != MIGRATEPAGE_SUCCESS) { 720 newpage->mapping = NULL; 721 } else { 722 if (remap_swapcache) 723 remove_migration_ptes(page, newpage); 724 page->mapping = NULL; 725 } 726 727 unlock_page(newpage); 728 729 return rc; 730 } 731 732 static int __unmap_and_move(struct page *page, struct page *newpage, 733 int force, enum migrate_mode mode) 734 { 735 int rc = -EAGAIN; 736 int remap_swapcache = 1; 737 struct mem_cgroup *mem; 738 struct anon_vma *anon_vma = NULL; 739 740 if (!trylock_page(page)) { 741 if (!force || mode == MIGRATE_ASYNC) 742 goto out; 743 744 /* 745 * It's not safe for direct compaction to call lock_page. 746 * For example, during page readahead pages are added locked 747 * to the LRU. Later, when the IO completes the pages are 748 * marked uptodate and unlocked. However, the queueing 749 * could be merging multiple pages for one bio (e.g. 750 * mpage_readpages). If an allocation happens for the 751 * second or third page, the process can end up locking 752 * the same page twice and deadlocking. Rather than 753 * trying to be clever about what pages can be locked, 754 * avoid the use of lock_page for direct compaction 755 * altogether. 756 */ 757 if (current->flags & PF_MEMALLOC) 758 goto out; 759 760 lock_page(page); 761 } 762 763 /* charge against new page */ 764 mem_cgroup_prepare_migration(page, newpage, &mem); 765 766 if (PageWriteback(page)) { 767 /* 768 * Only in the case of a full synchronous migration is it 769 * necessary to wait for PageWriteback. In the async case, 770 * the retry loop is too short and in the sync-light case, 771 * the overhead of stalling is too much 772 */ 773 if (mode != MIGRATE_SYNC) { 774 rc = -EBUSY; 775 goto uncharge; 776 } 777 if (!force) 778 goto uncharge; 779 wait_on_page_writeback(page); 780 } 781 /* 782 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 783 * we cannot notice that anon_vma is freed while we migrates a page. 784 * This get_anon_vma() delays freeing anon_vma pointer until the end 785 * of migration. File cache pages are no problem because of page_lock() 786 * File Caches may use write_page() or lock_page() in migration, then, 787 * just care Anon page here. 788 */ 789 if (PageAnon(page) && !PageKsm(page)) { 790 /* 791 * Only page_lock_anon_vma_read() understands the subtleties of 792 * getting a hold on an anon_vma from outside one of its mms. 793 */ 794 anon_vma = page_get_anon_vma(page); 795 if (anon_vma) { 796 /* 797 * Anon page 798 */ 799 } else if (PageSwapCache(page)) { 800 /* 801 * We cannot be sure that the anon_vma of an unmapped 802 * swapcache page is safe to use because we don't 803 * know in advance if the VMA that this page belonged 804 * to still exists. If the VMA and others sharing the 805 * data have been freed, then the anon_vma could 806 * already be invalid. 807 * 808 * To avoid this possibility, swapcache pages get 809 * migrated but are not remapped when migration 810 * completes 811 */ 812 remap_swapcache = 0; 813 } else { 814 goto uncharge; 815 } 816 } 817 818 if (unlikely(balloon_page_movable(page))) { 819 /* 820 * A ballooned page does not need any special attention from 821 * physical to virtual reverse mapping procedures. 822 * Skip any attempt to unmap PTEs or to remap swap cache, 823 * in order to avoid burning cycles at rmap level, and perform 824 * the page migration right away (proteced by page lock). 825 */ 826 rc = balloon_page_migrate(newpage, page, mode); 827 goto uncharge; 828 } 829 830 /* 831 * Corner case handling: 832 * 1. When a new swap-cache page is read into, it is added to the LRU 833 * and treated as swapcache but it has no rmap yet. 834 * Calling try_to_unmap() against a page->mapping==NULL page will 835 * trigger a BUG. So handle it here. 836 * 2. An orphaned page (see truncate_complete_page) might have 837 * fs-private metadata. The page can be picked up due to memory 838 * offlining. Everywhere else except page reclaim, the page is 839 * invisible to the vm, so the page can not be migrated. So try to 840 * free the metadata, so the page can be freed. 841 */ 842 if (!page->mapping) { 843 VM_BUG_ON(PageAnon(page)); 844 if (page_has_private(page)) { 845 try_to_free_buffers(page); 846 goto uncharge; 847 } 848 goto skip_unmap; 849 } 850 851 /* Establish migration ptes or remove ptes */ 852 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 853 854 skip_unmap: 855 if (!page_mapped(page)) 856 rc = move_to_new_page(newpage, page, remap_swapcache, mode); 857 858 if (rc && remap_swapcache) 859 remove_migration_ptes(page, page); 860 861 /* Drop an anon_vma reference if we took one */ 862 if (anon_vma) 863 put_anon_vma(anon_vma); 864 865 uncharge: 866 mem_cgroup_end_migration(mem, page, newpage, 867 (rc == MIGRATEPAGE_SUCCESS || 868 rc == MIGRATEPAGE_BALLOON_SUCCESS)); 869 unlock_page(page); 870 out: 871 return rc; 872 } 873 874 /* 875 * Obtain the lock on page, remove all ptes and migrate the page 876 * to the newly allocated page in newpage. 877 */ 878 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 879 struct page *page, int force, enum migrate_mode mode) 880 { 881 int rc = 0; 882 int *result = NULL; 883 struct page *newpage = get_new_page(page, private, &result); 884 885 if (!newpage) 886 return -ENOMEM; 887 888 if (page_count(page) == 1) { 889 /* page was freed from under us. So we are done. */ 890 goto out; 891 } 892 893 if (unlikely(PageTransHuge(page))) 894 if (unlikely(split_huge_page(page))) 895 goto out; 896 897 rc = __unmap_and_move(page, newpage, force, mode); 898 899 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) { 900 /* 901 * A ballooned page has been migrated already. 902 * Now, it's the time to wrap-up counters, 903 * handle the page back to Buddy and return. 904 */ 905 dec_zone_page_state(page, NR_ISOLATED_ANON + 906 page_is_file_cache(page)); 907 balloon_page_free(page); 908 return MIGRATEPAGE_SUCCESS; 909 } 910 out: 911 if (rc != -EAGAIN) { 912 /* 913 * A page that has been migrated has all references 914 * removed and will be freed. A page that has not been 915 * migrated will have kepts its references and be 916 * restored. 917 */ 918 list_del(&page->lru); 919 dec_zone_page_state(page, NR_ISOLATED_ANON + 920 page_is_file_cache(page)); 921 putback_lru_page(page); 922 } 923 /* 924 * Move the new page to the LRU. If migration was not successful 925 * then this will free the page. 926 */ 927 putback_lru_page(newpage); 928 if (result) { 929 if (rc) 930 *result = rc; 931 else 932 *result = page_to_nid(newpage); 933 } 934 return rc; 935 } 936 937 /* 938 * Counterpart of unmap_and_move_page() for hugepage migration. 939 * 940 * This function doesn't wait the completion of hugepage I/O 941 * because there is no race between I/O and migration for hugepage. 942 * Note that currently hugepage I/O occurs only in direct I/O 943 * where no lock is held and PG_writeback is irrelevant, 944 * and writeback status of all subpages are counted in the reference 945 * count of the head page (i.e. if all subpages of a 2MB hugepage are 946 * under direct I/O, the reference of the head page is 512 and a bit more.) 947 * This means that when we try to migrate hugepage whose subpages are 948 * doing direct I/O, some references remain after try_to_unmap() and 949 * hugepage migration fails without data corruption. 950 * 951 * There is also no race when direct I/O is issued on the page under migration, 952 * because then pte is replaced with migration swap entry and direct I/O code 953 * will wait in the page fault for migration to complete. 954 */ 955 static int unmap_and_move_huge_page(new_page_t get_new_page, 956 unsigned long private, struct page *hpage, 957 int force, enum migrate_mode mode) 958 { 959 int rc = 0; 960 int *result = NULL; 961 struct page *new_hpage = get_new_page(hpage, private, &result); 962 struct anon_vma *anon_vma = NULL; 963 964 /* 965 * Movability of hugepages depends on architectures and hugepage size. 966 * This check is necessary because some callers of hugepage migration 967 * like soft offline and memory hotremove don't walk through page 968 * tables or check whether the hugepage is pmd-based or not before 969 * kicking migration. 970 */ 971 if (!hugepage_migration_support(page_hstate(hpage))) 972 return -ENOSYS; 973 974 if (!new_hpage) 975 return -ENOMEM; 976 977 rc = -EAGAIN; 978 979 if (!trylock_page(hpage)) { 980 if (!force || mode != MIGRATE_SYNC) 981 goto out; 982 lock_page(hpage); 983 } 984 985 if (PageAnon(hpage)) 986 anon_vma = page_get_anon_vma(hpage); 987 988 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 989 990 if (!page_mapped(hpage)) 991 rc = move_to_new_page(new_hpage, hpage, 1, mode); 992 993 if (rc) 994 remove_migration_ptes(hpage, hpage); 995 996 if (anon_vma) 997 put_anon_vma(anon_vma); 998 999 if (!rc) 1000 hugetlb_cgroup_migrate(hpage, new_hpage); 1001 1002 unlock_page(hpage); 1003 out: 1004 if (rc != -EAGAIN) 1005 putback_active_hugepage(hpage); 1006 put_page(new_hpage); 1007 if (result) { 1008 if (rc) 1009 *result = rc; 1010 else 1011 *result = page_to_nid(new_hpage); 1012 } 1013 return rc; 1014 } 1015 1016 /* 1017 * migrate_pages - migrate the pages specified in a list, to the free pages 1018 * supplied as the target for the page migration 1019 * 1020 * @from: The list of pages to be migrated. 1021 * @get_new_page: The function used to allocate free pages to be used 1022 * as the target of the page migration. 1023 * @private: Private data to be passed on to get_new_page() 1024 * @mode: The migration mode that specifies the constraints for 1025 * page migration, if any. 1026 * @reason: The reason for page migration. 1027 * 1028 * The function returns after 10 attempts or if no pages are movable any more 1029 * because the list has become empty or no retryable pages exist any more. 1030 * The caller should call putback_lru_pages() to return pages to the LRU 1031 * or free list only if ret != 0. 1032 * 1033 * Returns the number of pages that were not migrated, or an error code. 1034 */ 1035 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1036 unsigned long private, enum migrate_mode mode, int reason) 1037 { 1038 int retry = 1; 1039 int nr_failed = 0; 1040 int nr_succeeded = 0; 1041 int pass = 0; 1042 struct page *page; 1043 struct page *page2; 1044 int swapwrite = current->flags & PF_SWAPWRITE; 1045 int rc; 1046 1047 if (!swapwrite) 1048 current->flags |= PF_SWAPWRITE; 1049 1050 for(pass = 0; pass < 10 && retry; pass++) { 1051 retry = 0; 1052 1053 list_for_each_entry_safe(page, page2, from, lru) { 1054 cond_resched(); 1055 1056 if (PageHuge(page)) 1057 rc = unmap_and_move_huge_page(get_new_page, 1058 private, page, pass > 2, mode); 1059 else 1060 rc = unmap_and_move(get_new_page, private, 1061 page, pass > 2, mode); 1062 1063 switch(rc) { 1064 case -ENOMEM: 1065 goto out; 1066 case -EAGAIN: 1067 retry++; 1068 break; 1069 case MIGRATEPAGE_SUCCESS: 1070 nr_succeeded++; 1071 break; 1072 default: 1073 /* Permanent failure */ 1074 nr_failed++; 1075 break; 1076 } 1077 } 1078 } 1079 rc = nr_failed + retry; 1080 out: 1081 if (nr_succeeded) 1082 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1083 if (nr_failed) 1084 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1085 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1086 1087 if (!swapwrite) 1088 current->flags &= ~PF_SWAPWRITE; 1089 1090 return rc; 1091 } 1092 1093 #ifdef CONFIG_NUMA 1094 /* 1095 * Move a list of individual pages 1096 */ 1097 struct page_to_node { 1098 unsigned long addr; 1099 struct page *page; 1100 int node; 1101 int status; 1102 }; 1103 1104 static struct page *new_page_node(struct page *p, unsigned long private, 1105 int **result) 1106 { 1107 struct page_to_node *pm = (struct page_to_node *)private; 1108 1109 while (pm->node != MAX_NUMNODES && pm->page != p) 1110 pm++; 1111 1112 if (pm->node == MAX_NUMNODES) 1113 return NULL; 1114 1115 *result = &pm->status; 1116 1117 if (PageHuge(p)) 1118 return alloc_huge_page_node(page_hstate(compound_head(p)), 1119 pm->node); 1120 else 1121 return alloc_pages_exact_node(pm->node, 1122 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 1123 } 1124 1125 /* 1126 * Move a set of pages as indicated in the pm array. The addr 1127 * field must be set to the virtual address of the page to be moved 1128 * and the node number must contain a valid target node. 1129 * The pm array ends with node = MAX_NUMNODES. 1130 */ 1131 static int do_move_page_to_node_array(struct mm_struct *mm, 1132 struct page_to_node *pm, 1133 int migrate_all) 1134 { 1135 int err; 1136 struct page_to_node *pp; 1137 LIST_HEAD(pagelist); 1138 1139 down_read(&mm->mmap_sem); 1140 1141 /* 1142 * Build a list of pages to migrate 1143 */ 1144 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1145 struct vm_area_struct *vma; 1146 struct page *page; 1147 1148 err = -EFAULT; 1149 vma = find_vma(mm, pp->addr); 1150 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1151 goto set_status; 1152 1153 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1154 1155 err = PTR_ERR(page); 1156 if (IS_ERR(page)) 1157 goto set_status; 1158 1159 err = -ENOENT; 1160 if (!page) 1161 goto set_status; 1162 1163 /* Use PageReserved to check for zero page */ 1164 if (PageReserved(page)) 1165 goto put_and_set; 1166 1167 pp->page = page; 1168 err = page_to_nid(page); 1169 1170 if (err == pp->node) 1171 /* 1172 * Node already in the right place 1173 */ 1174 goto put_and_set; 1175 1176 err = -EACCES; 1177 if (page_mapcount(page) > 1 && 1178 !migrate_all) 1179 goto put_and_set; 1180 1181 if (PageHuge(page)) { 1182 isolate_huge_page(page, &pagelist); 1183 goto put_and_set; 1184 } 1185 1186 err = isolate_lru_page(page); 1187 if (!err) { 1188 list_add_tail(&page->lru, &pagelist); 1189 inc_zone_page_state(page, NR_ISOLATED_ANON + 1190 page_is_file_cache(page)); 1191 } 1192 put_and_set: 1193 /* 1194 * Either remove the duplicate refcount from 1195 * isolate_lru_page() or drop the page ref if it was 1196 * not isolated. 1197 */ 1198 put_page(page); 1199 set_status: 1200 pp->status = err; 1201 } 1202 1203 err = 0; 1204 if (!list_empty(&pagelist)) { 1205 err = migrate_pages(&pagelist, new_page_node, 1206 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); 1207 if (err) 1208 putback_movable_pages(&pagelist); 1209 } 1210 1211 up_read(&mm->mmap_sem); 1212 return err; 1213 } 1214 1215 /* 1216 * Migrate an array of page address onto an array of nodes and fill 1217 * the corresponding array of status. 1218 */ 1219 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1220 unsigned long nr_pages, 1221 const void __user * __user *pages, 1222 const int __user *nodes, 1223 int __user *status, int flags) 1224 { 1225 struct page_to_node *pm; 1226 unsigned long chunk_nr_pages; 1227 unsigned long chunk_start; 1228 int err; 1229 1230 err = -ENOMEM; 1231 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1232 if (!pm) 1233 goto out; 1234 1235 migrate_prep(); 1236 1237 /* 1238 * Store a chunk of page_to_node array in a page, 1239 * but keep the last one as a marker 1240 */ 1241 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1242 1243 for (chunk_start = 0; 1244 chunk_start < nr_pages; 1245 chunk_start += chunk_nr_pages) { 1246 int j; 1247 1248 if (chunk_start + chunk_nr_pages > nr_pages) 1249 chunk_nr_pages = nr_pages - chunk_start; 1250 1251 /* fill the chunk pm with addrs and nodes from user-space */ 1252 for (j = 0; j < chunk_nr_pages; j++) { 1253 const void __user *p; 1254 int node; 1255 1256 err = -EFAULT; 1257 if (get_user(p, pages + j + chunk_start)) 1258 goto out_pm; 1259 pm[j].addr = (unsigned long) p; 1260 1261 if (get_user(node, nodes + j + chunk_start)) 1262 goto out_pm; 1263 1264 err = -ENODEV; 1265 if (node < 0 || node >= MAX_NUMNODES) 1266 goto out_pm; 1267 1268 if (!node_state(node, N_MEMORY)) 1269 goto out_pm; 1270 1271 err = -EACCES; 1272 if (!node_isset(node, task_nodes)) 1273 goto out_pm; 1274 1275 pm[j].node = node; 1276 } 1277 1278 /* End marker for this chunk */ 1279 pm[chunk_nr_pages].node = MAX_NUMNODES; 1280 1281 /* Migrate this chunk */ 1282 err = do_move_page_to_node_array(mm, pm, 1283 flags & MPOL_MF_MOVE_ALL); 1284 if (err < 0) 1285 goto out_pm; 1286 1287 /* Return status information */ 1288 for (j = 0; j < chunk_nr_pages; j++) 1289 if (put_user(pm[j].status, status + j + chunk_start)) { 1290 err = -EFAULT; 1291 goto out_pm; 1292 } 1293 } 1294 err = 0; 1295 1296 out_pm: 1297 free_page((unsigned long)pm); 1298 out: 1299 return err; 1300 } 1301 1302 /* 1303 * Determine the nodes of an array of pages and store it in an array of status. 1304 */ 1305 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1306 const void __user **pages, int *status) 1307 { 1308 unsigned long i; 1309 1310 down_read(&mm->mmap_sem); 1311 1312 for (i = 0; i < nr_pages; i++) { 1313 unsigned long addr = (unsigned long)(*pages); 1314 struct vm_area_struct *vma; 1315 struct page *page; 1316 int err = -EFAULT; 1317 1318 vma = find_vma(mm, addr); 1319 if (!vma || addr < vma->vm_start) 1320 goto set_status; 1321 1322 page = follow_page(vma, addr, 0); 1323 1324 err = PTR_ERR(page); 1325 if (IS_ERR(page)) 1326 goto set_status; 1327 1328 err = -ENOENT; 1329 /* Use PageReserved to check for zero page */ 1330 if (!page || PageReserved(page)) 1331 goto set_status; 1332 1333 err = page_to_nid(page); 1334 set_status: 1335 *status = err; 1336 1337 pages++; 1338 status++; 1339 } 1340 1341 up_read(&mm->mmap_sem); 1342 } 1343 1344 /* 1345 * Determine the nodes of a user array of pages and store it in 1346 * a user array of status. 1347 */ 1348 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1349 const void __user * __user *pages, 1350 int __user *status) 1351 { 1352 #define DO_PAGES_STAT_CHUNK_NR 16 1353 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1354 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1355 1356 while (nr_pages) { 1357 unsigned long chunk_nr; 1358 1359 chunk_nr = nr_pages; 1360 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1361 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1362 1363 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1364 break; 1365 1366 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1367 1368 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1369 break; 1370 1371 pages += chunk_nr; 1372 status += chunk_nr; 1373 nr_pages -= chunk_nr; 1374 } 1375 return nr_pages ? -EFAULT : 0; 1376 } 1377 1378 /* 1379 * Move a list of pages in the address space of the currently executing 1380 * process. 1381 */ 1382 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1383 const void __user * __user *, pages, 1384 const int __user *, nodes, 1385 int __user *, status, int, flags) 1386 { 1387 const struct cred *cred = current_cred(), *tcred; 1388 struct task_struct *task; 1389 struct mm_struct *mm; 1390 int err; 1391 nodemask_t task_nodes; 1392 1393 /* Check flags */ 1394 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1395 return -EINVAL; 1396 1397 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1398 return -EPERM; 1399 1400 /* Find the mm_struct */ 1401 rcu_read_lock(); 1402 task = pid ? find_task_by_vpid(pid) : current; 1403 if (!task) { 1404 rcu_read_unlock(); 1405 return -ESRCH; 1406 } 1407 get_task_struct(task); 1408 1409 /* 1410 * Check if this process has the right to modify the specified 1411 * process. The right exists if the process has administrative 1412 * capabilities, superuser privileges or the same 1413 * userid as the target process. 1414 */ 1415 tcred = __task_cred(task); 1416 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1417 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1418 !capable(CAP_SYS_NICE)) { 1419 rcu_read_unlock(); 1420 err = -EPERM; 1421 goto out; 1422 } 1423 rcu_read_unlock(); 1424 1425 err = security_task_movememory(task); 1426 if (err) 1427 goto out; 1428 1429 task_nodes = cpuset_mems_allowed(task); 1430 mm = get_task_mm(task); 1431 put_task_struct(task); 1432 1433 if (!mm) 1434 return -EINVAL; 1435 1436 if (nodes) 1437 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1438 nodes, status, flags); 1439 else 1440 err = do_pages_stat(mm, nr_pages, pages, status); 1441 1442 mmput(mm); 1443 return err; 1444 1445 out: 1446 put_task_struct(task); 1447 return err; 1448 } 1449 1450 /* 1451 * Call migration functions in the vma_ops that may prepare 1452 * memory in a vm for migration. migration functions may perform 1453 * the migration for vmas that do not have an underlying page struct. 1454 */ 1455 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1456 const nodemask_t *from, unsigned long flags) 1457 { 1458 struct vm_area_struct *vma; 1459 int err = 0; 1460 1461 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { 1462 if (vma->vm_ops && vma->vm_ops->migrate) { 1463 err = vma->vm_ops->migrate(vma, to, from, flags); 1464 if (err) 1465 break; 1466 } 1467 } 1468 return err; 1469 } 1470 1471 #ifdef CONFIG_NUMA_BALANCING 1472 /* 1473 * Returns true if this is a safe migration target node for misplaced NUMA 1474 * pages. Currently it only checks the watermarks which crude 1475 */ 1476 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1477 unsigned long nr_migrate_pages) 1478 { 1479 int z; 1480 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1481 struct zone *zone = pgdat->node_zones + z; 1482 1483 if (!populated_zone(zone)) 1484 continue; 1485 1486 if (!zone_reclaimable(zone)) 1487 continue; 1488 1489 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1490 if (!zone_watermark_ok(zone, 0, 1491 high_wmark_pages(zone) + 1492 nr_migrate_pages, 1493 0, 0)) 1494 continue; 1495 return true; 1496 } 1497 return false; 1498 } 1499 1500 static struct page *alloc_misplaced_dst_page(struct page *page, 1501 unsigned long data, 1502 int **result) 1503 { 1504 int nid = (int) data; 1505 struct page *newpage; 1506 1507 newpage = alloc_pages_exact_node(nid, 1508 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE | 1509 __GFP_NOMEMALLOC | __GFP_NORETRY | 1510 __GFP_NOWARN) & 1511 ~GFP_IOFS, 0); 1512 if (newpage) 1513 page_cpupid_xchg_last(newpage, page_cpupid_last(page)); 1514 1515 return newpage; 1516 } 1517 1518 /* 1519 * page migration rate limiting control. 1520 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1521 * window of time. Default here says do not migrate more than 1280M per second. 1522 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However 1523 * as it is faults that reset the window, pte updates will happen unconditionally 1524 * if there has not been a fault since @pteupdate_interval_millisecs after the 1525 * throttle window closed. 1526 */ 1527 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1528 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000; 1529 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1530 1531 /* Returns true if NUMA migration is currently rate limited */ 1532 bool migrate_ratelimited(int node) 1533 { 1534 pg_data_t *pgdat = NODE_DATA(node); 1535 1536 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window + 1537 msecs_to_jiffies(pteupdate_interval_millisecs))) 1538 return false; 1539 1540 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages) 1541 return false; 1542 1543 return true; 1544 } 1545 1546 /* Returns true if the node is migrate rate-limited after the update */ 1547 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages) 1548 { 1549 bool rate_limited = false; 1550 1551 /* 1552 * Rate-limit the amount of data that is being migrated to a node. 1553 * Optimal placement is no good if the memory bus is saturated and 1554 * all the time is being spent migrating! 1555 */ 1556 spin_lock(&pgdat->numabalancing_migrate_lock); 1557 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1558 pgdat->numabalancing_migrate_nr_pages = 0; 1559 pgdat->numabalancing_migrate_next_window = jiffies + 1560 msecs_to_jiffies(migrate_interval_millisecs); 1561 } 1562 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) 1563 rate_limited = true; 1564 else 1565 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1566 spin_unlock(&pgdat->numabalancing_migrate_lock); 1567 1568 return rate_limited; 1569 } 1570 1571 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1572 { 1573 int page_lru; 1574 1575 VM_BUG_ON(compound_order(page) && !PageTransHuge(page)); 1576 1577 /* Avoid migrating to a node that is nearly full */ 1578 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1579 return 0; 1580 1581 if (isolate_lru_page(page)) 1582 return 0; 1583 1584 /* 1585 * migrate_misplaced_transhuge_page() skips page migration's usual 1586 * check on page_count(), so we must do it here, now that the page 1587 * has been isolated: a GUP pin, or any other pin, prevents migration. 1588 * The expected page count is 3: 1 for page's mapcount and 1 for the 1589 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1590 */ 1591 if (PageTransHuge(page) && page_count(page) != 3) { 1592 putback_lru_page(page); 1593 return 0; 1594 } 1595 1596 page_lru = page_is_file_cache(page); 1597 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru, 1598 hpage_nr_pages(page)); 1599 1600 /* 1601 * Isolating the page has taken another reference, so the 1602 * caller's reference can be safely dropped without the page 1603 * disappearing underneath us during migration. 1604 */ 1605 put_page(page); 1606 return 1; 1607 } 1608 1609 /* 1610 * Attempt to migrate a misplaced page to the specified destination 1611 * node. Caller is expected to have an elevated reference count on 1612 * the page that will be dropped by this function before returning. 1613 */ 1614 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1615 int node) 1616 { 1617 pg_data_t *pgdat = NODE_DATA(node); 1618 int isolated; 1619 int nr_remaining; 1620 LIST_HEAD(migratepages); 1621 1622 /* 1623 * Don't migrate file pages that are mapped in multiple processes 1624 * with execute permissions as they are probably shared libraries. 1625 */ 1626 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1627 (vma->vm_flags & VM_EXEC)) 1628 goto out; 1629 1630 /* 1631 * Rate-limit the amount of data that is being migrated to a node. 1632 * Optimal placement is no good if the memory bus is saturated and 1633 * all the time is being spent migrating! 1634 */ 1635 if (numamigrate_update_ratelimit(pgdat, 1)) 1636 goto out; 1637 1638 isolated = numamigrate_isolate_page(pgdat, page); 1639 if (!isolated) 1640 goto out; 1641 1642 list_add(&page->lru, &migratepages); 1643 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1644 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED); 1645 if (nr_remaining) { 1646 putback_lru_pages(&migratepages); 1647 isolated = 0; 1648 } else 1649 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1650 BUG_ON(!list_empty(&migratepages)); 1651 return isolated; 1652 1653 out: 1654 put_page(page); 1655 return 0; 1656 } 1657 #endif /* CONFIG_NUMA_BALANCING */ 1658 1659 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1660 /* 1661 * Migrates a THP to a given target node. page must be locked and is unlocked 1662 * before returning. 1663 */ 1664 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1665 struct vm_area_struct *vma, 1666 pmd_t *pmd, pmd_t entry, 1667 unsigned long address, 1668 struct page *page, int node) 1669 { 1670 spinlock_t *ptl; 1671 unsigned long haddr = address & HPAGE_PMD_MASK; 1672 pg_data_t *pgdat = NODE_DATA(node); 1673 int isolated = 0; 1674 struct page *new_page = NULL; 1675 struct mem_cgroup *memcg = NULL; 1676 int page_lru = page_is_file_cache(page); 1677 1678 /* 1679 * Rate-limit the amount of data that is being migrated to a node. 1680 * Optimal placement is no good if the memory bus is saturated and 1681 * all the time is being spent migrating! 1682 */ 1683 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1684 goto out_dropref; 1685 1686 new_page = alloc_pages_node(node, 1687 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER); 1688 if (!new_page) 1689 goto out_fail; 1690 1691 page_cpupid_xchg_last(new_page, page_cpupid_last(page)); 1692 1693 isolated = numamigrate_isolate_page(pgdat, page); 1694 if (!isolated) { 1695 put_page(new_page); 1696 goto out_fail; 1697 } 1698 1699 /* Prepare a page as a migration target */ 1700 __set_page_locked(new_page); 1701 SetPageSwapBacked(new_page); 1702 1703 /* anon mapping, we can simply copy page->mapping to the new page: */ 1704 new_page->mapping = page->mapping; 1705 new_page->index = page->index; 1706 migrate_page_copy(new_page, page); 1707 WARN_ON(PageLRU(new_page)); 1708 1709 /* Recheck the target PMD */ 1710 ptl = pmd_lock(mm, pmd); 1711 if (unlikely(!pmd_same(*pmd, entry))) { 1712 spin_unlock(ptl); 1713 1714 /* Reverse changes made by migrate_page_copy() */ 1715 if (TestClearPageActive(new_page)) 1716 SetPageActive(page); 1717 if (TestClearPageUnevictable(new_page)) 1718 SetPageUnevictable(page); 1719 mlock_migrate_page(page, new_page); 1720 1721 unlock_page(new_page); 1722 put_page(new_page); /* Free it */ 1723 1724 /* Retake the callers reference and putback on LRU */ 1725 get_page(page); 1726 putback_lru_page(page); 1727 mod_zone_page_state(page_zone(page), 1728 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 1729 goto out_fail; 1730 } 1731 1732 /* 1733 * Traditional migration needs to prepare the memcg charge 1734 * transaction early to prevent the old page from being 1735 * uncharged when installing migration entries. Here we can 1736 * save the potential rollback and start the charge transfer 1737 * only when migration is already known to end successfully. 1738 */ 1739 mem_cgroup_prepare_migration(page, new_page, &memcg); 1740 1741 entry = mk_pmd(new_page, vma->vm_page_prot); 1742 entry = pmd_mknonnuma(entry); 1743 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1744 entry = pmd_mkhuge(entry); 1745 1746 pmdp_clear_flush(vma, haddr, pmd); 1747 set_pmd_at(mm, haddr, pmd, entry); 1748 page_add_new_anon_rmap(new_page, vma, haddr); 1749 update_mmu_cache_pmd(vma, address, &entry); 1750 page_remove_rmap(page); 1751 /* 1752 * Finish the charge transaction under the page table lock to 1753 * prevent split_huge_page() from dividing up the charge 1754 * before it's fully transferred to the new page. 1755 */ 1756 mem_cgroup_end_migration(memcg, page, new_page, true); 1757 spin_unlock(ptl); 1758 1759 unlock_page(new_page); 1760 unlock_page(page); 1761 put_page(page); /* Drop the rmap reference */ 1762 put_page(page); /* Drop the LRU isolation reference */ 1763 1764 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1765 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1766 1767 mod_zone_page_state(page_zone(page), 1768 NR_ISOLATED_ANON + page_lru, 1769 -HPAGE_PMD_NR); 1770 return isolated; 1771 1772 out_fail: 1773 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1774 out_dropref: 1775 entry = pmd_mknonnuma(entry); 1776 set_pmd_at(mm, haddr, pmd, entry); 1777 update_mmu_cache_pmd(vma, address, &entry); 1778 1779 unlock_page(page); 1780 put_page(page); 1781 return 0; 1782 } 1783 #endif /* CONFIG_NUMA_BALANCING */ 1784 1785 #endif /* CONFIG_NUMA */ 1786