xref: /linux/mm/migrate.c (revision 498d319bb512992ef0784c278fa03679f2f5649d)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
44 
45 #include "internal.h"
46 
47 /*
48  * migrate_prep() needs to be called before we start compiling a list of pages
49  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50  * undesirable, use migrate_prep_local()
51  */
52 int migrate_prep(void)
53 {
54 	/*
55 	 * Clear the LRU lists so pages can be isolated.
56 	 * Note that pages may be moved off the LRU after we have
57 	 * drained them. Those pages will fail to migrate like other
58 	 * pages that may be busy.
59 	 */
60 	lru_add_drain_all();
61 
62 	return 0;
63 }
64 
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
67 {
68 	lru_add_drain();
69 
70 	return 0;
71 }
72 
73 /*
74  * Add isolated pages on the list back to the LRU under page lock
75  * to avoid leaking evictable pages back onto unevictable list.
76  */
77 void putback_lru_pages(struct list_head *l)
78 {
79 	struct page *page;
80 	struct page *page2;
81 
82 	list_for_each_entry_safe(page, page2, l, lru) {
83 		list_del(&page->lru);
84 		dec_zone_page_state(page, NR_ISOLATED_ANON +
85 				page_is_file_cache(page));
86 			putback_lru_page(page);
87 	}
88 }
89 
90 /*
91  * Put previously isolated pages back onto the appropriate lists
92  * from where they were once taken off for compaction/migration.
93  *
94  * This function shall be used instead of putback_lru_pages(),
95  * whenever the isolated pageset has been built by isolate_migratepages_range()
96  */
97 void putback_movable_pages(struct list_head *l)
98 {
99 	struct page *page;
100 	struct page *page2;
101 
102 	list_for_each_entry_safe(page, page2, l, lru) {
103 		if (unlikely(PageHuge(page))) {
104 			putback_active_hugepage(page);
105 			continue;
106 		}
107 		list_del(&page->lru);
108 		dec_zone_page_state(page, NR_ISOLATED_ANON +
109 				page_is_file_cache(page));
110 		if (unlikely(isolated_balloon_page(page)))
111 			balloon_page_putback(page);
112 		else
113 			putback_lru_page(page);
114 	}
115 }
116 
117 /*
118  * Restore a potential migration pte to a working pte entry
119  */
120 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
121 				 unsigned long addr, void *old)
122 {
123 	struct mm_struct *mm = vma->vm_mm;
124 	swp_entry_t entry;
125  	pmd_t *pmd;
126 	pte_t *ptep, pte;
127  	spinlock_t *ptl;
128 
129 	if (unlikely(PageHuge(new))) {
130 		ptep = huge_pte_offset(mm, addr);
131 		if (!ptep)
132 			goto out;
133 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
134 	} else {
135 		pmd = mm_find_pmd(mm, addr);
136 		if (!pmd)
137 			goto out;
138 		if (pmd_trans_huge(*pmd))
139 			goto out;
140 
141 		ptep = pte_offset_map(pmd, addr);
142 
143 		/*
144 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
145 		 * can race mremap's move_ptes(), which skips anon_vma lock.
146 		 */
147 
148 		ptl = pte_lockptr(mm, pmd);
149 	}
150 
151  	spin_lock(ptl);
152 	pte = *ptep;
153 	if (!is_swap_pte(pte))
154 		goto unlock;
155 
156 	entry = pte_to_swp_entry(pte);
157 
158 	if (!is_migration_entry(entry) ||
159 	    migration_entry_to_page(entry) != old)
160 		goto unlock;
161 
162 	get_page(new);
163 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
164 	if (pte_swp_soft_dirty(*ptep))
165 		pte = pte_mksoft_dirty(pte);
166 	if (is_write_migration_entry(entry))
167 		pte = pte_mkwrite(pte);
168 #ifdef CONFIG_HUGETLB_PAGE
169 	if (PageHuge(new)) {
170 		pte = pte_mkhuge(pte);
171 		pte = arch_make_huge_pte(pte, vma, new, 0);
172 	}
173 #endif
174 	flush_dcache_page(new);
175 	set_pte_at(mm, addr, ptep, pte);
176 
177 	if (PageHuge(new)) {
178 		if (PageAnon(new))
179 			hugepage_add_anon_rmap(new, vma, addr);
180 		else
181 			page_dup_rmap(new);
182 	} else if (PageAnon(new))
183 		page_add_anon_rmap(new, vma, addr);
184 	else
185 		page_add_file_rmap(new);
186 
187 	/* No need to invalidate - it was non-present before */
188 	update_mmu_cache(vma, addr, ptep);
189 unlock:
190 	pte_unmap_unlock(ptep, ptl);
191 out:
192 	return SWAP_AGAIN;
193 }
194 
195 /*
196  * Get rid of all migration entries and replace them by
197  * references to the indicated page.
198  */
199 static void remove_migration_ptes(struct page *old, struct page *new)
200 {
201 	rmap_walk(new, remove_migration_pte, old);
202 }
203 
204 /*
205  * Something used the pte of a page under migration. We need to
206  * get to the page and wait until migration is finished.
207  * When we return from this function the fault will be retried.
208  */
209 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
210 				spinlock_t *ptl)
211 {
212 	pte_t pte;
213 	swp_entry_t entry;
214 	struct page *page;
215 
216 	spin_lock(ptl);
217 	pte = *ptep;
218 	if (!is_swap_pte(pte))
219 		goto out;
220 
221 	entry = pte_to_swp_entry(pte);
222 	if (!is_migration_entry(entry))
223 		goto out;
224 
225 	page = migration_entry_to_page(entry);
226 
227 	/*
228 	 * Once radix-tree replacement of page migration started, page_count
229 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
230 	 * against a page without get_page().
231 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
232 	 * will occur again.
233 	 */
234 	if (!get_page_unless_zero(page))
235 		goto out;
236 	pte_unmap_unlock(ptep, ptl);
237 	wait_on_page_locked(page);
238 	put_page(page);
239 	return;
240 out:
241 	pte_unmap_unlock(ptep, ptl);
242 }
243 
244 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
245 				unsigned long address)
246 {
247 	spinlock_t *ptl = pte_lockptr(mm, pmd);
248 	pte_t *ptep = pte_offset_map(pmd, address);
249 	__migration_entry_wait(mm, ptep, ptl);
250 }
251 
252 void migration_entry_wait_huge(struct vm_area_struct *vma,
253 		struct mm_struct *mm, pte_t *pte)
254 {
255 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
256 	__migration_entry_wait(mm, pte, ptl);
257 }
258 
259 #ifdef CONFIG_BLOCK
260 /* Returns true if all buffers are successfully locked */
261 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
262 							enum migrate_mode mode)
263 {
264 	struct buffer_head *bh = head;
265 
266 	/* Simple case, sync compaction */
267 	if (mode != MIGRATE_ASYNC) {
268 		do {
269 			get_bh(bh);
270 			lock_buffer(bh);
271 			bh = bh->b_this_page;
272 
273 		} while (bh != head);
274 
275 		return true;
276 	}
277 
278 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
279 	do {
280 		get_bh(bh);
281 		if (!trylock_buffer(bh)) {
282 			/*
283 			 * We failed to lock the buffer and cannot stall in
284 			 * async migration. Release the taken locks
285 			 */
286 			struct buffer_head *failed_bh = bh;
287 			put_bh(failed_bh);
288 			bh = head;
289 			while (bh != failed_bh) {
290 				unlock_buffer(bh);
291 				put_bh(bh);
292 				bh = bh->b_this_page;
293 			}
294 			return false;
295 		}
296 
297 		bh = bh->b_this_page;
298 	} while (bh != head);
299 	return true;
300 }
301 #else
302 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
303 							enum migrate_mode mode)
304 {
305 	return true;
306 }
307 #endif /* CONFIG_BLOCK */
308 
309 /*
310  * Replace the page in the mapping.
311  *
312  * The number of remaining references must be:
313  * 1 for anonymous pages without a mapping
314  * 2 for pages with a mapping
315  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
316  */
317 int migrate_page_move_mapping(struct address_space *mapping,
318 		struct page *newpage, struct page *page,
319 		struct buffer_head *head, enum migrate_mode mode)
320 {
321 	int expected_count = 0;
322 	void **pslot;
323 
324 	if (!mapping) {
325 		/* Anonymous page without mapping */
326 		if (page_count(page) != 1)
327 			return -EAGAIN;
328 		return MIGRATEPAGE_SUCCESS;
329 	}
330 
331 	spin_lock_irq(&mapping->tree_lock);
332 
333 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
334  					page_index(page));
335 
336 	expected_count = 2 + page_has_private(page);
337 	if (page_count(page) != expected_count ||
338 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
339 		spin_unlock_irq(&mapping->tree_lock);
340 		return -EAGAIN;
341 	}
342 
343 	if (!page_freeze_refs(page, expected_count)) {
344 		spin_unlock_irq(&mapping->tree_lock);
345 		return -EAGAIN;
346 	}
347 
348 	/*
349 	 * In the async migration case of moving a page with buffers, lock the
350 	 * buffers using trylock before the mapping is moved. If the mapping
351 	 * was moved, we later failed to lock the buffers and could not move
352 	 * the mapping back due to an elevated page count, we would have to
353 	 * block waiting on other references to be dropped.
354 	 */
355 	if (mode == MIGRATE_ASYNC && head &&
356 			!buffer_migrate_lock_buffers(head, mode)) {
357 		page_unfreeze_refs(page, expected_count);
358 		spin_unlock_irq(&mapping->tree_lock);
359 		return -EAGAIN;
360 	}
361 
362 	/*
363 	 * Now we know that no one else is looking at the page.
364 	 */
365 	get_page(newpage);	/* add cache reference */
366 	if (PageSwapCache(page)) {
367 		SetPageSwapCache(newpage);
368 		set_page_private(newpage, page_private(page));
369 	}
370 
371 	radix_tree_replace_slot(pslot, newpage);
372 
373 	/*
374 	 * Drop cache reference from old page by unfreezing
375 	 * to one less reference.
376 	 * We know this isn't the last reference.
377 	 */
378 	page_unfreeze_refs(page, expected_count - 1);
379 
380 	/*
381 	 * If moved to a different zone then also account
382 	 * the page for that zone. Other VM counters will be
383 	 * taken care of when we establish references to the
384 	 * new page and drop references to the old page.
385 	 *
386 	 * Note that anonymous pages are accounted for
387 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
388 	 * are mapped to swap space.
389 	 */
390 	__dec_zone_page_state(page, NR_FILE_PAGES);
391 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
392 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
393 		__dec_zone_page_state(page, NR_SHMEM);
394 		__inc_zone_page_state(newpage, NR_SHMEM);
395 	}
396 	spin_unlock_irq(&mapping->tree_lock);
397 
398 	return MIGRATEPAGE_SUCCESS;
399 }
400 
401 /*
402  * The expected number of remaining references is the same as that
403  * of migrate_page_move_mapping().
404  */
405 int migrate_huge_page_move_mapping(struct address_space *mapping,
406 				   struct page *newpage, struct page *page)
407 {
408 	int expected_count;
409 	void **pslot;
410 
411 	if (!mapping) {
412 		if (page_count(page) != 1)
413 			return -EAGAIN;
414 		return MIGRATEPAGE_SUCCESS;
415 	}
416 
417 	spin_lock_irq(&mapping->tree_lock);
418 
419 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
420 					page_index(page));
421 
422 	expected_count = 2 + page_has_private(page);
423 	if (page_count(page) != expected_count ||
424 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
425 		spin_unlock_irq(&mapping->tree_lock);
426 		return -EAGAIN;
427 	}
428 
429 	if (!page_freeze_refs(page, expected_count)) {
430 		spin_unlock_irq(&mapping->tree_lock);
431 		return -EAGAIN;
432 	}
433 
434 	get_page(newpage);
435 
436 	radix_tree_replace_slot(pslot, newpage);
437 
438 	page_unfreeze_refs(page, expected_count - 1);
439 
440 	spin_unlock_irq(&mapping->tree_lock);
441 	return MIGRATEPAGE_SUCCESS;
442 }
443 
444 /*
445  * Copy the page to its new location
446  */
447 void migrate_page_copy(struct page *newpage, struct page *page)
448 {
449 	int cpupid;
450 
451 	if (PageHuge(page) || PageTransHuge(page))
452 		copy_huge_page(newpage, page);
453 	else
454 		copy_highpage(newpage, page);
455 
456 	if (PageError(page))
457 		SetPageError(newpage);
458 	if (PageReferenced(page))
459 		SetPageReferenced(newpage);
460 	if (PageUptodate(page))
461 		SetPageUptodate(newpage);
462 	if (TestClearPageActive(page)) {
463 		VM_BUG_ON(PageUnevictable(page));
464 		SetPageActive(newpage);
465 	} else if (TestClearPageUnevictable(page))
466 		SetPageUnevictable(newpage);
467 	if (PageChecked(page))
468 		SetPageChecked(newpage);
469 	if (PageMappedToDisk(page))
470 		SetPageMappedToDisk(newpage);
471 
472 	if (PageDirty(page)) {
473 		clear_page_dirty_for_io(page);
474 		/*
475 		 * Want to mark the page and the radix tree as dirty, and
476 		 * redo the accounting that clear_page_dirty_for_io undid,
477 		 * but we can't use set_page_dirty because that function
478 		 * is actually a signal that all of the page has become dirty.
479 		 * Whereas only part of our page may be dirty.
480 		 */
481 		if (PageSwapBacked(page))
482 			SetPageDirty(newpage);
483 		else
484 			__set_page_dirty_nobuffers(newpage);
485  	}
486 
487 	/*
488 	 * Copy NUMA information to the new page, to prevent over-eager
489 	 * future migrations of this same page.
490 	 */
491 	cpupid = page_cpupid_xchg_last(page, -1);
492 	page_cpupid_xchg_last(newpage, cpupid);
493 
494 	mlock_migrate_page(newpage, page);
495 	ksm_migrate_page(newpage, page);
496 	/*
497 	 * Please do not reorder this without considering how mm/ksm.c's
498 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
499 	 */
500 	ClearPageSwapCache(page);
501 	ClearPagePrivate(page);
502 	set_page_private(page, 0);
503 
504 	/*
505 	 * If any waiters have accumulated on the new page then
506 	 * wake them up.
507 	 */
508 	if (PageWriteback(newpage))
509 		end_page_writeback(newpage);
510 }
511 
512 /************************************************************
513  *                    Migration functions
514  ***********************************************************/
515 
516 /* Always fail migration. Used for mappings that are not movable */
517 int fail_migrate_page(struct address_space *mapping,
518 			struct page *newpage, struct page *page)
519 {
520 	return -EIO;
521 }
522 EXPORT_SYMBOL(fail_migrate_page);
523 
524 /*
525  * Common logic to directly migrate a single page suitable for
526  * pages that do not use PagePrivate/PagePrivate2.
527  *
528  * Pages are locked upon entry and exit.
529  */
530 int migrate_page(struct address_space *mapping,
531 		struct page *newpage, struct page *page,
532 		enum migrate_mode mode)
533 {
534 	int rc;
535 
536 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
537 
538 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
539 
540 	if (rc != MIGRATEPAGE_SUCCESS)
541 		return rc;
542 
543 	migrate_page_copy(newpage, page);
544 	return MIGRATEPAGE_SUCCESS;
545 }
546 EXPORT_SYMBOL(migrate_page);
547 
548 #ifdef CONFIG_BLOCK
549 /*
550  * Migration function for pages with buffers. This function can only be used
551  * if the underlying filesystem guarantees that no other references to "page"
552  * exist.
553  */
554 int buffer_migrate_page(struct address_space *mapping,
555 		struct page *newpage, struct page *page, enum migrate_mode mode)
556 {
557 	struct buffer_head *bh, *head;
558 	int rc;
559 
560 	if (!page_has_buffers(page))
561 		return migrate_page(mapping, newpage, page, mode);
562 
563 	head = page_buffers(page);
564 
565 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
566 
567 	if (rc != MIGRATEPAGE_SUCCESS)
568 		return rc;
569 
570 	/*
571 	 * In the async case, migrate_page_move_mapping locked the buffers
572 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
573 	 * need to be locked now
574 	 */
575 	if (mode != MIGRATE_ASYNC)
576 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
577 
578 	ClearPagePrivate(page);
579 	set_page_private(newpage, page_private(page));
580 	set_page_private(page, 0);
581 	put_page(page);
582 	get_page(newpage);
583 
584 	bh = head;
585 	do {
586 		set_bh_page(bh, newpage, bh_offset(bh));
587 		bh = bh->b_this_page;
588 
589 	} while (bh != head);
590 
591 	SetPagePrivate(newpage);
592 
593 	migrate_page_copy(newpage, page);
594 
595 	bh = head;
596 	do {
597 		unlock_buffer(bh);
598  		put_bh(bh);
599 		bh = bh->b_this_page;
600 
601 	} while (bh != head);
602 
603 	return MIGRATEPAGE_SUCCESS;
604 }
605 EXPORT_SYMBOL(buffer_migrate_page);
606 #endif
607 
608 /*
609  * Writeback a page to clean the dirty state
610  */
611 static int writeout(struct address_space *mapping, struct page *page)
612 {
613 	struct writeback_control wbc = {
614 		.sync_mode = WB_SYNC_NONE,
615 		.nr_to_write = 1,
616 		.range_start = 0,
617 		.range_end = LLONG_MAX,
618 		.for_reclaim = 1
619 	};
620 	int rc;
621 
622 	if (!mapping->a_ops->writepage)
623 		/* No write method for the address space */
624 		return -EINVAL;
625 
626 	if (!clear_page_dirty_for_io(page))
627 		/* Someone else already triggered a write */
628 		return -EAGAIN;
629 
630 	/*
631 	 * A dirty page may imply that the underlying filesystem has
632 	 * the page on some queue. So the page must be clean for
633 	 * migration. Writeout may mean we loose the lock and the
634 	 * page state is no longer what we checked for earlier.
635 	 * At this point we know that the migration attempt cannot
636 	 * be successful.
637 	 */
638 	remove_migration_ptes(page, page);
639 
640 	rc = mapping->a_ops->writepage(page, &wbc);
641 
642 	if (rc != AOP_WRITEPAGE_ACTIVATE)
643 		/* unlocked. Relock */
644 		lock_page(page);
645 
646 	return (rc < 0) ? -EIO : -EAGAIN;
647 }
648 
649 /*
650  * Default handling if a filesystem does not provide a migration function.
651  */
652 static int fallback_migrate_page(struct address_space *mapping,
653 	struct page *newpage, struct page *page, enum migrate_mode mode)
654 {
655 	if (PageDirty(page)) {
656 		/* Only writeback pages in full synchronous migration */
657 		if (mode != MIGRATE_SYNC)
658 			return -EBUSY;
659 		return writeout(mapping, page);
660 	}
661 
662 	/*
663 	 * Buffers may be managed in a filesystem specific way.
664 	 * We must have no buffers or drop them.
665 	 */
666 	if (page_has_private(page) &&
667 	    !try_to_release_page(page, GFP_KERNEL))
668 		return -EAGAIN;
669 
670 	return migrate_page(mapping, newpage, page, mode);
671 }
672 
673 /*
674  * Move a page to a newly allocated page
675  * The page is locked and all ptes have been successfully removed.
676  *
677  * The new page will have replaced the old page if this function
678  * is successful.
679  *
680  * Return value:
681  *   < 0 - error code
682  *  MIGRATEPAGE_SUCCESS - success
683  */
684 static int move_to_new_page(struct page *newpage, struct page *page,
685 				int remap_swapcache, enum migrate_mode mode)
686 {
687 	struct address_space *mapping;
688 	int rc;
689 
690 	/*
691 	 * Block others from accessing the page when we get around to
692 	 * establishing additional references. We are the only one
693 	 * holding a reference to the new page at this point.
694 	 */
695 	if (!trylock_page(newpage))
696 		BUG();
697 
698 	/* Prepare mapping for the new page.*/
699 	newpage->index = page->index;
700 	newpage->mapping = page->mapping;
701 	if (PageSwapBacked(page))
702 		SetPageSwapBacked(newpage);
703 
704 	mapping = page_mapping(page);
705 	if (!mapping)
706 		rc = migrate_page(mapping, newpage, page, mode);
707 	else if (mapping->a_ops->migratepage)
708 		/*
709 		 * Most pages have a mapping and most filesystems provide a
710 		 * migratepage callback. Anonymous pages are part of swap
711 		 * space which also has its own migratepage callback. This
712 		 * is the most common path for page migration.
713 		 */
714 		rc = mapping->a_ops->migratepage(mapping,
715 						newpage, page, mode);
716 	else
717 		rc = fallback_migrate_page(mapping, newpage, page, mode);
718 
719 	if (rc != MIGRATEPAGE_SUCCESS) {
720 		newpage->mapping = NULL;
721 	} else {
722 		if (remap_swapcache)
723 			remove_migration_ptes(page, newpage);
724 		page->mapping = NULL;
725 	}
726 
727 	unlock_page(newpage);
728 
729 	return rc;
730 }
731 
732 static int __unmap_and_move(struct page *page, struct page *newpage,
733 				int force, enum migrate_mode mode)
734 {
735 	int rc = -EAGAIN;
736 	int remap_swapcache = 1;
737 	struct mem_cgroup *mem;
738 	struct anon_vma *anon_vma = NULL;
739 
740 	if (!trylock_page(page)) {
741 		if (!force || mode == MIGRATE_ASYNC)
742 			goto out;
743 
744 		/*
745 		 * It's not safe for direct compaction to call lock_page.
746 		 * For example, during page readahead pages are added locked
747 		 * to the LRU. Later, when the IO completes the pages are
748 		 * marked uptodate and unlocked. However, the queueing
749 		 * could be merging multiple pages for one bio (e.g.
750 		 * mpage_readpages). If an allocation happens for the
751 		 * second or third page, the process can end up locking
752 		 * the same page twice and deadlocking. Rather than
753 		 * trying to be clever about what pages can be locked,
754 		 * avoid the use of lock_page for direct compaction
755 		 * altogether.
756 		 */
757 		if (current->flags & PF_MEMALLOC)
758 			goto out;
759 
760 		lock_page(page);
761 	}
762 
763 	/* charge against new page */
764 	mem_cgroup_prepare_migration(page, newpage, &mem);
765 
766 	if (PageWriteback(page)) {
767 		/*
768 		 * Only in the case of a full synchronous migration is it
769 		 * necessary to wait for PageWriteback. In the async case,
770 		 * the retry loop is too short and in the sync-light case,
771 		 * the overhead of stalling is too much
772 		 */
773 		if (mode != MIGRATE_SYNC) {
774 			rc = -EBUSY;
775 			goto uncharge;
776 		}
777 		if (!force)
778 			goto uncharge;
779 		wait_on_page_writeback(page);
780 	}
781 	/*
782 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
783 	 * we cannot notice that anon_vma is freed while we migrates a page.
784 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
785 	 * of migration. File cache pages are no problem because of page_lock()
786 	 * File Caches may use write_page() or lock_page() in migration, then,
787 	 * just care Anon page here.
788 	 */
789 	if (PageAnon(page) && !PageKsm(page)) {
790 		/*
791 		 * Only page_lock_anon_vma_read() understands the subtleties of
792 		 * getting a hold on an anon_vma from outside one of its mms.
793 		 */
794 		anon_vma = page_get_anon_vma(page);
795 		if (anon_vma) {
796 			/*
797 			 * Anon page
798 			 */
799 		} else if (PageSwapCache(page)) {
800 			/*
801 			 * We cannot be sure that the anon_vma of an unmapped
802 			 * swapcache page is safe to use because we don't
803 			 * know in advance if the VMA that this page belonged
804 			 * to still exists. If the VMA and others sharing the
805 			 * data have been freed, then the anon_vma could
806 			 * already be invalid.
807 			 *
808 			 * To avoid this possibility, swapcache pages get
809 			 * migrated but are not remapped when migration
810 			 * completes
811 			 */
812 			remap_swapcache = 0;
813 		} else {
814 			goto uncharge;
815 		}
816 	}
817 
818 	if (unlikely(balloon_page_movable(page))) {
819 		/*
820 		 * A ballooned page does not need any special attention from
821 		 * physical to virtual reverse mapping procedures.
822 		 * Skip any attempt to unmap PTEs or to remap swap cache,
823 		 * in order to avoid burning cycles at rmap level, and perform
824 		 * the page migration right away (proteced by page lock).
825 		 */
826 		rc = balloon_page_migrate(newpage, page, mode);
827 		goto uncharge;
828 	}
829 
830 	/*
831 	 * Corner case handling:
832 	 * 1. When a new swap-cache page is read into, it is added to the LRU
833 	 * and treated as swapcache but it has no rmap yet.
834 	 * Calling try_to_unmap() against a page->mapping==NULL page will
835 	 * trigger a BUG.  So handle it here.
836 	 * 2. An orphaned page (see truncate_complete_page) might have
837 	 * fs-private metadata. The page can be picked up due to memory
838 	 * offlining.  Everywhere else except page reclaim, the page is
839 	 * invisible to the vm, so the page can not be migrated.  So try to
840 	 * free the metadata, so the page can be freed.
841 	 */
842 	if (!page->mapping) {
843 		VM_BUG_ON(PageAnon(page));
844 		if (page_has_private(page)) {
845 			try_to_free_buffers(page);
846 			goto uncharge;
847 		}
848 		goto skip_unmap;
849 	}
850 
851 	/* Establish migration ptes or remove ptes */
852 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
853 
854 skip_unmap:
855 	if (!page_mapped(page))
856 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
857 
858 	if (rc && remap_swapcache)
859 		remove_migration_ptes(page, page);
860 
861 	/* Drop an anon_vma reference if we took one */
862 	if (anon_vma)
863 		put_anon_vma(anon_vma);
864 
865 uncharge:
866 	mem_cgroup_end_migration(mem, page, newpage,
867 				 (rc == MIGRATEPAGE_SUCCESS ||
868 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
869 	unlock_page(page);
870 out:
871 	return rc;
872 }
873 
874 /*
875  * Obtain the lock on page, remove all ptes and migrate the page
876  * to the newly allocated page in newpage.
877  */
878 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
879 			struct page *page, int force, enum migrate_mode mode)
880 {
881 	int rc = 0;
882 	int *result = NULL;
883 	struct page *newpage = get_new_page(page, private, &result);
884 
885 	if (!newpage)
886 		return -ENOMEM;
887 
888 	if (page_count(page) == 1) {
889 		/* page was freed from under us. So we are done. */
890 		goto out;
891 	}
892 
893 	if (unlikely(PageTransHuge(page)))
894 		if (unlikely(split_huge_page(page)))
895 			goto out;
896 
897 	rc = __unmap_and_move(page, newpage, force, mode);
898 
899 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
900 		/*
901 		 * A ballooned page has been migrated already.
902 		 * Now, it's the time to wrap-up counters,
903 		 * handle the page back to Buddy and return.
904 		 */
905 		dec_zone_page_state(page, NR_ISOLATED_ANON +
906 				    page_is_file_cache(page));
907 		balloon_page_free(page);
908 		return MIGRATEPAGE_SUCCESS;
909 	}
910 out:
911 	if (rc != -EAGAIN) {
912 		/*
913 		 * A page that has been migrated has all references
914 		 * removed and will be freed. A page that has not been
915 		 * migrated will have kepts its references and be
916 		 * restored.
917 		 */
918 		list_del(&page->lru);
919 		dec_zone_page_state(page, NR_ISOLATED_ANON +
920 				page_is_file_cache(page));
921 		putback_lru_page(page);
922 	}
923 	/*
924 	 * Move the new page to the LRU. If migration was not successful
925 	 * then this will free the page.
926 	 */
927 	putback_lru_page(newpage);
928 	if (result) {
929 		if (rc)
930 			*result = rc;
931 		else
932 			*result = page_to_nid(newpage);
933 	}
934 	return rc;
935 }
936 
937 /*
938  * Counterpart of unmap_and_move_page() for hugepage migration.
939  *
940  * This function doesn't wait the completion of hugepage I/O
941  * because there is no race between I/O and migration for hugepage.
942  * Note that currently hugepage I/O occurs only in direct I/O
943  * where no lock is held and PG_writeback is irrelevant,
944  * and writeback status of all subpages are counted in the reference
945  * count of the head page (i.e. if all subpages of a 2MB hugepage are
946  * under direct I/O, the reference of the head page is 512 and a bit more.)
947  * This means that when we try to migrate hugepage whose subpages are
948  * doing direct I/O, some references remain after try_to_unmap() and
949  * hugepage migration fails without data corruption.
950  *
951  * There is also no race when direct I/O is issued on the page under migration,
952  * because then pte is replaced with migration swap entry and direct I/O code
953  * will wait in the page fault for migration to complete.
954  */
955 static int unmap_and_move_huge_page(new_page_t get_new_page,
956 				unsigned long private, struct page *hpage,
957 				int force, enum migrate_mode mode)
958 {
959 	int rc = 0;
960 	int *result = NULL;
961 	struct page *new_hpage = get_new_page(hpage, private, &result);
962 	struct anon_vma *anon_vma = NULL;
963 
964 	/*
965 	 * Movability of hugepages depends on architectures and hugepage size.
966 	 * This check is necessary because some callers of hugepage migration
967 	 * like soft offline and memory hotremove don't walk through page
968 	 * tables or check whether the hugepage is pmd-based or not before
969 	 * kicking migration.
970 	 */
971 	if (!hugepage_migration_support(page_hstate(hpage)))
972 		return -ENOSYS;
973 
974 	if (!new_hpage)
975 		return -ENOMEM;
976 
977 	rc = -EAGAIN;
978 
979 	if (!trylock_page(hpage)) {
980 		if (!force || mode != MIGRATE_SYNC)
981 			goto out;
982 		lock_page(hpage);
983 	}
984 
985 	if (PageAnon(hpage))
986 		anon_vma = page_get_anon_vma(hpage);
987 
988 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
989 
990 	if (!page_mapped(hpage))
991 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
992 
993 	if (rc)
994 		remove_migration_ptes(hpage, hpage);
995 
996 	if (anon_vma)
997 		put_anon_vma(anon_vma);
998 
999 	if (!rc)
1000 		hugetlb_cgroup_migrate(hpage, new_hpage);
1001 
1002 	unlock_page(hpage);
1003 out:
1004 	if (rc != -EAGAIN)
1005 		putback_active_hugepage(hpage);
1006 	put_page(new_hpage);
1007 	if (result) {
1008 		if (rc)
1009 			*result = rc;
1010 		else
1011 			*result = page_to_nid(new_hpage);
1012 	}
1013 	return rc;
1014 }
1015 
1016 /*
1017  * migrate_pages - migrate the pages specified in a list, to the free pages
1018  *		   supplied as the target for the page migration
1019  *
1020  * @from:		The list of pages to be migrated.
1021  * @get_new_page:	The function used to allocate free pages to be used
1022  *			as the target of the page migration.
1023  * @private:		Private data to be passed on to get_new_page()
1024  * @mode:		The migration mode that specifies the constraints for
1025  *			page migration, if any.
1026  * @reason:		The reason for page migration.
1027  *
1028  * The function returns after 10 attempts or if no pages are movable any more
1029  * because the list has become empty or no retryable pages exist any more.
1030  * The caller should call putback_lru_pages() to return pages to the LRU
1031  * or free list only if ret != 0.
1032  *
1033  * Returns the number of pages that were not migrated, or an error code.
1034  */
1035 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1036 		unsigned long private, enum migrate_mode mode, int reason)
1037 {
1038 	int retry = 1;
1039 	int nr_failed = 0;
1040 	int nr_succeeded = 0;
1041 	int pass = 0;
1042 	struct page *page;
1043 	struct page *page2;
1044 	int swapwrite = current->flags & PF_SWAPWRITE;
1045 	int rc;
1046 
1047 	if (!swapwrite)
1048 		current->flags |= PF_SWAPWRITE;
1049 
1050 	for(pass = 0; pass < 10 && retry; pass++) {
1051 		retry = 0;
1052 
1053 		list_for_each_entry_safe(page, page2, from, lru) {
1054 			cond_resched();
1055 
1056 			if (PageHuge(page))
1057 				rc = unmap_and_move_huge_page(get_new_page,
1058 						private, page, pass > 2, mode);
1059 			else
1060 				rc = unmap_and_move(get_new_page, private,
1061 						page, pass > 2, mode);
1062 
1063 			switch(rc) {
1064 			case -ENOMEM:
1065 				goto out;
1066 			case -EAGAIN:
1067 				retry++;
1068 				break;
1069 			case MIGRATEPAGE_SUCCESS:
1070 				nr_succeeded++;
1071 				break;
1072 			default:
1073 				/* Permanent failure */
1074 				nr_failed++;
1075 				break;
1076 			}
1077 		}
1078 	}
1079 	rc = nr_failed + retry;
1080 out:
1081 	if (nr_succeeded)
1082 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1083 	if (nr_failed)
1084 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1085 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1086 
1087 	if (!swapwrite)
1088 		current->flags &= ~PF_SWAPWRITE;
1089 
1090 	return rc;
1091 }
1092 
1093 #ifdef CONFIG_NUMA
1094 /*
1095  * Move a list of individual pages
1096  */
1097 struct page_to_node {
1098 	unsigned long addr;
1099 	struct page *page;
1100 	int node;
1101 	int status;
1102 };
1103 
1104 static struct page *new_page_node(struct page *p, unsigned long private,
1105 		int **result)
1106 {
1107 	struct page_to_node *pm = (struct page_to_node *)private;
1108 
1109 	while (pm->node != MAX_NUMNODES && pm->page != p)
1110 		pm++;
1111 
1112 	if (pm->node == MAX_NUMNODES)
1113 		return NULL;
1114 
1115 	*result = &pm->status;
1116 
1117 	if (PageHuge(p))
1118 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1119 					pm->node);
1120 	else
1121 		return alloc_pages_exact_node(pm->node,
1122 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1123 }
1124 
1125 /*
1126  * Move a set of pages as indicated in the pm array. The addr
1127  * field must be set to the virtual address of the page to be moved
1128  * and the node number must contain a valid target node.
1129  * The pm array ends with node = MAX_NUMNODES.
1130  */
1131 static int do_move_page_to_node_array(struct mm_struct *mm,
1132 				      struct page_to_node *pm,
1133 				      int migrate_all)
1134 {
1135 	int err;
1136 	struct page_to_node *pp;
1137 	LIST_HEAD(pagelist);
1138 
1139 	down_read(&mm->mmap_sem);
1140 
1141 	/*
1142 	 * Build a list of pages to migrate
1143 	 */
1144 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1145 		struct vm_area_struct *vma;
1146 		struct page *page;
1147 
1148 		err = -EFAULT;
1149 		vma = find_vma(mm, pp->addr);
1150 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1151 			goto set_status;
1152 
1153 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1154 
1155 		err = PTR_ERR(page);
1156 		if (IS_ERR(page))
1157 			goto set_status;
1158 
1159 		err = -ENOENT;
1160 		if (!page)
1161 			goto set_status;
1162 
1163 		/* Use PageReserved to check for zero page */
1164 		if (PageReserved(page))
1165 			goto put_and_set;
1166 
1167 		pp->page = page;
1168 		err = page_to_nid(page);
1169 
1170 		if (err == pp->node)
1171 			/*
1172 			 * Node already in the right place
1173 			 */
1174 			goto put_and_set;
1175 
1176 		err = -EACCES;
1177 		if (page_mapcount(page) > 1 &&
1178 				!migrate_all)
1179 			goto put_and_set;
1180 
1181 		if (PageHuge(page)) {
1182 			isolate_huge_page(page, &pagelist);
1183 			goto put_and_set;
1184 		}
1185 
1186 		err = isolate_lru_page(page);
1187 		if (!err) {
1188 			list_add_tail(&page->lru, &pagelist);
1189 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1190 					    page_is_file_cache(page));
1191 		}
1192 put_and_set:
1193 		/*
1194 		 * Either remove the duplicate refcount from
1195 		 * isolate_lru_page() or drop the page ref if it was
1196 		 * not isolated.
1197 		 */
1198 		put_page(page);
1199 set_status:
1200 		pp->status = err;
1201 	}
1202 
1203 	err = 0;
1204 	if (!list_empty(&pagelist)) {
1205 		err = migrate_pages(&pagelist, new_page_node,
1206 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1207 		if (err)
1208 			putback_movable_pages(&pagelist);
1209 	}
1210 
1211 	up_read(&mm->mmap_sem);
1212 	return err;
1213 }
1214 
1215 /*
1216  * Migrate an array of page address onto an array of nodes and fill
1217  * the corresponding array of status.
1218  */
1219 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1220 			 unsigned long nr_pages,
1221 			 const void __user * __user *pages,
1222 			 const int __user *nodes,
1223 			 int __user *status, int flags)
1224 {
1225 	struct page_to_node *pm;
1226 	unsigned long chunk_nr_pages;
1227 	unsigned long chunk_start;
1228 	int err;
1229 
1230 	err = -ENOMEM;
1231 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1232 	if (!pm)
1233 		goto out;
1234 
1235 	migrate_prep();
1236 
1237 	/*
1238 	 * Store a chunk of page_to_node array in a page,
1239 	 * but keep the last one as a marker
1240 	 */
1241 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1242 
1243 	for (chunk_start = 0;
1244 	     chunk_start < nr_pages;
1245 	     chunk_start += chunk_nr_pages) {
1246 		int j;
1247 
1248 		if (chunk_start + chunk_nr_pages > nr_pages)
1249 			chunk_nr_pages = nr_pages - chunk_start;
1250 
1251 		/* fill the chunk pm with addrs and nodes from user-space */
1252 		for (j = 0; j < chunk_nr_pages; j++) {
1253 			const void __user *p;
1254 			int node;
1255 
1256 			err = -EFAULT;
1257 			if (get_user(p, pages + j + chunk_start))
1258 				goto out_pm;
1259 			pm[j].addr = (unsigned long) p;
1260 
1261 			if (get_user(node, nodes + j + chunk_start))
1262 				goto out_pm;
1263 
1264 			err = -ENODEV;
1265 			if (node < 0 || node >= MAX_NUMNODES)
1266 				goto out_pm;
1267 
1268 			if (!node_state(node, N_MEMORY))
1269 				goto out_pm;
1270 
1271 			err = -EACCES;
1272 			if (!node_isset(node, task_nodes))
1273 				goto out_pm;
1274 
1275 			pm[j].node = node;
1276 		}
1277 
1278 		/* End marker for this chunk */
1279 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1280 
1281 		/* Migrate this chunk */
1282 		err = do_move_page_to_node_array(mm, pm,
1283 						 flags & MPOL_MF_MOVE_ALL);
1284 		if (err < 0)
1285 			goto out_pm;
1286 
1287 		/* Return status information */
1288 		for (j = 0; j < chunk_nr_pages; j++)
1289 			if (put_user(pm[j].status, status + j + chunk_start)) {
1290 				err = -EFAULT;
1291 				goto out_pm;
1292 			}
1293 	}
1294 	err = 0;
1295 
1296 out_pm:
1297 	free_page((unsigned long)pm);
1298 out:
1299 	return err;
1300 }
1301 
1302 /*
1303  * Determine the nodes of an array of pages and store it in an array of status.
1304  */
1305 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1306 				const void __user **pages, int *status)
1307 {
1308 	unsigned long i;
1309 
1310 	down_read(&mm->mmap_sem);
1311 
1312 	for (i = 0; i < nr_pages; i++) {
1313 		unsigned long addr = (unsigned long)(*pages);
1314 		struct vm_area_struct *vma;
1315 		struct page *page;
1316 		int err = -EFAULT;
1317 
1318 		vma = find_vma(mm, addr);
1319 		if (!vma || addr < vma->vm_start)
1320 			goto set_status;
1321 
1322 		page = follow_page(vma, addr, 0);
1323 
1324 		err = PTR_ERR(page);
1325 		if (IS_ERR(page))
1326 			goto set_status;
1327 
1328 		err = -ENOENT;
1329 		/* Use PageReserved to check for zero page */
1330 		if (!page || PageReserved(page))
1331 			goto set_status;
1332 
1333 		err = page_to_nid(page);
1334 set_status:
1335 		*status = err;
1336 
1337 		pages++;
1338 		status++;
1339 	}
1340 
1341 	up_read(&mm->mmap_sem);
1342 }
1343 
1344 /*
1345  * Determine the nodes of a user array of pages and store it in
1346  * a user array of status.
1347  */
1348 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1349 			 const void __user * __user *pages,
1350 			 int __user *status)
1351 {
1352 #define DO_PAGES_STAT_CHUNK_NR 16
1353 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1354 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1355 
1356 	while (nr_pages) {
1357 		unsigned long chunk_nr;
1358 
1359 		chunk_nr = nr_pages;
1360 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1361 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1362 
1363 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1364 			break;
1365 
1366 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1367 
1368 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1369 			break;
1370 
1371 		pages += chunk_nr;
1372 		status += chunk_nr;
1373 		nr_pages -= chunk_nr;
1374 	}
1375 	return nr_pages ? -EFAULT : 0;
1376 }
1377 
1378 /*
1379  * Move a list of pages in the address space of the currently executing
1380  * process.
1381  */
1382 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1383 		const void __user * __user *, pages,
1384 		const int __user *, nodes,
1385 		int __user *, status, int, flags)
1386 {
1387 	const struct cred *cred = current_cred(), *tcred;
1388 	struct task_struct *task;
1389 	struct mm_struct *mm;
1390 	int err;
1391 	nodemask_t task_nodes;
1392 
1393 	/* Check flags */
1394 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1395 		return -EINVAL;
1396 
1397 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1398 		return -EPERM;
1399 
1400 	/* Find the mm_struct */
1401 	rcu_read_lock();
1402 	task = pid ? find_task_by_vpid(pid) : current;
1403 	if (!task) {
1404 		rcu_read_unlock();
1405 		return -ESRCH;
1406 	}
1407 	get_task_struct(task);
1408 
1409 	/*
1410 	 * Check if this process has the right to modify the specified
1411 	 * process. The right exists if the process has administrative
1412 	 * capabilities, superuser privileges or the same
1413 	 * userid as the target process.
1414 	 */
1415 	tcred = __task_cred(task);
1416 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1417 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1418 	    !capable(CAP_SYS_NICE)) {
1419 		rcu_read_unlock();
1420 		err = -EPERM;
1421 		goto out;
1422 	}
1423 	rcu_read_unlock();
1424 
1425  	err = security_task_movememory(task);
1426  	if (err)
1427 		goto out;
1428 
1429 	task_nodes = cpuset_mems_allowed(task);
1430 	mm = get_task_mm(task);
1431 	put_task_struct(task);
1432 
1433 	if (!mm)
1434 		return -EINVAL;
1435 
1436 	if (nodes)
1437 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1438 				    nodes, status, flags);
1439 	else
1440 		err = do_pages_stat(mm, nr_pages, pages, status);
1441 
1442 	mmput(mm);
1443 	return err;
1444 
1445 out:
1446 	put_task_struct(task);
1447 	return err;
1448 }
1449 
1450 /*
1451  * Call migration functions in the vma_ops that may prepare
1452  * memory in a vm for migration. migration functions may perform
1453  * the migration for vmas that do not have an underlying page struct.
1454  */
1455 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1456 	const nodemask_t *from, unsigned long flags)
1457 {
1458  	struct vm_area_struct *vma;
1459  	int err = 0;
1460 
1461 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1462  		if (vma->vm_ops && vma->vm_ops->migrate) {
1463  			err = vma->vm_ops->migrate(vma, to, from, flags);
1464  			if (err)
1465  				break;
1466  		}
1467  	}
1468  	return err;
1469 }
1470 
1471 #ifdef CONFIG_NUMA_BALANCING
1472 /*
1473  * Returns true if this is a safe migration target node for misplaced NUMA
1474  * pages. Currently it only checks the watermarks which crude
1475  */
1476 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1477 				   unsigned long nr_migrate_pages)
1478 {
1479 	int z;
1480 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1481 		struct zone *zone = pgdat->node_zones + z;
1482 
1483 		if (!populated_zone(zone))
1484 			continue;
1485 
1486 		if (!zone_reclaimable(zone))
1487 			continue;
1488 
1489 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1490 		if (!zone_watermark_ok(zone, 0,
1491 				       high_wmark_pages(zone) +
1492 				       nr_migrate_pages,
1493 				       0, 0))
1494 			continue;
1495 		return true;
1496 	}
1497 	return false;
1498 }
1499 
1500 static struct page *alloc_misplaced_dst_page(struct page *page,
1501 					   unsigned long data,
1502 					   int **result)
1503 {
1504 	int nid = (int) data;
1505 	struct page *newpage;
1506 
1507 	newpage = alloc_pages_exact_node(nid,
1508 					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1509 					  __GFP_NOMEMALLOC | __GFP_NORETRY |
1510 					  __GFP_NOWARN) &
1511 					 ~GFP_IOFS, 0);
1512 	if (newpage)
1513 		page_cpupid_xchg_last(newpage, page_cpupid_last(page));
1514 
1515 	return newpage;
1516 }
1517 
1518 /*
1519  * page migration rate limiting control.
1520  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1521  * window of time. Default here says do not migrate more than 1280M per second.
1522  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1523  * as it is faults that reset the window, pte updates will happen unconditionally
1524  * if there has not been a fault since @pteupdate_interval_millisecs after the
1525  * throttle window closed.
1526  */
1527 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1528 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1529 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1530 
1531 /* Returns true if NUMA migration is currently rate limited */
1532 bool migrate_ratelimited(int node)
1533 {
1534 	pg_data_t *pgdat = NODE_DATA(node);
1535 
1536 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1537 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1538 		return false;
1539 
1540 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1541 		return false;
1542 
1543 	return true;
1544 }
1545 
1546 /* Returns true if the node is migrate rate-limited after the update */
1547 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1548 {
1549 	bool rate_limited = false;
1550 
1551 	/*
1552 	 * Rate-limit the amount of data that is being migrated to a node.
1553 	 * Optimal placement is no good if the memory bus is saturated and
1554 	 * all the time is being spent migrating!
1555 	 */
1556 	spin_lock(&pgdat->numabalancing_migrate_lock);
1557 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1558 		pgdat->numabalancing_migrate_nr_pages = 0;
1559 		pgdat->numabalancing_migrate_next_window = jiffies +
1560 			msecs_to_jiffies(migrate_interval_millisecs);
1561 	}
1562 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1563 		rate_limited = true;
1564 	else
1565 		pgdat->numabalancing_migrate_nr_pages += nr_pages;
1566 	spin_unlock(&pgdat->numabalancing_migrate_lock);
1567 
1568 	return rate_limited;
1569 }
1570 
1571 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1572 {
1573 	int page_lru;
1574 
1575 	VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1576 
1577 	/* Avoid migrating to a node that is nearly full */
1578 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1579 		return 0;
1580 
1581 	if (isolate_lru_page(page))
1582 		return 0;
1583 
1584 	/*
1585 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1586 	 * check on page_count(), so we must do it here, now that the page
1587 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1588 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1589 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1590 	 */
1591 	if (PageTransHuge(page) && page_count(page) != 3) {
1592 		putback_lru_page(page);
1593 		return 0;
1594 	}
1595 
1596 	page_lru = page_is_file_cache(page);
1597 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1598 				hpage_nr_pages(page));
1599 
1600 	/*
1601 	 * Isolating the page has taken another reference, so the
1602 	 * caller's reference can be safely dropped without the page
1603 	 * disappearing underneath us during migration.
1604 	 */
1605 	put_page(page);
1606 	return 1;
1607 }
1608 
1609 /*
1610  * Attempt to migrate a misplaced page to the specified destination
1611  * node. Caller is expected to have an elevated reference count on
1612  * the page that will be dropped by this function before returning.
1613  */
1614 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1615 			   int node)
1616 {
1617 	pg_data_t *pgdat = NODE_DATA(node);
1618 	int isolated;
1619 	int nr_remaining;
1620 	LIST_HEAD(migratepages);
1621 
1622 	/*
1623 	 * Don't migrate file pages that are mapped in multiple processes
1624 	 * with execute permissions as they are probably shared libraries.
1625 	 */
1626 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1627 	    (vma->vm_flags & VM_EXEC))
1628 		goto out;
1629 
1630 	/*
1631 	 * Rate-limit the amount of data that is being migrated to a node.
1632 	 * Optimal placement is no good if the memory bus is saturated and
1633 	 * all the time is being spent migrating!
1634 	 */
1635 	if (numamigrate_update_ratelimit(pgdat, 1))
1636 		goto out;
1637 
1638 	isolated = numamigrate_isolate_page(pgdat, page);
1639 	if (!isolated)
1640 		goto out;
1641 
1642 	list_add(&page->lru, &migratepages);
1643 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1644 				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1645 	if (nr_remaining) {
1646 		putback_lru_pages(&migratepages);
1647 		isolated = 0;
1648 	} else
1649 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1650 	BUG_ON(!list_empty(&migratepages));
1651 	return isolated;
1652 
1653 out:
1654 	put_page(page);
1655 	return 0;
1656 }
1657 #endif /* CONFIG_NUMA_BALANCING */
1658 
1659 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1660 /*
1661  * Migrates a THP to a given target node. page must be locked and is unlocked
1662  * before returning.
1663  */
1664 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1665 				struct vm_area_struct *vma,
1666 				pmd_t *pmd, pmd_t entry,
1667 				unsigned long address,
1668 				struct page *page, int node)
1669 {
1670 	spinlock_t *ptl;
1671 	unsigned long haddr = address & HPAGE_PMD_MASK;
1672 	pg_data_t *pgdat = NODE_DATA(node);
1673 	int isolated = 0;
1674 	struct page *new_page = NULL;
1675 	struct mem_cgroup *memcg = NULL;
1676 	int page_lru = page_is_file_cache(page);
1677 
1678 	/*
1679 	 * Rate-limit the amount of data that is being migrated to a node.
1680 	 * Optimal placement is no good if the memory bus is saturated and
1681 	 * all the time is being spent migrating!
1682 	 */
1683 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1684 		goto out_dropref;
1685 
1686 	new_page = alloc_pages_node(node,
1687 		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1688 	if (!new_page)
1689 		goto out_fail;
1690 
1691 	page_cpupid_xchg_last(new_page, page_cpupid_last(page));
1692 
1693 	isolated = numamigrate_isolate_page(pgdat, page);
1694 	if (!isolated) {
1695 		put_page(new_page);
1696 		goto out_fail;
1697 	}
1698 
1699 	/* Prepare a page as a migration target */
1700 	__set_page_locked(new_page);
1701 	SetPageSwapBacked(new_page);
1702 
1703 	/* anon mapping, we can simply copy page->mapping to the new page: */
1704 	new_page->mapping = page->mapping;
1705 	new_page->index = page->index;
1706 	migrate_page_copy(new_page, page);
1707 	WARN_ON(PageLRU(new_page));
1708 
1709 	/* Recheck the target PMD */
1710 	ptl = pmd_lock(mm, pmd);
1711 	if (unlikely(!pmd_same(*pmd, entry))) {
1712 		spin_unlock(ptl);
1713 
1714 		/* Reverse changes made by migrate_page_copy() */
1715 		if (TestClearPageActive(new_page))
1716 			SetPageActive(page);
1717 		if (TestClearPageUnevictable(new_page))
1718 			SetPageUnevictable(page);
1719 		mlock_migrate_page(page, new_page);
1720 
1721 		unlock_page(new_page);
1722 		put_page(new_page);		/* Free it */
1723 
1724 		/* Retake the callers reference and putback on LRU */
1725 		get_page(page);
1726 		putback_lru_page(page);
1727 		mod_zone_page_state(page_zone(page),
1728 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1729 		goto out_fail;
1730 	}
1731 
1732 	/*
1733 	 * Traditional migration needs to prepare the memcg charge
1734 	 * transaction early to prevent the old page from being
1735 	 * uncharged when installing migration entries.  Here we can
1736 	 * save the potential rollback and start the charge transfer
1737 	 * only when migration is already known to end successfully.
1738 	 */
1739 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1740 
1741 	entry = mk_pmd(new_page, vma->vm_page_prot);
1742 	entry = pmd_mknonnuma(entry);
1743 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1744 	entry = pmd_mkhuge(entry);
1745 
1746 	pmdp_clear_flush(vma, haddr, pmd);
1747 	set_pmd_at(mm, haddr, pmd, entry);
1748 	page_add_new_anon_rmap(new_page, vma, haddr);
1749 	update_mmu_cache_pmd(vma, address, &entry);
1750 	page_remove_rmap(page);
1751 	/*
1752 	 * Finish the charge transaction under the page table lock to
1753 	 * prevent split_huge_page() from dividing up the charge
1754 	 * before it's fully transferred to the new page.
1755 	 */
1756 	mem_cgroup_end_migration(memcg, page, new_page, true);
1757 	spin_unlock(ptl);
1758 
1759 	unlock_page(new_page);
1760 	unlock_page(page);
1761 	put_page(page);			/* Drop the rmap reference */
1762 	put_page(page);			/* Drop the LRU isolation reference */
1763 
1764 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1765 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1766 
1767 	mod_zone_page_state(page_zone(page),
1768 			NR_ISOLATED_ANON + page_lru,
1769 			-HPAGE_PMD_NR);
1770 	return isolated;
1771 
1772 out_fail:
1773 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1774 out_dropref:
1775 	entry = pmd_mknonnuma(entry);
1776 	set_pmd_at(mm, haddr, pmd, entry);
1777 	update_mmu_cache_pmd(vma, address, &entry);
1778 
1779 	unlock_page(page);
1780 	put_page(page);
1781 	return 0;
1782 }
1783 #endif /* CONFIG_NUMA_BALANCING */
1784 
1785 #endif /* CONFIG_NUMA */
1786