xref: /linux/mm/migrate.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	const struct movable_operations *mops;
63 
64 	/*
65 	 * Avoid burning cycles with pages that are yet under __free_pages(),
66 	 * or just got freed under us.
67 	 *
68 	 * In case we 'win' a race for a movable page being freed under us and
69 	 * raise its refcount preventing __free_pages() from doing its job
70 	 * the put_page() at the end of this block will take care of
71 	 * release this page, thus avoiding a nasty leakage.
72 	 */
73 	if (unlikely(!get_page_unless_zero(page)))
74 		goto out;
75 
76 	/*
77 	 * Check PageMovable before holding a PG_lock because page's owner
78 	 * assumes anybody doesn't touch PG_lock of newly allocated page
79 	 * so unconditionally grabbing the lock ruins page's owner side.
80 	 */
81 	if (unlikely(!__PageMovable(page)))
82 		goto out_putpage;
83 	/*
84 	 * As movable pages are not isolated from LRU lists, concurrent
85 	 * compaction threads can race against page migration functions
86 	 * as well as race against the releasing a page.
87 	 *
88 	 * In order to avoid having an already isolated movable page
89 	 * being (wrongly) re-isolated while it is under migration,
90 	 * or to avoid attempting to isolate pages being released,
91 	 * lets be sure we have the page lock
92 	 * before proceeding with the movable page isolation steps.
93 	 */
94 	if (unlikely(!trylock_page(page)))
95 		goto out_putpage;
96 
97 	if (!PageMovable(page) || PageIsolated(page))
98 		goto out_no_isolated;
99 
100 	mops = page_movable_ops(page);
101 	VM_BUG_ON_PAGE(!mops, page);
102 
103 	if (!mops->isolate_page(page, mode))
104 		goto out_no_isolated;
105 
106 	/* Driver shouldn't use PG_isolated bit of page->flags */
107 	WARN_ON_ONCE(PageIsolated(page));
108 	SetPageIsolated(page);
109 	unlock_page(page);
110 
111 	return 0;
112 
113 out_no_isolated:
114 	unlock_page(page);
115 out_putpage:
116 	put_page(page);
117 out:
118 	return -EBUSY;
119 }
120 
121 static void putback_movable_page(struct page *page)
122 {
123 	const struct movable_operations *mops = page_movable_ops(page);
124 
125 	mops->putback_page(page);
126 	ClearPageIsolated(page);
127 }
128 
129 /*
130  * Put previously isolated pages back onto the appropriate lists
131  * from where they were once taken off for compaction/migration.
132  *
133  * This function shall be used whenever the isolated pageset has been
134  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
135  * and isolate_hugetlb().
136  */
137 void putback_movable_pages(struct list_head *l)
138 {
139 	struct page *page;
140 	struct page *page2;
141 
142 	list_for_each_entry_safe(page, page2, l, lru) {
143 		if (unlikely(PageHuge(page))) {
144 			putback_active_hugepage(page);
145 			continue;
146 		}
147 		list_del(&page->lru);
148 		/*
149 		 * We isolated non-lru movable page so here we can use
150 		 * __PageMovable because LRU page's mapping cannot have
151 		 * PAGE_MAPPING_MOVABLE.
152 		 */
153 		if (unlikely(__PageMovable(page))) {
154 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 			lock_page(page);
156 			if (PageMovable(page))
157 				putback_movable_page(page);
158 			else
159 				ClearPageIsolated(page);
160 			unlock_page(page);
161 			put_page(page);
162 		} else {
163 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
164 					page_is_file_lru(page), -thp_nr_pages(page));
165 			putback_lru_page(page);
166 		}
167 	}
168 }
169 
170 /*
171  * Restore a potential migration pte to a working pte entry
172  */
173 static bool remove_migration_pte(struct folio *folio,
174 		struct vm_area_struct *vma, unsigned long addr, void *old)
175 {
176 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
177 
178 	while (page_vma_mapped_walk(&pvmw)) {
179 		rmap_t rmap_flags = RMAP_NONE;
180 		pte_t pte;
181 		swp_entry_t entry;
182 		struct page *new;
183 		unsigned long idx = 0;
184 
185 		/* pgoff is invalid for ksm pages, but they are never large */
186 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
187 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
188 		new = folio_page(folio, idx);
189 
190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
191 		/* PMD-mapped THP migration entry */
192 		if (!pvmw.pte) {
193 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
194 					!folio_test_pmd_mappable(folio), folio);
195 			remove_migration_pmd(&pvmw, new);
196 			continue;
197 		}
198 #endif
199 
200 		folio_get(folio);
201 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
202 		if (pte_swp_soft_dirty(*pvmw.pte))
203 			pte = pte_mksoft_dirty(pte);
204 
205 		/*
206 		 * Recheck VMA as permissions can change since migration started
207 		 */
208 		entry = pte_to_swp_entry(*pvmw.pte);
209 		if (is_writable_migration_entry(entry))
210 			pte = maybe_mkwrite(pte, vma);
211 		else if (pte_swp_uffd_wp(*pvmw.pte))
212 			pte = pte_mkuffd_wp(pte);
213 
214 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
215 			rmap_flags |= RMAP_EXCLUSIVE;
216 
217 		if (unlikely(is_device_private_page(new))) {
218 			if (pte_write(pte))
219 				entry = make_writable_device_private_entry(
220 							page_to_pfn(new));
221 			else
222 				entry = make_readable_device_private_entry(
223 							page_to_pfn(new));
224 			pte = swp_entry_to_pte(entry);
225 			if (pte_swp_soft_dirty(*pvmw.pte))
226 				pte = pte_swp_mksoft_dirty(pte);
227 			if (pte_swp_uffd_wp(*pvmw.pte))
228 				pte = pte_swp_mkuffd_wp(pte);
229 		}
230 
231 #ifdef CONFIG_HUGETLB_PAGE
232 		if (folio_test_hugetlb(folio)) {
233 			unsigned int shift = huge_page_shift(hstate_vma(vma));
234 
235 			pte = pte_mkhuge(pte);
236 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
237 			if (folio_test_anon(folio))
238 				hugepage_add_anon_rmap(new, vma, pvmw.address,
239 						       rmap_flags);
240 			else
241 				page_dup_file_rmap(new, true);
242 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
243 		} else
244 #endif
245 		{
246 			if (folio_test_anon(folio))
247 				page_add_anon_rmap(new, vma, pvmw.address,
248 						   rmap_flags);
249 			else
250 				page_add_file_rmap(new, vma, false);
251 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
252 		}
253 		if (vma->vm_flags & VM_LOCKED)
254 			mlock_page_drain_local();
255 
256 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
257 					   compound_order(new));
258 
259 		/* No need to invalidate - it was non-present before */
260 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
261 	}
262 
263 	return true;
264 }
265 
266 /*
267  * Get rid of all migration entries and replace them by
268  * references to the indicated page.
269  */
270 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
271 {
272 	struct rmap_walk_control rwc = {
273 		.rmap_one = remove_migration_pte,
274 		.arg = src,
275 	};
276 
277 	if (locked)
278 		rmap_walk_locked(dst, &rwc);
279 	else
280 		rmap_walk(dst, &rwc);
281 }
282 
283 /*
284  * Something used the pte of a page under migration. We need to
285  * get to the page and wait until migration is finished.
286  * When we return from this function the fault will be retried.
287  */
288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
289 				spinlock_t *ptl)
290 {
291 	pte_t pte;
292 	swp_entry_t entry;
293 
294 	spin_lock(ptl);
295 	pte = *ptep;
296 	if (!is_swap_pte(pte))
297 		goto out;
298 
299 	entry = pte_to_swp_entry(pte);
300 	if (!is_migration_entry(entry))
301 		goto out;
302 
303 	migration_entry_wait_on_locked(entry, ptep, ptl);
304 	return;
305 out:
306 	pte_unmap_unlock(ptep, ptl);
307 }
308 
309 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
310 				unsigned long address)
311 {
312 	spinlock_t *ptl = pte_lockptr(mm, pmd);
313 	pte_t *ptep = pte_offset_map(pmd, address);
314 	__migration_entry_wait(mm, ptep, ptl);
315 }
316 
317 #ifdef CONFIG_HUGETLB_PAGE
318 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl)
319 {
320 	pte_t pte;
321 
322 	spin_lock(ptl);
323 	pte = huge_ptep_get(ptep);
324 
325 	if (unlikely(!is_hugetlb_entry_migration(pte)))
326 		spin_unlock(ptl);
327 	else
328 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
329 }
330 
331 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
332 {
333 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
334 
335 	__migration_entry_wait_huge(pte, ptl);
336 }
337 #endif
338 
339 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
340 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
341 {
342 	spinlock_t *ptl;
343 
344 	ptl = pmd_lock(mm, pmd);
345 	if (!is_pmd_migration_entry(*pmd))
346 		goto unlock;
347 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
348 	return;
349 unlock:
350 	spin_unlock(ptl);
351 }
352 #endif
353 
354 static int folio_expected_refs(struct address_space *mapping,
355 		struct folio *folio)
356 {
357 	int refs = 1;
358 	if (!mapping)
359 		return refs;
360 
361 	refs += folio_nr_pages(folio);
362 	if (folio_test_private(folio))
363 		refs++;
364 
365 	return refs;
366 }
367 
368 /*
369  * Replace the page in the mapping.
370  *
371  * The number of remaining references must be:
372  * 1 for anonymous pages without a mapping
373  * 2 for pages with a mapping
374  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
375  */
376 int folio_migrate_mapping(struct address_space *mapping,
377 		struct folio *newfolio, struct folio *folio, int extra_count)
378 {
379 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
380 	struct zone *oldzone, *newzone;
381 	int dirty;
382 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
383 	long nr = folio_nr_pages(folio);
384 
385 	if (!mapping) {
386 		/* Anonymous page without mapping */
387 		if (folio_ref_count(folio) != expected_count)
388 			return -EAGAIN;
389 
390 		/* No turning back from here */
391 		newfolio->index = folio->index;
392 		newfolio->mapping = folio->mapping;
393 		if (folio_test_swapbacked(folio))
394 			__folio_set_swapbacked(newfolio);
395 
396 		return MIGRATEPAGE_SUCCESS;
397 	}
398 
399 	oldzone = folio_zone(folio);
400 	newzone = folio_zone(newfolio);
401 
402 	xas_lock_irq(&xas);
403 	if (!folio_ref_freeze(folio, expected_count)) {
404 		xas_unlock_irq(&xas);
405 		return -EAGAIN;
406 	}
407 
408 	/*
409 	 * Now we know that no one else is looking at the folio:
410 	 * no turning back from here.
411 	 */
412 	newfolio->index = folio->index;
413 	newfolio->mapping = folio->mapping;
414 	folio_ref_add(newfolio, nr); /* add cache reference */
415 	if (folio_test_swapbacked(folio)) {
416 		__folio_set_swapbacked(newfolio);
417 		if (folio_test_swapcache(folio)) {
418 			folio_set_swapcache(newfolio);
419 			newfolio->private = folio_get_private(folio);
420 		}
421 	} else {
422 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
423 	}
424 
425 	/* Move dirty while page refs frozen and newpage not yet exposed */
426 	dirty = folio_test_dirty(folio);
427 	if (dirty) {
428 		folio_clear_dirty(folio);
429 		folio_set_dirty(newfolio);
430 	}
431 
432 	xas_store(&xas, newfolio);
433 
434 	/*
435 	 * Drop cache reference from old page by unfreezing
436 	 * to one less reference.
437 	 * We know this isn't the last reference.
438 	 */
439 	folio_ref_unfreeze(folio, expected_count - nr);
440 
441 	xas_unlock(&xas);
442 	/* Leave irq disabled to prevent preemption while updating stats */
443 
444 	/*
445 	 * If moved to a different zone then also account
446 	 * the page for that zone. Other VM counters will be
447 	 * taken care of when we establish references to the
448 	 * new page and drop references to the old page.
449 	 *
450 	 * Note that anonymous pages are accounted for
451 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
452 	 * are mapped to swap space.
453 	 */
454 	if (newzone != oldzone) {
455 		struct lruvec *old_lruvec, *new_lruvec;
456 		struct mem_cgroup *memcg;
457 
458 		memcg = folio_memcg(folio);
459 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
460 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
461 
462 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
463 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
464 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
465 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
466 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
467 		}
468 #ifdef CONFIG_SWAP
469 		if (folio_test_swapcache(folio)) {
470 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
471 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
472 		}
473 #endif
474 		if (dirty && mapping_can_writeback(mapping)) {
475 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
476 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
477 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
478 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
479 		}
480 	}
481 	local_irq_enable();
482 
483 	return MIGRATEPAGE_SUCCESS;
484 }
485 EXPORT_SYMBOL(folio_migrate_mapping);
486 
487 /*
488  * The expected number of remaining references is the same as that
489  * of folio_migrate_mapping().
490  */
491 int migrate_huge_page_move_mapping(struct address_space *mapping,
492 				   struct folio *dst, struct folio *src)
493 {
494 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
495 	int expected_count;
496 
497 	xas_lock_irq(&xas);
498 	expected_count = 2 + folio_has_private(src);
499 	if (!folio_ref_freeze(src, expected_count)) {
500 		xas_unlock_irq(&xas);
501 		return -EAGAIN;
502 	}
503 
504 	dst->index = src->index;
505 	dst->mapping = src->mapping;
506 
507 	folio_get(dst);
508 
509 	xas_store(&xas, dst);
510 
511 	folio_ref_unfreeze(src, expected_count - 1);
512 
513 	xas_unlock_irq(&xas);
514 
515 	return MIGRATEPAGE_SUCCESS;
516 }
517 
518 /*
519  * Copy the flags and some other ancillary information
520  */
521 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
522 {
523 	int cpupid;
524 
525 	if (folio_test_error(folio))
526 		folio_set_error(newfolio);
527 	if (folio_test_referenced(folio))
528 		folio_set_referenced(newfolio);
529 	if (folio_test_uptodate(folio))
530 		folio_mark_uptodate(newfolio);
531 	if (folio_test_clear_active(folio)) {
532 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
533 		folio_set_active(newfolio);
534 	} else if (folio_test_clear_unevictable(folio))
535 		folio_set_unevictable(newfolio);
536 	if (folio_test_workingset(folio))
537 		folio_set_workingset(newfolio);
538 	if (folio_test_checked(folio))
539 		folio_set_checked(newfolio);
540 	/*
541 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
542 	 * migration entries. We can still have PG_anon_exclusive set on an
543 	 * effectively unmapped and unreferenced first sub-pages of an
544 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
545 	 */
546 	if (folio_test_mappedtodisk(folio))
547 		folio_set_mappedtodisk(newfolio);
548 
549 	/* Move dirty on pages not done by folio_migrate_mapping() */
550 	if (folio_test_dirty(folio))
551 		folio_set_dirty(newfolio);
552 
553 	if (folio_test_young(folio))
554 		folio_set_young(newfolio);
555 	if (folio_test_idle(folio))
556 		folio_set_idle(newfolio);
557 
558 	/*
559 	 * Copy NUMA information to the new page, to prevent over-eager
560 	 * future migrations of this same page.
561 	 */
562 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
563 	page_cpupid_xchg_last(&newfolio->page, cpupid);
564 
565 	folio_migrate_ksm(newfolio, folio);
566 	/*
567 	 * Please do not reorder this without considering how mm/ksm.c's
568 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
569 	 */
570 	if (folio_test_swapcache(folio))
571 		folio_clear_swapcache(folio);
572 	folio_clear_private(folio);
573 
574 	/* page->private contains hugetlb specific flags */
575 	if (!folio_test_hugetlb(folio))
576 		folio->private = NULL;
577 
578 	/*
579 	 * If any waiters have accumulated on the new page then
580 	 * wake them up.
581 	 */
582 	if (folio_test_writeback(newfolio))
583 		folio_end_writeback(newfolio);
584 
585 	/*
586 	 * PG_readahead shares the same bit with PG_reclaim.  The above
587 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
588 	 * bit after that.
589 	 */
590 	if (folio_test_readahead(folio))
591 		folio_set_readahead(newfolio);
592 
593 	folio_copy_owner(newfolio, folio);
594 
595 	if (!folio_test_hugetlb(folio))
596 		mem_cgroup_migrate(folio, newfolio);
597 }
598 EXPORT_SYMBOL(folio_migrate_flags);
599 
600 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
601 {
602 	folio_copy(newfolio, folio);
603 	folio_migrate_flags(newfolio, folio);
604 }
605 EXPORT_SYMBOL(folio_migrate_copy);
606 
607 /************************************************************
608  *                    Migration functions
609  ***********************************************************/
610 
611 /**
612  * migrate_folio() - Simple folio migration.
613  * @mapping: The address_space containing the folio.
614  * @dst: The folio to migrate the data to.
615  * @src: The folio containing the current data.
616  * @mode: How to migrate the page.
617  *
618  * Common logic to directly migrate a single LRU folio suitable for
619  * folios that do not use PagePrivate/PagePrivate2.
620  *
621  * Folios are locked upon entry and exit.
622  */
623 int migrate_folio(struct address_space *mapping, struct folio *dst,
624 		struct folio *src, enum migrate_mode mode)
625 {
626 	int rc;
627 
628 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
629 
630 	rc = folio_migrate_mapping(mapping, dst, src, 0);
631 
632 	if (rc != MIGRATEPAGE_SUCCESS)
633 		return rc;
634 
635 	if (mode != MIGRATE_SYNC_NO_COPY)
636 		folio_migrate_copy(dst, src);
637 	else
638 		folio_migrate_flags(dst, src);
639 	return MIGRATEPAGE_SUCCESS;
640 }
641 EXPORT_SYMBOL(migrate_folio);
642 
643 #ifdef CONFIG_BLOCK
644 /* Returns true if all buffers are successfully locked */
645 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
646 							enum migrate_mode mode)
647 {
648 	struct buffer_head *bh = head;
649 
650 	/* Simple case, sync compaction */
651 	if (mode != MIGRATE_ASYNC) {
652 		do {
653 			lock_buffer(bh);
654 			bh = bh->b_this_page;
655 
656 		} while (bh != head);
657 
658 		return true;
659 	}
660 
661 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
662 	do {
663 		if (!trylock_buffer(bh)) {
664 			/*
665 			 * We failed to lock the buffer and cannot stall in
666 			 * async migration. Release the taken locks
667 			 */
668 			struct buffer_head *failed_bh = bh;
669 			bh = head;
670 			while (bh != failed_bh) {
671 				unlock_buffer(bh);
672 				bh = bh->b_this_page;
673 			}
674 			return false;
675 		}
676 
677 		bh = bh->b_this_page;
678 	} while (bh != head);
679 	return true;
680 }
681 
682 static int __buffer_migrate_folio(struct address_space *mapping,
683 		struct folio *dst, struct folio *src, enum migrate_mode mode,
684 		bool check_refs)
685 {
686 	struct buffer_head *bh, *head;
687 	int rc;
688 	int expected_count;
689 
690 	head = folio_buffers(src);
691 	if (!head)
692 		return migrate_folio(mapping, dst, src, mode);
693 
694 	/* Check whether page does not have extra refs before we do more work */
695 	expected_count = folio_expected_refs(mapping, src);
696 	if (folio_ref_count(src) != expected_count)
697 		return -EAGAIN;
698 
699 	if (!buffer_migrate_lock_buffers(head, mode))
700 		return -EAGAIN;
701 
702 	if (check_refs) {
703 		bool busy;
704 		bool invalidated = false;
705 
706 recheck_buffers:
707 		busy = false;
708 		spin_lock(&mapping->private_lock);
709 		bh = head;
710 		do {
711 			if (atomic_read(&bh->b_count)) {
712 				busy = true;
713 				break;
714 			}
715 			bh = bh->b_this_page;
716 		} while (bh != head);
717 		if (busy) {
718 			if (invalidated) {
719 				rc = -EAGAIN;
720 				goto unlock_buffers;
721 			}
722 			spin_unlock(&mapping->private_lock);
723 			invalidate_bh_lrus();
724 			invalidated = true;
725 			goto recheck_buffers;
726 		}
727 	}
728 
729 	rc = folio_migrate_mapping(mapping, dst, src, 0);
730 	if (rc != MIGRATEPAGE_SUCCESS)
731 		goto unlock_buffers;
732 
733 	folio_attach_private(dst, folio_detach_private(src));
734 
735 	bh = head;
736 	do {
737 		set_bh_page(bh, &dst->page, bh_offset(bh));
738 		bh = bh->b_this_page;
739 	} while (bh != head);
740 
741 	if (mode != MIGRATE_SYNC_NO_COPY)
742 		folio_migrate_copy(dst, src);
743 	else
744 		folio_migrate_flags(dst, src);
745 
746 	rc = MIGRATEPAGE_SUCCESS;
747 unlock_buffers:
748 	if (check_refs)
749 		spin_unlock(&mapping->private_lock);
750 	bh = head;
751 	do {
752 		unlock_buffer(bh);
753 		bh = bh->b_this_page;
754 	} while (bh != head);
755 
756 	return rc;
757 }
758 
759 /**
760  * buffer_migrate_folio() - Migration function for folios with buffers.
761  * @mapping: The address space containing @src.
762  * @dst: The folio to migrate to.
763  * @src: The folio to migrate from.
764  * @mode: How to migrate the folio.
765  *
766  * This function can only be used if the underlying filesystem guarantees
767  * that no other references to @src exist. For example attached buffer
768  * heads are accessed only under the folio lock.  If your filesystem cannot
769  * provide this guarantee, buffer_migrate_folio_norefs() may be more
770  * appropriate.
771  *
772  * Return: 0 on success or a negative errno on failure.
773  */
774 int buffer_migrate_folio(struct address_space *mapping,
775 		struct folio *dst, struct folio *src, enum migrate_mode mode)
776 {
777 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
778 }
779 EXPORT_SYMBOL(buffer_migrate_folio);
780 
781 /**
782  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
783  * @mapping: The address space containing @src.
784  * @dst: The folio to migrate to.
785  * @src: The folio to migrate from.
786  * @mode: How to migrate the folio.
787  *
788  * Like buffer_migrate_folio() except that this variant is more careful
789  * and checks that there are also no buffer head references. This function
790  * is the right one for mappings where buffer heads are directly looked
791  * up and referenced (such as block device mappings).
792  *
793  * Return: 0 on success or a negative errno on failure.
794  */
795 int buffer_migrate_folio_norefs(struct address_space *mapping,
796 		struct folio *dst, struct folio *src, enum migrate_mode mode)
797 {
798 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
799 }
800 #endif
801 
802 int filemap_migrate_folio(struct address_space *mapping,
803 		struct folio *dst, struct folio *src, enum migrate_mode mode)
804 {
805 	int ret;
806 
807 	ret = folio_migrate_mapping(mapping, dst, src, 0);
808 	if (ret != MIGRATEPAGE_SUCCESS)
809 		return ret;
810 
811 	if (folio_get_private(src))
812 		folio_attach_private(dst, folio_detach_private(src));
813 
814 	if (mode != MIGRATE_SYNC_NO_COPY)
815 		folio_migrate_copy(dst, src);
816 	else
817 		folio_migrate_flags(dst, src);
818 	return MIGRATEPAGE_SUCCESS;
819 }
820 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
821 
822 /*
823  * Writeback a folio to clean the dirty state
824  */
825 static int writeout(struct address_space *mapping, struct folio *folio)
826 {
827 	struct writeback_control wbc = {
828 		.sync_mode = WB_SYNC_NONE,
829 		.nr_to_write = 1,
830 		.range_start = 0,
831 		.range_end = LLONG_MAX,
832 		.for_reclaim = 1
833 	};
834 	int rc;
835 
836 	if (!mapping->a_ops->writepage)
837 		/* No write method for the address space */
838 		return -EINVAL;
839 
840 	if (!folio_clear_dirty_for_io(folio))
841 		/* Someone else already triggered a write */
842 		return -EAGAIN;
843 
844 	/*
845 	 * A dirty folio may imply that the underlying filesystem has
846 	 * the folio on some queue. So the folio must be clean for
847 	 * migration. Writeout may mean we lose the lock and the
848 	 * folio state is no longer what we checked for earlier.
849 	 * At this point we know that the migration attempt cannot
850 	 * be successful.
851 	 */
852 	remove_migration_ptes(folio, folio, false);
853 
854 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
855 
856 	if (rc != AOP_WRITEPAGE_ACTIVATE)
857 		/* unlocked. Relock */
858 		folio_lock(folio);
859 
860 	return (rc < 0) ? -EIO : -EAGAIN;
861 }
862 
863 /*
864  * Default handling if a filesystem does not provide a migration function.
865  */
866 static int fallback_migrate_folio(struct address_space *mapping,
867 		struct folio *dst, struct folio *src, enum migrate_mode mode)
868 {
869 	if (folio_test_dirty(src)) {
870 		/* Only writeback folios in full synchronous migration */
871 		switch (mode) {
872 		case MIGRATE_SYNC:
873 		case MIGRATE_SYNC_NO_COPY:
874 			break;
875 		default:
876 			return -EBUSY;
877 		}
878 		return writeout(mapping, src);
879 	}
880 
881 	/*
882 	 * Buffers may be managed in a filesystem specific way.
883 	 * We must have no buffers or drop them.
884 	 */
885 	if (folio_test_private(src) &&
886 	    !filemap_release_folio(src, GFP_KERNEL))
887 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
888 
889 	return migrate_folio(mapping, dst, src, mode);
890 }
891 
892 /*
893  * Move a page to a newly allocated page
894  * The page is locked and all ptes have been successfully removed.
895  *
896  * The new page will have replaced the old page if this function
897  * is successful.
898  *
899  * Return value:
900  *   < 0 - error code
901  *  MIGRATEPAGE_SUCCESS - success
902  */
903 static int move_to_new_folio(struct folio *dst, struct folio *src,
904 				enum migrate_mode mode)
905 {
906 	int rc = -EAGAIN;
907 	bool is_lru = !__PageMovable(&src->page);
908 
909 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
910 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
911 
912 	if (likely(is_lru)) {
913 		struct address_space *mapping = folio_mapping(src);
914 
915 		if (!mapping)
916 			rc = migrate_folio(mapping, dst, src, mode);
917 		else if (mapping->a_ops->migrate_folio)
918 			/*
919 			 * Most folios have a mapping and most filesystems
920 			 * provide a migrate_folio callback. Anonymous folios
921 			 * are part of swap space which also has its own
922 			 * migrate_folio callback. This is the most common path
923 			 * for page migration.
924 			 */
925 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
926 								mode);
927 		else
928 			rc = fallback_migrate_folio(mapping, dst, src, mode);
929 	} else {
930 		const struct movable_operations *mops;
931 
932 		/*
933 		 * In case of non-lru page, it could be released after
934 		 * isolation step. In that case, we shouldn't try migration.
935 		 */
936 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
937 		if (!folio_test_movable(src)) {
938 			rc = MIGRATEPAGE_SUCCESS;
939 			folio_clear_isolated(src);
940 			goto out;
941 		}
942 
943 		mops = page_movable_ops(&src->page);
944 		rc = mops->migrate_page(&dst->page, &src->page, mode);
945 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
946 				!folio_test_isolated(src));
947 	}
948 
949 	/*
950 	 * When successful, old pagecache src->mapping must be cleared before
951 	 * src is freed; but stats require that PageAnon be left as PageAnon.
952 	 */
953 	if (rc == MIGRATEPAGE_SUCCESS) {
954 		if (__PageMovable(&src->page)) {
955 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
956 
957 			/*
958 			 * We clear PG_movable under page_lock so any compactor
959 			 * cannot try to migrate this page.
960 			 */
961 			folio_clear_isolated(src);
962 		}
963 
964 		/*
965 		 * Anonymous and movable src->mapping will be cleared by
966 		 * free_pages_prepare so don't reset it here for keeping
967 		 * the type to work PageAnon, for example.
968 		 */
969 		if (!folio_mapping_flags(src))
970 			src->mapping = NULL;
971 
972 		if (likely(!folio_is_zone_device(dst)))
973 			flush_dcache_folio(dst);
974 	}
975 out:
976 	return rc;
977 }
978 
979 static int __unmap_and_move(struct page *page, struct page *newpage,
980 				int force, enum migrate_mode mode)
981 {
982 	struct folio *folio = page_folio(page);
983 	struct folio *dst = page_folio(newpage);
984 	int rc = -EAGAIN;
985 	bool page_was_mapped = false;
986 	struct anon_vma *anon_vma = NULL;
987 	bool is_lru = !__PageMovable(page);
988 
989 	if (!trylock_page(page)) {
990 		if (!force || mode == MIGRATE_ASYNC)
991 			goto out;
992 
993 		/*
994 		 * It's not safe for direct compaction to call lock_page.
995 		 * For example, during page readahead pages are added locked
996 		 * to the LRU. Later, when the IO completes the pages are
997 		 * marked uptodate and unlocked. However, the queueing
998 		 * could be merging multiple pages for one bio (e.g.
999 		 * mpage_readahead). If an allocation happens for the
1000 		 * second or third page, the process can end up locking
1001 		 * the same page twice and deadlocking. Rather than
1002 		 * trying to be clever about what pages can be locked,
1003 		 * avoid the use of lock_page for direct compaction
1004 		 * altogether.
1005 		 */
1006 		if (current->flags & PF_MEMALLOC)
1007 			goto out;
1008 
1009 		lock_page(page);
1010 	}
1011 
1012 	if (PageWriteback(page)) {
1013 		/*
1014 		 * Only in the case of a full synchronous migration is it
1015 		 * necessary to wait for PageWriteback. In the async case,
1016 		 * the retry loop is too short and in the sync-light case,
1017 		 * the overhead of stalling is too much
1018 		 */
1019 		switch (mode) {
1020 		case MIGRATE_SYNC:
1021 		case MIGRATE_SYNC_NO_COPY:
1022 			break;
1023 		default:
1024 			rc = -EBUSY;
1025 			goto out_unlock;
1026 		}
1027 		if (!force)
1028 			goto out_unlock;
1029 		wait_on_page_writeback(page);
1030 	}
1031 
1032 	/*
1033 	 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1034 	 * we cannot notice that anon_vma is freed while we migrates a page.
1035 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1036 	 * of migration. File cache pages are no problem because of page_lock()
1037 	 * File Caches may use write_page() or lock_page() in migration, then,
1038 	 * just care Anon page here.
1039 	 *
1040 	 * Only page_get_anon_vma() understands the subtleties of
1041 	 * getting a hold on an anon_vma from outside one of its mms.
1042 	 * But if we cannot get anon_vma, then we won't need it anyway,
1043 	 * because that implies that the anon page is no longer mapped
1044 	 * (and cannot be remapped so long as we hold the page lock).
1045 	 */
1046 	if (PageAnon(page) && !PageKsm(page))
1047 		anon_vma = page_get_anon_vma(page);
1048 
1049 	/*
1050 	 * Block others from accessing the new page when we get around to
1051 	 * establishing additional references. We are usually the only one
1052 	 * holding a reference to newpage at this point. We used to have a BUG
1053 	 * here if trylock_page(newpage) fails, but would like to allow for
1054 	 * cases where there might be a race with the previous use of newpage.
1055 	 * This is much like races on refcount of oldpage: just don't BUG().
1056 	 */
1057 	if (unlikely(!trylock_page(newpage)))
1058 		goto out_unlock;
1059 
1060 	if (unlikely(!is_lru)) {
1061 		rc = move_to_new_folio(dst, folio, mode);
1062 		goto out_unlock_both;
1063 	}
1064 
1065 	/*
1066 	 * Corner case handling:
1067 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1068 	 * and treated as swapcache but it has no rmap yet.
1069 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1070 	 * trigger a BUG.  So handle it here.
1071 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1072 	 * fs-private metadata. The page can be picked up due to memory
1073 	 * offlining.  Everywhere else except page reclaim, the page is
1074 	 * invisible to the vm, so the page can not be migrated.  So try to
1075 	 * free the metadata, so the page can be freed.
1076 	 */
1077 	if (!page->mapping) {
1078 		VM_BUG_ON_PAGE(PageAnon(page), page);
1079 		if (page_has_private(page)) {
1080 			try_to_free_buffers(folio);
1081 			goto out_unlock_both;
1082 		}
1083 	} else if (page_mapped(page)) {
1084 		/* Establish migration ptes */
1085 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1086 				page);
1087 		try_to_migrate(folio, 0);
1088 		page_was_mapped = true;
1089 	}
1090 
1091 	if (!page_mapped(page))
1092 		rc = move_to_new_folio(dst, folio, mode);
1093 
1094 	/*
1095 	 * When successful, push newpage to LRU immediately: so that if it
1096 	 * turns out to be an mlocked page, remove_migration_ptes() will
1097 	 * automatically build up the correct newpage->mlock_count for it.
1098 	 *
1099 	 * We would like to do something similar for the old page, when
1100 	 * unsuccessful, and other cases when a page has been temporarily
1101 	 * isolated from the unevictable LRU: but this case is the easiest.
1102 	 */
1103 	if (rc == MIGRATEPAGE_SUCCESS) {
1104 		lru_cache_add(newpage);
1105 		if (page_was_mapped)
1106 			lru_add_drain();
1107 	}
1108 
1109 	if (page_was_mapped)
1110 		remove_migration_ptes(folio,
1111 			rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1112 
1113 out_unlock_both:
1114 	unlock_page(newpage);
1115 out_unlock:
1116 	/* Drop an anon_vma reference if we took one */
1117 	if (anon_vma)
1118 		put_anon_vma(anon_vma);
1119 	unlock_page(page);
1120 out:
1121 	/*
1122 	 * If migration is successful, decrease refcount of the newpage,
1123 	 * which will not free the page because new page owner increased
1124 	 * refcounter.
1125 	 */
1126 	if (rc == MIGRATEPAGE_SUCCESS)
1127 		put_page(newpage);
1128 
1129 	return rc;
1130 }
1131 
1132 /*
1133  * Obtain the lock on page, remove all ptes and migrate the page
1134  * to the newly allocated page in newpage.
1135  */
1136 static int unmap_and_move(new_page_t get_new_page,
1137 				   free_page_t put_new_page,
1138 				   unsigned long private, struct page *page,
1139 				   int force, enum migrate_mode mode,
1140 				   enum migrate_reason reason,
1141 				   struct list_head *ret)
1142 {
1143 	int rc = MIGRATEPAGE_SUCCESS;
1144 	struct page *newpage = NULL;
1145 
1146 	if (!thp_migration_supported() && PageTransHuge(page))
1147 		return -ENOSYS;
1148 
1149 	if (page_count(page) == 1) {
1150 		/* Page was freed from under us. So we are done. */
1151 		ClearPageActive(page);
1152 		ClearPageUnevictable(page);
1153 		/* free_pages_prepare() will clear PG_isolated. */
1154 		goto out;
1155 	}
1156 
1157 	newpage = get_new_page(page, private);
1158 	if (!newpage)
1159 		return -ENOMEM;
1160 
1161 	newpage->private = 0;
1162 	rc = __unmap_and_move(page, newpage, force, mode);
1163 	if (rc == MIGRATEPAGE_SUCCESS)
1164 		set_page_owner_migrate_reason(newpage, reason);
1165 
1166 out:
1167 	if (rc != -EAGAIN) {
1168 		/*
1169 		 * A page that has been migrated has all references
1170 		 * removed and will be freed. A page that has not been
1171 		 * migrated will have kept its references and be restored.
1172 		 */
1173 		list_del(&page->lru);
1174 	}
1175 
1176 	/*
1177 	 * If migration is successful, releases reference grabbed during
1178 	 * isolation. Otherwise, restore the page to right list unless
1179 	 * we want to retry.
1180 	 */
1181 	if (rc == MIGRATEPAGE_SUCCESS) {
1182 		/*
1183 		 * Compaction can migrate also non-LRU pages which are
1184 		 * not accounted to NR_ISOLATED_*. They can be recognized
1185 		 * as __PageMovable
1186 		 */
1187 		if (likely(!__PageMovable(page)))
1188 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1189 					page_is_file_lru(page), -thp_nr_pages(page));
1190 
1191 		if (reason != MR_MEMORY_FAILURE)
1192 			/*
1193 			 * We release the page in page_handle_poison.
1194 			 */
1195 			put_page(page);
1196 	} else {
1197 		if (rc != -EAGAIN)
1198 			list_add_tail(&page->lru, ret);
1199 
1200 		if (put_new_page)
1201 			put_new_page(newpage, private);
1202 		else
1203 			put_page(newpage);
1204 	}
1205 
1206 	return rc;
1207 }
1208 
1209 /*
1210  * Counterpart of unmap_and_move_page() for hugepage migration.
1211  *
1212  * This function doesn't wait the completion of hugepage I/O
1213  * because there is no race between I/O and migration for hugepage.
1214  * Note that currently hugepage I/O occurs only in direct I/O
1215  * where no lock is held and PG_writeback is irrelevant,
1216  * and writeback status of all subpages are counted in the reference
1217  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1218  * under direct I/O, the reference of the head page is 512 and a bit more.)
1219  * This means that when we try to migrate hugepage whose subpages are
1220  * doing direct I/O, some references remain after try_to_unmap() and
1221  * hugepage migration fails without data corruption.
1222  *
1223  * There is also no race when direct I/O is issued on the page under migration,
1224  * because then pte is replaced with migration swap entry and direct I/O code
1225  * will wait in the page fault for migration to complete.
1226  */
1227 static int unmap_and_move_huge_page(new_page_t get_new_page,
1228 				free_page_t put_new_page, unsigned long private,
1229 				struct page *hpage, int force,
1230 				enum migrate_mode mode, int reason,
1231 				struct list_head *ret)
1232 {
1233 	struct folio *dst, *src = page_folio(hpage);
1234 	int rc = -EAGAIN;
1235 	int page_was_mapped = 0;
1236 	struct page *new_hpage;
1237 	struct anon_vma *anon_vma = NULL;
1238 	struct address_space *mapping = NULL;
1239 
1240 	/*
1241 	 * Migratability of hugepages depends on architectures and their size.
1242 	 * This check is necessary because some callers of hugepage migration
1243 	 * like soft offline and memory hotremove don't walk through page
1244 	 * tables or check whether the hugepage is pmd-based or not before
1245 	 * kicking migration.
1246 	 */
1247 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1248 		list_move_tail(&hpage->lru, ret);
1249 		return -ENOSYS;
1250 	}
1251 
1252 	if (page_count(hpage) == 1) {
1253 		/* page was freed from under us. So we are done. */
1254 		putback_active_hugepage(hpage);
1255 		return MIGRATEPAGE_SUCCESS;
1256 	}
1257 
1258 	new_hpage = get_new_page(hpage, private);
1259 	if (!new_hpage)
1260 		return -ENOMEM;
1261 	dst = page_folio(new_hpage);
1262 
1263 	if (!trylock_page(hpage)) {
1264 		if (!force)
1265 			goto out;
1266 		switch (mode) {
1267 		case MIGRATE_SYNC:
1268 		case MIGRATE_SYNC_NO_COPY:
1269 			break;
1270 		default:
1271 			goto out;
1272 		}
1273 		lock_page(hpage);
1274 	}
1275 
1276 	/*
1277 	 * Check for pages which are in the process of being freed.  Without
1278 	 * page_mapping() set, hugetlbfs specific move page routine will not
1279 	 * be called and we could leak usage counts for subpools.
1280 	 */
1281 	if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1282 		rc = -EBUSY;
1283 		goto out_unlock;
1284 	}
1285 
1286 	if (PageAnon(hpage))
1287 		anon_vma = page_get_anon_vma(hpage);
1288 
1289 	if (unlikely(!trylock_page(new_hpage)))
1290 		goto put_anon;
1291 
1292 	if (page_mapped(hpage)) {
1293 		enum ttu_flags ttu = 0;
1294 
1295 		if (!PageAnon(hpage)) {
1296 			/*
1297 			 * In shared mappings, try_to_unmap could potentially
1298 			 * call huge_pmd_unshare.  Because of this, take
1299 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1300 			 * to let lower levels know we have taken the lock.
1301 			 */
1302 			mapping = hugetlb_page_mapping_lock_write(hpage);
1303 			if (unlikely(!mapping))
1304 				goto unlock_put_anon;
1305 
1306 			ttu = TTU_RMAP_LOCKED;
1307 		}
1308 
1309 		try_to_migrate(src, ttu);
1310 		page_was_mapped = 1;
1311 
1312 		if (ttu & TTU_RMAP_LOCKED)
1313 			i_mmap_unlock_write(mapping);
1314 	}
1315 
1316 	if (!page_mapped(hpage))
1317 		rc = move_to_new_folio(dst, src, mode);
1318 
1319 	if (page_was_mapped)
1320 		remove_migration_ptes(src,
1321 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1322 
1323 unlock_put_anon:
1324 	unlock_page(new_hpage);
1325 
1326 put_anon:
1327 	if (anon_vma)
1328 		put_anon_vma(anon_vma);
1329 
1330 	if (rc == MIGRATEPAGE_SUCCESS) {
1331 		move_hugetlb_state(hpage, new_hpage, reason);
1332 		put_new_page = NULL;
1333 	}
1334 
1335 out_unlock:
1336 	unlock_page(hpage);
1337 out:
1338 	if (rc == MIGRATEPAGE_SUCCESS)
1339 		putback_active_hugepage(hpage);
1340 	else if (rc != -EAGAIN)
1341 		list_move_tail(&hpage->lru, ret);
1342 
1343 	/*
1344 	 * If migration was not successful and there's a freeing callback, use
1345 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1346 	 * isolation.
1347 	 */
1348 	if (put_new_page)
1349 		put_new_page(new_hpage, private);
1350 	else
1351 		putback_active_hugepage(new_hpage);
1352 
1353 	return rc;
1354 }
1355 
1356 static inline int try_split_thp(struct page *page, struct page **page2,
1357 				struct list_head *from)
1358 {
1359 	int rc = 0;
1360 
1361 	lock_page(page);
1362 	rc = split_huge_page_to_list(page, from);
1363 	unlock_page(page);
1364 	if (!rc)
1365 		list_safe_reset_next(page, *page2, lru);
1366 
1367 	return rc;
1368 }
1369 
1370 /*
1371  * migrate_pages - migrate the pages specified in a list, to the free pages
1372  *		   supplied as the target for the page migration
1373  *
1374  * @from:		The list of pages to be migrated.
1375  * @get_new_page:	The function used to allocate free pages to be used
1376  *			as the target of the page migration.
1377  * @put_new_page:	The function used to free target pages if migration
1378  *			fails, or NULL if no special handling is necessary.
1379  * @private:		Private data to be passed on to get_new_page()
1380  * @mode:		The migration mode that specifies the constraints for
1381  *			page migration, if any.
1382  * @reason:		The reason for page migration.
1383  * @ret_succeeded:	Set to the number of normal pages migrated successfully if
1384  *			the caller passes a non-NULL pointer.
1385  *
1386  * The function returns after 10 attempts or if no pages are movable any more
1387  * because the list has become empty or no retryable pages exist any more.
1388  * It is caller's responsibility to call putback_movable_pages() to return pages
1389  * to the LRU or free list only if ret != 0.
1390  *
1391  * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1392  * an error code. The number of THP splits will be considered as the number of
1393  * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1394  */
1395 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1396 		free_page_t put_new_page, unsigned long private,
1397 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1398 {
1399 	int retry = 1;
1400 	int thp_retry = 1;
1401 	int nr_failed = 0;
1402 	int nr_failed_pages = 0;
1403 	int nr_succeeded = 0;
1404 	int nr_thp_succeeded = 0;
1405 	int nr_thp_failed = 0;
1406 	int nr_thp_split = 0;
1407 	int pass = 0;
1408 	bool is_thp = false;
1409 	struct page *page;
1410 	struct page *page2;
1411 	int rc, nr_subpages;
1412 	LIST_HEAD(ret_pages);
1413 	LIST_HEAD(thp_split_pages);
1414 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1415 	bool no_subpage_counting = false;
1416 
1417 	trace_mm_migrate_pages_start(mode, reason);
1418 
1419 thp_subpage_migration:
1420 	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1421 		retry = 0;
1422 		thp_retry = 0;
1423 
1424 		list_for_each_entry_safe(page, page2, from, lru) {
1425 retry:
1426 			/*
1427 			 * THP statistics is based on the source huge page.
1428 			 * Capture required information that might get lost
1429 			 * during migration.
1430 			 */
1431 			is_thp = PageTransHuge(page) && !PageHuge(page);
1432 			nr_subpages = compound_nr(page);
1433 			cond_resched();
1434 
1435 			if (PageHuge(page))
1436 				rc = unmap_and_move_huge_page(get_new_page,
1437 						put_new_page, private, page,
1438 						pass > 2, mode, reason,
1439 						&ret_pages);
1440 			else
1441 				rc = unmap_and_move(get_new_page, put_new_page,
1442 						private, page, pass > 2, mode,
1443 						reason, &ret_pages);
1444 			/*
1445 			 * The rules are:
1446 			 *	Success: non hugetlb page will be freed, hugetlb
1447 			 *		 page will be put back
1448 			 *	-EAGAIN: stay on the from list
1449 			 *	-ENOMEM: stay on the from list
1450 			 *	Other errno: put on ret_pages list then splice to
1451 			 *		     from list
1452 			 */
1453 			switch(rc) {
1454 			/*
1455 			 * THP migration might be unsupported or the
1456 			 * allocation could've failed so we should
1457 			 * retry on the same page with the THP split
1458 			 * to base pages.
1459 			 *
1460 			 * Head page is retried immediately and tail
1461 			 * pages are added to the tail of the list so
1462 			 * we encounter them after the rest of the list
1463 			 * is processed.
1464 			 */
1465 			case -ENOSYS:
1466 				/* THP migration is unsupported */
1467 				if (is_thp) {
1468 					nr_thp_failed++;
1469 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1470 						nr_thp_split++;
1471 						goto retry;
1472 					}
1473 				/* Hugetlb migration is unsupported */
1474 				} else if (!no_subpage_counting) {
1475 					nr_failed++;
1476 				}
1477 
1478 				nr_failed_pages += nr_subpages;
1479 				break;
1480 			case -ENOMEM:
1481 				/*
1482 				 * When memory is low, don't bother to try to migrate
1483 				 * other pages, just exit.
1484 				 * THP NUMA faulting doesn't split THP to retry.
1485 				 */
1486 				if (is_thp && !nosplit) {
1487 					nr_thp_failed++;
1488 					if (!try_split_thp(page, &page2, &thp_split_pages)) {
1489 						nr_thp_split++;
1490 						goto retry;
1491 					}
1492 				} else if (!no_subpage_counting) {
1493 					nr_failed++;
1494 				}
1495 
1496 				nr_failed_pages += nr_subpages;
1497 				/*
1498 				 * There might be some subpages of fail-to-migrate THPs
1499 				 * left in thp_split_pages list. Move them back to migration
1500 				 * list so that they could be put back to the right list by
1501 				 * the caller otherwise the page refcnt will be leaked.
1502 				 */
1503 				list_splice_init(&thp_split_pages, from);
1504 				nr_thp_failed += thp_retry;
1505 				goto out;
1506 			case -EAGAIN:
1507 				if (is_thp)
1508 					thp_retry++;
1509 				else
1510 					retry++;
1511 				break;
1512 			case MIGRATEPAGE_SUCCESS:
1513 				nr_succeeded += nr_subpages;
1514 				if (is_thp)
1515 					nr_thp_succeeded++;
1516 				break;
1517 			default:
1518 				/*
1519 				 * Permanent failure (-EBUSY, etc.):
1520 				 * unlike -EAGAIN case, the failed page is
1521 				 * removed from migration page list and not
1522 				 * retried in the next outer loop.
1523 				 */
1524 				if (is_thp)
1525 					nr_thp_failed++;
1526 				else if (!no_subpage_counting)
1527 					nr_failed++;
1528 
1529 				nr_failed_pages += nr_subpages;
1530 				break;
1531 			}
1532 		}
1533 	}
1534 	nr_failed += retry;
1535 	nr_thp_failed += thp_retry;
1536 	/*
1537 	 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1538 	 * counting in this round, since all subpages of a THP is counted
1539 	 * as 1 failure in the first round.
1540 	 */
1541 	if (!list_empty(&thp_split_pages)) {
1542 		/*
1543 		 * Move non-migrated pages (after 10 retries) to ret_pages
1544 		 * to avoid migrating them again.
1545 		 */
1546 		list_splice_init(from, &ret_pages);
1547 		list_splice_init(&thp_split_pages, from);
1548 		no_subpage_counting = true;
1549 		retry = 1;
1550 		goto thp_subpage_migration;
1551 	}
1552 
1553 	rc = nr_failed + nr_thp_failed;
1554 out:
1555 	/*
1556 	 * Put the permanent failure page back to migration list, they
1557 	 * will be put back to the right list by the caller.
1558 	 */
1559 	list_splice(&ret_pages, from);
1560 
1561 	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1562 	count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1563 	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1564 	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1565 	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1566 	trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1567 			       nr_thp_failed, nr_thp_split, mode, reason);
1568 
1569 	if (ret_succeeded)
1570 		*ret_succeeded = nr_succeeded;
1571 
1572 	return rc;
1573 }
1574 
1575 struct page *alloc_migration_target(struct page *page, unsigned long private)
1576 {
1577 	struct folio *folio = page_folio(page);
1578 	struct migration_target_control *mtc;
1579 	gfp_t gfp_mask;
1580 	unsigned int order = 0;
1581 	struct folio *new_folio = NULL;
1582 	int nid;
1583 	int zidx;
1584 
1585 	mtc = (struct migration_target_control *)private;
1586 	gfp_mask = mtc->gfp_mask;
1587 	nid = mtc->nid;
1588 	if (nid == NUMA_NO_NODE)
1589 		nid = folio_nid(folio);
1590 
1591 	if (folio_test_hugetlb(folio)) {
1592 		struct hstate *h = page_hstate(&folio->page);
1593 
1594 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1595 		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1596 	}
1597 
1598 	if (folio_test_large(folio)) {
1599 		/*
1600 		 * clear __GFP_RECLAIM to make the migration callback
1601 		 * consistent with regular THP allocations.
1602 		 */
1603 		gfp_mask &= ~__GFP_RECLAIM;
1604 		gfp_mask |= GFP_TRANSHUGE;
1605 		order = folio_order(folio);
1606 	}
1607 	zidx = zone_idx(folio_zone(folio));
1608 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1609 		gfp_mask |= __GFP_HIGHMEM;
1610 
1611 	new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1612 
1613 	return &new_folio->page;
1614 }
1615 
1616 #ifdef CONFIG_NUMA
1617 
1618 static int store_status(int __user *status, int start, int value, int nr)
1619 {
1620 	while (nr-- > 0) {
1621 		if (put_user(value, status + start))
1622 			return -EFAULT;
1623 		start++;
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 static int do_move_pages_to_node(struct mm_struct *mm,
1630 		struct list_head *pagelist, int node)
1631 {
1632 	int err;
1633 	struct migration_target_control mtc = {
1634 		.nid = node,
1635 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1636 	};
1637 
1638 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
1639 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1640 	if (err)
1641 		putback_movable_pages(pagelist);
1642 	return err;
1643 }
1644 
1645 /*
1646  * Resolves the given address to a struct page, isolates it from the LRU and
1647  * puts it to the given pagelist.
1648  * Returns:
1649  *     errno - if the page cannot be found/isolated
1650  *     0 - when it doesn't have to be migrated because it is already on the
1651  *         target node
1652  *     1 - when it has been queued
1653  */
1654 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1655 		int node, struct list_head *pagelist, bool migrate_all)
1656 {
1657 	struct vm_area_struct *vma;
1658 	struct page *page;
1659 	int err;
1660 
1661 	mmap_read_lock(mm);
1662 	err = -EFAULT;
1663 	vma = vma_lookup(mm, addr);
1664 	if (!vma || !vma_migratable(vma))
1665 		goto out;
1666 
1667 	/* FOLL_DUMP to ignore special (like zero) pages */
1668 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1669 
1670 	err = PTR_ERR(page);
1671 	if (IS_ERR(page))
1672 		goto out;
1673 
1674 	err = -ENOENT;
1675 	if (!page || is_zone_device_page(page))
1676 		goto out;
1677 
1678 	err = 0;
1679 	if (page_to_nid(page) == node)
1680 		goto out_putpage;
1681 
1682 	err = -EACCES;
1683 	if (page_mapcount(page) > 1 && !migrate_all)
1684 		goto out_putpage;
1685 
1686 	if (PageHuge(page)) {
1687 		if (PageHead(page)) {
1688 			err = isolate_hugetlb(page, pagelist);
1689 			if (!err)
1690 				err = 1;
1691 		}
1692 	} else {
1693 		struct page *head;
1694 
1695 		head = compound_head(page);
1696 		err = isolate_lru_page(head);
1697 		if (err)
1698 			goto out_putpage;
1699 
1700 		err = 1;
1701 		list_add_tail(&head->lru, pagelist);
1702 		mod_node_page_state(page_pgdat(head),
1703 			NR_ISOLATED_ANON + page_is_file_lru(head),
1704 			thp_nr_pages(head));
1705 	}
1706 out_putpage:
1707 	/*
1708 	 * Either remove the duplicate refcount from
1709 	 * isolate_lru_page() or drop the page ref if it was
1710 	 * not isolated.
1711 	 */
1712 	put_page(page);
1713 out:
1714 	mmap_read_unlock(mm);
1715 	return err;
1716 }
1717 
1718 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1719 		struct list_head *pagelist, int __user *status,
1720 		int start, int i, unsigned long nr_pages)
1721 {
1722 	int err;
1723 
1724 	if (list_empty(pagelist))
1725 		return 0;
1726 
1727 	err = do_move_pages_to_node(mm, pagelist, node);
1728 	if (err) {
1729 		/*
1730 		 * Positive err means the number of failed
1731 		 * pages to migrate.  Since we are going to
1732 		 * abort and return the number of non-migrated
1733 		 * pages, so need to include the rest of the
1734 		 * nr_pages that have not been attempted as
1735 		 * well.
1736 		 */
1737 		if (err > 0)
1738 			err += nr_pages - i - 1;
1739 		return err;
1740 	}
1741 	return store_status(status, start, node, i - start);
1742 }
1743 
1744 /*
1745  * Migrate an array of page address onto an array of nodes and fill
1746  * the corresponding array of status.
1747  */
1748 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1749 			 unsigned long nr_pages,
1750 			 const void __user * __user *pages,
1751 			 const int __user *nodes,
1752 			 int __user *status, int flags)
1753 {
1754 	int current_node = NUMA_NO_NODE;
1755 	LIST_HEAD(pagelist);
1756 	int start, i;
1757 	int err = 0, err1;
1758 
1759 	lru_cache_disable();
1760 
1761 	for (i = start = 0; i < nr_pages; i++) {
1762 		const void __user *p;
1763 		unsigned long addr;
1764 		int node;
1765 
1766 		err = -EFAULT;
1767 		if (get_user(p, pages + i))
1768 			goto out_flush;
1769 		if (get_user(node, nodes + i))
1770 			goto out_flush;
1771 		addr = (unsigned long)untagged_addr(p);
1772 
1773 		err = -ENODEV;
1774 		if (node < 0 || node >= MAX_NUMNODES)
1775 			goto out_flush;
1776 		if (!node_state(node, N_MEMORY))
1777 			goto out_flush;
1778 
1779 		err = -EACCES;
1780 		if (!node_isset(node, task_nodes))
1781 			goto out_flush;
1782 
1783 		if (current_node == NUMA_NO_NODE) {
1784 			current_node = node;
1785 			start = i;
1786 		} else if (node != current_node) {
1787 			err = move_pages_and_store_status(mm, current_node,
1788 					&pagelist, status, start, i, nr_pages);
1789 			if (err)
1790 				goto out;
1791 			start = i;
1792 			current_node = node;
1793 		}
1794 
1795 		/*
1796 		 * Errors in the page lookup or isolation are not fatal and we simply
1797 		 * report them via status
1798 		 */
1799 		err = add_page_for_migration(mm, addr, current_node,
1800 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1801 
1802 		if (err > 0) {
1803 			/* The page is successfully queued for migration */
1804 			continue;
1805 		}
1806 
1807 		/*
1808 		 * The move_pages() man page does not have an -EEXIST choice, so
1809 		 * use -EFAULT instead.
1810 		 */
1811 		if (err == -EEXIST)
1812 			err = -EFAULT;
1813 
1814 		/*
1815 		 * If the page is already on the target node (!err), store the
1816 		 * node, otherwise, store the err.
1817 		 */
1818 		err = store_status(status, i, err ? : current_node, 1);
1819 		if (err)
1820 			goto out_flush;
1821 
1822 		err = move_pages_and_store_status(mm, current_node, &pagelist,
1823 				status, start, i, nr_pages);
1824 		if (err)
1825 			goto out;
1826 		current_node = NUMA_NO_NODE;
1827 	}
1828 out_flush:
1829 	/* Make sure we do not overwrite the existing error */
1830 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1831 				status, start, i, nr_pages);
1832 	if (err >= 0)
1833 		err = err1;
1834 out:
1835 	lru_cache_enable();
1836 	return err;
1837 }
1838 
1839 /*
1840  * Determine the nodes of an array of pages and store it in an array of status.
1841  */
1842 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1843 				const void __user **pages, int *status)
1844 {
1845 	unsigned long i;
1846 
1847 	mmap_read_lock(mm);
1848 
1849 	for (i = 0; i < nr_pages; i++) {
1850 		unsigned long addr = (unsigned long)(*pages);
1851 		struct vm_area_struct *vma;
1852 		struct page *page;
1853 		int err = -EFAULT;
1854 
1855 		vma = vma_lookup(mm, addr);
1856 		if (!vma)
1857 			goto set_status;
1858 
1859 		/* FOLL_DUMP to ignore special (like zero) pages */
1860 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1861 
1862 		err = PTR_ERR(page);
1863 		if (IS_ERR(page))
1864 			goto set_status;
1865 
1866 		if (page && !is_zone_device_page(page)) {
1867 			err = page_to_nid(page);
1868 			put_page(page);
1869 		} else {
1870 			err = -ENOENT;
1871 		}
1872 set_status:
1873 		*status = err;
1874 
1875 		pages++;
1876 		status++;
1877 	}
1878 
1879 	mmap_read_unlock(mm);
1880 }
1881 
1882 static int get_compat_pages_array(const void __user *chunk_pages[],
1883 				  const void __user * __user *pages,
1884 				  unsigned long chunk_nr)
1885 {
1886 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1887 	compat_uptr_t p;
1888 	int i;
1889 
1890 	for (i = 0; i < chunk_nr; i++) {
1891 		if (get_user(p, pages32 + i))
1892 			return -EFAULT;
1893 		chunk_pages[i] = compat_ptr(p);
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 /*
1900  * Determine the nodes of a user array of pages and store it in
1901  * a user array of status.
1902  */
1903 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1904 			 const void __user * __user *pages,
1905 			 int __user *status)
1906 {
1907 #define DO_PAGES_STAT_CHUNK_NR 16UL
1908 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1909 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1910 
1911 	while (nr_pages) {
1912 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1913 
1914 		if (in_compat_syscall()) {
1915 			if (get_compat_pages_array(chunk_pages, pages,
1916 						   chunk_nr))
1917 				break;
1918 		} else {
1919 			if (copy_from_user(chunk_pages, pages,
1920 				      chunk_nr * sizeof(*chunk_pages)))
1921 				break;
1922 		}
1923 
1924 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1925 
1926 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1927 			break;
1928 
1929 		pages += chunk_nr;
1930 		status += chunk_nr;
1931 		nr_pages -= chunk_nr;
1932 	}
1933 	return nr_pages ? -EFAULT : 0;
1934 }
1935 
1936 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1937 {
1938 	struct task_struct *task;
1939 	struct mm_struct *mm;
1940 
1941 	/*
1942 	 * There is no need to check if current process has the right to modify
1943 	 * the specified process when they are same.
1944 	 */
1945 	if (!pid) {
1946 		mmget(current->mm);
1947 		*mem_nodes = cpuset_mems_allowed(current);
1948 		return current->mm;
1949 	}
1950 
1951 	/* Find the mm_struct */
1952 	rcu_read_lock();
1953 	task = find_task_by_vpid(pid);
1954 	if (!task) {
1955 		rcu_read_unlock();
1956 		return ERR_PTR(-ESRCH);
1957 	}
1958 	get_task_struct(task);
1959 
1960 	/*
1961 	 * Check if this process has the right to modify the specified
1962 	 * process. Use the regular "ptrace_may_access()" checks.
1963 	 */
1964 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1965 		rcu_read_unlock();
1966 		mm = ERR_PTR(-EPERM);
1967 		goto out;
1968 	}
1969 	rcu_read_unlock();
1970 
1971 	mm = ERR_PTR(security_task_movememory(task));
1972 	if (IS_ERR(mm))
1973 		goto out;
1974 	*mem_nodes = cpuset_mems_allowed(task);
1975 	mm = get_task_mm(task);
1976 out:
1977 	put_task_struct(task);
1978 	if (!mm)
1979 		mm = ERR_PTR(-EINVAL);
1980 	return mm;
1981 }
1982 
1983 /*
1984  * Move a list of pages in the address space of the currently executing
1985  * process.
1986  */
1987 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1988 			     const void __user * __user *pages,
1989 			     const int __user *nodes,
1990 			     int __user *status, int flags)
1991 {
1992 	struct mm_struct *mm;
1993 	int err;
1994 	nodemask_t task_nodes;
1995 
1996 	/* Check flags */
1997 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1998 		return -EINVAL;
1999 
2000 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2001 		return -EPERM;
2002 
2003 	mm = find_mm_struct(pid, &task_nodes);
2004 	if (IS_ERR(mm))
2005 		return PTR_ERR(mm);
2006 
2007 	if (nodes)
2008 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2009 				    nodes, status, flags);
2010 	else
2011 		err = do_pages_stat(mm, nr_pages, pages, status);
2012 
2013 	mmput(mm);
2014 	return err;
2015 }
2016 
2017 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2018 		const void __user * __user *, pages,
2019 		const int __user *, nodes,
2020 		int __user *, status, int, flags)
2021 {
2022 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2023 }
2024 
2025 #ifdef CONFIG_NUMA_BALANCING
2026 /*
2027  * Returns true if this is a safe migration target node for misplaced NUMA
2028  * pages. Currently it only checks the watermarks which is crude.
2029  */
2030 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2031 				   unsigned long nr_migrate_pages)
2032 {
2033 	int z;
2034 
2035 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2036 		struct zone *zone = pgdat->node_zones + z;
2037 
2038 		if (!managed_zone(zone))
2039 			continue;
2040 
2041 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2042 		if (!zone_watermark_ok(zone, 0,
2043 				       high_wmark_pages(zone) +
2044 				       nr_migrate_pages,
2045 				       ZONE_MOVABLE, 0))
2046 			continue;
2047 		return true;
2048 	}
2049 	return false;
2050 }
2051 
2052 static struct page *alloc_misplaced_dst_page(struct page *page,
2053 					   unsigned long data)
2054 {
2055 	int nid = (int) data;
2056 	int order = compound_order(page);
2057 	gfp_t gfp = __GFP_THISNODE;
2058 	struct folio *new;
2059 
2060 	if (order > 0)
2061 		gfp |= GFP_TRANSHUGE_LIGHT;
2062 	else {
2063 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2064 			__GFP_NOWARN;
2065 		gfp &= ~__GFP_RECLAIM;
2066 	}
2067 	new = __folio_alloc_node(gfp, order, nid);
2068 
2069 	return &new->page;
2070 }
2071 
2072 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2073 {
2074 	int nr_pages = thp_nr_pages(page);
2075 	int order = compound_order(page);
2076 
2077 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2078 
2079 	/* Do not migrate THP mapped by multiple processes */
2080 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2081 		return 0;
2082 
2083 	/* Avoid migrating to a node that is nearly full */
2084 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2085 		int z;
2086 
2087 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2088 			return 0;
2089 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2090 			if (managed_zone(pgdat->node_zones + z))
2091 				break;
2092 		}
2093 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2094 		return 0;
2095 	}
2096 
2097 	if (isolate_lru_page(page))
2098 		return 0;
2099 
2100 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2101 			    nr_pages);
2102 
2103 	/*
2104 	 * Isolating the page has taken another reference, so the
2105 	 * caller's reference can be safely dropped without the page
2106 	 * disappearing underneath us during migration.
2107 	 */
2108 	put_page(page);
2109 	return 1;
2110 }
2111 
2112 /*
2113  * Attempt to migrate a misplaced page to the specified destination
2114  * node. Caller is expected to have an elevated reference count on
2115  * the page that will be dropped by this function before returning.
2116  */
2117 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2118 			   int node)
2119 {
2120 	pg_data_t *pgdat = NODE_DATA(node);
2121 	int isolated;
2122 	int nr_remaining;
2123 	unsigned int nr_succeeded;
2124 	LIST_HEAD(migratepages);
2125 	int nr_pages = thp_nr_pages(page);
2126 
2127 	/*
2128 	 * Don't migrate file pages that are mapped in multiple processes
2129 	 * with execute permissions as they are probably shared libraries.
2130 	 */
2131 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2132 	    (vma->vm_flags & VM_EXEC))
2133 		goto out;
2134 
2135 	/*
2136 	 * Also do not migrate dirty pages as not all filesystems can move
2137 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2138 	 */
2139 	if (page_is_file_lru(page) && PageDirty(page))
2140 		goto out;
2141 
2142 	isolated = numamigrate_isolate_page(pgdat, page);
2143 	if (!isolated)
2144 		goto out;
2145 
2146 	list_add(&page->lru, &migratepages);
2147 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2148 				     NULL, node, MIGRATE_ASYNC,
2149 				     MR_NUMA_MISPLACED, &nr_succeeded);
2150 	if (nr_remaining) {
2151 		if (!list_empty(&migratepages)) {
2152 			list_del(&page->lru);
2153 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2154 					page_is_file_lru(page), -nr_pages);
2155 			putback_lru_page(page);
2156 		}
2157 		isolated = 0;
2158 	}
2159 	if (nr_succeeded) {
2160 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2161 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2162 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2163 					    nr_succeeded);
2164 	}
2165 	BUG_ON(!list_empty(&migratepages));
2166 	return isolated;
2167 
2168 out:
2169 	put_page(page);
2170 	return 0;
2171 }
2172 #endif /* CONFIG_NUMA_BALANCING */
2173 
2174 /*
2175  * node_demotion[] example:
2176  *
2177  * Consider a system with two sockets.  Each socket has
2178  * three classes of memory attached: fast, medium and slow.
2179  * Each memory class is placed in its own NUMA node.  The
2180  * CPUs are placed in the node with the "fast" memory.  The
2181  * 6 NUMA nodes (0-5) might be split among the sockets like
2182  * this:
2183  *
2184  *	Socket A: 0, 1, 2
2185  *	Socket B: 3, 4, 5
2186  *
2187  * When Node 0 fills up, its memory should be migrated to
2188  * Node 1.  When Node 1 fills up, it should be migrated to
2189  * Node 2.  The migration path start on the nodes with the
2190  * processors (since allocations default to this node) and
2191  * fast memory, progress through medium and end with the
2192  * slow memory:
2193  *
2194  *	0 -> 1 -> 2 -> stop
2195  *	3 -> 4 -> 5 -> stop
2196  *
2197  * This is represented in the node_demotion[] like this:
2198  *
2199  *	{  nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2200  *	{  nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2201  *	{  nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2202  *	{  nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2203  *	{  nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2204  *	{  nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2205  *
2206  * Moreover some systems may have multiple slow memory nodes.
2207  * Suppose a system has one socket with 3 memory nodes, node 0
2208  * is fast memory type, and node 1/2 both are slow memory
2209  * type, and the distance between fast memory node and slow
2210  * memory node is same. So the migration path should be:
2211  *
2212  *	0 -> 1/2 -> stop
2213  *
2214  * This is represented in the node_demotion[] like this:
2215  *	{ nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2216  *	{ nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2217  *	{ nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2218  */
2219 
2220 /*
2221  * Writes to this array occur without locking.  Cycles are
2222  * not allowed: Node X demotes to Y which demotes to X...
2223  *
2224  * If multiple reads are performed, a single rcu_read_lock()
2225  * must be held over all reads to ensure that no cycles are
2226  * observed.
2227  */
2228 #define DEFAULT_DEMOTION_TARGET_NODES 15
2229 
2230 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2231 #define DEMOTION_TARGET_NODES	(MAX_NUMNODES - 1)
2232 #else
2233 #define DEMOTION_TARGET_NODES	DEFAULT_DEMOTION_TARGET_NODES
2234 #endif
2235 
2236 struct demotion_nodes {
2237 	unsigned short nr;
2238 	short nodes[DEMOTION_TARGET_NODES];
2239 };
2240 
2241 static struct demotion_nodes *node_demotion __read_mostly;
2242 
2243 /**
2244  * next_demotion_node() - Get the next node in the demotion path
2245  * @node: The starting node to lookup the next node
2246  *
2247  * Return: node id for next memory node in the demotion path hierarchy
2248  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
2249  * @node online or guarantee that it *continues* to be the next demotion
2250  * target.
2251  */
2252 int next_demotion_node(int node)
2253 {
2254 	struct demotion_nodes *nd;
2255 	unsigned short target_nr, index;
2256 	int target;
2257 
2258 	if (!node_demotion)
2259 		return NUMA_NO_NODE;
2260 
2261 	nd = &node_demotion[node];
2262 
2263 	/*
2264 	 * node_demotion[] is updated without excluding this
2265 	 * function from running.  RCU doesn't provide any
2266 	 * compiler barriers, so the READ_ONCE() is required
2267 	 * to avoid compiler reordering or read merging.
2268 	 *
2269 	 * Make sure to use RCU over entire code blocks if
2270 	 * node_demotion[] reads need to be consistent.
2271 	 */
2272 	rcu_read_lock();
2273 	target_nr = READ_ONCE(nd->nr);
2274 
2275 	switch (target_nr) {
2276 	case 0:
2277 		target = NUMA_NO_NODE;
2278 		goto out;
2279 	case 1:
2280 		index = 0;
2281 		break;
2282 	default:
2283 		/*
2284 		 * If there are multiple target nodes, just select one
2285 		 * target node randomly.
2286 		 *
2287 		 * In addition, we can also use round-robin to select
2288 		 * target node, but we should introduce another variable
2289 		 * for node_demotion[] to record last selected target node,
2290 		 * that may cause cache ping-pong due to the changing of
2291 		 * last target node. Or introducing per-cpu data to avoid
2292 		 * caching issue, which seems more complicated. So selecting
2293 		 * target node randomly seems better until now.
2294 		 */
2295 		index = get_random_int() % target_nr;
2296 		break;
2297 	}
2298 
2299 	target = READ_ONCE(nd->nodes[index]);
2300 
2301 out:
2302 	rcu_read_unlock();
2303 	return target;
2304 }
2305 
2306 /* Disable reclaim-based migration. */
2307 static void __disable_all_migrate_targets(void)
2308 {
2309 	int node, i;
2310 
2311 	if (!node_demotion)
2312 		return;
2313 
2314 	for_each_online_node(node) {
2315 		node_demotion[node].nr = 0;
2316 		for (i = 0; i < DEMOTION_TARGET_NODES; i++)
2317 			node_demotion[node].nodes[i] = NUMA_NO_NODE;
2318 	}
2319 }
2320 
2321 static void disable_all_migrate_targets(void)
2322 {
2323 	__disable_all_migrate_targets();
2324 
2325 	/*
2326 	 * Ensure that the "disable" is visible across the system.
2327 	 * Readers will see either a combination of before+disable
2328 	 * state or disable+after.  They will never see before and
2329 	 * after state together.
2330 	 *
2331 	 * The before+after state together might have cycles and
2332 	 * could cause readers to do things like loop until this
2333 	 * function finishes.  This ensures they can only see a
2334 	 * single "bad" read and would, for instance, only loop
2335 	 * once.
2336 	 */
2337 	synchronize_rcu();
2338 }
2339 
2340 /*
2341  * Find an automatic demotion target for 'node'.
2342  * Failing here is OK.  It might just indicate
2343  * being at the end of a chain.
2344  */
2345 static int establish_migrate_target(int node, nodemask_t *used,
2346 				    int best_distance)
2347 {
2348 	int migration_target, index, val;
2349 	struct demotion_nodes *nd;
2350 
2351 	if (!node_demotion)
2352 		return NUMA_NO_NODE;
2353 
2354 	nd = &node_demotion[node];
2355 
2356 	migration_target = find_next_best_node(node, used);
2357 	if (migration_target == NUMA_NO_NODE)
2358 		return NUMA_NO_NODE;
2359 
2360 	/*
2361 	 * If the node has been set a migration target node before,
2362 	 * which means it's the best distance between them. Still
2363 	 * check if this node can be demoted to other target nodes
2364 	 * if they have a same best distance.
2365 	 */
2366 	if (best_distance != -1) {
2367 		val = node_distance(node, migration_target);
2368 		if (val > best_distance)
2369 			goto out_clear;
2370 	}
2371 
2372 	index = nd->nr;
2373 	if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
2374 		      "Exceeds maximum demotion target nodes\n"))
2375 		goto out_clear;
2376 
2377 	nd->nodes[index] = migration_target;
2378 	nd->nr++;
2379 
2380 	return migration_target;
2381 out_clear:
2382 	node_clear(migration_target, *used);
2383 	return NUMA_NO_NODE;
2384 }
2385 
2386 /*
2387  * When memory fills up on a node, memory contents can be
2388  * automatically migrated to another node instead of
2389  * discarded at reclaim.
2390  *
2391  * Establish a "migration path" which will start at nodes
2392  * with CPUs and will follow the priorities used to build the
2393  * page allocator zonelists.
2394  *
2395  * The difference here is that cycles must be avoided.  If
2396  * node0 migrates to node1, then neither node1, nor anything
2397  * node1 migrates to can migrate to node0. Also one node can
2398  * be migrated to multiple nodes if the target nodes all have
2399  * a same best-distance against the source node.
2400  *
2401  * This function can run simultaneously with readers of
2402  * node_demotion[].  However, it can not run simultaneously
2403  * with itself.  Exclusion is provided by memory hotplug events
2404  * being single-threaded.
2405  */
2406 static void __set_migration_target_nodes(void)
2407 {
2408 	nodemask_t next_pass;
2409 	nodemask_t this_pass;
2410 	nodemask_t used_targets = NODE_MASK_NONE;
2411 	int node, best_distance;
2412 
2413 	/*
2414 	 * Avoid any oddities like cycles that could occur
2415 	 * from changes in the topology.  This will leave
2416 	 * a momentary gap when migration is disabled.
2417 	 */
2418 	disable_all_migrate_targets();
2419 
2420 	/*
2421 	 * Allocations go close to CPUs, first.  Assume that
2422 	 * the migration path starts at the nodes with CPUs.
2423 	 */
2424 	next_pass = node_states[N_CPU];
2425 again:
2426 	this_pass = next_pass;
2427 	next_pass = NODE_MASK_NONE;
2428 	/*
2429 	 * To avoid cycles in the migration "graph", ensure
2430 	 * that migration sources are not future targets by
2431 	 * setting them in 'used_targets'.  Do this only
2432 	 * once per pass so that multiple source nodes can
2433 	 * share a target node.
2434 	 *
2435 	 * 'used_targets' will become unavailable in future
2436 	 * passes.  This limits some opportunities for
2437 	 * multiple source nodes to share a destination.
2438 	 */
2439 	nodes_or(used_targets, used_targets, this_pass);
2440 
2441 	for_each_node_mask(node, this_pass) {
2442 		best_distance = -1;
2443 
2444 		/*
2445 		 * Try to set up the migration path for the node, and the target
2446 		 * migration nodes can be multiple, so doing a loop to find all
2447 		 * the target nodes if they all have a best node distance.
2448 		 */
2449 		do {
2450 			int target_node =
2451 				establish_migrate_target(node, &used_targets,
2452 							 best_distance);
2453 
2454 			if (target_node == NUMA_NO_NODE)
2455 				break;
2456 
2457 			if (best_distance == -1)
2458 				best_distance = node_distance(node, target_node);
2459 
2460 			/*
2461 			 * Visit targets from this pass in the next pass.
2462 			 * Eventually, every node will have been part of
2463 			 * a pass, and will become set in 'used_targets'.
2464 			 */
2465 			node_set(target_node, next_pass);
2466 		} while (1);
2467 	}
2468 	/*
2469 	 * 'next_pass' contains nodes which became migration
2470 	 * targets in this pass.  Make additional passes until
2471 	 * no more migrations targets are available.
2472 	 */
2473 	if (!nodes_empty(next_pass))
2474 		goto again;
2475 }
2476 
2477 /*
2478  * For callers that do not hold get_online_mems() already.
2479  */
2480 void set_migration_target_nodes(void)
2481 {
2482 	get_online_mems();
2483 	__set_migration_target_nodes();
2484 	put_online_mems();
2485 }
2486 
2487 /*
2488  * This leaves migrate-on-reclaim transiently disabled between
2489  * the MEM_GOING_OFFLINE and MEM_OFFLINE events.  This runs
2490  * whether reclaim-based migration is enabled or not, which
2491  * ensures that the user can turn reclaim-based migration at
2492  * any time without needing to recalculate migration targets.
2493  *
2494  * These callbacks already hold get_online_mems().  That is why
2495  * __set_migration_target_nodes() can be used as opposed to
2496  * set_migration_target_nodes().
2497  */
2498 #ifdef CONFIG_MEMORY_HOTPLUG
2499 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2500 						 unsigned long action, void *_arg)
2501 {
2502 	struct memory_notify *arg = _arg;
2503 
2504 	/*
2505 	 * Only update the node migration order when a node is
2506 	 * changing status, like online->offline.  This avoids
2507 	 * the overhead of synchronize_rcu() in most cases.
2508 	 */
2509 	if (arg->status_change_nid < 0)
2510 		return notifier_from_errno(0);
2511 
2512 	switch (action) {
2513 	case MEM_GOING_OFFLINE:
2514 		/*
2515 		 * Make sure there are not transient states where
2516 		 * an offline node is a migration target.  This
2517 		 * will leave migration disabled until the offline
2518 		 * completes and the MEM_OFFLINE case below runs.
2519 		 */
2520 		disable_all_migrate_targets();
2521 		break;
2522 	case MEM_OFFLINE:
2523 	case MEM_ONLINE:
2524 		/*
2525 		 * Recalculate the target nodes once the node
2526 		 * reaches its final state (online or offline).
2527 		 */
2528 		__set_migration_target_nodes();
2529 		break;
2530 	case MEM_CANCEL_OFFLINE:
2531 		/*
2532 		 * MEM_GOING_OFFLINE disabled all the migration
2533 		 * targets.  Reenable them.
2534 		 */
2535 		__set_migration_target_nodes();
2536 		break;
2537 	case MEM_GOING_ONLINE:
2538 	case MEM_CANCEL_ONLINE:
2539 		break;
2540 	}
2541 
2542 	return notifier_from_errno(0);
2543 }
2544 #endif
2545 
2546 void __init migrate_on_reclaim_init(void)
2547 {
2548 	node_demotion = kcalloc(nr_node_ids,
2549 				sizeof(struct demotion_nodes),
2550 				GFP_KERNEL);
2551 	WARN_ON(!node_demotion);
2552 #ifdef CONFIG_MEMORY_HOTPLUG
2553 	hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2554 #endif
2555 	/*
2556 	 * At this point, all numa nodes with memory/CPus have their state
2557 	 * properly set, so we can build the demotion order now.
2558 	 * Let us hold the cpu_hotplug lock just, as we could possibily have
2559 	 * CPU hotplug events during boot.
2560 	 */
2561 	cpus_read_lock();
2562 	set_migration_target_nodes();
2563 	cpus_read_unlock();
2564 }
2565 
2566 bool numa_demotion_enabled = false;
2567 
2568 #ifdef CONFIG_SYSFS
2569 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2570 					  struct kobj_attribute *attr, char *buf)
2571 {
2572 	return sysfs_emit(buf, "%s\n",
2573 			  numa_demotion_enabled ? "true" : "false");
2574 }
2575 
2576 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2577 					   struct kobj_attribute *attr,
2578 					   const char *buf, size_t count)
2579 {
2580 	ssize_t ret;
2581 
2582 	ret = kstrtobool(buf, &numa_demotion_enabled);
2583 	if (ret)
2584 		return ret;
2585 
2586 	return count;
2587 }
2588 
2589 static struct kobj_attribute numa_demotion_enabled_attr =
2590 	__ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2591 	       numa_demotion_enabled_store);
2592 
2593 static struct attribute *numa_attrs[] = {
2594 	&numa_demotion_enabled_attr.attr,
2595 	NULL,
2596 };
2597 
2598 static const struct attribute_group numa_attr_group = {
2599 	.attrs = numa_attrs,
2600 };
2601 
2602 static int __init numa_init_sysfs(void)
2603 {
2604 	int err;
2605 	struct kobject *numa_kobj;
2606 
2607 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
2608 	if (!numa_kobj) {
2609 		pr_err("failed to create numa kobject\n");
2610 		return -ENOMEM;
2611 	}
2612 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
2613 	if (err) {
2614 		pr_err("failed to register numa group\n");
2615 		goto delete_obj;
2616 	}
2617 	return 0;
2618 
2619 delete_obj:
2620 	kobject_put(numa_kobj);
2621 	return err;
2622 }
2623 subsys_initcall(numa_init_sysfs);
2624 #endif /* CONFIG_SYSFS */
2625 #endif /* CONFIG_NUMA */
2626