1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 #include <linux/memory.h> 53 54 #include <asm/tlbflush.h> 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/migrate.h> 58 59 #include "internal.h" 60 61 int isolate_movable_page(struct page *page, isolate_mode_t mode) 62 { 63 struct address_space *mapping; 64 65 /* 66 * Avoid burning cycles with pages that are yet under __free_pages(), 67 * or just got freed under us. 68 * 69 * In case we 'win' a race for a movable page being freed under us and 70 * raise its refcount preventing __free_pages() from doing its job 71 * the put_page() at the end of this block will take care of 72 * release this page, thus avoiding a nasty leakage. 73 */ 74 if (unlikely(!get_page_unless_zero(page))) 75 goto out; 76 77 /* 78 * Check PageMovable before holding a PG_lock because page's owner 79 * assumes anybody doesn't touch PG_lock of newly allocated page 80 * so unconditionally grabbing the lock ruins page's owner side. 81 */ 82 if (unlikely(!__PageMovable(page))) 83 goto out_putpage; 84 /* 85 * As movable pages are not isolated from LRU lists, concurrent 86 * compaction threads can race against page migration functions 87 * as well as race against the releasing a page. 88 * 89 * In order to avoid having an already isolated movable page 90 * being (wrongly) re-isolated while it is under migration, 91 * or to avoid attempting to isolate pages being released, 92 * lets be sure we have the page lock 93 * before proceeding with the movable page isolation steps. 94 */ 95 if (unlikely(!trylock_page(page))) 96 goto out_putpage; 97 98 if (!PageMovable(page) || PageIsolated(page)) 99 goto out_no_isolated; 100 101 mapping = page_mapping(page); 102 VM_BUG_ON_PAGE(!mapping, page); 103 104 if (!mapping->a_ops->isolate_page(page, mode)) 105 goto out_no_isolated; 106 107 /* Driver shouldn't use PG_isolated bit of page->flags */ 108 WARN_ON_ONCE(PageIsolated(page)); 109 __SetPageIsolated(page); 110 unlock_page(page); 111 112 return 0; 113 114 out_no_isolated: 115 unlock_page(page); 116 out_putpage: 117 put_page(page); 118 out: 119 return -EBUSY; 120 } 121 122 static void putback_movable_page(struct page *page) 123 { 124 struct address_space *mapping; 125 126 mapping = page_mapping(page); 127 mapping->a_ops->putback_page(page); 128 __ClearPageIsolated(page); 129 } 130 131 /* 132 * Put previously isolated pages back onto the appropriate lists 133 * from where they were once taken off for compaction/migration. 134 * 135 * This function shall be used whenever the isolated pageset has been 136 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 137 * and isolate_huge_page(). 138 */ 139 void putback_movable_pages(struct list_head *l) 140 { 141 struct page *page; 142 struct page *page2; 143 144 list_for_each_entry_safe(page, page2, l, lru) { 145 if (unlikely(PageHuge(page))) { 146 putback_active_hugepage(page); 147 continue; 148 } 149 list_del(&page->lru); 150 /* 151 * We isolated non-lru movable page so here we can use 152 * __PageMovable because LRU page's mapping cannot have 153 * PAGE_MAPPING_MOVABLE. 154 */ 155 if (unlikely(__PageMovable(page))) { 156 VM_BUG_ON_PAGE(!PageIsolated(page), page); 157 lock_page(page); 158 if (PageMovable(page)) 159 putback_movable_page(page); 160 else 161 __ClearPageIsolated(page); 162 unlock_page(page); 163 put_page(page); 164 } else { 165 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 166 page_is_file_lru(page), -thp_nr_pages(page)); 167 putback_lru_page(page); 168 } 169 } 170 } 171 172 /* 173 * Restore a potential migration pte to a working pte entry 174 */ 175 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 176 unsigned long addr, void *old) 177 { 178 struct page_vma_mapped_walk pvmw = { 179 .page = old, 180 .vma = vma, 181 .address = addr, 182 .flags = PVMW_SYNC | PVMW_MIGRATION, 183 }; 184 struct page *new; 185 pte_t pte; 186 swp_entry_t entry; 187 188 VM_BUG_ON_PAGE(PageTail(page), page); 189 while (page_vma_mapped_walk(&pvmw)) { 190 if (PageKsm(page)) 191 new = page; 192 else 193 new = page - pvmw.page->index + 194 linear_page_index(vma, pvmw.address); 195 196 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 197 /* PMD-mapped THP migration entry */ 198 if (!pvmw.pte) { 199 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 200 remove_migration_pmd(&pvmw, new); 201 continue; 202 } 203 #endif 204 205 get_page(new); 206 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 207 if (pte_swp_soft_dirty(*pvmw.pte)) 208 pte = pte_mksoft_dirty(pte); 209 210 /* 211 * Recheck VMA as permissions can change since migration started 212 */ 213 entry = pte_to_swp_entry(*pvmw.pte); 214 if (is_writable_migration_entry(entry)) 215 pte = maybe_mkwrite(pte, vma); 216 else if (pte_swp_uffd_wp(*pvmw.pte)) 217 pte = pte_mkuffd_wp(pte); 218 219 if (unlikely(is_device_private_page(new))) { 220 if (pte_write(pte)) 221 entry = make_writable_device_private_entry( 222 page_to_pfn(new)); 223 else 224 entry = make_readable_device_private_entry( 225 page_to_pfn(new)); 226 pte = swp_entry_to_pte(entry); 227 if (pte_swp_soft_dirty(*pvmw.pte)) 228 pte = pte_swp_mksoft_dirty(pte); 229 if (pte_swp_uffd_wp(*pvmw.pte)) 230 pte = pte_swp_mkuffd_wp(pte); 231 } 232 233 #ifdef CONFIG_HUGETLB_PAGE 234 if (PageHuge(new)) { 235 unsigned int shift = huge_page_shift(hstate_vma(vma)); 236 237 pte = pte_mkhuge(pte); 238 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 239 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 240 if (PageAnon(new)) 241 hugepage_add_anon_rmap(new, vma, pvmw.address); 242 else 243 page_dup_rmap(new, true); 244 } else 245 #endif 246 { 247 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 248 249 if (PageAnon(new)) 250 page_add_anon_rmap(new, vma, pvmw.address, false); 251 else 252 page_add_file_rmap(new, false); 253 } 254 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 255 mlock_vma_page(new); 256 257 if (PageTransHuge(page) && PageMlocked(page)) 258 clear_page_mlock(page); 259 260 /* No need to invalidate - it was non-present before */ 261 update_mmu_cache(vma, pvmw.address, pvmw.pte); 262 } 263 264 return true; 265 } 266 267 /* 268 * Get rid of all migration entries and replace them by 269 * references to the indicated page. 270 */ 271 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 272 { 273 struct rmap_walk_control rwc = { 274 .rmap_one = remove_migration_pte, 275 .arg = old, 276 }; 277 278 if (locked) 279 rmap_walk_locked(new, &rwc); 280 else 281 rmap_walk(new, &rwc); 282 } 283 284 /* 285 * Something used the pte of a page under migration. We need to 286 * get to the page and wait until migration is finished. 287 * When we return from this function the fault will be retried. 288 */ 289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 290 spinlock_t *ptl) 291 { 292 pte_t pte; 293 swp_entry_t entry; 294 struct page *page; 295 296 spin_lock(ptl); 297 pte = *ptep; 298 if (!is_swap_pte(pte)) 299 goto out; 300 301 entry = pte_to_swp_entry(pte); 302 if (!is_migration_entry(entry)) 303 goto out; 304 305 page = pfn_swap_entry_to_page(entry); 306 page = compound_head(page); 307 308 /* 309 * Once page cache replacement of page migration started, page_count 310 * is zero; but we must not call put_and_wait_on_page_locked() without 311 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 312 */ 313 if (!get_page_unless_zero(page)) 314 goto out; 315 pte_unmap_unlock(ptep, ptl); 316 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 317 return; 318 out: 319 pte_unmap_unlock(ptep, ptl); 320 } 321 322 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 323 unsigned long address) 324 { 325 spinlock_t *ptl = pte_lockptr(mm, pmd); 326 pte_t *ptep = pte_offset_map(pmd, address); 327 __migration_entry_wait(mm, ptep, ptl); 328 } 329 330 void migration_entry_wait_huge(struct vm_area_struct *vma, 331 struct mm_struct *mm, pte_t *pte) 332 { 333 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 334 __migration_entry_wait(mm, pte, ptl); 335 } 336 337 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 338 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 339 { 340 spinlock_t *ptl; 341 struct page *page; 342 343 ptl = pmd_lock(mm, pmd); 344 if (!is_pmd_migration_entry(*pmd)) 345 goto unlock; 346 page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd)); 347 if (!get_page_unless_zero(page)) 348 goto unlock; 349 spin_unlock(ptl); 350 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); 351 return; 352 unlock: 353 spin_unlock(ptl); 354 } 355 #endif 356 357 static int expected_page_refs(struct address_space *mapping, struct page *page) 358 { 359 int expected_count = 1; 360 361 /* 362 * Device private pages have an extra refcount as they are 363 * ZONE_DEVICE pages. 364 */ 365 expected_count += is_device_private_page(page); 366 if (mapping) 367 expected_count += thp_nr_pages(page) + page_has_private(page); 368 369 return expected_count; 370 } 371 372 /* 373 * Replace the page in the mapping. 374 * 375 * The number of remaining references must be: 376 * 1 for anonymous pages without a mapping 377 * 2 for pages with a mapping 378 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 379 */ 380 int migrate_page_move_mapping(struct address_space *mapping, 381 struct page *newpage, struct page *page, int extra_count) 382 { 383 XA_STATE(xas, &mapping->i_pages, page_index(page)); 384 struct zone *oldzone, *newzone; 385 int dirty; 386 int expected_count = expected_page_refs(mapping, page) + extra_count; 387 int nr = thp_nr_pages(page); 388 389 if (!mapping) { 390 /* Anonymous page without mapping */ 391 if (page_count(page) != expected_count) 392 return -EAGAIN; 393 394 /* No turning back from here */ 395 newpage->index = page->index; 396 newpage->mapping = page->mapping; 397 if (PageSwapBacked(page)) 398 __SetPageSwapBacked(newpage); 399 400 return MIGRATEPAGE_SUCCESS; 401 } 402 403 oldzone = page_zone(page); 404 newzone = page_zone(newpage); 405 406 xas_lock_irq(&xas); 407 if (page_count(page) != expected_count || xas_load(&xas) != page) { 408 xas_unlock_irq(&xas); 409 return -EAGAIN; 410 } 411 412 if (!page_ref_freeze(page, expected_count)) { 413 xas_unlock_irq(&xas); 414 return -EAGAIN; 415 } 416 417 /* 418 * Now we know that no one else is looking at the page: 419 * no turning back from here. 420 */ 421 newpage->index = page->index; 422 newpage->mapping = page->mapping; 423 page_ref_add(newpage, nr); /* add cache reference */ 424 if (PageSwapBacked(page)) { 425 __SetPageSwapBacked(newpage); 426 if (PageSwapCache(page)) { 427 SetPageSwapCache(newpage); 428 set_page_private(newpage, page_private(page)); 429 } 430 } else { 431 VM_BUG_ON_PAGE(PageSwapCache(page), page); 432 } 433 434 /* Move dirty while page refs frozen and newpage not yet exposed */ 435 dirty = PageDirty(page); 436 if (dirty) { 437 ClearPageDirty(page); 438 SetPageDirty(newpage); 439 } 440 441 xas_store(&xas, newpage); 442 if (PageTransHuge(page)) { 443 int i; 444 445 for (i = 1; i < nr; i++) { 446 xas_next(&xas); 447 xas_store(&xas, newpage); 448 } 449 } 450 451 /* 452 * Drop cache reference from old page by unfreezing 453 * to one less reference. 454 * We know this isn't the last reference. 455 */ 456 page_ref_unfreeze(page, expected_count - nr); 457 458 xas_unlock(&xas); 459 /* Leave irq disabled to prevent preemption while updating stats */ 460 461 /* 462 * If moved to a different zone then also account 463 * the page for that zone. Other VM counters will be 464 * taken care of when we establish references to the 465 * new page and drop references to the old page. 466 * 467 * Note that anonymous pages are accounted for 468 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 469 * are mapped to swap space. 470 */ 471 if (newzone != oldzone) { 472 struct lruvec *old_lruvec, *new_lruvec; 473 struct mem_cgroup *memcg; 474 475 memcg = page_memcg(page); 476 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 477 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 478 479 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 480 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 481 if (PageSwapBacked(page) && !PageSwapCache(page)) { 482 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 483 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 484 } 485 #ifdef CONFIG_SWAP 486 if (PageSwapCache(page)) { 487 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 488 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 489 } 490 #endif 491 if (dirty && mapping_can_writeback(mapping)) { 492 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 493 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 494 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 495 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 496 } 497 } 498 local_irq_enable(); 499 500 return MIGRATEPAGE_SUCCESS; 501 } 502 EXPORT_SYMBOL(migrate_page_move_mapping); 503 504 /* 505 * The expected number of remaining references is the same as that 506 * of migrate_page_move_mapping(). 507 */ 508 int migrate_huge_page_move_mapping(struct address_space *mapping, 509 struct page *newpage, struct page *page) 510 { 511 XA_STATE(xas, &mapping->i_pages, page_index(page)); 512 int expected_count; 513 514 xas_lock_irq(&xas); 515 expected_count = 2 + page_has_private(page); 516 if (page_count(page) != expected_count || xas_load(&xas) != page) { 517 xas_unlock_irq(&xas); 518 return -EAGAIN; 519 } 520 521 if (!page_ref_freeze(page, expected_count)) { 522 xas_unlock_irq(&xas); 523 return -EAGAIN; 524 } 525 526 newpage->index = page->index; 527 newpage->mapping = page->mapping; 528 529 get_page(newpage); 530 531 xas_store(&xas, newpage); 532 533 page_ref_unfreeze(page, expected_count - 1); 534 535 xas_unlock_irq(&xas); 536 537 return MIGRATEPAGE_SUCCESS; 538 } 539 540 /* 541 * Copy the page to its new location 542 */ 543 void migrate_page_states(struct page *newpage, struct page *page) 544 { 545 int cpupid; 546 547 if (PageError(page)) 548 SetPageError(newpage); 549 if (PageReferenced(page)) 550 SetPageReferenced(newpage); 551 if (PageUptodate(page)) 552 SetPageUptodate(newpage); 553 if (TestClearPageActive(page)) { 554 VM_BUG_ON_PAGE(PageUnevictable(page), page); 555 SetPageActive(newpage); 556 } else if (TestClearPageUnevictable(page)) 557 SetPageUnevictable(newpage); 558 if (PageWorkingset(page)) 559 SetPageWorkingset(newpage); 560 if (PageChecked(page)) 561 SetPageChecked(newpage); 562 if (PageMappedToDisk(page)) 563 SetPageMappedToDisk(newpage); 564 565 /* Move dirty on pages not done by migrate_page_move_mapping() */ 566 if (PageDirty(page)) 567 SetPageDirty(newpage); 568 569 if (page_is_young(page)) 570 set_page_young(newpage); 571 if (page_is_idle(page)) 572 set_page_idle(newpage); 573 574 /* 575 * Copy NUMA information to the new page, to prevent over-eager 576 * future migrations of this same page. 577 */ 578 cpupid = page_cpupid_xchg_last(page, -1); 579 page_cpupid_xchg_last(newpage, cpupid); 580 581 ksm_migrate_page(newpage, page); 582 /* 583 * Please do not reorder this without considering how mm/ksm.c's 584 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 585 */ 586 if (PageSwapCache(page)) 587 ClearPageSwapCache(page); 588 ClearPagePrivate(page); 589 590 /* page->private contains hugetlb specific flags */ 591 if (!PageHuge(page)) 592 set_page_private(page, 0); 593 594 /* 595 * If any waiters have accumulated on the new page then 596 * wake them up. 597 */ 598 if (PageWriteback(newpage)) 599 end_page_writeback(newpage); 600 601 /* 602 * PG_readahead shares the same bit with PG_reclaim. The above 603 * end_page_writeback() may clear PG_readahead mistakenly, so set the 604 * bit after that. 605 */ 606 if (PageReadahead(page)) 607 SetPageReadahead(newpage); 608 609 copy_page_owner(page, newpage); 610 611 if (!PageHuge(page)) 612 mem_cgroup_migrate(page, newpage); 613 } 614 EXPORT_SYMBOL(migrate_page_states); 615 616 void migrate_page_copy(struct page *newpage, struct page *page) 617 { 618 if (PageHuge(page) || PageTransHuge(page)) 619 copy_huge_page(newpage, page); 620 else 621 copy_highpage(newpage, page); 622 623 migrate_page_states(newpage, page); 624 } 625 EXPORT_SYMBOL(migrate_page_copy); 626 627 /************************************************************ 628 * Migration functions 629 ***********************************************************/ 630 631 /* 632 * Common logic to directly migrate a single LRU page suitable for 633 * pages that do not use PagePrivate/PagePrivate2. 634 * 635 * Pages are locked upon entry and exit. 636 */ 637 int migrate_page(struct address_space *mapping, 638 struct page *newpage, struct page *page, 639 enum migrate_mode mode) 640 { 641 int rc; 642 643 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 644 645 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 646 647 if (rc != MIGRATEPAGE_SUCCESS) 648 return rc; 649 650 if (mode != MIGRATE_SYNC_NO_COPY) 651 migrate_page_copy(newpage, page); 652 else 653 migrate_page_states(newpage, page); 654 return MIGRATEPAGE_SUCCESS; 655 } 656 EXPORT_SYMBOL(migrate_page); 657 658 #ifdef CONFIG_BLOCK 659 /* Returns true if all buffers are successfully locked */ 660 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 661 enum migrate_mode mode) 662 { 663 struct buffer_head *bh = head; 664 665 /* Simple case, sync compaction */ 666 if (mode != MIGRATE_ASYNC) { 667 do { 668 lock_buffer(bh); 669 bh = bh->b_this_page; 670 671 } while (bh != head); 672 673 return true; 674 } 675 676 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 677 do { 678 if (!trylock_buffer(bh)) { 679 /* 680 * We failed to lock the buffer and cannot stall in 681 * async migration. Release the taken locks 682 */ 683 struct buffer_head *failed_bh = bh; 684 bh = head; 685 while (bh != failed_bh) { 686 unlock_buffer(bh); 687 bh = bh->b_this_page; 688 } 689 return false; 690 } 691 692 bh = bh->b_this_page; 693 } while (bh != head); 694 return true; 695 } 696 697 static int __buffer_migrate_page(struct address_space *mapping, 698 struct page *newpage, struct page *page, enum migrate_mode mode, 699 bool check_refs) 700 { 701 struct buffer_head *bh, *head; 702 int rc; 703 int expected_count; 704 705 if (!page_has_buffers(page)) 706 return migrate_page(mapping, newpage, page, mode); 707 708 /* Check whether page does not have extra refs before we do more work */ 709 expected_count = expected_page_refs(mapping, page); 710 if (page_count(page) != expected_count) 711 return -EAGAIN; 712 713 head = page_buffers(page); 714 if (!buffer_migrate_lock_buffers(head, mode)) 715 return -EAGAIN; 716 717 if (check_refs) { 718 bool busy; 719 bool invalidated = false; 720 721 recheck_buffers: 722 busy = false; 723 spin_lock(&mapping->private_lock); 724 bh = head; 725 do { 726 if (atomic_read(&bh->b_count)) { 727 busy = true; 728 break; 729 } 730 bh = bh->b_this_page; 731 } while (bh != head); 732 if (busy) { 733 if (invalidated) { 734 rc = -EAGAIN; 735 goto unlock_buffers; 736 } 737 spin_unlock(&mapping->private_lock); 738 invalidate_bh_lrus(); 739 invalidated = true; 740 goto recheck_buffers; 741 } 742 } 743 744 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 745 if (rc != MIGRATEPAGE_SUCCESS) 746 goto unlock_buffers; 747 748 attach_page_private(newpage, detach_page_private(page)); 749 750 bh = head; 751 do { 752 set_bh_page(bh, newpage, bh_offset(bh)); 753 bh = bh->b_this_page; 754 755 } while (bh != head); 756 757 if (mode != MIGRATE_SYNC_NO_COPY) 758 migrate_page_copy(newpage, page); 759 else 760 migrate_page_states(newpage, page); 761 762 rc = MIGRATEPAGE_SUCCESS; 763 unlock_buffers: 764 if (check_refs) 765 spin_unlock(&mapping->private_lock); 766 bh = head; 767 do { 768 unlock_buffer(bh); 769 bh = bh->b_this_page; 770 771 } while (bh != head); 772 773 return rc; 774 } 775 776 /* 777 * Migration function for pages with buffers. This function can only be used 778 * if the underlying filesystem guarantees that no other references to "page" 779 * exist. For example attached buffer heads are accessed only under page lock. 780 */ 781 int buffer_migrate_page(struct address_space *mapping, 782 struct page *newpage, struct page *page, enum migrate_mode mode) 783 { 784 return __buffer_migrate_page(mapping, newpage, page, mode, false); 785 } 786 EXPORT_SYMBOL(buffer_migrate_page); 787 788 /* 789 * Same as above except that this variant is more careful and checks that there 790 * are also no buffer head references. This function is the right one for 791 * mappings where buffer heads are directly looked up and referenced (such as 792 * block device mappings). 793 */ 794 int buffer_migrate_page_norefs(struct address_space *mapping, 795 struct page *newpage, struct page *page, enum migrate_mode mode) 796 { 797 return __buffer_migrate_page(mapping, newpage, page, mode, true); 798 } 799 #endif 800 801 /* 802 * Writeback a page to clean the dirty state 803 */ 804 static int writeout(struct address_space *mapping, struct page *page) 805 { 806 struct writeback_control wbc = { 807 .sync_mode = WB_SYNC_NONE, 808 .nr_to_write = 1, 809 .range_start = 0, 810 .range_end = LLONG_MAX, 811 .for_reclaim = 1 812 }; 813 int rc; 814 815 if (!mapping->a_ops->writepage) 816 /* No write method for the address space */ 817 return -EINVAL; 818 819 if (!clear_page_dirty_for_io(page)) 820 /* Someone else already triggered a write */ 821 return -EAGAIN; 822 823 /* 824 * A dirty page may imply that the underlying filesystem has 825 * the page on some queue. So the page must be clean for 826 * migration. Writeout may mean we loose the lock and the 827 * page state is no longer what we checked for earlier. 828 * At this point we know that the migration attempt cannot 829 * be successful. 830 */ 831 remove_migration_ptes(page, page, false); 832 833 rc = mapping->a_ops->writepage(page, &wbc); 834 835 if (rc != AOP_WRITEPAGE_ACTIVATE) 836 /* unlocked. Relock */ 837 lock_page(page); 838 839 return (rc < 0) ? -EIO : -EAGAIN; 840 } 841 842 /* 843 * Default handling if a filesystem does not provide a migration function. 844 */ 845 static int fallback_migrate_page(struct address_space *mapping, 846 struct page *newpage, struct page *page, enum migrate_mode mode) 847 { 848 if (PageDirty(page)) { 849 /* Only writeback pages in full synchronous migration */ 850 switch (mode) { 851 case MIGRATE_SYNC: 852 case MIGRATE_SYNC_NO_COPY: 853 break; 854 default: 855 return -EBUSY; 856 } 857 return writeout(mapping, page); 858 } 859 860 /* 861 * Buffers may be managed in a filesystem specific way. 862 * We must have no buffers or drop them. 863 */ 864 if (page_has_private(page) && 865 !try_to_release_page(page, GFP_KERNEL)) 866 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 867 868 return migrate_page(mapping, newpage, page, mode); 869 } 870 871 /* 872 * Move a page to a newly allocated page 873 * The page is locked and all ptes have been successfully removed. 874 * 875 * The new page will have replaced the old page if this function 876 * is successful. 877 * 878 * Return value: 879 * < 0 - error code 880 * MIGRATEPAGE_SUCCESS - success 881 */ 882 static int move_to_new_page(struct page *newpage, struct page *page, 883 enum migrate_mode mode) 884 { 885 struct address_space *mapping; 886 int rc = -EAGAIN; 887 bool is_lru = !__PageMovable(page); 888 889 VM_BUG_ON_PAGE(!PageLocked(page), page); 890 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 891 892 mapping = page_mapping(page); 893 894 if (likely(is_lru)) { 895 if (!mapping) 896 rc = migrate_page(mapping, newpage, page, mode); 897 else if (mapping->a_ops->migratepage) 898 /* 899 * Most pages have a mapping and most filesystems 900 * provide a migratepage callback. Anonymous pages 901 * are part of swap space which also has its own 902 * migratepage callback. This is the most common path 903 * for page migration. 904 */ 905 rc = mapping->a_ops->migratepage(mapping, newpage, 906 page, mode); 907 else 908 rc = fallback_migrate_page(mapping, newpage, 909 page, mode); 910 } else { 911 /* 912 * In case of non-lru page, it could be released after 913 * isolation step. In that case, we shouldn't try migration. 914 */ 915 VM_BUG_ON_PAGE(!PageIsolated(page), page); 916 if (!PageMovable(page)) { 917 rc = MIGRATEPAGE_SUCCESS; 918 __ClearPageIsolated(page); 919 goto out; 920 } 921 922 rc = mapping->a_ops->migratepage(mapping, newpage, 923 page, mode); 924 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 925 !PageIsolated(page)); 926 } 927 928 /* 929 * When successful, old pagecache page->mapping must be cleared before 930 * page is freed; but stats require that PageAnon be left as PageAnon. 931 */ 932 if (rc == MIGRATEPAGE_SUCCESS) { 933 if (__PageMovable(page)) { 934 VM_BUG_ON_PAGE(!PageIsolated(page), page); 935 936 /* 937 * We clear PG_movable under page_lock so any compactor 938 * cannot try to migrate this page. 939 */ 940 __ClearPageIsolated(page); 941 } 942 943 /* 944 * Anonymous and movable page->mapping will be cleared by 945 * free_pages_prepare so don't reset it here for keeping 946 * the type to work PageAnon, for example. 947 */ 948 if (!PageMappingFlags(page)) 949 page->mapping = NULL; 950 951 if (likely(!is_zone_device_page(newpage))) 952 flush_dcache_page(newpage); 953 954 } 955 out: 956 return rc; 957 } 958 959 static int __unmap_and_move(struct page *page, struct page *newpage, 960 int force, enum migrate_mode mode) 961 { 962 int rc = -EAGAIN; 963 int page_was_mapped = 0; 964 struct anon_vma *anon_vma = NULL; 965 bool is_lru = !__PageMovable(page); 966 967 if (!trylock_page(page)) { 968 if (!force || mode == MIGRATE_ASYNC) 969 goto out; 970 971 /* 972 * It's not safe for direct compaction to call lock_page. 973 * For example, during page readahead pages are added locked 974 * to the LRU. Later, when the IO completes the pages are 975 * marked uptodate and unlocked. However, the queueing 976 * could be merging multiple pages for one bio (e.g. 977 * mpage_readahead). If an allocation happens for the 978 * second or third page, the process can end up locking 979 * the same page twice and deadlocking. Rather than 980 * trying to be clever about what pages can be locked, 981 * avoid the use of lock_page for direct compaction 982 * altogether. 983 */ 984 if (current->flags & PF_MEMALLOC) 985 goto out; 986 987 lock_page(page); 988 } 989 990 if (PageWriteback(page)) { 991 /* 992 * Only in the case of a full synchronous migration is it 993 * necessary to wait for PageWriteback. In the async case, 994 * the retry loop is too short and in the sync-light case, 995 * the overhead of stalling is too much 996 */ 997 switch (mode) { 998 case MIGRATE_SYNC: 999 case MIGRATE_SYNC_NO_COPY: 1000 break; 1001 default: 1002 rc = -EBUSY; 1003 goto out_unlock; 1004 } 1005 if (!force) 1006 goto out_unlock; 1007 wait_on_page_writeback(page); 1008 } 1009 1010 /* 1011 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1012 * we cannot notice that anon_vma is freed while we migrates a page. 1013 * This get_anon_vma() delays freeing anon_vma pointer until the end 1014 * of migration. File cache pages are no problem because of page_lock() 1015 * File Caches may use write_page() or lock_page() in migration, then, 1016 * just care Anon page here. 1017 * 1018 * Only page_get_anon_vma() understands the subtleties of 1019 * getting a hold on an anon_vma from outside one of its mms. 1020 * But if we cannot get anon_vma, then we won't need it anyway, 1021 * because that implies that the anon page is no longer mapped 1022 * (and cannot be remapped so long as we hold the page lock). 1023 */ 1024 if (PageAnon(page) && !PageKsm(page)) 1025 anon_vma = page_get_anon_vma(page); 1026 1027 /* 1028 * Block others from accessing the new page when we get around to 1029 * establishing additional references. We are usually the only one 1030 * holding a reference to newpage at this point. We used to have a BUG 1031 * here if trylock_page(newpage) fails, but would like to allow for 1032 * cases where there might be a race with the previous use of newpage. 1033 * This is much like races on refcount of oldpage: just don't BUG(). 1034 */ 1035 if (unlikely(!trylock_page(newpage))) 1036 goto out_unlock; 1037 1038 if (unlikely(!is_lru)) { 1039 rc = move_to_new_page(newpage, page, mode); 1040 goto out_unlock_both; 1041 } 1042 1043 /* 1044 * Corner case handling: 1045 * 1. When a new swap-cache page is read into, it is added to the LRU 1046 * and treated as swapcache but it has no rmap yet. 1047 * Calling try_to_unmap() against a page->mapping==NULL page will 1048 * trigger a BUG. So handle it here. 1049 * 2. An orphaned page (see truncate_cleanup_page) might have 1050 * fs-private metadata. The page can be picked up due to memory 1051 * offlining. Everywhere else except page reclaim, the page is 1052 * invisible to the vm, so the page can not be migrated. So try to 1053 * free the metadata, so the page can be freed. 1054 */ 1055 if (!page->mapping) { 1056 VM_BUG_ON_PAGE(PageAnon(page), page); 1057 if (page_has_private(page)) { 1058 try_to_free_buffers(page); 1059 goto out_unlock_both; 1060 } 1061 } else if (page_mapped(page)) { 1062 /* Establish migration ptes */ 1063 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1064 page); 1065 try_to_migrate(page, 0); 1066 page_was_mapped = 1; 1067 } 1068 1069 if (!page_mapped(page)) 1070 rc = move_to_new_page(newpage, page, mode); 1071 1072 if (page_was_mapped) 1073 remove_migration_ptes(page, 1074 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1075 1076 out_unlock_both: 1077 unlock_page(newpage); 1078 out_unlock: 1079 /* Drop an anon_vma reference if we took one */ 1080 if (anon_vma) 1081 put_anon_vma(anon_vma); 1082 unlock_page(page); 1083 out: 1084 /* 1085 * If migration is successful, decrease refcount of the newpage 1086 * which will not free the page because new page owner increased 1087 * refcounter. As well, if it is LRU page, add the page to LRU 1088 * list in here. Use the old state of the isolated source page to 1089 * determine if we migrated a LRU page. newpage was already unlocked 1090 * and possibly modified by its owner - don't rely on the page 1091 * state. 1092 */ 1093 if (rc == MIGRATEPAGE_SUCCESS) { 1094 if (unlikely(!is_lru)) 1095 put_page(newpage); 1096 else 1097 putback_lru_page(newpage); 1098 } 1099 1100 return rc; 1101 } 1102 1103 1104 /* 1105 * node_demotion[] example: 1106 * 1107 * Consider a system with two sockets. Each socket has 1108 * three classes of memory attached: fast, medium and slow. 1109 * Each memory class is placed in its own NUMA node. The 1110 * CPUs are placed in the node with the "fast" memory. The 1111 * 6 NUMA nodes (0-5) might be split among the sockets like 1112 * this: 1113 * 1114 * Socket A: 0, 1, 2 1115 * Socket B: 3, 4, 5 1116 * 1117 * When Node 0 fills up, its memory should be migrated to 1118 * Node 1. When Node 1 fills up, it should be migrated to 1119 * Node 2. The migration path start on the nodes with the 1120 * processors (since allocations default to this node) and 1121 * fast memory, progress through medium and end with the 1122 * slow memory: 1123 * 1124 * 0 -> 1 -> 2 -> stop 1125 * 3 -> 4 -> 5 -> stop 1126 * 1127 * This is represented in the node_demotion[] like this: 1128 * 1129 * { 1, // Node 0 migrates to 1 1130 * 2, // Node 1 migrates to 2 1131 * -1, // Node 2 does not migrate 1132 * 4, // Node 3 migrates to 4 1133 * 5, // Node 4 migrates to 5 1134 * -1} // Node 5 does not migrate 1135 */ 1136 1137 /* 1138 * Writes to this array occur without locking. Cycles are 1139 * not allowed: Node X demotes to Y which demotes to X... 1140 * 1141 * If multiple reads are performed, a single rcu_read_lock() 1142 * must be held over all reads to ensure that no cycles are 1143 * observed. 1144 */ 1145 static int node_demotion[MAX_NUMNODES] __read_mostly = 1146 {[0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE}; 1147 1148 /** 1149 * next_demotion_node() - Get the next node in the demotion path 1150 * @node: The starting node to lookup the next node 1151 * 1152 * Return: node id for next memory node in the demotion path hierarchy 1153 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 1154 * @node online or guarantee that it *continues* to be the next demotion 1155 * target. 1156 */ 1157 int next_demotion_node(int node) 1158 { 1159 int target; 1160 1161 /* 1162 * node_demotion[] is updated without excluding this 1163 * function from running. RCU doesn't provide any 1164 * compiler barriers, so the READ_ONCE() is required 1165 * to avoid compiler reordering or read merging. 1166 * 1167 * Make sure to use RCU over entire code blocks if 1168 * node_demotion[] reads need to be consistent. 1169 */ 1170 rcu_read_lock(); 1171 target = READ_ONCE(node_demotion[node]); 1172 rcu_read_unlock(); 1173 1174 return target; 1175 } 1176 1177 /* 1178 * Obtain the lock on page, remove all ptes and migrate the page 1179 * to the newly allocated page in newpage. 1180 */ 1181 static int unmap_and_move(new_page_t get_new_page, 1182 free_page_t put_new_page, 1183 unsigned long private, struct page *page, 1184 int force, enum migrate_mode mode, 1185 enum migrate_reason reason, 1186 struct list_head *ret) 1187 { 1188 int rc = MIGRATEPAGE_SUCCESS; 1189 struct page *newpage = NULL; 1190 1191 if (!thp_migration_supported() && PageTransHuge(page)) 1192 return -ENOSYS; 1193 1194 if (page_count(page) == 1) { 1195 /* page was freed from under us. So we are done. */ 1196 ClearPageActive(page); 1197 ClearPageUnevictable(page); 1198 if (unlikely(__PageMovable(page))) { 1199 lock_page(page); 1200 if (!PageMovable(page)) 1201 __ClearPageIsolated(page); 1202 unlock_page(page); 1203 } 1204 goto out; 1205 } 1206 1207 newpage = get_new_page(page, private); 1208 if (!newpage) 1209 return -ENOMEM; 1210 1211 rc = __unmap_and_move(page, newpage, force, mode); 1212 if (rc == MIGRATEPAGE_SUCCESS) 1213 set_page_owner_migrate_reason(newpage, reason); 1214 1215 out: 1216 if (rc != -EAGAIN) { 1217 /* 1218 * A page that has been migrated has all references 1219 * removed and will be freed. A page that has not been 1220 * migrated will have kept its references and be restored. 1221 */ 1222 list_del(&page->lru); 1223 } 1224 1225 /* 1226 * If migration is successful, releases reference grabbed during 1227 * isolation. Otherwise, restore the page to right list unless 1228 * we want to retry. 1229 */ 1230 if (rc == MIGRATEPAGE_SUCCESS) { 1231 /* 1232 * Compaction can migrate also non-LRU pages which are 1233 * not accounted to NR_ISOLATED_*. They can be recognized 1234 * as __PageMovable 1235 */ 1236 if (likely(!__PageMovable(page))) 1237 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1238 page_is_file_lru(page), -thp_nr_pages(page)); 1239 1240 if (reason != MR_MEMORY_FAILURE) 1241 /* 1242 * We release the page in page_handle_poison. 1243 */ 1244 put_page(page); 1245 } else { 1246 if (rc != -EAGAIN) 1247 list_add_tail(&page->lru, ret); 1248 1249 if (put_new_page) 1250 put_new_page(newpage, private); 1251 else 1252 put_page(newpage); 1253 } 1254 1255 return rc; 1256 } 1257 1258 /* 1259 * Counterpart of unmap_and_move_page() for hugepage migration. 1260 * 1261 * This function doesn't wait the completion of hugepage I/O 1262 * because there is no race between I/O and migration for hugepage. 1263 * Note that currently hugepage I/O occurs only in direct I/O 1264 * where no lock is held and PG_writeback is irrelevant, 1265 * and writeback status of all subpages are counted in the reference 1266 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1267 * under direct I/O, the reference of the head page is 512 and a bit more.) 1268 * This means that when we try to migrate hugepage whose subpages are 1269 * doing direct I/O, some references remain after try_to_unmap() and 1270 * hugepage migration fails without data corruption. 1271 * 1272 * There is also no race when direct I/O is issued on the page under migration, 1273 * because then pte is replaced with migration swap entry and direct I/O code 1274 * will wait in the page fault for migration to complete. 1275 */ 1276 static int unmap_and_move_huge_page(new_page_t get_new_page, 1277 free_page_t put_new_page, unsigned long private, 1278 struct page *hpage, int force, 1279 enum migrate_mode mode, int reason, 1280 struct list_head *ret) 1281 { 1282 int rc = -EAGAIN; 1283 int page_was_mapped = 0; 1284 struct page *new_hpage; 1285 struct anon_vma *anon_vma = NULL; 1286 struct address_space *mapping = NULL; 1287 1288 /* 1289 * Migratability of hugepages depends on architectures and their size. 1290 * This check is necessary because some callers of hugepage migration 1291 * like soft offline and memory hotremove don't walk through page 1292 * tables or check whether the hugepage is pmd-based or not before 1293 * kicking migration. 1294 */ 1295 if (!hugepage_migration_supported(page_hstate(hpage))) { 1296 list_move_tail(&hpage->lru, ret); 1297 return -ENOSYS; 1298 } 1299 1300 if (page_count(hpage) == 1) { 1301 /* page was freed from under us. So we are done. */ 1302 putback_active_hugepage(hpage); 1303 return MIGRATEPAGE_SUCCESS; 1304 } 1305 1306 new_hpage = get_new_page(hpage, private); 1307 if (!new_hpage) 1308 return -ENOMEM; 1309 1310 if (!trylock_page(hpage)) { 1311 if (!force) 1312 goto out; 1313 switch (mode) { 1314 case MIGRATE_SYNC: 1315 case MIGRATE_SYNC_NO_COPY: 1316 break; 1317 default: 1318 goto out; 1319 } 1320 lock_page(hpage); 1321 } 1322 1323 /* 1324 * Check for pages which are in the process of being freed. Without 1325 * page_mapping() set, hugetlbfs specific move page routine will not 1326 * be called and we could leak usage counts for subpools. 1327 */ 1328 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) { 1329 rc = -EBUSY; 1330 goto out_unlock; 1331 } 1332 1333 if (PageAnon(hpage)) 1334 anon_vma = page_get_anon_vma(hpage); 1335 1336 if (unlikely(!trylock_page(new_hpage))) 1337 goto put_anon; 1338 1339 if (page_mapped(hpage)) { 1340 bool mapping_locked = false; 1341 enum ttu_flags ttu = 0; 1342 1343 if (!PageAnon(hpage)) { 1344 /* 1345 * In shared mappings, try_to_unmap could potentially 1346 * call huge_pmd_unshare. Because of this, take 1347 * semaphore in write mode here and set TTU_RMAP_LOCKED 1348 * to let lower levels know we have taken the lock. 1349 */ 1350 mapping = hugetlb_page_mapping_lock_write(hpage); 1351 if (unlikely(!mapping)) 1352 goto unlock_put_anon; 1353 1354 mapping_locked = true; 1355 ttu |= TTU_RMAP_LOCKED; 1356 } 1357 1358 try_to_migrate(hpage, ttu); 1359 page_was_mapped = 1; 1360 1361 if (mapping_locked) 1362 i_mmap_unlock_write(mapping); 1363 } 1364 1365 if (!page_mapped(hpage)) 1366 rc = move_to_new_page(new_hpage, hpage, mode); 1367 1368 if (page_was_mapped) 1369 remove_migration_ptes(hpage, 1370 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1371 1372 unlock_put_anon: 1373 unlock_page(new_hpage); 1374 1375 put_anon: 1376 if (anon_vma) 1377 put_anon_vma(anon_vma); 1378 1379 if (rc == MIGRATEPAGE_SUCCESS) { 1380 move_hugetlb_state(hpage, new_hpage, reason); 1381 put_new_page = NULL; 1382 } 1383 1384 out_unlock: 1385 unlock_page(hpage); 1386 out: 1387 if (rc == MIGRATEPAGE_SUCCESS) 1388 putback_active_hugepage(hpage); 1389 else if (rc != -EAGAIN) 1390 list_move_tail(&hpage->lru, ret); 1391 1392 /* 1393 * If migration was not successful and there's a freeing callback, use 1394 * it. Otherwise, put_page() will drop the reference grabbed during 1395 * isolation. 1396 */ 1397 if (put_new_page) 1398 put_new_page(new_hpage, private); 1399 else 1400 putback_active_hugepage(new_hpage); 1401 1402 return rc; 1403 } 1404 1405 static inline int try_split_thp(struct page *page, struct page **page2, 1406 struct list_head *from) 1407 { 1408 int rc = 0; 1409 1410 lock_page(page); 1411 rc = split_huge_page_to_list(page, from); 1412 unlock_page(page); 1413 if (!rc) 1414 list_safe_reset_next(page, *page2, lru); 1415 1416 return rc; 1417 } 1418 1419 /* 1420 * migrate_pages - migrate the pages specified in a list, to the free pages 1421 * supplied as the target for the page migration 1422 * 1423 * @from: The list of pages to be migrated. 1424 * @get_new_page: The function used to allocate free pages to be used 1425 * as the target of the page migration. 1426 * @put_new_page: The function used to free target pages if migration 1427 * fails, or NULL if no special handling is necessary. 1428 * @private: Private data to be passed on to get_new_page() 1429 * @mode: The migration mode that specifies the constraints for 1430 * page migration, if any. 1431 * @reason: The reason for page migration. 1432 * @ret_succeeded: Set to the number of pages migrated successfully if 1433 * the caller passes a non-NULL pointer. 1434 * 1435 * The function returns after 10 attempts or if no pages are movable any more 1436 * because the list has become empty or no retryable pages exist any more. 1437 * It is caller's responsibility to call putback_movable_pages() to return pages 1438 * to the LRU or free list only if ret != 0. 1439 * 1440 * Returns the number of pages that were not migrated, or an error code. 1441 */ 1442 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1443 free_page_t put_new_page, unsigned long private, 1444 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 1445 { 1446 int retry = 1; 1447 int thp_retry = 1; 1448 int nr_failed = 0; 1449 int nr_succeeded = 0; 1450 int nr_thp_succeeded = 0; 1451 int nr_thp_failed = 0; 1452 int nr_thp_split = 0; 1453 int pass = 0; 1454 bool is_thp = false; 1455 struct page *page; 1456 struct page *page2; 1457 int swapwrite = current->flags & PF_SWAPWRITE; 1458 int rc, nr_subpages; 1459 LIST_HEAD(ret_pages); 1460 bool nosplit = (reason == MR_NUMA_MISPLACED); 1461 1462 trace_mm_migrate_pages_start(mode, reason); 1463 1464 if (!swapwrite) 1465 current->flags |= PF_SWAPWRITE; 1466 1467 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1468 retry = 0; 1469 thp_retry = 0; 1470 1471 list_for_each_entry_safe(page, page2, from, lru) { 1472 retry: 1473 /* 1474 * THP statistics is based on the source huge page. 1475 * Capture required information that might get lost 1476 * during migration. 1477 */ 1478 is_thp = PageTransHuge(page) && !PageHuge(page); 1479 nr_subpages = thp_nr_pages(page); 1480 cond_resched(); 1481 1482 if (PageHuge(page)) 1483 rc = unmap_and_move_huge_page(get_new_page, 1484 put_new_page, private, page, 1485 pass > 2, mode, reason, 1486 &ret_pages); 1487 else 1488 rc = unmap_and_move(get_new_page, put_new_page, 1489 private, page, pass > 2, mode, 1490 reason, &ret_pages); 1491 /* 1492 * The rules are: 1493 * Success: non hugetlb page will be freed, hugetlb 1494 * page will be put back 1495 * -EAGAIN: stay on the from list 1496 * -ENOMEM: stay on the from list 1497 * Other errno: put on ret_pages list then splice to 1498 * from list 1499 */ 1500 switch(rc) { 1501 /* 1502 * THP migration might be unsupported or the 1503 * allocation could've failed so we should 1504 * retry on the same page with the THP split 1505 * to base pages. 1506 * 1507 * Head page is retried immediately and tail 1508 * pages are added to the tail of the list so 1509 * we encounter them after the rest of the list 1510 * is processed. 1511 */ 1512 case -ENOSYS: 1513 /* THP migration is unsupported */ 1514 if (is_thp) { 1515 if (!try_split_thp(page, &page2, from)) { 1516 nr_thp_split++; 1517 goto retry; 1518 } 1519 1520 nr_thp_failed++; 1521 nr_failed += nr_subpages; 1522 break; 1523 } 1524 1525 /* Hugetlb migration is unsupported */ 1526 nr_failed++; 1527 break; 1528 case -ENOMEM: 1529 /* 1530 * When memory is low, don't bother to try to migrate 1531 * other pages, just exit. 1532 * THP NUMA faulting doesn't split THP to retry. 1533 */ 1534 if (is_thp && !nosplit) { 1535 if (!try_split_thp(page, &page2, from)) { 1536 nr_thp_split++; 1537 goto retry; 1538 } 1539 1540 nr_thp_failed++; 1541 nr_failed += nr_subpages; 1542 goto out; 1543 } 1544 nr_failed++; 1545 goto out; 1546 case -EAGAIN: 1547 if (is_thp) { 1548 thp_retry++; 1549 break; 1550 } 1551 retry++; 1552 break; 1553 case MIGRATEPAGE_SUCCESS: 1554 if (is_thp) { 1555 nr_thp_succeeded++; 1556 nr_succeeded += nr_subpages; 1557 break; 1558 } 1559 nr_succeeded++; 1560 break; 1561 default: 1562 /* 1563 * Permanent failure (-EBUSY, etc.): 1564 * unlike -EAGAIN case, the failed page is 1565 * removed from migration page list and not 1566 * retried in the next outer loop. 1567 */ 1568 if (is_thp) { 1569 nr_thp_failed++; 1570 nr_failed += nr_subpages; 1571 break; 1572 } 1573 nr_failed++; 1574 break; 1575 } 1576 } 1577 } 1578 nr_failed += retry + thp_retry; 1579 nr_thp_failed += thp_retry; 1580 rc = nr_failed; 1581 out: 1582 /* 1583 * Put the permanent failure page back to migration list, they 1584 * will be put back to the right list by the caller. 1585 */ 1586 list_splice(&ret_pages, from); 1587 1588 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1589 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1590 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1591 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1592 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1593 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1594 nr_thp_failed, nr_thp_split, mode, reason); 1595 1596 if (!swapwrite) 1597 current->flags &= ~PF_SWAPWRITE; 1598 1599 if (ret_succeeded) 1600 *ret_succeeded = nr_succeeded; 1601 1602 return rc; 1603 } 1604 1605 struct page *alloc_migration_target(struct page *page, unsigned long private) 1606 { 1607 struct migration_target_control *mtc; 1608 gfp_t gfp_mask; 1609 unsigned int order = 0; 1610 struct page *new_page = NULL; 1611 int nid; 1612 int zidx; 1613 1614 mtc = (struct migration_target_control *)private; 1615 gfp_mask = mtc->gfp_mask; 1616 nid = mtc->nid; 1617 if (nid == NUMA_NO_NODE) 1618 nid = page_to_nid(page); 1619 1620 if (PageHuge(page)) { 1621 struct hstate *h = page_hstate(compound_head(page)); 1622 1623 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1624 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1625 } 1626 1627 if (PageTransHuge(page)) { 1628 /* 1629 * clear __GFP_RECLAIM to make the migration callback 1630 * consistent with regular THP allocations. 1631 */ 1632 gfp_mask &= ~__GFP_RECLAIM; 1633 gfp_mask |= GFP_TRANSHUGE; 1634 order = HPAGE_PMD_ORDER; 1635 } 1636 zidx = zone_idx(page_zone(page)); 1637 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1638 gfp_mask |= __GFP_HIGHMEM; 1639 1640 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask); 1641 1642 if (new_page && PageTransHuge(new_page)) 1643 prep_transhuge_page(new_page); 1644 1645 return new_page; 1646 } 1647 1648 #ifdef CONFIG_NUMA 1649 1650 static int store_status(int __user *status, int start, int value, int nr) 1651 { 1652 while (nr-- > 0) { 1653 if (put_user(value, status + start)) 1654 return -EFAULT; 1655 start++; 1656 } 1657 1658 return 0; 1659 } 1660 1661 static int do_move_pages_to_node(struct mm_struct *mm, 1662 struct list_head *pagelist, int node) 1663 { 1664 int err; 1665 struct migration_target_control mtc = { 1666 .nid = node, 1667 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1668 }; 1669 1670 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1671 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 1672 if (err) 1673 putback_movable_pages(pagelist); 1674 return err; 1675 } 1676 1677 /* 1678 * Resolves the given address to a struct page, isolates it from the LRU and 1679 * puts it to the given pagelist. 1680 * Returns: 1681 * errno - if the page cannot be found/isolated 1682 * 0 - when it doesn't have to be migrated because it is already on the 1683 * target node 1684 * 1 - when it has been queued 1685 */ 1686 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1687 int node, struct list_head *pagelist, bool migrate_all) 1688 { 1689 struct vm_area_struct *vma; 1690 struct page *page; 1691 unsigned int follflags; 1692 int err; 1693 1694 mmap_read_lock(mm); 1695 err = -EFAULT; 1696 vma = find_vma(mm, addr); 1697 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1698 goto out; 1699 1700 /* FOLL_DUMP to ignore special (like zero) pages */ 1701 follflags = FOLL_GET | FOLL_DUMP; 1702 page = follow_page(vma, addr, follflags); 1703 1704 err = PTR_ERR(page); 1705 if (IS_ERR(page)) 1706 goto out; 1707 1708 err = -ENOENT; 1709 if (!page) 1710 goto out; 1711 1712 err = 0; 1713 if (page_to_nid(page) == node) 1714 goto out_putpage; 1715 1716 err = -EACCES; 1717 if (page_mapcount(page) > 1 && !migrate_all) 1718 goto out_putpage; 1719 1720 if (PageHuge(page)) { 1721 if (PageHead(page)) { 1722 isolate_huge_page(page, pagelist); 1723 err = 1; 1724 } 1725 } else { 1726 struct page *head; 1727 1728 head = compound_head(page); 1729 err = isolate_lru_page(head); 1730 if (err) 1731 goto out_putpage; 1732 1733 err = 1; 1734 list_add_tail(&head->lru, pagelist); 1735 mod_node_page_state(page_pgdat(head), 1736 NR_ISOLATED_ANON + page_is_file_lru(head), 1737 thp_nr_pages(head)); 1738 } 1739 out_putpage: 1740 /* 1741 * Either remove the duplicate refcount from 1742 * isolate_lru_page() or drop the page ref if it was 1743 * not isolated. 1744 */ 1745 put_page(page); 1746 out: 1747 mmap_read_unlock(mm); 1748 return err; 1749 } 1750 1751 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1752 struct list_head *pagelist, int __user *status, 1753 int start, int i, unsigned long nr_pages) 1754 { 1755 int err; 1756 1757 if (list_empty(pagelist)) 1758 return 0; 1759 1760 err = do_move_pages_to_node(mm, pagelist, node); 1761 if (err) { 1762 /* 1763 * Positive err means the number of failed 1764 * pages to migrate. Since we are going to 1765 * abort and return the number of non-migrated 1766 * pages, so need to include the rest of the 1767 * nr_pages that have not been attempted as 1768 * well. 1769 */ 1770 if (err > 0) 1771 err += nr_pages - i - 1; 1772 return err; 1773 } 1774 return store_status(status, start, node, i - start); 1775 } 1776 1777 /* 1778 * Migrate an array of page address onto an array of nodes and fill 1779 * the corresponding array of status. 1780 */ 1781 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1782 unsigned long nr_pages, 1783 const void __user * __user *pages, 1784 const int __user *nodes, 1785 int __user *status, int flags) 1786 { 1787 int current_node = NUMA_NO_NODE; 1788 LIST_HEAD(pagelist); 1789 int start, i; 1790 int err = 0, err1; 1791 1792 lru_cache_disable(); 1793 1794 for (i = start = 0; i < nr_pages; i++) { 1795 const void __user *p; 1796 unsigned long addr; 1797 int node; 1798 1799 err = -EFAULT; 1800 if (get_user(p, pages + i)) 1801 goto out_flush; 1802 if (get_user(node, nodes + i)) 1803 goto out_flush; 1804 addr = (unsigned long)untagged_addr(p); 1805 1806 err = -ENODEV; 1807 if (node < 0 || node >= MAX_NUMNODES) 1808 goto out_flush; 1809 if (!node_state(node, N_MEMORY)) 1810 goto out_flush; 1811 1812 err = -EACCES; 1813 if (!node_isset(node, task_nodes)) 1814 goto out_flush; 1815 1816 if (current_node == NUMA_NO_NODE) { 1817 current_node = node; 1818 start = i; 1819 } else if (node != current_node) { 1820 err = move_pages_and_store_status(mm, current_node, 1821 &pagelist, status, start, i, nr_pages); 1822 if (err) 1823 goto out; 1824 start = i; 1825 current_node = node; 1826 } 1827 1828 /* 1829 * Errors in the page lookup or isolation are not fatal and we simply 1830 * report them via status 1831 */ 1832 err = add_page_for_migration(mm, addr, current_node, 1833 &pagelist, flags & MPOL_MF_MOVE_ALL); 1834 1835 if (err > 0) { 1836 /* The page is successfully queued for migration */ 1837 continue; 1838 } 1839 1840 /* 1841 * If the page is already on the target node (!err), store the 1842 * node, otherwise, store the err. 1843 */ 1844 err = store_status(status, i, err ? : current_node, 1); 1845 if (err) 1846 goto out_flush; 1847 1848 err = move_pages_and_store_status(mm, current_node, &pagelist, 1849 status, start, i, nr_pages); 1850 if (err) 1851 goto out; 1852 current_node = NUMA_NO_NODE; 1853 } 1854 out_flush: 1855 /* Make sure we do not overwrite the existing error */ 1856 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1857 status, start, i, nr_pages); 1858 if (err >= 0) 1859 err = err1; 1860 out: 1861 lru_cache_enable(); 1862 return err; 1863 } 1864 1865 /* 1866 * Determine the nodes of an array of pages and store it in an array of status. 1867 */ 1868 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1869 const void __user **pages, int *status) 1870 { 1871 unsigned long i; 1872 1873 mmap_read_lock(mm); 1874 1875 for (i = 0; i < nr_pages; i++) { 1876 unsigned long addr = (unsigned long)(*pages); 1877 struct vm_area_struct *vma; 1878 struct page *page; 1879 int err = -EFAULT; 1880 1881 vma = vma_lookup(mm, addr); 1882 if (!vma) 1883 goto set_status; 1884 1885 /* FOLL_DUMP to ignore special (like zero) pages */ 1886 page = follow_page(vma, addr, FOLL_DUMP); 1887 1888 err = PTR_ERR(page); 1889 if (IS_ERR(page)) 1890 goto set_status; 1891 1892 err = page ? page_to_nid(page) : -ENOENT; 1893 set_status: 1894 *status = err; 1895 1896 pages++; 1897 status++; 1898 } 1899 1900 mmap_read_unlock(mm); 1901 } 1902 1903 /* 1904 * Determine the nodes of a user array of pages and store it in 1905 * a user array of status. 1906 */ 1907 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1908 const void __user * __user *pages, 1909 int __user *status) 1910 { 1911 #define DO_PAGES_STAT_CHUNK_NR 16 1912 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1913 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1914 1915 while (nr_pages) { 1916 unsigned long chunk_nr; 1917 1918 chunk_nr = nr_pages; 1919 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1920 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1921 1922 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1923 break; 1924 1925 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1926 1927 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1928 break; 1929 1930 pages += chunk_nr; 1931 status += chunk_nr; 1932 nr_pages -= chunk_nr; 1933 } 1934 return nr_pages ? -EFAULT : 0; 1935 } 1936 1937 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 1938 { 1939 struct task_struct *task; 1940 struct mm_struct *mm; 1941 1942 /* 1943 * There is no need to check if current process has the right to modify 1944 * the specified process when they are same. 1945 */ 1946 if (!pid) { 1947 mmget(current->mm); 1948 *mem_nodes = cpuset_mems_allowed(current); 1949 return current->mm; 1950 } 1951 1952 /* Find the mm_struct */ 1953 rcu_read_lock(); 1954 task = find_task_by_vpid(pid); 1955 if (!task) { 1956 rcu_read_unlock(); 1957 return ERR_PTR(-ESRCH); 1958 } 1959 get_task_struct(task); 1960 1961 /* 1962 * Check if this process has the right to modify the specified 1963 * process. Use the regular "ptrace_may_access()" checks. 1964 */ 1965 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1966 rcu_read_unlock(); 1967 mm = ERR_PTR(-EPERM); 1968 goto out; 1969 } 1970 rcu_read_unlock(); 1971 1972 mm = ERR_PTR(security_task_movememory(task)); 1973 if (IS_ERR(mm)) 1974 goto out; 1975 *mem_nodes = cpuset_mems_allowed(task); 1976 mm = get_task_mm(task); 1977 out: 1978 put_task_struct(task); 1979 if (!mm) 1980 mm = ERR_PTR(-EINVAL); 1981 return mm; 1982 } 1983 1984 /* 1985 * Move a list of pages in the address space of the currently executing 1986 * process. 1987 */ 1988 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1989 const void __user * __user *pages, 1990 const int __user *nodes, 1991 int __user *status, int flags) 1992 { 1993 struct mm_struct *mm; 1994 int err; 1995 nodemask_t task_nodes; 1996 1997 /* Check flags */ 1998 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1999 return -EINVAL; 2000 2001 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2002 return -EPERM; 2003 2004 mm = find_mm_struct(pid, &task_nodes); 2005 if (IS_ERR(mm)) 2006 return PTR_ERR(mm); 2007 2008 if (nodes) 2009 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2010 nodes, status, flags); 2011 else 2012 err = do_pages_stat(mm, nr_pages, pages, status); 2013 2014 mmput(mm); 2015 return err; 2016 } 2017 2018 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2019 const void __user * __user *, pages, 2020 const int __user *, nodes, 2021 int __user *, status, int, flags) 2022 { 2023 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2024 } 2025 2026 #ifdef CONFIG_COMPAT 2027 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 2028 compat_uptr_t __user *, pages32, 2029 const int __user *, nodes, 2030 int __user *, status, 2031 int, flags) 2032 { 2033 const void __user * __user *pages; 2034 int i; 2035 2036 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 2037 for (i = 0; i < nr_pages; i++) { 2038 compat_uptr_t p; 2039 2040 if (get_user(p, pages32 + i) || 2041 put_user(compat_ptr(p), pages + i)) 2042 return -EFAULT; 2043 } 2044 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2045 } 2046 #endif /* CONFIG_COMPAT */ 2047 2048 #ifdef CONFIG_NUMA_BALANCING 2049 /* 2050 * Returns true if this is a safe migration target node for misplaced NUMA 2051 * pages. Currently it only checks the watermarks which crude 2052 */ 2053 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2054 unsigned long nr_migrate_pages) 2055 { 2056 int z; 2057 2058 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2059 struct zone *zone = pgdat->node_zones + z; 2060 2061 if (!populated_zone(zone)) 2062 continue; 2063 2064 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2065 if (!zone_watermark_ok(zone, 0, 2066 high_wmark_pages(zone) + 2067 nr_migrate_pages, 2068 ZONE_MOVABLE, 0)) 2069 continue; 2070 return true; 2071 } 2072 return false; 2073 } 2074 2075 static struct page *alloc_misplaced_dst_page(struct page *page, 2076 unsigned long data) 2077 { 2078 int nid = (int) data; 2079 struct page *newpage; 2080 2081 newpage = __alloc_pages_node(nid, 2082 (GFP_HIGHUSER_MOVABLE | 2083 __GFP_THISNODE | __GFP_NOMEMALLOC | 2084 __GFP_NORETRY | __GFP_NOWARN) & 2085 ~__GFP_RECLAIM, 0); 2086 2087 return newpage; 2088 } 2089 2090 static struct page *alloc_misplaced_dst_page_thp(struct page *page, 2091 unsigned long data) 2092 { 2093 int nid = (int) data; 2094 struct page *newpage; 2095 2096 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2097 HPAGE_PMD_ORDER); 2098 if (!newpage) 2099 goto out; 2100 2101 prep_transhuge_page(newpage); 2102 2103 out: 2104 return newpage; 2105 } 2106 2107 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2108 { 2109 int page_lru; 2110 2111 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2112 2113 /* Do not migrate THP mapped by multiple processes */ 2114 if (PageTransHuge(page) && total_mapcount(page) > 1) 2115 return 0; 2116 2117 /* Avoid migrating to a node that is nearly full */ 2118 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2119 return 0; 2120 2121 if (isolate_lru_page(page)) 2122 return 0; 2123 2124 page_lru = page_is_file_lru(page); 2125 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2126 thp_nr_pages(page)); 2127 2128 /* 2129 * Isolating the page has taken another reference, so the 2130 * caller's reference can be safely dropped without the page 2131 * disappearing underneath us during migration. 2132 */ 2133 put_page(page); 2134 return 1; 2135 } 2136 2137 /* 2138 * Attempt to migrate a misplaced page to the specified destination 2139 * node. Caller is expected to have an elevated reference count on 2140 * the page that will be dropped by this function before returning. 2141 */ 2142 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2143 int node) 2144 { 2145 pg_data_t *pgdat = NODE_DATA(node); 2146 int isolated; 2147 int nr_remaining; 2148 LIST_HEAD(migratepages); 2149 new_page_t *new; 2150 bool compound; 2151 int nr_pages = thp_nr_pages(page); 2152 2153 /* 2154 * PTE mapped THP or HugeTLB page can't reach here so the page could 2155 * be either base page or THP. And it must be head page if it is 2156 * THP. 2157 */ 2158 compound = PageTransHuge(page); 2159 2160 if (compound) 2161 new = alloc_misplaced_dst_page_thp; 2162 else 2163 new = alloc_misplaced_dst_page; 2164 2165 /* 2166 * Don't migrate file pages that are mapped in multiple processes 2167 * with execute permissions as they are probably shared libraries. 2168 */ 2169 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2170 (vma->vm_flags & VM_EXEC)) 2171 goto out; 2172 2173 /* 2174 * Also do not migrate dirty pages as not all filesystems can move 2175 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2176 */ 2177 if (page_is_file_lru(page) && PageDirty(page)) 2178 goto out; 2179 2180 isolated = numamigrate_isolate_page(pgdat, page); 2181 if (!isolated) 2182 goto out; 2183 2184 list_add(&page->lru, &migratepages); 2185 nr_remaining = migrate_pages(&migratepages, *new, NULL, node, 2186 MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL); 2187 if (nr_remaining) { 2188 if (!list_empty(&migratepages)) { 2189 list_del(&page->lru); 2190 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 2191 page_is_file_lru(page), -nr_pages); 2192 putback_lru_page(page); 2193 } 2194 isolated = 0; 2195 } else 2196 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages); 2197 BUG_ON(!list_empty(&migratepages)); 2198 return isolated; 2199 2200 out: 2201 put_page(page); 2202 return 0; 2203 } 2204 #endif /* CONFIG_NUMA_BALANCING */ 2205 #endif /* CONFIG_NUMA */ 2206 2207 #ifdef CONFIG_DEVICE_PRIVATE 2208 static int migrate_vma_collect_skip(unsigned long start, 2209 unsigned long end, 2210 struct mm_walk *walk) 2211 { 2212 struct migrate_vma *migrate = walk->private; 2213 unsigned long addr; 2214 2215 for (addr = start; addr < end; addr += PAGE_SIZE) { 2216 migrate->dst[migrate->npages] = 0; 2217 migrate->src[migrate->npages++] = 0; 2218 } 2219 2220 return 0; 2221 } 2222 2223 static int migrate_vma_collect_hole(unsigned long start, 2224 unsigned long end, 2225 __always_unused int depth, 2226 struct mm_walk *walk) 2227 { 2228 struct migrate_vma *migrate = walk->private; 2229 unsigned long addr; 2230 2231 /* Only allow populating anonymous memory. */ 2232 if (!vma_is_anonymous(walk->vma)) 2233 return migrate_vma_collect_skip(start, end, walk); 2234 2235 for (addr = start; addr < end; addr += PAGE_SIZE) { 2236 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2237 migrate->dst[migrate->npages] = 0; 2238 migrate->npages++; 2239 migrate->cpages++; 2240 } 2241 2242 return 0; 2243 } 2244 2245 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2246 unsigned long start, 2247 unsigned long end, 2248 struct mm_walk *walk) 2249 { 2250 struct migrate_vma *migrate = walk->private; 2251 struct vm_area_struct *vma = walk->vma; 2252 struct mm_struct *mm = vma->vm_mm; 2253 unsigned long addr = start, unmapped = 0; 2254 spinlock_t *ptl; 2255 pte_t *ptep; 2256 2257 again: 2258 if (pmd_none(*pmdp)) 2259 return migrate_vma_collect_hole(start, end, -1, walk); 2260 2261 if (pmd_trans_huge(*pmdp)) { 2262 struct page *page; 2263 2264 ptl = pmd_lock(mm, pmdp); 2265 if (unlikely(!pmd_trans_huge(*pmdp))) { 2266 spin_unlock(ptl); 2267 goto again; 2268 } 2269 2270 page = pmd_page(*pmdp); 2271 if (is_huge_zero_page(page)) { 2272 spin_unlock(ptl); 2273 split_huge_pmd(vma, pmdp, addr); 2274 if (pmd_trans_unstable(pmdp)) 2275 return migrate_vma_collect_skip(start, end, 2276 walk); 2277 } else { 2278 int ret; 2279 2280 get_page(page); 2281 spin_unlock(ptl); 2282 if (unlikely(!trylock_page(page))) 2283 return migrate_vma_collect_skip(start, end, 2284 walk); 2285 ret = split_huge_page(page); 2286 unlock_page(page); 2287 put_page(page); 2288 if (ret) 2289 return migrate_vma_collect_skip(start, end, 2290 walk); 2291 if (pmd_none(*pmdp)) 2292 return migrate_vma_collect_hole(start, end, -1, 2293 walk); 2294 } 2295 } 2296 2297 if (unlikely(pmd_bad(*pmdp))) 2298 return migrate_vma_collect_skip(start, end, walk); 2299 2300 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2301 arch_enter_lazy_mmu_mode(); 2302 2303 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2304 unsigned long mpfn = 0, pfn; 2305 struct page *page; 2306 swp_entry_t entry; 2307 pte_t pte; 2308 2309 pte = *ptep; 2310 2311 if (pte_none(pte)) { 2312 if (vma_is_anonymous(vma)) { 2313 mpfn = MIGRATE_PFN_MIGRATE; 2314 migrate->cpages++; 2315 } 2316 goto next; 2317 } 2318 2319 if (!pte_present(pte)) { 2320 /* 2321 * Only care about unaddressable device page special 2322 * page table entry. Other special swap entries are not 2323 * migratable, and we ignore regular swapped page. 2324 */ 2325 entry = pte_to_swp_entry(pte); 2326 if (!is_device_private_entry(entry)) 2327 goto next; 2328 2329 page = pfn_swap_entry_to_page(entry); 2330 if (!(migrate->flags & 2331 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2332 page->pgmap->owner != migrate->pgmap_owner) 2333 goto next; 2334 2335 mpfn = migrate_pfn(page_to_pfn(page)) | 2336 MIGRATE_PFN_MIGRATE; 2337 if (is_writable_device_private_entry(entry)) 2338 mpfn |= MIGRATE_PFN_WRITE; 2339 } else { 2340 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2341 goto next; 2342 pfn = pte_pfn(pte); 2343 if (is_zero_pfn(pfn)) { 2344 mpfn = MIGRATE_PFN_MIGRATE; 2345 migrate->cpages++; 2346 goto next; 2347 } 2348 page = vm_normal_page(migrate->vma, addr, pte); 2349 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2350 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2351 } 2352 2353 /* FIXME support THP */ 2354 if (!page || !page->mapping || PageTransCompound(page)) { 2355 mpfn = 0; 2356 goto next; 2357 } 2358 2359 /* 2360 * By getting a reference on the page we pin it and that blocks 2361 * any kind of migration. Side effect is that it "freezes" the 2362 * pte. 2363 * 2364 * We drop this reference after isolating the page from the lru 2365 * for non device page (device page are not on the lru and thus 2366 * can't be dropped from it). 2367 */ 2368 get_page(page); 2369 migrate->cpages++; 2370 2371 /* 2372 * Optimize for the common case where page is only mapped once 2373 * in one process. If we can lock the page, then we can safely 2374 * set up a special migration page table entry now. 2375 */ 2376 if (trylock_page(page)) { 2377 pte_t swp_pte; 2378 2379 mpfn |= MIGRATE_PFN_LOCKED; 2380 ptep_get_and_clear(mm, addr, ptep); 2381 2382 /* Setup special migration page table entry */ 2383 if (mpfn & MIGRATE_PFN_WRITE) 2384 entry = make_writable_migration_entry( 2385 page_to_pfn(page)); 2386 else 2387 entry = make_readable_migration_entry( 2388 page_to_pfn(page)); 2389 swp_pte = swp_entry_to_pte(entry); 2390 if (pte_present(pte)) { 2391 if (pte_soft_dirty(pte)) 2392 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2393 if (pte_uffd_wp(pte)) 2394 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2395 } else { 2396 if (pte_swp_soft_dirty(pte)) 2397 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2398 if (pte_swp_uffd_wp(pte)) 2399 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2400 } 2401 set_pte_at(mm, addr, ptep, swp_pte); 2402 2403 /* 2404 * This is like regular unmap: we remove the rmap and 2405 * drop page refcount. Page won't be freed, as we took 2406 * a reference just above. 2407 */ 2408 page_remove_rmap(page, false); 2409 put_page(page); 2410 2411 if (pte_present(pte)) 2412 unmapped++; 2413 } 2414 2415 next: 2416 migrate->dst[migrate->npages] = 0; 2417 migrate->src[migrate->npages++] = mpfn; 2418 } 2419 arch_leave_lazy_mmu_mode(); 2420 pte_unmap_unlock(ptep - 1, ptl); 2421 2422 /* Only flush the TLB if we actually modified any entries */ 2423 if (unmapped) 2424 flush_tlb_range(walk->vma, start, end); 2425 2426 return 0; 2427 } 2428 2429 static const struct mm_walk_ops migrate_vma_walk_ops = { 2430 .pmd_entry = migrate_vma_collect_pmd, 2431 .pte_hole = migrate_vma_collect_hole, 2432 }; 2433 2434 /* 2435 * migrate_vma_collect() - collect pages over a range of virtual addresses 2436 * @migrate: migrate struct containing all migration information 2437 * 2438 * This will walk the CPU page table. For each virtual address backed by a 2439 * valid page, it updates the src array and takes a reference on the page, in 2440 * order to pin the page until we lock it and unmap it. 2441 */ 2442 static void migrate_vma_collect(struct migrate_vma *migrate) 2443 { 2444 struct mmu_notifier_range range; 2445 2446 /* 2447 * Note that the pgmap_owner is passed to the mmu notifier callback so 2448 * that the registered device driver can skip invalidating device 2449 * private page mappings that won't be migrated. 2450 */ 2451 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, 2452 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end, 2453 migrate->pgmap_owner); 2454 mmu_notifier_invalidate_range_start(&range); 2455 2456 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2457 &migrate_vma_walk_ops, migrate); 2458 2459 mmu_notifier_invalidate_range_end(&range); 2460 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2461 } 2462 2463 /* 2464 * migrate_vma_check_page() - check if page is pinned or not 2465 * @page: struct page to check 2466 * 2467 * Pinned pages cannot be migrated. This is the same test as in 2468 * migrate_page_move_mapping(), except that here we allow migration of a 2469 * ZONE_DEVICE page. 2470 */ 2471 static bool migrate_vma_check_page(struct page *page) 2472 { 2473 /* 2474 * One extra ref because caller holds an extra reference, either from 2475 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2476 * a device page. 2477 */ 2478 int extra = 1; 2479 2480 /* 2481 * FIXME support THP (transparent huge page), it is bit more complex to 2482 * check them than regular pages, because they can be mapped with a pmd 2483 * or with a pte (split pte mapping). 2484 */ 2485 if (PageCompound(page)) 2486 return false; 2487 2488 /* Page from ZONE_DEVICE have one extra reference */ 2489 if (is_zone_device_page(page)) { 2490 /* 2491 * Private page can never be pin as they have no valid pte and 2492 * GUP will fail for those. Yet if there is a pending migration 2493 * a thread might try to wait on the pte migration entry and 2494 * will bump the page reference count. Sadly there is no way to 2495 * differentiate a regular pin from migration wait. Hence to 2496 * avoid 2 racing thread trying to migrate back to CPU to enter 2497 * infinite loop (one stopping migration because the other is 2498 * waiting on pte migration entry). We always return true here. 2499 * 2500 * FIXME proper solution is to rework migration_entry_wait() so 2501 * it does not need to take a reference on page. 2502 */ 2503 return is_device_private_page(page); 2504 } 2505 2506 /* For file back page */ 2507 if (page_mapping(page)) 2508 extra += 1 + page_has_private(page); 2509 2510 if ((page_count(page) - extra) > page_mapcount(page)) 2511 return false; 2512 2513 return true; 2514 } 2515 2516 /* 2517 * migrate_vma_prepare() - lock pages and isolate them from the lru 2518 * @migrate: migrate struct containing all migration information 2519 * 2520 * This locks pages that have been collected by migrate_vma_collect(). Once each 2521 * page is locked it is isolated from the lru (for non-device pages). Finally, 2522 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2523 * migrated by concurrent kernel threads. 2524 */ 2525 static void migrate_vma_prepare(struct migrate_vma *migrate) 2526 { 2527 const unsigned long npages = migrate->npages; 2528 const unsigned long start = migrate->start; 2529 unsigned long addr, i, restore = 0; 2530 bool allow_drain = true; 2531 2532 lru_add_drain(); 2533 2534 for (i = 0; (i < npages) && migrate->cpages; i++) { 2535 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2536 bool remap = true; 2537 2538 if (!page) 2539 continue; 2540 2541 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2542 /* 2543 * Because we are migrating several pages there can be 2544 * a deadlock between 2 concurrent migration where each 2545 * are waiting on each other page lock. 2546 * 2547 * Make migrate_vma() a best effort thing and backoff 2548 * for any page we can not lock right away. 2549 */ 2550 if (!trylock_page(page)) { 2551 migrate->src[i] = 0; 2552 migrate->cpages--; 2553 put_page(page); 2554 continue; 2555 } 2556 remap = false; 2557 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2558 } 2559 2560 /* ZONE_DEVICE pages are not on LRU */ 2561 if (!is_zone_device_page(page)) { 2562 if (!PageLRU(page) && allow_drain) { 2563 /* Drain CPU's pagevec */ 2564 lru_add_drain_all(); 2565 allow_drain = false; 2566 } 2567 2568 if (isolate_lru_page(page)) { 2569 if (remap) { 2570 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2571 migrate->cpages--; 2572 restore++; 2573 } else { 2574 migrate->src[i] = 0; 2575 unlock_page(page); 2576 migrate->cpages--; 2577 put_page(page); 2578 } 2579 continue; 2580 } 2581 2582 /* Drop the reference we took in collect */ 2583 put_page(page); 2584 } 2585 2586 if (!migrate_vma_check_page(page)) { 2587 if (remap) { 2588 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2589 migrate->cpages--; 2590 restore++; 2591 2592 if (!is_zone_device_page(page)) { 2593 get_page(page); 2594 putback_lru_page(page); 2595 } 2596 } else { 2597 migrate->src[i] = 0; 2598 unlock_page(page); 2599 migrate->cpages--; 2600 2601 if (!is_zone_device_page(page)) 2602 putback_lru_page(page); 2603 else 2604 put_page(page); 2605 } 2606 } 2607 } 2608 2609 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2610 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2611 2612 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2613 continue; 2614 2615 remove_migration_pte(page, migrate->vma, addr, page); 2616 2617 migrate->src[i] = 0; 2618 unlock_page(page); 2619 put_page(page); 2620 restore--; 2621 } 2622 } 2623 2624 /* 2625 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2626 * @migrate: migrate struct containing all migration information 2627 * 2628 * Replace page mapping (CPU page table pte) with a special migration pte entry 2629 * and check again if it has been pinned. Pinned pages are restored because we 2630 * cannot migrate them. 2631 * 2632 * This is the last step before we call the device driver callback to allocate 2633 * destination memory and copy contents of original page over to new page. 2634 */ 2635 static void migrate_vma_unmap(struct migrate_vma *migrate) 2636 { 2637 const unsigned long npages = migrate->npages; 2638 const unsigned long start = migrate->start; 2639 unsigned long addr, i, restore = 0; 2640 2641 for (i = 0; i < npages; i++) { 2642 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2643 2644 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2645 continue; 2646 2647 if (page_mapped(page)) { 2648 try_to_migrate(page, 0); 2649 if (page_mapped(page)) 2650 goto restore; 2651 } 2652 2653 if (migrate_vma_check_page(page)) 2654 continue; 2655 2656 restore: 2657 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2658 migrate->cpages--; 2659 restore++; 2660 } 2661 2662 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2663 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2664 2665 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2666 continue; 2667 2668 remove_migration_ptes(page, page, false); 2669 2670 migrate->src[i] = 0; 2671 unlock_page(page); 2672 restore--; 2673 2674 if (is_zone_device_page(page)) 2675 put_page(page); 2676 else 2677 putback_lru_page(page); 2678 } 2679 } 2680 2681 /** 2682 * migrate_vma_setup() - prepare to migrate a range of memory 2683 * @args: contains the vma, start, and pfns arrays for the migration 2684 * 2685 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2686 * without an error. 2687 * 2688 * Prepare to migrate a range of memory virtual address range by collecting all 2689 * the pages backing each virtual address in the range, saving them inside the 2690 * src array. Then lock those pages and unmap them. Once the pages are locked 2691 * and unmapped, check whether each page is pinned or not. Pages that aren't 2692 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2693 * corresponding src array entry. Then restores any pages that are pinned, by 2694 * remapping and unlocking those pages. 2695 * 2696 * The caller should then allocate destination memory and copy source memory to 2697 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2698 * flag set). Once these are allocated and copied, the caller must update each 2699 * corresponding entry in the dst array with the pfn value of the destination 2700 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2701 * (destination pages must have their struct pages locked, via lock_page()). 2702 * 2703 * Note that the caller does not have to migrate all the pages that are marked 2704 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2705 * device memory to system memory. If the caller cannot migrate a device page 2706 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2707 * consequences for the userspace process, so it must be avoided if at all 2708 * possible. 2709 * 2710 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2711 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2712 * allowing the caller to allocate device memory for those unbacked virtual 2713 * addresses. For this the caller simply has to allocate device memory and 2714 * properly set the destination entry like for regular migration. Note that 2715 * this can still fail, and thus inside the device driver you must check if the 2716 * migration was successful for those entries after calling migrate_vma_pages(), 2717 * just like for regular migration. 2718 * 2719 * After that, the callers must call migrate_vma_pages() to go over each entry 2720 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2721 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2722 * then migrate_vma_pages() to migrate struct page information from the source 2723 * struct page to the destination struct page. If it fails to migrate the 2724 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2725 * src array. 2726 * 2727 * At this point all successfully migrated pages have an entry in the src 2728 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2729 * array entry with MIGRATE_PFN_VALID flag set. 2730 * 2731 * Once migrate_vma_pages() returns the caller may inspect which pages were 2732 * successfully migrated, and which were not. Successfully migrated pages will 2733 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2734 * 2735 * It is safe to update device page table after migrate_vma_pages() because 2736 * both destination and source page are still locked, and the mmap_lock is held 2737 * in read mode (hence no one can unmap the range being migrated). 2738 * 2739 * Once the caller is done cleaning up things and updating its page table (if it 2740 * chose to do so, this is not an obligation) it finally calls 2741 * migrate_vma_finalize() to update the CPU page table to point to new pages 2742 * for successfully migrated pages or otherwise restore the CPU page table to 2743 * point to the original source pages. 2744 */ 2745 int migrate_vma_setup(struct migrate_vma *args) 2746 { 2747 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2748 2749 args->start &= PAGE_MASK; 2750 args->end &= PAGE_MASK; 2751 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2752 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2753 return -EINVAL; 2754 if (nr_pages <= 0) 2755 return -EINVAL; 2756 if (args->start < args->vma->vm_start || 2757 args->start >= args->vma->vm_end) 2758 return -EINVAL; 2759 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2760 return -EINVAL; 2761 if (!args->src || !args->dst) 2762 return -EINVAL; 2763 2764 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2765 args->cpages = 0; 2766 args->npages = 0; 2767 2768 migrate_vma_collect(args); 2769 2770 if (args->cpages) 2771 migrate_vma_prepare(args); 2772 if (args->cpages) 2773 migrate_vma_unmap(args); 2774 2775 /* 2776 * At this point pages are locked and unmapped, and thus they have 2777 * stable content and can safely be copied to destination memory that 2778 * is allocated by the drivers. 2779 */ 2780 return 0; 2781 2782 } 2783 EXPORT_SYMBOL(migrate_vma_setup); 2784 2785 /* 2786 * This code closely matches the code in: 2787 * __handle_mm_fault() 2788 * handle_pte_fault() 2789 * do_anonymous_page() 2790 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2791 * private page. 2792 */ 2793 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2794 unsigned long addr, 2795 struct page *page, 2796 unsigned long *src) 2797 { 2798 struct vm_area_struct *vma = migrate->vma; 2799 struct mm_struct *mm = vma->vm_mm; 2800 bool flush = false; 2801 spinlock_t *ptl; 2802 pte_t entry; 2803 pgd_t *pgdp; 2804 p4d_t *p4dp; 2805 pud_t *pudp; 2806 pmd_t *pmdp; 2807 pte_t *ptep; 2808 2809 /* Only allow populating anonymous memory */ 2810 if (!vma_is_anonymous(vma)) 2811 goto abort; 2812 2813 pgdp = pgd_offset(mm, addr); 2814 p4dp = p4d_alloc(mm, pgdp, addr); 2815 if (!p4dp) 2816 goto abort; 2817 pudp = pud_alloc(mm, p4dp, addr); 2818 if (!pudp) 2819 goto abort; 2820 pmdp = pmd_alloc(mm, pudp, addr); 2821 if (!pmdp) 2822 goto abort; 2823 2824 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2825 goto abort; 2826 2827 /* 2828 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2829 * pte_offset_map() on pmds where a huge pmd might be created 2830 * from a different thread. 2831 * 2832 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2833 * parallel threads are excluded by other means. 2834 * 2835 * Here we only have mmap_read_lock(mm). 2836 */ 2837 if (pte_alloc(mm, pmdp)) 2838 goto abort; 2839 2840 /* See the comment in pte_alloc_one_map() */ 2841 if (unlikely(pmd_trans_unstable(pmdp))) 2842 goto abort; 2843 2844 if (unlikely(anon_vma_prepare(vma))) 2845 goto abort; 2846 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2847 goto abort; 2848 2849 /* 2850 * The memory barrier inside __SetPageUptodate makes sure that 2851 * preceding stores to the page contents become visible before 2852 * the set_pte_at() write. 2853 */ 2854 __SetPageUptodate(page); 2855 2856 if (is_zone_device_page(page)) { 2857 if (is_device_private_page(page)) { 2858 swp_entry_t swp_entry; 2859 2860 if (vma->vm_flags & VM_WRITE) 2861 swp_entry = make_writable_device_private_entry( 2862 page_to_pfn(page)); 2863 else 2864 swp_entry = make_readable_device_private_entry( 2865 page_to_pfn(page)); 2866 entry = swp_entry_to_pte(swp_entry); 2867 } else { 2868 /* 2869 * For now we only support migrating to un-addressable 2870 * device memory. 2871 */ 2872 pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); 2873 goto abort; 2874 } 2875 } else { 2876 entry = mk_pte(page, vma->vm_page_prot); 2877 if (vma->vm_flags & VM_WRITE) 2878 entry = pte_mkwrite(pte_mkdirty(entry)); 2879 } 2880 2881 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2882 2883 if (check_stable_address_space(mm)) 2884 goto unlock_abort; 2885 2886 if (pte_present(*ptep)) { 2887 unsigned long pfn = pte_pfn(*ptep); 2888 2889 if (!is_zero_pfn(pfn)) 2890 goto unlock_abort; 2891 flush = true; 2892 } else if (!pte_none(*ptep)) 2893 goto unlock_abort; 2894 2895 /* 2896 * Check for userfaultfd but do not deliver the fault. Instead, 2897 * just back off. 2898 */ 2899 if (userfaultfd_missing(vma)) 2900 goto unlock_abort; 2901 2902 inc_mm_counter(mm, MM_ANONPAGES); 2903 page_add_new_anon_rmap(page, vma, addr, false); 2904 if (!is_zone_device_page(page)) 2905 lru_cache_add_inactive_or_unevictable(page, vma); 2906 get_page(page); 2907 2908 if (flush) { 2909 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2910 ptep_clear_flush_notify(vma, addr, ptep); 2911 set_pte_at_notify(mm, addr, ptep, entry); 2912 update_mmu_cache(vma, addr, ptep); 2913 } else { 2914 /* No need to invalidate - it was non-present before */ 2915 set_pte_at(mm, addr, ptep, entry); 2916 update_mmu_cache(vma, addr, ptep); 2917 } 2918 2919 pte_unmap_unlock(ptep, ptl); 2920 *src = MIGRATE_PFN_MIGRATE; 2921 return; 2922 2923 unlock_abort: 2924 pte_unmap_unlock(ptep, ptl); 2925 abort: 2926 *src &= ~MIGRATE_PFN_MIGRATE; 2927 } 2928 2929 /** 2930 * migrate_vma_pages() - migrate meta-data from src page to dst page 2931 * @migrate: migrate struct containing all migration information 2932 * 2933 * This migrates struct page meta-data from source struct page to destination 2934 * struct page. This effectively finishes the migration from source page to the 2935 * destination page. 2936 */ 2937 void migrate_vma_pages(struct migrate_vma *migrate) 2938 { 2939 const unsigned long npages = migrate->npages; 2940 const unsigned long start = migrate->start; 2941 struct mmu_notifier_range range; 2942 unsigned long addr, i; 2943 bool notified = false; 2944 2945 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2946 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2947 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2948 struct address_space *mapping; 2949 int r; 2950 2951 if (!newpage) { 2952 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2953 continue; 2954 } 2955 2956 if (!page) { 2957 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2958 continue; 2959 if (!notified) { 2960 notified = true; 2961 2962 mmu_notifier_range_init_owner(&range, 2963 MMU_NOTIFY_MIGRATE, 0, migrate->vma, 2964 migrate->vma->vm_mm, addr, migrate->end, 2965 migrate->pgmap_owner); 2966 mmu_notifier_invalidate_range_start(&range); 2967 } 2968 migrate_vma_insert_page(migrate, addr, newpage, 2969 &migrate->src[i]); 2970 continue; 2971 } 2972 2973 mapping = page_mapping(page); 2974 2975 if (is_zone_device_page(newpage)) { 2976 if (is_device_private_page(newpage)) { 2977 /* 2978 * For now only support private anonymous when 2979 * migrating to un-addressable device memory. 2980 */ 2981 if (mapping) { 2982 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2983 continue; 2984 } 2985 } else { 2986 /* 2987 * Other types of ZONE_DEVICE page are not 2988 * supported. 2989 */ 2990 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2991 continue; 2992 } 2993 } 2994 2995 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2996 if (r != MIGRATEPAGE_SUCCESS) 2997 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2998 } 2999 3000 /* 3001 * No need to double call mmu_notifier->invalidate_range() callback as 3002 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3003 * did already call it. 3004 */ 3005 if (notified) 3006 mmu_notifier_invalidate_range_only_end(&range); 3007 } 3008 EXPORT_SYMBOL(migrate_vma_pages); 3009 3010 /** 3011 * migrate_vma_finalize() - restore CPU page table entry 3012 * @migrate: migrate struct containing all migration information 3013 * 3014 * This replaces the special migration pte entry with either a mapping to the 3015 * new page if migration was successful for that page, or to the original page 3016 * otherwise. 3017 * 3018 * This also unlocks the pages and puts them back on the lru, or drops the extra 3019 * refcount, for device pages. 3020 */ 3021 void migrate_vma_finalize(struct migrate_vma *migrate) 3022 { 3023 const unsigned long npages = migrate->npages; 3024 unsigned long i; 3025 3026 for (i = 0; i < npages; i++) { 3027 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3028 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3029 3030 if (!page) { 3031 if (newpage) { 3032 unlock_page(newpage); 3033 put_page(newpage); 3034 } 3035 continue; 3036 } 3037 3038 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3039 if (newpage) { 3040 unlock_page(newpage); 3041 put_page(newpage); 3042 } 3043 newpage = page; 3044 } 3045 3046 remove_migration_ptes(page, newpage, false); 3047 unlock_page(page); 3048 3049 if (is_zone_device_page(page)) 3050 put_page(page); 3051 else 3052 putback_lru_page(page); 3053 3054 if (newpage != page) { 3055 unlock_page(newpage); 3056 if (is_zone_device_page(newpage)) 3057 put_page(newpage); 3058 else 3059 putback_lru_page(newpage); 3060 } 3061 } 3062 } 3063 EXPORT_SYMBOL(migrate_vma_finalize); 3064 #endif /* CONFIG_DEVICE_PRIVATE */ 3065 3066 #if defined(CONFIG_MEMORY_HOTPLUG) 3067 /* Disable reclaim-based migration. */ 3068 static void __disable_all_migrate_targets(void) 3069 { 3070 int node; 3071 3072 for_each_online_node(node) 3073 node_demotion[node] = NUMA_NO_NODE; 3074 } 3075 3076 static void disable_all_migrate_targets(void) 3077 { 3078 __disable_all_migrate_targets(); 3079 3080 /* 3081 * Ensure that the "disable" is visible across the system. 3082 * Readers will see either a combination of before+disable 3083 * state or disable+after. They will never see before and 3084 * after state together. 3085 * 3086 * The before+after state together might have cycles and 3087 * could cause readers to do things like loop until this 3088 * function finishes. This ensures they can only see a 3089 * single "bad" read and would, for instance, only loop 3090 * once. 3091 */ 3092 synchronize_rcu(); 3093 } 3094 3095 /* 3096 * Find an automatic demotion target for 'node'. 3097 * Failing here is OK. It might just indicate 3098 * being at the end of a chain. 3099 */ 3100 static int establish_migrate_target(int node, nodemask_t *used) 3101 { 3102 int migration_target; 3103 3104 /* 3105 * Can not set a migration target on a 3106 * node with it already set. 3107 * 3108 * No need for READ_ONCE() here since this 3109 * in the write path for node_demotion[]. 3110 * This should be the only thread writing. 3111 */ 3112 if (node_demotion[node] != NUMA_NO_NODE) 3113 return NUMA_NO_NODE; 3114 3115 migration_target = find_next_best_node(node, used); 3116 if (migration_target == NUMA_NO_NODE) 3117 return NUMA_NO_NODE; 3118 3119 node_demotion[node] = migration_target; 3120 3121 return migration_target; 3122 } 3123 3124 /* 3125 * When memory fills up on a node, memory contents can be 3126 * automatically migrated to another node instead of 3127 * discarded at reclaim. 3128 * 3129 * Establish a "migration path" which will start at nodes 3130 * with CPUs and will follow the priorities used to build the 3131 * page allocator zonelists. 3132 * 3133 * The difference here is that cycles must be avoided. If 3134 * node0 migrates to node1, then neither node1, nor anything 3135 * node1 migrates to can migrate to node0. 3136 * 3137 * This function can run simultaneously with readers of 3138 * node_demotion[]. However, it can not run simultaneously 3139 * with itself. Exclusion is provided by memory hotplug events 3140 * being single-threaded. 3141 */ 3142 static void __set_migration_target_nodes(void) 3143 { 3144 nodemask_t next_pass = NODE_MASK_NONE; 3145 nodemask_t this_pass = NODE_MASK_NONE; 3146 nodemask_t used_targets = NODE_MASK_NONE; 3147 int node; 3148 3149 /* 3150 * Avoid any oddities like cycles that could occur 3151 * from changes in the topology. This will leave 3152 * a momentary gap when migration is disabled. 3153 */ 3154 disable_all_migrate_targets(); 3155 3156 /* 3157 * Allocations go close to CPUs, first. Assume that 3158 * the migration path starts at the nodes with CPUs. 3159 */ 3160 next_pass = node_states[N_CPU]; 3161 again: 3162 this_pass = next_pass; 3163 next_pass = NODE_MASK_NONE; 3164 /* 3165 * To avoid cycles in the migration "graph", ensure 3166 * that migration sources are not future targets by 3167 * setting them in 'used_targets'. Do this only 3168 * once per pass so that multiple source nodes can 3169 * share a target node. 3170 * 3171 * 'used_targets' will become unavailable in future 3172 * passes. This limits some opportunities for 3173 * multiple source nodes to share a destination. 3174 */ 3175 nodes_or(used_targets, used_targets, this_pass); 3176 for_each_node_mask(node, this_pass) { 3177 int target_node = establish_migrate_target(node, &used_targets); 3178 3179 if (target_node == NUMA_NO_NODE) 3180 continue; 3181 3182 /* 3183 * Visit targets from this pass in the next pass. 3184 * Eventually, every node will have been part of 3185 * a pass, and will become set in 'used_targets'. 3186 */ 3187 node_set(target_node, next_pass); 3188 } 3189 /* 3190 * 'next_pass' contains nodes which became migration 3191 * targets in this pass. Make additional passes until 3192 * no more migrations targets are available. 3193 */ 3194 if (!nodes_empty(next_pass)) 3195 goto again; 3196 } 3197 3198 /* 3199 * For callers that do not hold get_online_mems() already. 3200 */ 3201 static void set_migration_target_nodes(void) 3202 { 3203 get_online_mems(); 3204 __set_migration_target_nodes(); 3205 put_online_mems(); 3206 } 3207 3208 /* 3209 * React to hotplug events that might affect the migration targets 3210 * like events that online or offline NUMA nodes. 3211 * 3212 * The ordering is also currently dependent on which nodes have 3213 * CPUs. That means we need CPU on/offline notification too. 3214 */ 3215 static int migration_online_cpu(unsigned int cpu) 3216 { 3217 set_migration_target_nodes(); 3218 return 0; 3219 } 3220 3221 static int migration_offline_cpu(unsigned int cpu) 3222 { 3223 set_migration_target_nodes(); 3224 return 0; 3225 } 3226 3227 /* 3228 * This leaves migrate-on-reclaim transiently disabled between 3229 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs 3230 * whether reclaim-based migration is enabled or not, which 3231 * ensures that the user can turn reclaim-based migration at 3232 * any time without needing to recalculate migration targets. 3233 * 3234 * These callbacks already hold get_online_mems(). That is why 3235 * __set_migration_target_nodes() can be used as opposed to 3236 * set_migration_target_nodes(). 3237 */ 3238 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self, 3239 unsigned long action, void *arg) 3240 { 3241 switch (action) { 3242 case MEM_GOING_OFFLINE: 3243 /* 3244 * Make sure there are not transient states where 3245 * an offline node is a migration target. This 3246 * will leave migration disabled until the offline 3247 * completes and the MEM_OFFLINE case below runs. 3248 */ 3249 disable_all_migrate_targets(); 3250 break; 3251 case MEM_OFFLINE: 3252 case MEM_ONLINE: 3253 /* 3254 * Recalculate the target nodes once the node 3255 * reaches its final state (online or offline). 3256 */ 3257 __set_migration_target_nodes(); 3258 break; 3259 case MEM_CANCEL_OFFLINE: 3260 /* 3261 * MEM_GOING_OFFLINE disabled all the migration 3262 * targets. Reenable them. 3263 */ 3264 __set_migration_target_nodes(); 3265 break; 3266 case MEM_GOING_ONLINE: 3267 case MEM_CANCEL_ONLINE: 3268 break; 3269 } 3270 3271 return notifier_from_errno(0); 3272 } 3273 3274 static int __init migrate_on_reclaim_init(void) 3275 { 3276 int ret; 3277 3278 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "migrate on reclaim", 3279 migration_online_cpu, 3280 migration_offline_cpu); 3281 /* 3282 * In the unlikely case that this fails, the automatic 3283 * migration targets may become suboptimal for nodes 3284 * where N_CPU changes. With such a small impact in a 3285 * rare case, do not bother trying to do anything special. 3286 */ 3287 WARN_ON(ret < 0); 3288 3289 hotplug_memory_notifier(migrate_on_reclaim_callback, 100); 3290 return 0; 3291 } 3292 late_initcall(migrate_on_reclaim_init); 3293 #endif /* CONFIG_MEMORY_HOTPLUG */ 3294