1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/backing-dev.h> 34 #include <linux/compaction.h> 35 #include <linux/syscalls.h> 36 #include <linux/compat.h> 37 #include <linux/hugetlb.h> 38 #include <linux/hugetlb_cgroup.h> 39 #include <linux/gfp.h> 40 #include <linux/pfn_t.h> 41 #include <linux/memremap.h> 42 #include <linux/userfaultfd_k.h> 43 #include <linux/balloon_compaction.h> 44 #include <linux/page_idle.h> 45 #include <linux/page_owner.h> 46 #include <linux/sched/mm.h> 47 #include <linux/ptrace.h> 48 #include <linux/oom.h> 49 #include <linux/memory.h> 50 #include <linux/random.h> 51 #include <linux/sched/sysctl.h> 52 #include <linux/memory-tiers.h> 53 54 #include <asm/tlbflush.h> 55 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 61 { 62 struct folio *folio = folio_get_nontail_page(page); 63 const struct movable_operations *mops; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (!folio) 75 goto out; 76 77 if (unlikely(folio_test_slab(folio))) 78 goto out_putfolio; 79 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 80 smp_rmb(); 81 /* 82 * Check movable flag before taking the page lock because 83 * we use non-atomic bitops on newly allocated page flags so 84 * unconditionally grabbing the lock ruins page's owner side. 85 */ 86 if (unlikely(!__folio_test_movable(folio))) 87 goto out_putfolio; 88 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 89 smp_rmb(); 90 if (unlikely(folio_test_slab(folio))) 91 goto out_putfolio; 92 93 /* 94 * As movable pages are not isolated from LRU lists, concurrent 95 * compaction threads can race against page migration functions 96 * as well as race against the releasing a page. 97 * 98 * In order to avoid having an already isolated movable page 99 * being (wrongly) re-isolated while it is under migration, 100 * or to avoid attempting to isolate pages being released, 101 * lets be sure we have the page lock 102 * before proceeding with the movable page isolation steps. 103 */ 104 if (unlikely(!folio_trylock(folio))) 105 goto out_putfolio; 106 107 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 108 goto out_no_isolated; 109 110 mops = folio_movable_ops(folio); 111 VM_BUG_ON_FOLIO(!mops, folio); 112 113 if (!mops->isolate_page(&folio->page, mode)) 114 goto out_no_isolated; 115 116 /* Driver shouldn't use the isolated flag */ 117 WARN_ON_ONCE(folio_test_isolated(folio)); 118 folio_set_isolated(folio); 119 folio_unlock(folio); 120 121 return true; 122 123 out_no_isolated: 124 folio_unlock(folio); 125 out_putfolio: 126 folio_put(folio); 127 out: 128 return false; 129 } 130 131 static void putback_movable_folio(struct folio *folio) 132 { 133 const struct movable_operations *mops = folio_movable_ops(folio); 134 135 mops->putback_page(&folio->page); 136 folio_clear_isolated(folio); 137 } 138 139 /* 140 * Put previously isolated pages back onto the appropriate lists 141 * from where they were once taken off for compaction/migration. 142 * 143 * This function shall be used whenever the isolated pageset has been 144 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 145 * and isolate_hugetlb(). 146 */ 147 void putback_movable_pages(struct list_head *l) 148 { 149 struct folio *folio; 150 struct folio *folio2; 151 152 list_for_each_entry_safe(folio, folio2, l, lru) { 153 if (unlikely(folio_test_hugetlb(folio))) { 154 folio_putback_active_hugetlb(folio); 155 continue; 156 } 157 list_del(&folio->lru); 158 /* 159 * We isolated non-lru movable folio so here we can use 160 * __folio_test_movable because LRU folio's mapping cannot 161 * have PAGE_MAPPING_MOVABLE. 162 */ 163 if (unlikely(__folio_test_movable(folio))) { 164 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 165 folio_lock(folio); 166 if (folio_test_movable(folio)) 167 putback_movable_folio(folio); 168 else 169 folio_clear_isolated(folio); 170 folio_unlock(folio); 171 folio_put(folio); 172 } else { 173 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 174 folio_is_file_lru(folio), -folio_nr_pages(folio)); 175 folio_putback_lru(folio); 176 } 177 } 178 } 179 180 /* 181 * Restore a potential migration pte to a working pte entry 182 */ 183 static bool remove_migration_pte(struct folio *folio, 184 struct vm_area_struct *vma, unsigned long addr, void *old) 185 { 186 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 187 188 while (page_vma_mapped_walk(&pvmw)) { 189 rmap_t rmap_flags = RMAP_NONE; 190 pte_t old_pte; 191 pte_t pte; 192 swp_entry_t entry; 193 struct page *new; 194 unsigned long idx = 0; 195 196 /* pgoff is invalid for ksm pages, but they are never large */ 197 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 198 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 199 new = folio_page(folio, idx); 200 201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 202 /* PMD-mapped THP migration entry */ 203 if (!pvmw.pte) { 204 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 205 !folio_test_pmd_mappable(folio), folio); 206 remove_migration_pmd(&pvmw, new); 207 continue; 208 } 209 #endif 210 211 folio_get(folio); 212 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 213 old_pte = ptep_get(pvmw.pte); 214 215 entry = pte_to_swp_entry(old_pte); 216 if (!is_migration_entry_young(entry)) 217 pte = pte_mkold(pte); 218 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 219 pte = pte_mkdirty(pte); 220 if (pte_swp_soft_dirty(old_pte)) 221 pte = pte_mksoft_dirty(pte); 222 else 223 pte = pte_clear_soft_dirty(pte); 224 225 if (is_writable_migration_entry(entry)) 226 pte = pte_mkwrite(pte, vma); 227 else if (pte_swp_uffd_wp(old_pte)) 228 pte = pte_mkuffd_wp(pte); 229 230 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 231 rmap_flags |= RMAP_EXCLUSIVE; 232 233 if (unlikely(is_device_private_page(new))) { 234 if (pte_write(pte)) 235 entry = make_writable_device_private_entry( 236 page_to_pfn(new)); 237 else 238 entry = make_readable_device_private_entry( 239 page_to_pfn(new)); 240 pte = swp_entry_to_pte(entry); 241 if (pte_swp_soft_dirty(old_pte)) 242 pte = pte_swp_mksoft_dirty(pte); 243 if (pte_swp_uffd_wp(old_pte)) 244 pte = pte_swp_mkuffd_wp(pte); 245 } 246 247 #ifdef CONFIG_HUGETLB_PAGE 248 if (folio_test_hugetlb(folio)) { 249 struct hstate *h = hstate_vma(vma); 250 unsigned int shift = huge_page_shift(h); 251 unsigned long psize = huge_page_size(h); 252 253 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 254 if (folio_test_anon(folio)) 255 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 256 rmap_flags); 257 else 258 hugetlb_add_file_rmap(folio); 259 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 260 psize); 261 } else 262 #endif 263 { 264 if (folio_test_anon(folio)) 265 folio_add_anon_rmap_pte(folio, new, vma, 266 pvmw.address, rmap_flags); 267 else 268 folio_add_file_rmap_pte(folio, new, vma); 269 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 270 } 271 if (vma->vm_flags & VM_LOCKED) 272 mlock_drain_local(); 273 274 trace_remove_migration_pte(pvmw.address, pte_val(pte), 275 compound_order(new)); 276 277 /* No need to invalidate - it was non-present before */ 278 update_mmu_cache(vma, pvmw.address, pvmw.pte); 279 } 280 281 return true; 282 } 283 284 /* 285 * Get rid of all migration entries and replace them by 286 * references to the indicated page. 287 */ 288 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked) 289 { 290 struct rmap_walk_control rwc = { 291 .rmap_one = remove_migration_pte, 292 .arg = src, 293 }; 294 295 if (locked) 296 rmap_walk_locked(dst, &rwc); 297 else 298 rmap_walk(dst, &rwc); 299 } 300 301 /* 302 * Something used the pte of a page under migration. We need to 303 * get to the page and wait until migration is finished. 304 * When we return from this function the fault will be retried. 305 */ 306 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 307 unsigned long address) 308 { 309 spinlock_t *ptl; 310 pte_t *ptep; 311 pte_t pte; 312 swp_entry_t entry; 313 314 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 315 if (!ptep) 316 return; 317 318 pte = ptep_get(ptep); 319 pte_unmap(ptep); 320 321 if (!is_swap_pte(pte)) 322 goto out; 323 324 entry = pte_to_swp_entry(pte); 325 if (!is_migration_entry(entry)) 326 goto out; 327 328 migration_entry_wait_on_locked(entry, ptl); 329 return; 330 out: 331 spin_unlock(ptl); 332 } 333 334 #ifdef CONFIG_HUGETLB_PAGE 335 /* 336 * The vma read lock must be held upon entry. Holding that lock prevents either 337 * the pte or the ptl from being freed. 338 * 339 * This function will release the vma lock before returning. 340 */ 341 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep) 342 { 343 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 344 pte_t pte; 345 346 hugetlb_vma_assert_locked(vma); 347 spin_lock(ptl); 348 pte = huge_ptep_get(ptep); 349 350 if (unlikely(!is_hugetlb_entry_migration(pte))) { 351 spin_unlock(ptl); 352 hugetlb_vma_unlock_read(vma); 353 } else { 354 /* 355 * If migration entry existed, safe to release vma lock 356 * here because the pgtable page won't be freed without the 357 * pgtable lock released. See comment right above pgtable 358 * lock release in migration_entry_wait_on_locked(). 359 */ 360 hugetlb_vma_unlock_read(vma); 361 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 362 } 363 } 364 #endif 365 366 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 367 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 368 { 369 spinlock_t *ptl; 370 371 ptl = pmd_lock(mm, pmd); 372 if (!is_pmd_migration_entry(*pmd)) 373 goto unlock; 374 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 375 return; 376 unlock: 377 spin_unlock(ptl); 378 } 379 #endif 380 381 static int folio_expected_refs(struct address_space *mapping, 382 struct folio *folio) 383 { 384 int refs = 1; 385 if (!mapping) 386 return refs; 387 388 refs += folio_nr_pages(folio); 389 if (folio_test_private(folio)) 390 refs++; 391 392 return refs; 393 } 394 395 /* 396 * Replace the page in the mapping. 397 * 398 * The number of remaining references must be: 399 * 1 for anonymous pages without a mapping 400 * 2 for pages with a mapping 401 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 402 */ 403 int folio_migrate_mapping(struct address_space *mapping, 404 struct folio *newfolio, struct folio *folio, int extra_count) 405 { 406 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 407 struct zone *oldzone, *newzone; 408 int dirty; 409 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 410 long nr = folio_nr_pages(folio); 411 long entries, i; 412 413 if (!mapping) { 414 /* Anonymous page without mapping */ 415 if (folio_ref_count(folio) != expected_count) 416 return -EAGAIN; 417 418 /* No turning back from here */ 419 newfolio->index = folio->index; 420 newfolio->mapping = folio->mapping; 421 if (folio_test_swapbacked(folio)) 422 __folio_set_swapbacked(newfolio); 423 424 return MIGRATEPAGE_SUCCESS; 425 } 426 427 oldzone = folio_zone(folio); 428 newzone = folio_zone(newfolio); 429 430 xas_lock_irq(&xas); 431 if (!folio_ref_freeze(folio, expected_count)) { 432 xas_unlock_irq(&xas); 433 return -EAGAIN; 434 } 435 436 /* 437 * Now we know that no one else is looking at the folio: 438 * no turning back from here. 439 */ 440 newfolio->index = folio->index; 441 newfolio->mapping = folio->mapping; 442 folio_ref_add(newfolio, nr); /* add cache reference */ 443 if (folio_test_swapbacked(folio)) { 444 __folio_set_swapbacked(newfolio); 445 if (folio_test_swapcache(folio)) { 446 folio_set_swapcache(newfolio); 447 newfolio->private = folio_get_private(folio); 448 } 449 entries = nr; 450 } else { 451 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 452 entries = 1; 453 } 454 455 /* Move dirty while page refs frozen and newpage not yet exposed */ 456 dirty = folio_test_dirty(folio); 457 if (dirty) { 458 folio_clear_dirty(folio); 459 folio_set_dirty(newfolio); 460 } 461 462 /* Swap cache still stores N entries instead of a high-order entry */ 463 for (i = 0; i < entries; i++) { 464 xas_store(&xas, newfolio); 465 xas_next(&xas); 466 } 467 468 /* 469 * Drop cache reference from old page by unfreezing 470 * to one less reference. 471 * We know this isn't the last reference. 472 */ 473 folio_ref_unfreeze(folio, expected_count - nr); 474 475 xas_unlock(&xas); 476 /* Leave irq disabled to prevent preemption while updating stats */ 477 478 /* 479 * If moved to a different zone then also account 480 * the page for that zone. Other VM counters will be 481 * taken care of when we establish references to the 482 * new page and drop references to the old page. 483 * 484 * Note that anonymous pages are accounted for 485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 486 * are mapped to swap space. 487 */ 488 if (newzone != oldzone) { 489 struct lruvec *old_lruvec, *new_lruvec; 490 struct mem_cgroup *memcg; 491 492 memcg = folio_memcg(folio); 493 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 494 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 495 496 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 497 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 498 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 499 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 500 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 501 502 if (folio_test_pmd_mappable(folio)) { 503 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 504 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 505 } 506 } 507 #ifdef CONFIG_SWAP 508 if (folio_test_swapcache(folio)) { 509 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 510 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 511 } 512 #endif 513 if (dirty && mapping_can_writeback(mapping)) { 514 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 515 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 516 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 517 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 518 } 519 } 520 local_irq_enable(); 521 522 return MIGRATEPAGE_SUCCESS; 523 } 524 EXPORT_SYMBOL(folio_migrate_mapping); 525 526 /* 527 * The expected number of remaining references is the same as that 528 * of folio_migrate_mapping(). 529 */ 530 int migrate_huge_page_move_mapping(struct address_space *mapping, 531 struct folio *dst, struct folio *src) 532 { 533 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 534 int expected_count; 535 536 xas_lock_irq(&xas); 537 expected_count = folio_expected_refs(mapping, src); 538 if (!folio_ref_freeze(src, expected_count)) { 539 xas_unlock_irq(&xas); 540 return -EAGAIN; 541 } 542 543 dst->index = src->index; 544 dst->mapping = src->mapping; 545 546 folio_ref_add(dst, folio_nr_pages(dst)); 547 548 xas_store(&xas, dst); 549 550 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 551 552 xas_unlock_irq(&xas); 553 554 return MIGRATEPAGE_SUCCESS; 555 } 556 557 /* 558 * Copy the flags and some other ancillary information 559 */ 560 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 561 { 562 int cpupid; 563 564 if (folio_test_error(folio)) 565 folio_set_error(newfolio); 566 if (folio_test_referenced(folio)) 567 folio_set_referenced(newfolio); 568 if (folio_test_uptodate(folio)) 569 folio_mark_uptodate(newfolio); 570 if (folio_test_clear_active(folio)) { 571 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 572 folio_set_active(newfolio); 573 } else if (folio_test_clear_unevictable(folio)) 574 folio_set_unevictable(newfolio); 575 if (folio_test_workingset(folio)) 576 folio_set_workingset(newfolio); 577 if (folio_test_checked(folio)) 578 folio_set_checked(newfolio); 579 /* 580 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 581 * migration entries. We can still have PG_anon_exclusive set on an 582 * effectively unmapped and unreferenced first sub-pages of an 583 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 584 */ 585 if (folio_test_mappedtodisk(folio)) 586 folio_set_mappedtodisk(newfolio); 587 588 /* Move dirty on pages not done by folio_migrate_mapping() */ 589 if (folio_test_dirty(folio)) 590 folio_set_dirty(newfolio); 591 592 if (folio_test_young(folio)) 593 folio_set_young(newfolio); 594 if (folio_test_idle(folio)) 595 folio_set_idle(newfolio); 596 597 /* 598 * Copy NUMA information to the new page, to prevent over-eager 599 * future migrations of this same page. 600 */ 601 cpupid = folio_xchg_last_cpupid(folio, -1); 602 /* 603 * For memory tiering mode, when migrate between slow and fast 604 * memory node, reset cpupid, because that is used to record 605 * page access time in slow memory node. 606 */ 607 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 608 bool f_toptier = node_is_toptier(folio_nid(folio)); 609 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 610 611 if (f_toptier != t_toptier) 612 cpupid = -1; 613 } 614 folio_xchg_last_cpupid(newfolio, cpupid); 615 616 folio_migrate_ksm(newfolio, folio); 617 /* 618 * Please do not reorder this without considering how mm/ksm.c's 619 * ksm_get_folio() depends upon ksm_migrate_page() and PageSwapCache(). 620 */ 621 if (folio_test_swapcache(folio)) 622 folio_clear_swapcache(folio); 623 folio_clear_private(folio); 624 625 /* page->private contains hugetlb specific flags */ 626 if (!folio_test_hugetlb(folio)) 627 folio->private = NULL; 628 629 /* 630 * If any waiters have accumulated on the new page then 631 * wake them up. 632 */ 633 if (folio_test_writeback(newfolio)) 634 folio_end_writeback(newfolio); 635 636 /* 637 * PG_readahead shares the same bit with PG_reclaim. The above 638 * end_page_writeback() may clear PG_readahead mistakenly, so set the 639 * bit after that. 640 */ 641 if (folio_test_readahead(folio)) 642 folio_set_readahead(newfolio); 643 644 folio_copy_owner(newfolio, folio); 645 646 mem_cgroup_migrate(folio, newfolio); 647 } 648 EXPORT_SYMBOL(folio_migrate_flags); 649 650 void folio_migrate_copy(struct folio *newfolio, struct folio *folio) 651 { 652 folio_copy(newfolio, folio); 653 folio_migrate_flags(newfolio, folio); 654 } 655 EXPORT_SYMBOL(folio_migrate_copy); 656 657 /************************************************************ 658 * Migration functions 659 ***********************************************************/ 660 661 int migrate_folio_extra(struct address_space *mapping, struct folio *dst, 662 struct folio *src, enum migrate_mode mode, int extra_count) 663 { 664 int rc; 665 666 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 667 668 rc = folio_migrate_mapping(mapping, dst, src, extra_count); 669 670 if (rc != MIGRATEPAGE_SUCCESS) 671 return rc; 672 673 if (mode != MIGRATE_SYNC_NO_COPY) 674 folio_migrate_copy(dst, src); 675 else 676 folio_migrate_flags(dst, src); 677 return MIGRATEPAGE_SUCCESS; 678 } 679 680 /** 681 * migrate_folio() - Simple folio migration. 682 * @mapping: The address_space containing the folio. 683 * @dst: The folio to migrate the data to. 684 * @src: The folio containing the current data. 685 * @mode: How to migrate the page. 686 * 687 * Common logic to directly migrate a single LRU folio suitable for 688 * folios that do not use PagePrivate/PagePrivate2. 689 * 690 * Folios are locked upon entry and exit. 691 */ 692 int migrate_folio(struct address_space *mapping, struct folio *dst, 693 struct folio *src, enum migrate_mode mode) 694 { 695 return migrate_folio_extra(mapping, dst, src, mode, 0); 696 } 697 EXPORT_SYMBOL(migrate_folio); 698 699 #ifdef CONFIG_BUFFER_HEAD 700 /* Returns true if all buffers are successfully locked */ 701 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 702 enum migrate_mode mode) 703 { 704 struct buffer_head *bh = head; 705 struct buffer_head *failed_bh; 706 707 do { 708 if (!trylock_buffer(bh)) { 709 if (mode == MIGRATE_ASYNC) 710 goto unlock; 711 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 712 goto unlock; 713 lock_buffer(bh); 714 } 715 716 bh = bh->b_this_page; 717 } while (bh != head); 718 719 return true; 720 721 unlock: 722 /* We failed to lock the buffer and cannot stall. */ 723 failed_bh = bh; 724 bh = head; 725 while (bh != failed_bh) { 726 unlock_buffer(bh); 727 bh = bh->b_this_page; 728 } 729 730 return false; 731 } 732 733 static int __buffer_migrate_folio(struct address_space *mapping, 734 struct folio *dst, struct folio *src, enum migrate_mode mode, 735 bool check_refs) 736 { 737 struct buffer_head *bh, *head; 738 int rc; 739 int expected_count; 740 741 head = folio_buffers(src); 742 if (!head) 743 return migrate_folio(mapping, dst, src, mode); 744 745 /* Check whether page does not have extra refs before we do more work */ 746 expected_count = folio_expected_refs(mapping, src); 747 if (folio_ref_count(src) != expected_count) 748 return -EAGAIN; 749 750 if (!buffer_migrate_lock_buffers(head, mode)) 751 return -EAGAIN; 752 753 if (check_refs) { 754 bool busy; 755 bool invalidated = false; 756 757 recheck_buffers: 758 busy = false; 759 spin_lock(&mapping->i_private_lock); 760 bh = head; 761 do { 762 if (atomic_read(&bh->b_count)) { 763 busy = true; 764 break; 765 } 766 bh = bh->b_this_page; 767 } while (bh != head); 768 if (busy) { 769 if (invalidated) { 770 rc = -EAGAIN; 771 goto unlock_buffers; 772 } 773 spin_unlock(&mapping->i_private_lock); 774 invalidate_bh_lrus(); 775 invalidated = true; 776 goto recheck_buffers; 777 } 778 } 779 780 rc = folio_migrate_mapping(mapping, dst, src, 0); 781 if (rc != MIGRATEPAGE_SUCCESS) 782 goto unlock_buffers; 783 784 folio_attach_private(dst, folio_detach_private(src)); 785 786 bh = head; 787 do { 788 folio_set_bh(bh, dst, bh_offset(bh)); 789 bh = bh->b_this_page; 790 } while (bh != head); 791 792 if (mode != MIGRATE_SYNC_NO_COPY) 793 folio_migrate_copy(dst, src); 794 else 795 folio_migrate_flags(dst, src); 796 797 rc = MIGRATEPAGE_SUCCESS; 798 unlock_buffers: 799 if (check_refs) 800 spin_unlock(&mapping->i_private_lock); 801 bh = head; 802 do { 803 unlock_buffer(bh); 804 bh = bh->b_this_page; 805 } while (bh != head); 806 807 return rc; 808 } 809 810 /** 811 * buffer_migrate_folio() - Migration function for folios with buffers. 812 * @mapping: The address space containing @src. 813 * @dst: The folio to migrate to. 814 * @src: The folio to migrate from. 815 * @mode: How to migrate the folio. 816 * 817 * This function can only be used if the underlying filesystem guarantees 818 * that no other references to @src exist. For example attached buffer 819 * heads are accessed only under the folio lock. If your filesystem cannot 820 * provide this guarantee, buffer_migrate_folio_norefs() may be more 821 * appropriate. 822 * 823 * Return: 0 on success or a negative errno on failure. 824 */ 825 int buffer_migrate_folio(struct address_space *mapping, 826 struct folio *dst, struct folio *src, enum migrate_mode mode) 827 { 828 return __buffer_migrate_folio(mapping, dst, src, mode, false); 829 } 830 EXPORT_SYMBOL(buffer_migrate_folio); 831 832 /** 833 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 834 * @mapping: The address space containing @src. 835 * @dst: The folio to migrate to. 836 * @src: The folio to migrate from. 837 * @mode: How to migrate the folio. 838 * 839 * Like buffer_migrate_folio() except that this variant is more careful 840 * and checks that there are also no buffer head references. This function 841 * is the right one for mappings where buffer heads are directly looked 842 * up and referenced (such as block device mappings). 843 * 844 * Return: 0 on success or a negative errno on failure. 845 */ 846 int buffer_migrate_folio_norefs(struct address_space *mapping, 847 struct folio *dst, struct folio *src, enum migrate_mode mode) 848 { 849 return __buffer_migrate_folio(mapping, dst, src, mode, true); 850 } 851 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 852 #endif /* CONFIG_BUFFER_HEAD */ 853 854 int filemap_migrate_folio(struct address_space *mapping, 855 struct folio *dst, struct folio *src, enum migrate_mode mode) 856 { 857 int ret; 858 859 ret = folio_migrate_mapping(mapping, dst, src, 0); 860 if (ret != MIGRATEPAGE_SUCCESS) 861 return ret; 862 863 if (folio_get_private(src)) 864 folio_attach_private(dst, folio_detach_private(src)); 865 866 if (mode != MIGRATE_SYNC_NO_COPY) 867 folio_migrate_copy(dst, src); 868 else 869 folio_migrate_flags(dst, src); 870 return MIGRATEPAGE_SUCCESS; 871 } 872 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 873 874 /* 875 * Writeback a folio to clean the dirty state 876 */ 877 static int writeout(struct address_space *mapping, struct folio *folio) 878 { 879 struct writeback_control wbc = { 880 .sync_mode = WB_SYNC_NONE, 881 .nr_to_write = 1, 882 .range_start = 0, 883 .range_end = LLONG_MAX, 884 .for_reclaim = 1 885 }; 886 int rc; 887 888 if (!mapping->a_ops->writepage) 889 /* No write method for the address space */ 890 return -EINVAL; 891 892 if (!folio_clear_dirty_for_io(folio)) 893 /* Someone else already triggered a write */ 894 return -EAGAIN; 895 896 /* 897 * A dirty folio may imply that the underlying filesystem has 898 * the folio on some queue. So the folio must be clean for 899 * migration. Writeout may mean we lose the lock and the 900 * folio state is no longer what we checked for earlier. 901 * At this point we know that the migration attempt cannot 902 * be successful. 903 */ 904 remove_migration_ptes(folio, folio, false); 905 906 rc = mapping->a_ops->writepage(&folio->page, &wbc); 907 908 if (rc != AOP_WRITEPAGE_ACTIVATE) 909 /* unlocked. Relock */ 910 folio_lock(folio); 911 912 return (rc < 0) ? -EIO : -EAGAIN; 913 } 914 915 /* 916 * Default handling if a filesystem does not provide a migration function. 917 */ 918 static int fallback_migrate_folio(struct address_space *mapping, 919 struct folio *dst, struct folio *src, enum migrate_mode mode) 920 { 921 if (folio_test_dirty(src)) { 922 /* Only writeback folios in full synchronous migration */ 923 switch (mode) { 924 case MIGRATE_SYNC: 925 case MIGRATE_SYNC_NO_COPY: 926 break; 927 default: 928 return -EBUSY; 929 } 930 return writeout(mapping, src); 931 } 932 933 /* 934 * Buffers may be managed in a filesystem specific way. 935 * We must have no buffers or drop them. 936 */ 937 if (!filemap_release_folio(src, GFP_KERNEL)) 938 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 939 940 return migrate_folio(mapping, dst, src, mode); 941 } 942 943 /* 944 * Move a page to a newly allocated page 945 * The page is locked and all ptes have been successfully removed. 946 * 947 * The new page will have replaced the old page if this function 948 * is successful. 949 * 950 * Return value: 951 * < 0 - error code 952 * MIGRATEPAGE_SUCCESS - success 953 */ 954 static int move_to_new_folio(struct folio *dst, struct folio *src, 955 enum migrate_mode mode) 956 { 957 int rc = -EAGAIN; 958 bool is_lru = !__folio_test_movable(src); 959 960 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 961 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 962 963 if (likely(is_lru)) { 964 struct address_space *mapping = folio_mapping(src); 965 966 if (!mapping) 967 rc = migrate_folio(mapping, dst, src, mode); 968 else if (mapping_unmovable(mapping)) 969 rc = -EOPNOTSUPP; 970 else if (mapping->a_ops->migrate_folio) 971 /* 972 * Most folios have a mapping and most filesystems 973 * provide a migrate_folio callback. Anonymous folios 974 * are part of swap space which also has its own 975 * migrate_folio callback. This is the most common path 976 * for page migration. 977 */ 978 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 979 mode); 980 else 981 rc = fallback_migrate_folio(mapping, dst, src, mode); 982 } else { 983 const struct movable_operations *mops; 984 985 /* 986 * In case of non-lru page, it could be released after 987 * isolation step. In that case, we shouldn't try migration. 988 */ 989 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 990 if (!folio_test_movable(src)) { 991 rc = MIGRATEPAGE_SUCCESS; 992 folio_clear_isolated(src); 993 goto out; 994 } 995 996 mops = folio_movable_ops(src); 997 rc = mops->migrate_page(&dst->page, &src->page, mode); 998 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 999 !folio_test_isolated(src)); 1000 } 1001 1002 /* 1003 * When successful, old pagecache src->mapping must be cleared before 1004 * src is freed; but stats require that PageAnon be left as PageAnon. 1005 */ 1006 if (rc == MIGRATEPAGE_SUCCESS) { 1007 if (__folio_test_movable(src)) { 1008 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1009 1010 /* 1011 * We clear PG_movable under page_lock so any compactor 1012 * cannot try to migrate this page. 1013 */ 1014 folio_clear_isolated(src); 1015 } 1016 1017 /* 1018 * Anonymous and movable src->mapping will be cleared by 1019 * free_pages_prepare so don't reset it here for keeping 1020 * the type to work PageAnon, for example. 1021 */ 1022 if (!folio_mapping_flags(src)) 1023 src->mapping = NULL; 1024 1025 if (likely(!folio_is_zone_device(dst))) 1026 flush_dcache_folio(dst); 1027 } 1028 out: 1029 return rc; 1030 } 1031 1032 /* 1033 * To record some information during migration, we use unused private 1034 * field of struct folio of the newly allocated destination folio. 1035 * This is safe because nobody is using it except us. 1036 */ 1037 enum { 1038 PAGE_WAS_MAPPED = BIT(0), 1039 PAGE_WAS_MLOCKED = BIT(1), 1040 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1041 }; 1042 1043 static void __migrate_folio_record(struct folio *dst, 1044 int old_page_state, 1045 struct anon_vma *anon_vma) 1046 { 1047 dst->private = (void *)anon_vma + old_page_state; 1048 } 1049 1050 static void __migrate_folio_extract(struct folio *dst, 1051 int *old_page_state, 1052 struct anon_vma **anon_vmap) 1053 { 1054 unsigned long private = (unsigned long)dst->private; 1055 1056 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1057 *old_page_state = private & PAGE_OLD_STATES; 1058 dst->private = NULL; 1059 } 1060 1061 /* Restore the source folio to the original state upon failure */ 1062 static void migrate_folio_undo_src(struct folio *src, 1063 int page_was_mapped, 1064 struct anon_vma *anon_vma, 1065 bool locked, 1066 struct list_head *ret) 1067 { 1068 if (page_was_mapped) 1069 remove_migration_ptes(src, src, false); 1070 /* Drop an anon_vma reference if we took one */ 1071 if (anon_vma) 1072 put_anon_vma(anon_vma); 1073 if (locked) 1074 folio_unlock(src); 1075 if (ret) 1076 list_move_tail(&src->lru, ret); 1077 } 1078 1079 /* Restore the destination folio to the original state upon failure */ 1080 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1081 free_folio_t put_new_folio, unsigned long private) 1082 { 1083 if (locked) 1084 folio_unlock(dst); 1085 if (put_new_folio) 1086 put_new_folio(dst, private); 1087 else 1088 folio_put(dst); 1089 } 1090 1091 /* Cleanup src folio upon migration success */ 1092 static void migrate_folio_done(struct folio *src, 1093 enum migrate_reason reason) 1094 { 1095 /* 1096 * Compaction can migrate also non-LRU pages which are 1097 * not accounted to NR_ISOLATED_*. They can be recognized 1098 * as __folio_test_movable 1099 */ 1100 if (likely(!__folio_test_movable(src))) 1101 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1102 folio_is_file_lru(src), -folio_nr_pages(src)); 1103 1104 if (reason != MR_MEMORY_FAILURE) 1105 /* We release the page in page_handle_poison. */ 1106 folio_put(src); 1107 } 1108 1109 /* Obtain the lock on page, remove all ptes. */ 1110 static int migrate_folio_unmap(new_folio_t get_new_folio, 1111 free_folio_t put_new_folio, unsigned long private, 1112 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1113 enum migrate_reason reason, struct list_head *ret) 1114 { 1115 struct folio *dst; 1116 int rc = -EAGAIN; 1117 int old_page_state = 0; 1118 struct anon_vma *anon_vma = NULL; 1119 bool is_lru = !__folio_test_movable(src); 1120 bool locked = false; 1121 bool dst_locked = false; 1122 1123 if (folio_ref_count(src) == 1) { 1124 /* Folio was freed from under us. So we are done. */ 1125 folio_clear_active(src); 1126 folio_clear_unevictable(src); 1127 /* free_pages_prepare() will clear PG_isolated. */ 1128 list_del(&src->lru); 1129 migrate_folio_done(src, reason); 1130 return MIGRATEPAGE_SUCCESS; 1131 } 1132 1133 dst = get_new_folio(src, private); 1134 if (!dst) 1135 return -ENOMEM; 1136 *dstp = dst; 1137 1138 dst->private = NULL; 1139 1140 if (!folio_trylock(src)) { 1141 if (mode == MIGRATE_ASYNC) 1142 goto out; 1143 1144 /* 1145 * It's not safe for direct compaction to call lock_page. 1146 * For example, during page readahead pages are added locked 1147 * to the LRU. Later, when the IO completes the pages are 1148 * marked uptodate and unlocked. However, the queueing 1149 * could be merging multiple pages for one bio (e.g. 1150 * mpage_readahead). If an allocation happens for the 1151 * second or third page, the process can end up locking 1152 * the same page twice and deadlocking. Rather than 1153 * trying to be clever about what pages can be locked, 1154 * avoid the use of lock_page for direct compaction 1155 * altogether. 1156 */ 1157 if (current->flags & PF_MEMALLOC) 1158 goto out; 1159 1160 /* 1161 * In "light" mode, we can wait for transient locks (eg 1162 * inserting a page into the page table), but it's not 1163 * worth waiting for I/O. 1164 */ 1165 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1166 goto out; 1167 1168 folio_lock(src); 1169 } 1170 locked = true; 1171 if (folio_test_mlocked(src)) 1172 old_page_state |= PAGE_WAS_MLOCKED; 1173 1174 if (folio_test_writeback(src)) { 1175 /* 1176 * Only in the case of a full synchronous migration is it 1177 * necessary to wait for PageWriteback. In the async case, 1178 * the retry loop is too short and in the sync-light case, 1179 * the overhead of stalling is too much 1180 */ 1181 switch (mode) { 1182 case MIGRATE_SYNC: 1183 case MIGRATE_SYNC_NO_COPY: 1184 break; 1185 default: 1186 rc = -EBUSY; 1187 goto out; 1188 } 1189 folio_wait_writeback(src); 1190 } 1191 1192 /* 1193 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1194 * we cannot notice that anon_vma is freed while we migrate a page. 1195 * This get_anon_vma() delays freeing anon_vma pointer until the end 1196 * of migration. File cache pages are no problem because of page_lock() 1197 * File Caches may use write_page() or lock_page() in migration, then, 1198 * just care Anon page here. 1199 * 1200 * Only folio_get_anon_vma() understands the subtleties of 1201 * getting a hold on an anon_vma from outside one of its mms. 1202 * But if we cannot get anon_vma, then we won't need it anyway, 1203 * because that implies that the anon page is no longer mapped 1204 * (and cannot be remapped so long as we hold the page lock). 1205 */ 1206 if (folio_test_anon(src) && !folio_test_ksm(src)) 1207 anon_vma = folio_get_anon_vma(src); 1208 1209 /* 1210 * Block others from accessing the new page when we get around to 1211 * establishing additional references. We are usually the only one 1212 * holding a reference to dst at this point. We used to have a BUG 1213 * here if folio_trylock(dst) fails, but would like to allow for 1214 * cases where there might be a race with the previous use of dst. 1215 * This is much like races on refcount of oldpage: just don't BUG(). 1216 */ 1217 if (unlikely(!folio_trylock(dst))) 1218 goto out; 1219 dst_locked = true; 1220 1221 if (unlikely(!is_lru)) { 1222 __migrate_folio_record(dst, old_page_state, anon_vma); 1223 return MIGRATEPAGE_UNMAP; 1224 } 1225 1226 /* 1227 * Corner case handling: 1228 * 1. When a new swap-cache page is read into, it is added to the LRU 1229 * and treated as swapcache but it has no rmap yet. 1230 * Calling try_to_unmap() against a src->mapping==NULL page will 1231 * trigger a BUG. So handle it here. 1232 * 2. An orphaned page (see truncate_cleanup_page) might have 1233 * fs-private metadata. The page can be picked up due to memory 1234 * offlining. Everywhere else except page reclaim, the page is 1235 * invisible to the vm, so the page can not be migrated. So try to 1236 * free the metadata, so the page can be freed. 1237 */ 1238 if (!src->mapping) { 1239 if (folio_test_private(src)) { 1240 try_to_free_buffers(src); 1241 goto out; 1242 } 1243 } else if (folio_mapped(src)) { 1244 /* Establish migration ptes */ 1245 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1246 !folio_test_ksm(src) && !anon_vma, src); 1247 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1248 old_page_state |= PAGE_WAS_MAPPED; 1249 } 1250 1251 if (!folio_mapped(src)) { 1252 __migrate_folio_record(dst, old_page_state, anon_vma); 1253 return MIGRATEPAGE_UNMAP; 1254 } 1255 1256 out: 1257 /* 1258 * A folio that has not been unmapped will be restored to 1259 * right list unless we want to retry. 1260 */ 1261 if (rc == -EAGAIN) 1262 ret = NULL; 1263 1264 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1265 anon_vma, locked, ret); 1266 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1267 1268 return rc; 1269 } 1270 1271 /* Migrate the folio to the newly allocated folio in dst. */ 1272 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1273 struct folio *src, struct folio *dst, 1274 enum migrate_mode mode, enum migrate_reason reason, 1275 struct list_head *ret) 1276 { 1277 int rc; 1278 int old_page_state = 0; 1279 struct anon_vma *anon_vma = NULL; 1280 bool is_lru = !__folio_test_movable(src); 1281 struct list_head *prev; 1282 1283 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1284 prev = dst->lru.prev; 1285 list_del(&dst->lru); 1286 1287 rc = move_to_new_folio(dst, src, mode); 1288 if (rc) 1289 goto out; 1290 1291 if (unlikely(!is_lru)) 1292 goto out_unlock_both; 1293 1294 /* 1295 * When successful, push dst to LRU immediately: so that if it 1296 * turns out to be an mlocked page, remove_migration_ptes() will 1297 * automatically build up the correct dst->mlock_count for it. 1298 * 1299 * We would like to do something similar for the old page, when 1300 * unsuccessful, and other cases when a page has been temporarily 1301 * isolated from the unevictable LRU: but this case is the easiest. 1302 */ 1303 folio_add_lru(dst); 1304 if (old_page_state & PAGE_WAS_MLOCKED) 1305 lru_add_drain(); 1306 1307 if (old_page_state & PAGE_WAS_MAPPED) 1308 remove_migration_ptes(src, dst, false); 1309 1310 out_unlock_both: 1311 folio_unlock(dst); 1312 set_page_owner_migrate_reason(&dst->page, reason); 1313 /* 1314 * If migration is successful, decrease refcount of dst, 1315 * which will not free the page because new page owner increased 1316 * refcounter. 1317 */ 1318 folio_put(dst); 1319 1320 /* 1321 * A folio that has been migrated has all references removed 1322 * and will be freed. 1323 */ 1324 list_del(&src->lru); 1325 /* Drop an anon_vma reference if we took one */ 1326 if (anon_vma) 1327 put_anon_vma(anon_vma); 1328 folio_unlock(src); 1329 migrate_folio_done(src, reason); 1330 1331 return rc; 1332 out: 1333 /* 1334 * A folio that has not been migrated will be restored to 1335 * right list unless we want to retry. 1336 */ 1337 if (rc == -EAGAIN) { 1338 list_add(&dst->lru, prev); 1339 __migrate_folio_record(dst, old_page_state, anon_vma); 1340 return rc; 1341 } 1342 1343 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1344 anon_vma, true, ret); 1345 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1346 1347 return rc; 1348 } 1349 1350 /* 1351 * Counterpart of unmap_and_move_page() for hugepage migration. 1352 * 1353 * This function doesn't wait the completion of hugepage I/O 1354 * because there is no race between I/O and migration for hugepage. 1355 * Note that currently hugepage I/O occurs only in direct I/O 1356 * where no lock is held and PG_writeback is irrelevant, 1357 * and writeback status of all subpages are counted in the reference 1358 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1359 * under direct I/O, the reference of the head page is 512 and a bit more.) 1360 * This means that when we try to migrate hugepage whose subpages are 1361 * doing direct I/O, some references remain after try_to_unmap() and 1362 * hugepage migration fails without data corruption. 1363 * 1364 * There is also no race when direct I/O is issued on the page under migration, 1365 * because then pte is replaced with migration swap entry and direct I/O code 1366 * will wait in the page fault for migration to complete. 1367 */ 1368 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1369 free_folio_t put_new_folio, unsigned long private, 1370 struct folio *src, int force, enum migrate_mode mode, 1371 int reason, struct list_head *ret) 1372 { 1373 struct folio *dst; 1374 int rc = -EAGAIN; 1375 int page_was_mapped = 0; 1376 struct anon_vma *anon_vma = NULL; 1377 struct address_space *mapping = NULL; 1378 1379 if (folio_ref_count(src) == 1) { 1380 /* page was freed from under us. So we are done. */ 1381 folio_putback_active_hugetlb(src); 1382 return MIGRATEPAGE_SUCCESS; 1383 } 1384 1385 dst = get_new_folio(src, private); 1386 if (!dst) 1387 return -ENOMEM; 1388 1389 if (!folio_trylock(src)) { 1390 if (!force) 1391 goto out; 1392 switch (mode) { 1393 case MIGRATE_SYNC: 1394 case MIGRATE_SYNC_NO_COPY: 1395 break; 1396 default: 1397 goto out; 1398 } 1399 folio_lock(src); 1400 } 1401 1402 /* 1403 * Check for pages which are in the process of being freed. Without 1404 * folio_mapping() set, hugetlbfs specific move page routine will not 1405 * be called and we could leak usage counts for subpools. 1406 */ 1407 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1408 rc = -EBUSY; 1409 goto out_unlock; 1410 } 1411 1412 if (folio_test_anon(src)) 1413 anon_vma = folio_get_anon_vma(src); 1414 1415 if (unlikely(!folio_trylock(dst))) 1416 goto put_anon; 1417 1418 if (folio_mapped(src)) { 1419 enum ttu_flags ttu = 0; 1420 1421 if (!folio_test_anon(src)) { 1422 /* 1423 * In shared mappings, try_to_unmap could potentially 1424 * call huge_pmd_unshare. Because of this, take 1425 * semaphore in write mode here and set TTU_RMAP_LOCKED 1426 * to let lower levels know we have taken the lock. 1427 */ 1428 mapping = hugetlb_folio_mapping_lock_write(src); 1429 if (unlikely(!mapping)) 1430 goto unlock_put_anon; 1431 1432 ttu = TTU_RMAP_LOCKED; 1433 } 1434 1435 try_to_migrate(src, ttu); 1436 page_was_mapped = 1; 1437 1438 if (ttu & TTU_RMAP_LOCKED) 1439 i_mmap_unlock_write(mapping); 1440 } 1441 1442 if (!folio_mapped(src)) 1443 rc = move_to_new_folio(dst, src, mode); 1444 1445 if (page_was_mapped) 1446 remove_migration_ptes(src, 1447 rc == MIGRATEPAGE_SUCCESS ? dst : src, false); 1448 1449 unlock_put_anon: 1450 folio_unlock(dst); 1451 1452 put_anon: 1453 if (anon_vma) 1454 put_anon_vma(anon_vma); 1455 1456 if (rc == MIGRATEPAGE_SUCCESS) { 1457 move_hugetlb_state(src, dst, reason); 1458 put_new_folio = NULL; 1459 } 1460 1461 out_unlock: 1462 folio_unlock(src); 1463 out: 1464 if (rc == MIGRATEPAGE_SUCCESS) 1465 folio_putback_active_hugetlb(src); 1466 else if (rc != -EAGAIN) 1467 list_move_tail(&src->lru, ret); 1468 1469 /* 1470 * If migration was not successful and there's a freeing callback, use 1471 * it. Otherwise, put_page() will drop the reference grabbed during 1472 * isolation. 1473 */ 1474 if (put_new_folio) 1475 put_new_folio(dst, private); 1476 else 1477 folio_putback_active_hugetlb(dst); 1478 1479 return rc; 1480 } 1481 1482 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios) 1483 { 1484 int rc; 1485 1486 folio_lock(folio); 1487 rc = split_folio_to_list(folio, split_folios); 1488 folio_unlock(folio); 1489 if (!rc) 1490 list_move_tail(&folio->lru, split_folios); 1491 1492 return rc; 1493 } 1494 1495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1496 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1497 #else 1498 #define NR_MAX_BATCHED_MIGRATION 512 1499 #endif 1500 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1501 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1502 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1503 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1504 1505 struct migrate_pages_stats { 1506 int nr_succeeded; /* Normal and large folios migrated successfully, in 1507 units of base pages */ 1508 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1509 units of base pages. Untried folios aren't counted */ 1510 int nr_thp_succeeded; /* THP migrated successfully */ 1511 int nr_thp_failed; /* THP failed to be migrated */ 1512 int nr_thp_split; /* THP split before migrating */ 1513 int nr_split; /* Large folio (include THP) split before migrating */ 1514 }; 1515 1516 /* 1517 * Returns the number of hugetlb folios that were not migrated, or an error code 1518 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1519 * any more because the list has become empty or no retryable hugetlb folios 1520 * exist any more. It is caller's responsibility to call putback_movable_pages() 1521 * only if ret != 0. 1522 */ 1523 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1524 free_folio_t put_new_folio, unsigned long private, 1525 enum migrate_mode mode, int reason, 1526 struct migrate_pages_stats *stats, 1527 struct list_head *ret_folios) 1528 { 1529 int retry = 1; 1530 int nr_failed = 0; 1531 int nr_retry_pages = 0; 1532 int pass = 0; 1533 struct folio *folio, *folio2; 1534 int rc, nr_pages; 1535 1536 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1537 retry = 0; 1538 nr_retry_pages = 0; 1539 1540 list_for_each_entry_safe(folio, folio2, from, lru) { 1541 if (!folio_test_hugetlb(folio)) 1542 continue; 1543 1544 nr_pages = folio_nr_pages(folio); 1545 1546 cond_resched(); 1547 1548 /* 1549 * Migratability of hugepages depends on architectures and 1550 * their size. This check is necessary because some callers 1551 * of hugepage migration like soft offline and memory 1552 * hotremove don't walk through page tables or check whether 1553 * the hugepage is pmd-based or not before kicking migration. 1554 */ 1555 if (!hugepage_migration_supported(folio_hstate(folio))) { 1556 nr_failed++; 1557 stats->nr_failed_pages += nr_pages; 1558 list_move_tail(&folio->lru, ret_folios); 1559 continue; 1560 } 1561 1562 rc = unmap_and_move_huge_page(get_new_folio, 1563 put_new_folio, private, 1564 folio, pass > 2, mode, 1565 reason, ret_folios); 1566 /* 1567 * The rules are: 1568 * Success: hugetlb folio will be put back 1569 * -EAGAIN: stay on the from list 1570 * -ENOMEM: stay on the from list 1571 * Other errno: put on ret_folios list 1572 */ 1573 switch(rc) { 1574 case -ENOMEM: 1575 /* 1576 * When memory is low, don't bother to try to migrate 1577 * other folios, just exit. 1578 */ 1579 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1580 return -ENOMEM; 1581 case -EAGAIN: 1582 retry++; 1583 nr_retry_pages += nr_pages; 1584 break; 1585 case MIGRATEPAGE_SUCCESS: 1586 stats->nr_succeeded += nr_pages; 1587 break; 1588 default: 1589 /* 1590 * Permanent failure (-EBUSY, etc.): 1591 * unlike -EAGAIN case, the failed folio is 1592 * removed from migration folio list and not 1593 * retried in the next outer loop. 1594 */ 1595 nr_failed++; 1596 stats->nr_failed_pages += nr_pages; 1597 break; 1598 } 1599 } 1600 } 1601 /* 1602 * nr_failed is number of hugetlb folios failed to be migrated. After 1603 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1604 * folios as failed. 1605 */ 1606 nr_failed += retry; 1607 stats->nr_failed_pages += nr_retry_pages; 1608 1609 return nr_failed; 1610 } 1611 1612 /* 1613 * migrate_pages_batch() first unmaps folios in the from list as many as 1614 * possible, then move the unmapped folios. 1615 * 1616 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1617 * lock or bit when we have locked more than one folio. Which may cause 1618 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1619 * length of the from list must be <= 1. 1620 */ 1621 static int migrate_pages_batch(struct list_head *from, 1622 new_folio_t get_new_folio, free_folio_t put_new_folio, 1623 unsigned long private, enum migrate_mode mode, int reason, 1624 struct list_head *ret_folios, struct list_head *split_folios, 1625 struct migrate_pages_stats *stats, int nr_pass) 1626 { 1627 int retry = 1; 1628 int thp_retry = 1; 1629 int nr_failed = 0; 1630 int nr_retry_pages = 0; 1631 int pass = 0; 1632 bool is_thp = false; 1633 bool is_large = false; 1634 struct folio *folio, *folio2, *dst = NULL, *dst2; 1635 int rc, rc_saved = 0, nr_pages; 1636 LIST_HEAD(unmap_folios); 1637 LIST_HEAD(dst_folios); 1638 bool nosplit = (reason == MR_NUMA_MISPLACED); 1639 1640 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1641 !list_empty(from) && !list_is_singular(from)); 1642 1643 for (pass = 0; pass < nr_pass && retry; pass++) { 1644 retry = 0; 1645 thp_retry = 0; 1646 nr_retry_pages = 0; 1647 1648 list_for_each_entry_safe(folio, folio2, from, lru) { 1649 is_large = folio_test_large(folio); 1650 is_thp = is_large && folio_test_pmd_mappable(folio); 1651 nr_pages = folio_nr_pages(folio); 1652 1653 cond_resched(); 1654 1655 /* 1656 * The rare folio on the deferred split list should 1657 * be split now. It should not count as a failure. 1658 * Only check it without removing it from the list. 1659 * Since the folio can be on deferred_split_scan() 1660 * local list and removing it can cause the local list 1661 * corruption. Folio split process below can handle it 1662 * with the help of folio_ref_freeze(). 1663 * 1664 * nr_pages > 2 is needed to avoid checking order-1 1665 * page cache folios. They exist, in contrast to 1666 * non-existent order-1 anonymous folios, and do not 1667 * use _deferred_list. 1668 */ 1669 if (nr_pages > 2 && 1670 !list_empty(&folio->_deferred_list)) { 1671 if (try_split_folio(folio, split_folios) == 0) { 1672 stats->nr_thp_split += is_thp; 1673 stats->nr_split++; 1674 continue; 1675 } 1676 } 1677 1678 /* 1679 * Large folio migration might be unsupported or 1680 * the allocation might be failed so we should retry 1681 * on the same folio with the large folio split 1682 * to normal folios. 1683 * 1684 * Split folios are put in split_folios, and 1685 * we will migrate them after the rest of the 1686 * list is processed. 1687 */ 1688 if (!thp_migration_supported() && is_thp) { 1689 nr_failed++; 1690 stats->nr_thp_failed++; 1691 if (!try_split_folio(folio, split_folios)) { 1692 stats->nr_thp_split++; 1693 stats->nr_split++; 1694 continue; 1695 } 1696 stats->nr_failed_pages += nr_pages; 1697 list_move_tail(&folio->lru, ret_folios); 1698 continue; 1699 } 1700 1701 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1702 private, folio, &dst, mode, reason, 1703 ret_folios); 1704 /* 1705 * The rules are: 1706 * Success: folio will be freed 1707 * Unmap: folio will be put on unmap_folios list, 1708 * dst folio put on dst_folios list 1709 * -EAGAIN: stay on the from list 1710 * -ENOMEM: stay on the from list 1711 * Other errno: put on ret_folios list 1712 */ 1713 switch(rc) { 1714 case -ENOMEM: 1715 /* 1716 * When memory is low, don't bother to try to migrate 1717 * other folios, move unmapped folios, then exit. 1718 */ 1719 nr_failed++; 1720 stats->nr_thp_failed += is_thp; 1721 /* Large folio NUMA faulting doesn't split to retry. */ 1722 if (is_large && !nosplit) { 1723 int ret = try_split_folio(folio, split_folios); 1724 1725 if (!ret) { 1726 stats->nr_thp_split += is_thp; 1727 stats->nr_split++; 1728 break; 1729 } else if (reason == MR_LONGTERM_PIN && 1730 ret == -EAGAIN) { 1731 /* 1732 * Try again to split large folio to 1733 * mitigate the failure of longterm pinning. 1734 */ 1735 retry++; 1736 thp_retry += is_thp; 1737 nr_retry_pages += nr_pages; 1738 /* Undo duplicated failure counting. */ 1739 nr_failed--; 1740 stats->nr_thp_failed -= is_thp; 1741 break; 1742 } 1743 } 1744 1745 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1746 /* nr_failed isn't updated for not used */ 1747 stats->nr_thp_failed += thp_retry; 1748 rc_saved = rc; 1749 if (list_empty(&unmap_folios)) 1750 goto out; 1751 else 1752 goto move; 1753 case -EAGAIN: 1754 retry++; 1755 thp_retry += is_thp; 1756 nr_retry_pages += nr_pages; 1757 break; 1758 case MIGRATEPAGE_SUCCESS: 1759 stats->nr_succeeded += nr_pages; 1760 stats->nr_thp_succeeded += is_thp; 1761 break; 1762 case MIGRATEPAGE_UNMAP: 1763 list_move_tail(&folio->lru, &unmap_folios); 1764 list_add_tail(&dst->lru, &dst_folios); 1765 break; 1766 default: 1767 /* 1768 * Permanent failure (-EBUSY, etc.): 1769 * unlike -EAGAIN case, the failed folio is 1770 * removed from migration folio list and not 1771 * retried in the next outer loop. 1772 */ 1773 nr_failed++; 1774 stats->nr_thp_failed += is_thp; 1775 stats->nr_failed_pages += nr_pages; 1776 break; 1777 } 1778 } 1779 } 1780 nr_failed += retry; 1781 stats->nr_thp_failed += thp_retry; 1782 stats->nr_failed_pages += nr_retry_pages; 1783 move: 1784 /* Flush TLBs for all unmapped folios */ 1785 try_to_unmap_flush(); 1786 1787 retry = 1; 1788 for (pass = 0; pass < nr_pass && retry; pass++) { 1789 retry = 0; 1790 thp_retry = 0; 1791 nr_retry_pages = 0; 1792 1793 dst = list_first_entry(&dst_folios, struct folio, lru); 1794 dst2 = list_next_entry(dst, lru); 1795 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1796 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1797 nr_pages = folio_nr_pages(folio); 1798 1799 cond_resched(); 1800 1801 rc = migrate_folio_move(put_new_folio, private, 1802 folio, dst, mode, 1803 reason, ret_folios); 1804 /* 1805 * The rules are: 1806 * Success: folio will be freed 1807 * -EAGAIN: stay on the unmap_folios list 1808 * Other errno: put on ret_folios list 1809 */ 1810 switch(rc) { 1811 case -EAGAIN: 1812 retry++; 1813 thp_retry += is_thp; 1814 nr_retry_pages += nr_pages; 1815 break; 1816 case MIGRATEPAGE_SUCCESS: 1817 stats->nr_succeeded += nr_pages; 1818 stats->nr_thp_succeeded += is_thp; 1819 break; 1820 default: 1821 nr_failed++; 1822 stats->nr_thp_failed += is_thp; 1823 stats->nr_failed_pages += nr_pages; 1824 break; 1825 } 1826 dst = dst2; 1827 dst2 = list_next_entry(dst, lru); 1828 } 1829 } 1830 nr_failed += retry; 1831 stats->nr_thp_failed += thp_retry; 1832 stats->nr_failed_pages += nr_retry_pages; 1833 1834 rc = rc_saved ? : nr_failed; 1835 out: 1836 /* Cleanup remaining folios */ 1837 dst = list_first_entry(&dst_folios, struct folio, lru); 1838 dst2 = list_next_entry(dst, lru); 1839 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1840 int old_page_state = 0; 1841 struct anon_vma *anon_vma = NULL; 1842 1843 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1844 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1845 anon_vma, true, ret_folios); 1846 list_del(&dst->lru); 1847 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1848 dst = dst2; 1849 dst2 = list_next_entry(dst, lru); 1850 } 1851 1852 return rc; 1853 } 1854 1855 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1856 free_folio_t put_new_folio, unsigned long private, 1857 enum migrate_mode mode, int reason, 1858 struct list_head *ret_folios, struct list_head *split_folios, 1859 struct migrate_pages_stats *stats) 1860 { 1861 int rc, nr_failed = 0; 1862 LIST_HEAD(folios); 1863 struct migrate_pages_stats astats; 1864 1865 memset(&astats, 0, sizeof(astats)); 1866 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1867 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1868 reason, &folios, split_folios, &astats, 1869 NR_MAX_MIGRATE_ASYNC_RETRY); 1870 stats->nr_succeeded += astats.nr_succeeded; 1871 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1872 stats->nr_thp_split += astats.nr_thp_split; 1873 stats->nr_split += astats.nr_split; 1874 if (rc < 0) { 1875 stats->nr_failed_pages += astats.nr_failed_pages; 1876 stats->nr_thp_failed += astats.nr_thp_failed; 1877 list_splice_tail(&folios, ret_folios); 1878 return rc; 1879 } 1880 stats->nr_thp_failed += astats.nr_thp_split; 1881 /* 1882 * Do not count rc, as pages will be retried below. 1883 * Count nr_split only, since it includes nr_thp_split. 1884 */ 1885 nr_failed += astats.nr_split; 1886 /* 1887 * Fall back to migrate all failed folios one by one synchronously. All 1888 * failed folios except split THPs will be retried, so their failure 1889 * isn't counted 1890 */ 1891 list_splice_tail_init(&folios, from); 1892 while (!list_empty(from)) { 1893 list_move(from->next, &folios); 1894 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1895 private, mode, reason, ret_folios, 1896 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1897 list_splice_tail_init(&folios, ret_folios); 1898 if (rc < 0) 1899 return rc; 1900 nr_failed += rc; 1901 } 1902 1903 return nr_failed; 1904 } 1905 1906 /* 1907 * migrate_pages - migrate the folios specified in a list, to the free folios 1908 * supplied as the target for the page migration 1909 * 1910 * @from: The list of folios to be migrated. 1911 * @get_new_folio: The function used to allocate free folios to be used 1912 * as the target of the folio migration. 1913 * @put_new_folio: The function used to free target folios if migration 1914 * fails, or NULL if no special handling is necessary. 1915 * @private: Private data to be passed on to get_new_folio() 1916 * @mode: The migration mode that specifies the constraints for 1917 * folio migration, if any. 1918 * @reason: The reason for folio migration. 1919 * @ret_succeeded: Set to the number of folios migrated successfully if 1920 * the caller passes a non-NULL pointer. 1921 * 1922 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 1923 * are movable any more because the list has become empty or no retryable folios 1924 * exist any more. It is caller's responsibility to call putback_movable_pages() 1925 * only if ret != 0. 1926 * 1927 * Returns the number of {normal folio, large folio, hugetlb} that were not 1928 * migrated, or an error code. The number of large folio splits will be 1929 * considered as the number of non-migrated large folio, no matter how many 1930 * split folios of the large folio are migrated successfully. 1931 */ 1932 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 1933 free_folio_t put_new_folio, unsigned long private, 1934 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1935 { 1936 int rc, rc_gather; 1937 int nr_pages; 1938 struct folio *folio, *folio2; 1939 LIST_HEAD(folios); 1940 LIST_HEAD(ret_folios); 1941 LIST_HEAD(split_folios); 1942 struct migrate_pages_stats stats; 1943 1944 trace_mm_migrate_pages_start(mode, reason); 1945 1946 memset(&stats, 0, sizeof(stats)); 1947 1948 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 1949 mode, reason, &stats, &ret_folios); 1950 if (rc_gather < 0) 1951 goto out; 1952 1953 again: 1954 nr_pages = 0; 1955 list_for_each_entry_safe(folio, folio2, from, lru) { 1956 /* Retried hugetlb folios will be kept in list */ 1957 if (folio_test_hugetlb(folio)) { 1958 list_move_tail(&folio->lru, &ret_folios); 1959 continue; 1960 } 1961 1962 nr_pages += folio_nr_pages(folio); 1963 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1964 break; 1965 } 1966 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 1967 list_cut_before(&folios, from, &folio2->lru); 1968 else 1969 list_splice_init(from, &folios); 1970 if (mode == MIGRATE_ASYNC) 1971 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1972 private, mode, reason, &ret_folios, 1973 &split_folios, &stats, 1974 NR_MAX_MIGRATE_PAGES_RETRY); 1975 else 1976 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 1977 private, mode, reason, &ret_folios, 1978 &split_folios, &stats); 1979 list_splice_tail_init(&folios, &ret_folios); 1980 if (rc < 0) { 1981 rc_gather = rc; 1982 list_splice_tail(&split_folios, &ret_folios); 1983 goto out; 1984 } 1985 if (!list_empty(&split_folios)) { 1986 /* 1987 * Failure isn't counted since all split folios of a large folio 1988 * is counted as 1 failure already. And, we only try to migrate 1989 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 1990 */ 1991 migrate_pages_batch(&split_folios, get_new_folio, 1992 put_new_folio, private, MIGRATE_ASYNC, reason, 1993 &ret_folios, NULL, &stats, 1); 1994 list_splice_tail_init(&split_folios, &ret_folios); 1995 } 1996 rc_gather += rc; 1997 if (!list_empty(from)) 1998 goto again; 1999 out: 2000 /* 2001 * Put the permanent failure folio back to migration list, they 2002 * will be put back to the right list by the caller. 2003 */ 2004 list_splice(&ret_folios, from); 2005 2006 /* 2007 * Return 0 in case all split folios of fail-to-migrate large folios 2008 * are migrated successfully. 2009 */ 2010 if (list_empty(from)) 2011 rc_gather = 0; 2012 2013 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2014 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2015 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2016 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2017 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2018 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2019 stats.nr_thp_succeeded, stats.nr_thp_failed, 2020 stats.nr_thp_split, stats.nr_split, mode, 2021 reason); 2022 2023 if (ret_succeeded) 2024 *ret_succeeded = stats.nr_succeeded; 2025 2026 return rc_gather; 2027 } 2028 2029 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2030 { 2031 struct migration_target_control *mtc; 2032 gfp_t gfp_mask; 2033 unsigned int order = 0; 2034 int nid; 2035 int zidx; 2036 2037 mtc = (struct migration_target_control *)private; 2038 gfp_mask = mtc->gfp_mask; 2039 nid = mtc->nid; 2040 if (nid == NUMA_NO_NODE) 2041 nid = folio_nid(src); 2042 2043 if (folio_test_hugetlb(src)) { 2044 struct hstate *h = folio_hstate(src); 2045 2046 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2047 return alloc_hugetlb_folio_nodemask(h, nid, 2048 mtc->nmask, gfp_mask, 2049 htlb_allow_alloc_fallback(mtc->reason)); 2050 } 2051 2052 if (folio_test_large(src)) { 2053 /* 2054 * clear __GFP_RECLAIM to make the migration callback 2055 * consistent with regular THP allocations. 2056 */ 2057 gfp_mask &= ~__GFP_RECLAIM; 2058 gfp_mask |= GFP_TRANSHUGE; 2059 order = folio_order(src); 2060 } 2061 zidx = zone_idx(folio_zone(src)); 2062 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2063 gfp_mask |= __GFP_HIGHMEM; 2064 2065 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2066 } 2067 2068 #ifdef CONFIG_NUMA 2069 2070 static int store_status(int __user *status, int start, int value, int nr) 2071 { 2072 while (nr-- > 0) { 2073 if (put_user(value, status + start)) 2074 return -EFAULT; 2075 start++; 2076 } 2077 2078 return 0; 2079 } 2080 2081 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2082 { 2083 int err; 2084 struct migration_target_control mtc = { 2085 .nid = node, 2086 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2087 .reason = MR_SYSCALL, 2088 }; 2089 2090 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2091 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2092 if (err) 2093 putback_movable_pages(pagelist); 2094 return err; 2095 } 2096 2097 /* 2098 * Resolves the given address to a struct page, isolates it from the LRU and 2099 * puts it to the given pagelist. 2100 * Returns: 2101 * errno - if the page cannot be found/isolated 2102 * 0 - when it doesn't have to be migrated because it is already on the 2103 * target node 2104 * 1 - when it has been queued 2105 */ 2106 static int add_page_for_migration(struct mm_struct *mm, const void __user *p, 2107 int node, struct list_head *pagelist, bool migrate_all) 2108 { 2109 struct vm_area_struct *vma; 2110 unsigned long addr; 2111 struct page *page; 2112 struct folio *folio; 2113 int err; 2114 2115 mmap_read_lock(mm); 2116 addr = (unsigned long)untagged_addr_remote(mm, p); 2117 2118 err = -EFAULT; 2119 vma = vma_lookup(mm, addr); 2120 if (!vma || !vma_migratable(vma)) 2121 goto out; 2122 2123 /* FOLL_DUMP to ignore special (like zero) pages */ 2124 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2125 2126 err = PTR_ERR(page); 2127 if (IS_ERR(page)) 2128 goto out; 2129 2130 err = -ENOENT; 2131 if (!page) 2132 goto out; 2133 2134 folio = page_folio(page); 2135 if (folio_is_zone_device(folio)) 2136 goto out_putfolio; 2137 2138 err = 0; 2139 if (folio_nid(folio) == node) 2140 goto out_putfolio; 2141 2142 err = -EACCES; 2143 if (folio_likely_mapped_shared(folio) && !migrate_all) 2144 goto out_putfolio; 2145 2146 err = -EBUSY; 2147 if (folio_test_hugetlb(folio)) { 2148 if (isolate_hugetlb(folio, pagelist)) 2149 err = 1; 2150 } else { 2151 if (!folio_isolate_lru(folio)) 2152 goto out_putfolio; 2153 2154 err = 1; 2155 list_add_tail(&folio->lru, pagelist); 2156 node_stat_mod_folio(folio, 2157 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2158 folio_nr_pages(folio)); 2159 } 2160 out_putfolio: 2161 /* 2162 * Either remove the duplicate refcount from folio_isolate_lru() 2163 * or drop the folio ref if it was not isolated. 2164 */ 2165 folio_put(folio); 2166 out: 2167 mmap_read_unlock(mm); 2168 return err; 2169 } 2170 2171 static int move_pages_and_store_status(int node, 2172 struct list_head *pagelist, int __user *status, 2173 int start, int i, unsigned long nr_pages) 2174 { 2175 int err; 2176 2177 if (list_empty(pagelist)) 2178 return 0; 2179 2180 err = do_move_pages_to_node(pagelist, node); 2181 if (err) { 2182 /* 2183 * Positive err means the number of failed 2184 * pages to migrate. Since we are going to 2185 * abort and return the number of non-migrated 2186 * pages, so need to include the rest of the 2187 * nr_pages that have not been attempted as 2188 * well. 2189 */ 2190 if (err > 0) 2191 err += nr_pages - i; 2192 return err; 2193 } 2194 return store_status(status, start, node, i - start); 2195 } 2196 2197 /* 2198 * Migrate an array of page address onto an array of nodes and fill 2199 * the corresponding array of status. 2200 */ 2201 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2202 unsigned long nr_pages, 2203 const void __user * __user *pages, 2204 const int __user *nodes, 2205 int __user *status, int flags) 2206 { 2207 compat_uptr_t __user *compat_pages = (void __user *)pages; 2208 int current_node = NUMA_NO_NODE; 2209 LIST_HEAD(pagelist); 2210 int start, i; 2211 int err = 0, err1; 2212 2213 lru_cache_disable(); 2214 2215 for (i = start = 0; i < nr_pages; i++) { 2216 const void __user *p; 2217 int node; 2218 2219 err = -EFAULT; 2220 if (in_compat_syscall()) { 2221 compat_uptr_t cp; 2222 2223 if (get_user(cp, compat_pages + i)) 2224 goto out_flush; 2225 2226 p = compat_ptr(cp); 2227 } else { 2228 if (get_user(p, pages + i)) 2229 goto out_flush; 2230 } 2231 if (get_user(node, nodes + i)) 2232 goto out_flush; 2233 2234 err = -ENODEV; 2235 if (node < 0 || node >= MAX_NUMNODES) 2236 goto out_flush; 2237 if (!node_state(node, N_MEMORY)) 2238 goto out_flush; 2239 2240 err = -EACCES; 2241 if (!node_isset(node, task_nodes)) 2242 goto out_flush; 2243 2244 if (current_node == NUMA_NO_NODE) { 2245 current_node = node; 2246 start = i; 2247 } else if (node != current_node) { 2248 err = move_pages_and_store_status(current_node, 2249 &pagelist, status, start, i, nr_pages); 2250 if (err) 2251 goto out; 2252 start = i; 2253 current_node = node; 2254 } 2255 2256 /* 2257 * Errors in the page lookup or isolation are not fatal and we simply 2258 * report them via status 2259 */ 2260 err = add_page_for_migration(mm, p, current_node, &pagelist, 2261 flags & MPOL_MF_MOVE_ALL); 2262 2263 if (err > 0) { 2264 /* The page is successfully queued for migration */ 2265 continue; 2266 } 2267 2268 /* 2269 * The move_pages() man page does not have an -EEXIST choice, so 2270 * use -EFAULT instead. 2271 */ 2272 if (err == -EEXIST) 2273 err = -EFAULT; 2274 2275 /* 2276 * If the page is already on the target node (!err), store the 2277 * node, otherwise, store the err. 2278 */ 2279 err = store_status(status, i, err ? : current_node, 1); 2280 if (err) 2281 goto out_flush; 2282 2283 err = move_pages_and_store_status(current_node, &pagelist, 2284 status, start, i, nr_pages); 2285 if (err) { 2286 /* We have accounted for page i */ 2287 if (err > 0) 2288 err--; 2289 goto out; 2290 } 2291 current_node = NUMA_NO_NODE; 2292 } 2293 out_flush: 2294 /* Make sure we do not overwrite the existing error */ 2295 err1 = move_pages_and_store_status(current_node, &pagelist, 2296 status, start, i, nr_pages); 2297 if (err >= 0) 2298 err = err1; 2299 out: 2300 lru_cache_enable(); 2301 return err; 2302 } 2303 2304 /* 2305 * Determine the nodes of an array of pages and store it in an array of status. 2306 */ 2307 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2308 const void __user **pages, int *status) 2309 { 2310 unsigned long i; 2311 2312 mmap_read_lock(mm); 2313 2314 for (i = 0; i < nr_pages; i++) { 2315 unsigned long addr = (unsigned long)(*pages); 2316 struct vm_area_struct *vma; 2317 struct page *page; 2318 int err = -EFAULT; 2319 2320 vma = vma_lookup(mm, addr); 2321 if (!vma) 2322 goto set_status; 2323 2324 /* FOLL_DUMP to ignore special (like zero) pages */ 2325 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2326 2327 err = PTR_ERR(page); 2328 if (IS_ERR(page)) 2329 goto set_status; 2330 2331 err = -ENOENT; 2332 if (!page) 2333 goto set_status; 2334 2335 if (!is_zone_device_page(page)) 2336 err = page_to_nid(page); 2337 2338 put_page(page); 2339 set_status: 2340 *status = err; 2341 2342 pages++; 2343 status++; 2344 } 2345 2346 mmap_read_unlock(mm); 2347 } 2348 2349 static int get_compat_pages_array(const void __user *chunk_pages[], 2350 const void __user * __user *pages, 2351 unsigned long chunk_nr) 2352 { 2353 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2354 compat_uptr_t p; 2355 int i; 2356 2357 for (i = 0; i < chunk_nr; i++) { 2358 if (get_user(p, pages32 + i)) 2359 return -EFAULT; 2360 chunk_pages[i] = compat_ptr(p); 2361 } 2362 2363 return 0; 2364 } 2365 2366 /* 2367 * Determine the nodes of a user array of pages and store it in 2368 * a user array of status. 2369 */ 2370 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2371 const void __user * __user *pages, 2372 int __user *status) 2373 { 2374 #define DO_PAGES_STAT_CHUNK_NR 16UL 2375 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2376 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2377 2378 while (nr_pages) { 2379 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2380 2381 if (in_compat_syscall()) { 2382 if (get_compat_pages_array(chunk_pages, pages, 2383 chunk_nr)) 2384 break; 2385 } else { 2386 if (copy_from_user(chunk_pages, pages, 2387 chunk_nr * sizeof(*chunk_pages))) 2388 break; 2389 } 2390 2391 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2392 2393 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2394 break; 2395 2396 pages += chunk_nr; 2397 status += chunk_nr; 2398 nr_pages -= chunk_nr; 2399 } 2400 return nr_pages ? -EFAULT : 0; 2401 } 2402 2403 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2404 { 2405 struct task_struct *task; 2406 struct mm_struct *mm; 2407 2408 /* 2409 * There is no need to check if current process has the right to modify 2410 * the specified process when they are same. 2411 */ 2412 if (!pid) { 2413 mmget(current->mm); 2414 *mem_nodes = cpuset_mems_allowed(current); 2415 return current->mm; 2416 } 2417 2418 /* Find the mm_struct */ 2419 rcu_read_lock(); 2420 task = find_task_by_vpid(pid); 2421 if (!task) { 2422 rcu_read_unlock(); 2423 return ERR_PTR(-ESRCH); 2424 } 2425 get_task_struct(task); 2426 2427 /* 2428 * Check if this process has the right to modify the specified 2429 * process. Use the regular "ptrace_may_access()" checks. 2430 */ 2431 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2432 rcu_read_unlock(); 2433 mm = ERR_PTR(-EPERM); 2434 goto out; 2435 } 2436 rcu_read_unlock(); 2437 2438 mm = ERR_PTR(security_task_movememory(task)); 2439 if (IS_ERR(mm)) 2440 goto out; 2441 *mem_nodes = cpuset_mems_allowed(task); 2442 mm = get_task_mm(task); 2443 out: 2444 put_task_struct(task); 2445 if (!mm) 2446 mm = ERR_PTR(-EINVAL); 2447 return mm; 2448 } 2449 2450 /* 2451 * Move a list of pages in the address space of the currently executing 2452 * process. 2453 */ 2454 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2455 const void __user * __user *pages, 2456 const int __user *nodes, 2457 int __user *status, int flags) 2458 { 2459 struct mm_struct *mm; 2460 int err; 2461 nodemask_t task_nodes; 2462 2463 /* Check flags */ 2464 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2465 return -EINVAL; 2466 2467 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2468 return -EPERM; 2469 2470 mm = find_mm_struct(pid, &task_nodes); 2471 if (IS_ERR(mm)) 2472 return PTR_ERR(mm); 2473 2474 if (nodes) 2475 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2476 nodes, status, flags); 2477 else 2478 err = do_pages_stat(mm, nr_pages, pages, status); 2479 2480 mmput(mm); 2481 return err; 2482 } 2483 2484 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2485 const void __user * __user *, pages, 2486 const int __user *, nodes, 2487 int __user *, status, int, flags) 2488 { 2489 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2490 } 2491 2492 #ifdef CONFIG_NUMA_BALANCING 2493 /* 2494 * Returns true if this is a safe migration target node for misplaced NUMA 2495 * pages. Currently it only checks the watermarks which is crude. 2496 */ 2497 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2498 unsigned long nr_migrate_pages) 2499 { 2500 int z; 2501 2502 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2503 struct zone *zone = pgdat->node_zones + z; 2504 2505 if (!managed_zone(zone)) 2506 continue; 2507 2508 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2509 if (!zone_watermark_ok(zone, 0, 2510 high_wmark_pages(zone) + 2511 nr_migrate_pages, 2512 ZONE_MOVABLE, 0)) 2513 continue; 2514 return true; 2515 } 2516 return false; 2517 } 2518 2519 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2520 unsigned long data) 2521 { 2522 int nid = (int) data; 2523 int order = folio_order(src); 2524 gfp_t gfp = __GFP_THISNODE; 2525 2526 if (order > 0) 2527 gfp |= GFP_TRANSHUGE_LIGHT; 2528 else { 2529 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2530 __GFP_NOWARN; 2531 gfp &= ~__GFP_RECLAIM; 2532 } 2533 return __folio_alloc_node(gfp, order, nid); 2534 } 2535 2536 static int numamigrate_isolate_folio(pg_data_t *pgdat, struct folio *folio) 2537 { 2538 int nr_pages = folio_nr_pages(folio); 2539 2540 /* Avoid migrating to a node that is nearly full */ 2541 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2542 int z; 2543 2544 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2545 return 0; 2546 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2547 if (managed_zone(pgdat->node_zones + z)) 2548 break; 2549 } 2550 2551 /* 2552 * If there are no managed zones, it should not proceed 2553 * further. 2554 */ 2555 if (z < 0) 2556 return 0; 2557 2558 wakeup_kswapd(pgdat->node_zones + z, 0, 2559 folio_order(folio), ZONE_MOVABLE); 2560 return 0; 2561 } 2562 2563 if (!folio_isolate_lru(folio)) 2564 return 0; 2565 2566 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2567 nr_pages); 2568 2569 /* 2570 * Isolating the folio has taken another reference, so the 2571 * caller's reference can be safely dropped without the folio 2572 * disappearing underneath us during migration. 2573 */ 2574 folio_put(folio); 2575 return 1; 2576 } 2577 2578 /* 2579 * Attempt to migrate a misplaced folio to the specified destination 2580 * node. Caller is expected to have an elevated reference count on 2581 * the folio that will be dropped by this function before returning. 2582 */ 2583 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma, 2584 int node) 2585 { 2586 pg_data_t *pgdat = NODE_DATA(node); 2587 int isolated; 2588 int nr_remaining; 2589 unsigned int nr_succeeded; 2590 LIST_HEAD(migratepages); 2591 int nr_pages = folio_nr_pages(folio); 2592 2593 /* 2594 * Don't migrate file folios that are mapped in multiple processes 2595 * with execute permissions as they are probably shared libraries. 2596 * 2597 * See folio_likely_mapped_shared() on possible imprecision when we 2598 * cannot easily detect if a folio is shared. 2599 */ 2600 if (folio_likely_mapped_shared(folio) && folio_is_file_lru(folio) && 2601 (vma->vm_flags & VM_EXEC)) 2602 goto out; 2603 2604 /* 2605 * Also do not migrate dirty folios as not all filesystems can move 2606 * dirty folios in MIGRATE_ASYNC mode which is a waste of cycles. 2607 */ 2608 if (folio_is_file_lru(folio) && folio_test_dirty(folio)) 2609 goto out; 2610 2611 isolated = numamigrate_isolate_folio(pgdat, folio); 2612 if (!isolated) 2613 goto out; 2614 2615 list_add(&folio->lru, &migratepages); 2616 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2617 NULL, node, MIGRATE_ASYNC, 2618 MR_NUMA_MISPLACED, &nr_succeeded); 2619 if (nr_remaining) { 2620 if (!list_empty(&migratepages)) { 2621 list_del(&folio->lru); 2622 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 2623 folio_is_file_lru(folio), -nr_pages); 2624 folio_putback_lru(folio); 2625 } 2626 isolated = 0; 2627 } 2628 if (nr_succeeded) { 2629 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2630 if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node)) 2631 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS, 2632 nr_succeeded); 2633 } 2634 BUG_ON(!list_empty(&migratepages)); 2635 return isolated; 2636 2637 out: 2638 folio_put(folio); 2639 return 0; 2640 } 2641 #endif /* CONFIG_NUMA_BALANCING */ 2642 #endif /* CONFIG_NUMA */ 2643