1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 int migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 75 return 0; 76 } 77 78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 79 int migrate_prep_local(void) 80 { 81 lru_add_drain(); 82 83 return 0; 84 } 85 86 int isolate_movable_page(struct page *page, isolate_mode_t mode) 87 { 88 struct address_space *mapping; 89 90 /* 91 * Avoid burning cycles with pages that are yet under __free_pages(), 92 * or just got freed under us. 93 * 94 * In case we 'win' a race for a movable page being freed under us and 95 * raise its refcount preventing __free_pages() from doing its job 96 * the put_page() at the end of this block will take care of 97 * release this page, thus avoiding a nasty leakage. 98 */ 99 if (unlikely(!get_page_unless_zero(page))) 100 goto out; 101 102 /* 103 * Check PageMovable before holding a PG_lock because page's owner 104 * assumes anybody doesn't touch PG_lock of newly allocated page 105 * so unconditionally grabbing the lock ruins page's owner side. 106 */ 107 if (unlikely(!__PageMovable(page))) 108 goto out_putpage; 109 /* 110 * As movable pages are not isolated from LRU lists, concurrent 111 * compaction threads can race against page migration functions 112 * as well as race against the releasing a page. 113 * 114 * In order to avoid having an already isolated movable page 115 * being (wrongly) re-isolated while it is under migration, 116 * or to avoid attempting to isolate pages being released, 117 * lets be sure we have the page lock 118 * before proceeding with the movable page isolation steps. 119 */ 120 if (unlikely(!trylock_page(page))) 121 goto out_putpage; 122 123 if (!PageMovable(page) || PageIsolated(page)) 124 goto out_no_isolated; 125 126 mapping = page_mapping(page); 127 VM_BUG_ON_PAGE(!mapping, page); 128 129 if (!mapping->a_ops->isolate_page(page, mode)) 130 goto out_no_isolated; 131 132 /* Driver shouldn't use PG_isolated bit of page->flags */ 133 WARN_ON_ONCE(PageIsolated(page)); 134 __SetPageIsolated(page); 135 unlock_page(page); 136 137 return 0; 138 139 out_no_isolated: 140 unlock_page(page); 141 out_putpage: 142 put_page(page); 143 out: 144 return -EBUSY; 145 } 146 147 /* It should be called on page which is PG_movable */ 148 void putback_movable_page(struct page *page) 149 { 150 struct address_space *mapping; 151 152 VM_BUG_ON_PAGE(!PageLocked(page), page); 153 VM_BUG_ON_PAGE(!PageMovable(page), page); 154 VM_BUG_ON_PAGE(!PageIsolated(page), page); 155 156 mapping = page_mapping(page); 157 mapping->a_ops->putback_page(page); 158 __ClearPageIsolated(page); 159 } 160 161 /* 162 * Put previously isolated pages back onto the appropriate lists 163 * from where they were once taken off for compaction/migration. 164 * 165 * This function shall be used whenever the isolated pageset has been 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 167 * and isolate_huge_page(). 168 */ 169 void putback_movable_pages(struct list_head *l) 170 { 171 struct page *page; 172 struct page *page2; 173 174 list_for_each_entry_safe(page, page2, l, lru) { 175 if (unlikely(PageHuge(page))) { 176 putback_active_hugepage(page); 177 continue; 178 } 179 list_del(&page->lru); 180 /* 181 * We isolated non-lru movable page so here we can use 182 * __PageMovable because LRU page's mapping cannot have 183 * PAGE_MAPPING_MOVABLE. 184 */ 185 if (unlikely(__PageMovable(page))) { 186 VM_BUG_ON_PAGE(!PageIsolated(page), page); 187 lock_page(page); 188 if (PageMovable(page)) 189 putback_movable_page(page); 190 else 191 __ClearPageIsolated(page); 192 unlock_page(page); 193 put_page(page); 194 } else { 195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 196 page_is_file_lru(page), -hpage_nr_pages(page)); 197 putback_lru_page(page); 198 } 199 } 200 } 201 202 /* 203 * Restore a potential migration pte to a working pte entry 204 */ 205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 206 unsigned long addr, void *old) 207 { 208 struct page_vma_mapped_walk pvmw = { 209 .page = old, 210 .vma = vma, 211 .address = addr, 212 .flags = PVMW_SYNC | PVMW_MIGRATION, 213 }; 214 struct page *new; 215 pte_t pte; 216 swp_entry_t entry; 217 218 VM_BUG_ON_PAGE(PageTail(page), page); 219 while (page_vma_mapped_walk(&pvmw)) { 220 if (PageKsm(page)) 221 new = page; 222 else 223 new = page - pvmw.page->index + 224 linear_page_index(vma, pvmw.address); 225 226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 227 /* PMD-mapped THP migration entry */ 228 if (!pvmw.pte) { 229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 230 remove_migration_pmd(&pvmw, new); 231 continue; 232 } 233 #endif 234 235 get_page(new); 236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 237 if (pte_swp_soft_dirty(*pvmw.pte)) 238 pte = pte_mksoft_dirty(pte); 239 240 /* 241 * Recheck VMA as permissions can change since migration started 242 */ 243 entry = pte_to_swp_entry(*pvmw.pte); 244 if (is_write_migration_entry(entry)) 245 pte = maybe_mkwrite(pte, vma); 246 else if (pte_swp_uffd_wp(*pvmw.pte)) 247 pte = pte_mkuffd_wp(pte); 248 249 if (unlikely(is_zone_device_page(new))) { 250 if (is_device_private_page(new)) { 251 entry = make_device_private_entry(new, pte_write(pte)); 252 pte = swp_entry_to_pte(entry); 253 if (pte_swp_uffd_wp(*pvmw.pte)) 254 pte = pte_mkuffd_wp(pte); 255 } 256 } 257 258 #ifdef CONFIG_HUGETLB_PAGE 259 if (PageHuge(new)) { 260 pte = pte_mkhuge(pte); 261 pte = arch_make_huge_pte(pte, vma, new, 0); 262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 263 if (PageAnon(new)) 264 hugepage_add_anon_rmap(new, vma, pvmw.address); 265 else 266 page_dup_rmap(new, true); 267 } else 268 #endif 269 { 270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 271 272 if (PageAnon(new)) 273 page_add_anon_rmap(new, vma, pvmw.address, false); 274 else 275 page_add_file_rmap(new, false); 276 } 277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 278 mlock_vma_page(new); 279 280 if (PageTransHuge(page) && PageMlocked(page)) 281 clear_page_mlock(page); 282 283 /* No need to invalidate - it was non-present before */ 284 update_mmu_cache(vma, pvmw.address, pvmw.pte); 285 } 286 287 return true; 288 } 289 290 /* 291 * Get rid of all migration entries and replace them by 292 * references to the indicated page. 293 */ 294 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 295 { 296 struct rmap_walk_control rwc = { 297 .rmap_one = remove_migration_pte, 298 .arg = old, 299 }; 300 301 if (locked) 302 rmap_walk_locked(new, &rwc); 303 else 304 rmap_walk(new, &rwc); 305 } 306 307 /* 308 * Something used the pte of a page under migration. We need to 309 * get to the page and wait until migration is finished. 310 * When we return from this function the fault will be retried. 311 */ 312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 313 spinlock_t *ptl) 314 { 315 pte_t pte; 316 swp_entry_t entry; 317 struct page *page; 318 319 spin_lock(ptl); 320 pte = *ptep; 321 if (!is_swap_pte(pte)) 322 goto out; 323 324 entry = pte_to_swp_entry(pte); 325 if (!is_migration_entry(entry)) 326 goto out; 327 328 page = migration_entry_to_page(entry); 329 330 /* 331 * Once page cache replacement of page migration started, page_count 332 * is zero; but we must not call put_and_wait_on_page_locked() without 333 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 334 */ 335 if (!get_page_unless_zero(page)) 336 goto out; 337 pte_unmap_unlock(ptep, ptl); 338 put_and_wait_on_page_locked(page); 339 return; 340 out: 341 pte_unmap_unlock(ptep, ptl); 342 } 343 344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 345 unsigned long address) 346 { 347 spinlock_t *ptl = pte_lockptr(mm, pmd); 348 pte_t *ptep = pte_offset_map(pmd, address); 349 __migration_entry_wait(mm, ptep, ptl); 350 } 351 352 void migration_entry_wait_huge(struct vm_area_struct *vma, 353 struct mm_struct *mm, pte_t *pte) 354 { 355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 356 __migration_entry_wait(mm, pte, ptl); 357 } 358 359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 361 { 362 spinlock_t *ptl; 363 struct page *page; 364 365 ptl = pmd_lock(mm, pmd); 366 if (!is_pmd_migration_entry(*pmd)) 367 goto unlock; 368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 369 if (!get_page_unless_zero(page)) 370 goto unlock; 371 spin_unlock(ptl); 372 put_and_wait_on_page_locked(page); 373 return; 374 unlock: 375 spin_unlock(ptl); 376 } 377 #endif 378 379 static int expected_page_refs(struct address_space *mapping, struct page *page) 380 { 381 int expected_count = 1; 382 383 /* 384 * Device public or private pages have an extra refcount as they are 385 * ZONE_DEVICE pages. 386 */ 387 expected_count += is_device_private_page(page); 388 if (mapping) 389 expected_count += hpage_nr_pages(page) + page_has_private(page); 390 391 return expected_count; 392 } 393 394 /* 395 * Replace the page in the mapping. 396 * 397 * The number of remaining references must be: 398 * 1 for anonymous pages without a mapping 399 * 2 for pages with a mapping 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 401 */ 402 int migrate_page_move_mapping(struct address_space *mapping, 403 struct page *newpage, struct page *page, int extra_count) 404 { 405 XA_STATE(xas, &mapping->i_pages, page_index(page)); 406 struct zone *oldzone, *newzone; 407 int dirty; 408 int expected_count = expected_page_refs(mapping, page) + extra_count; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (page_count(page) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newpage->index = page->index; 417 newpage->mapping = page->mapping; 418 if (PageSwapBacked(page)) 419 __SetPageSwapBacked(newpage); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = page_zone(page); 425 newzone = page_zone(newpage); 426 427 xas_lock_irq(&xas); 428 if (page_count(page) != expected_count || xas_load(&xas) != page) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 if (!page_ref_freeze(page, expected_count)) { 434 xas_unlock_irq(&xas); 435 return -EAGAIN; 436 } 437 438 /* 439 * Now we know that no one else is looking at the page: 440 * no turning back from here. 441 */ 442 newpage->index = page->index; 443 newpage->mapping = page->mapping; 444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 445 if (PageSwapBacked(page)) { 446 __SetPageSwapBacked(newpage); 447 if (PageSwapCache(page)) { 448 SetPageSwapCache(newpage); 449 set_page_private(newpage, page_private(page)); 450 } 451 } else { 452 VM_BUG_ON_PAGE(PageSwapCache(page), page); 453 } 454 455 /* Move dirty while page refs frozen and newpage not yet exposed */ 456 dirty = PageDirty(page); 457 if (dirty) { 458 ClearPageDirty(page); 459 SetPageDirty(newpage); 460 } 461 462 xas_store(&xas, newpage); 463 if (PageTransHuge(page)) { 464 int i; 465 466 for (i = 1; i < HPAGE_PMD_NR; i++) { 467 xas_next(&xas); 468 xas_store(&xas, newpage); 469 } 470 } 471 472 /* 473 * Drop cache reference from old page by unfreezing 474 * to one less reference. 475 * We know this isn't the last reference. 476 */ 477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 478 479 xas_unlock(&xas); 480 /* Leave irq disabled to prevent preemption while updating stats */ 481 482 /* 483 * If moved to a different zone then also account 484 * the page for that zone. Other VM counters will be 485 * taken care of when we establish references to the 486 * new page and drop references to the old page. 487 * 488 * Note that anonymous pages are accounted for 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 490 * are mapped to swap space. 491 */ 492 if (newzone != oldzone) { 493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 495 if (PageSwapBacked(page) && !PageSwapCache(page)) { 496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 498 } 499 if (dirty && mapping_cap_account_dirty(mapping)) { 500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 504 } 505 } 506 local_irq_enable(); 507 508 return MIGRATEPAGE_SUCCESS; 509 } 510 EXPORT_SYMBOL(migrate_page_move_mapping); 511 512 /* 513 * The expected number of remaining references is the same as that 514 * of migrate_page_move_mapping(). 515 */ 516 int migrate_huge_page_move_mapping(struct address_space *mapping, 517 struct page *newpage, struct page *page) 518 { 519 XA_STATE(xas, &mapping->i_pages, page_index(page)); 520 int expected_count; 521 522 xas_lock_irq(&xas); 523 expected_count = 2 + page_has_private(page); 524 if (page_count(page) != expected_count || xas_load(&xas) != page) { 525 xas_unlock_irq(&xas); 526 return -EAGAIN; 527 } 528 529 if (!page_ref_freeze(page, expected_count)) { 530 xas_unlock_irq(&xas); 531 return -EAGAIN; 532 } 533 534 newpage->index = page->index; 535 newpage->mapping = page->mapping; 536 537 get_page(newpage); 538 539 xas_store(&xas, newpage); 540 541 page_ref_unfreeze(page, expected_count - 1); 542 543 xas_unlock_irq(&xas); 544 545 return MIGRATEPAGE_SUCCESS; 546 } 547 548 /* 549 * Gigantic pages are so large that we do not guarantee that page++ pointer 550 * arithmetic will work across the entire page. We need something more 551 * specialized. 552 */ 553 static void __copy_gigantic_page(struct page *dst, struct page *src, 554 int nr_pages) 555 { 556 int i; 557 struct page *dst_base = dst; 558 struct page *src_base = src; 559 560 for (i = 0; i < nr_pages; ) { 561 cond_resched(); 562 copy_highpage(dst, src); 563 564 i++; 565 dst = mem_map_next(dst, dst_base, i); 566 src = mem_map_next(src, src_base, i); 567 } 568 } 569 570 static void copy_huge_page(struct page *dst, struct page *src) 571 { 572 int i; 573 int nr_pages; 574 575 if (PageHuge(src)) { 576 /* hugetlbfs page */ 577 struct hstate *h = page_hstate(src); 578 nr_pages = pages_per_huge_page(h); 579 580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 581 __copy_gigantic_page(dst, src, nr_pages); 582 return; 583 } 584 } else { 585 /* thp page */ 586 BUG_ON(!PageTransHuge(src)); 587 nr_pages = hpage_nr_pages(src); 588 } 589 590 for (i = 0; i < nr_pages; i++) { 591 cond_resched(); 592 copy_highpage(dst + i, src + i); 593 } 594 } 595 596 /* 597 * Copy the page to its new location 598 */ 599 void migrate_page_states(struct page *newpage, struct page *page) 600 { 601 int cpupid; 602 603 if (PageError(page)) 604 SetPageError(newpage); 605 if (PageReferenced(page)) 606 SetPageReferenced(newpage); 607 if (PageUptodate(page)) 608 SetPageUptodate(newpage); 609 if (TestClearPageActive(page)) { 610 VM_BUG_ON_PAGE(PageUnevictable(page), page); 611 SetPageActive(newpage); 612 } else if (TestClearPageUnevictable(page)) 613 SetPageUnevictable(newpage); 614 if (PageWorkingset(page)) 615 SetPageWorkingset(newpage); 616 if (PageChecked(page)) 617 SetPageChecked(newpage); 618 if (PageMappedToDisk(page)) 619 SetPageMappedToDisk(newpage); 620 621 /* Move dirty on pages not done by migrate_page_move_mapping() */ 622 if (PageDirty(page)) 623 SetPageDirty(newpage); 624 625 if (page_is_young(page)) 626 set_page_young(newpage); 627 if (page_is_idle(page)) 628 set_page_idle(newpage); 629 630 /* 631 * Copy NUMA information to the new page, to prevent over-eager 632 * future migrations of this same page. 633 */ 634 cpupid = page_cpupid_xchg_last(page, -1); 635 page_cpupid_xchg_last(newpage, cpupid); 636 637 ksm_migrate_page(newpage, page); 638 /* 639 * Please do not reorder this without considering how mm/ksm.c's 640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 641 */ 642 if (PageSwapCache(page)) 643 ClearPageSwapCache(page); 644 ClearPagePrivate(page); 645 set_page_private(page, 0); 646 647 /* 648 * If any waiters have accumulated on the new page then 649 * wake them up. 650 */ 651 if (PageWriteback(newpage)) 652 end_page_writeback(newpage); 653 654 /* 655 * PG_readahead shares the same bit with PG_reclaim. The above 656 * end_page_writeback() may clear PG_readahead mistakenly, so set the 657 * bit after that. 658 */ 659 if (PageReadahead(page)) 660 SetPageReadahead(newpage); 661 662 copy_page_owner(page, newpage); 663 664 mem_cgroup_migrate(page, newpage); 665 } 666 EXPORT_SYMBOL(migrate_page_states); 667 668 void migrate_page_copy(struct page *newpage, struct page *page) 669 { 670 if (PageHuge(page) || PageTransHuge(page)) 671 copy_huge_page(newpage, page); 672 else 673 copy_highpage(newpage, page); 674 675 migrate_page_states(newpage, page); 676 } 677 EXPORT_SYMBOL(migrate_page_copy); 678 679 /************************************************************ 680 * Migration functions 681 ***********************************************************/ 682 683 /* 684 * Common logic to directly migrate a single LRU page suitable for 685 * pages that do not use PagePrivate/PagePrivate2. 686 * 687 * Pages are locked upon entry and exit. 688 */ 689 int migrate_page(struct address_space *mapping, 690 struct page *newpage, struct page *page, 691 enum migrate_mode mode) 692 { 693 int rc; 694 695 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 696 697 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 698 699 if (rc != MIGRATEPAGE_SUCCESS) 700 return rc; 701 702 if (mode != MIGRATE_SYNC_NO_COPY) 703 migrate_page_copy(newpage, page); 704 else 705 migrate_page_states(newpage, page); 706 return MIGRATEPAGE_SUCCESS; 707 } 708 EXPORT_SYMBOL(migrate_page); 709 710 #ifdef CONFIG_BLOCK 711 /* Returns true if all buffers are successfully locked */ 712 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 713 enum migrate_mode mode) 714 { 715 struct buffer_head *bh = head; 716 717 /* Simple case, sync compaction */ 718 if (mode != MIGRATE_ASYNC) { 719 do { 720 lock_buffer(bh); 721 bh = bh->b_this_page; 722 723 } while (bh != head); 724 725 return true; 726 } 727 728 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 729 do { 730 if (!trylock_buffer(bh)) { 731 /* 732 * We failed to lock the buffer and cannot stall in 733 * async migration. Release the taken locks 734 */ 735 struct buffer_head *failed_bh = bh; 736 bh = head; 737 while (bh != failed_bh) { 738 unlock_buffer(bh); 739 bh = bh->b_this_page; 740 } 741 return false; 742 } 743 744 bh = bh->b_this_page; 745 } while (bh != head); 746 return true; 747 } 748 749 static int __buffer_migrate_page(struct address_space *mapping, 750 struct page *newpage, struct page *page, enum migrate_mode mode, 751 bool check_refs) 752 { 753 struct buffer_head *bh, *head; 754 int rc; 755 int expected_count; 756 757 if (!page_has_buffers(page)) 758 return migrate_page(mapping, newpage, page, mode); 759 760 /* Check whether page does not have extra refs before we do more work */ 761 expected_count = expected_page_refs(mapping, page); 762 if (page_count(page) != expected_count) 763 return -EAGAIN; 764 765 head = page_buffers(page); 766 if (!buffer_migrate_lock_buffers(head, mode)) 767 return -EAGAIN; 768 769 if (check_refs) { 770 bool busy; 771 bool invalidated = false; 772 773 recheck_buffers: 774 busy = false; 775 spin_lock(&mapping->private_lock); 776 bh = head; 777 do { 778 if (atomic_read(&bh->b_count)) { 779 busy = true; 780 break; 781 } 782 bh = bh->b_this_page; 783 } while (bh != head); 784 if (busy) { 785 if (invalidated) { 786 rc = -EAGAIN; 787 goto unlock_buffers; 788 } 789 spin_unlock(&mapping->private_lock); 790 invalidate_bh_lrus(); 791 invalidated = true; 792 goto recheck_buffers; 793 } 794 } 795 796 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 797 if (rc != MIGRATEPAGE_SUCCESS) 798 goto unlock_buffers; 799 800 ClearPagePrivate(page); 801 set_page_private(newpage, page_private(page)); 802 set_page_private(page, 0); 803 put_page(page); 804 get_page(newpage); 805 806 bh = head; 807 do { 808 set_bh_page(bh, newpage, bh_offset(bh)); 809 bh = bh->b_this_page; 810 811 } while (bh != head); 812 813 SetPagePrivate(newpage); 814 815 if (mode != MIGRATE_SYNC_NO_COPY) 816 migrate_page_copy(newpage, page); 817 else 818 migrate_page_states(newpage, page); 819 820 rc = MIGRATEPAGE_SUCCESS; 821 unlock_buffers: 822 if (check_refs) 823 spin_unlock(&mapping->private_lock); 824 bh = head; 825 do { 826 unlock_buffer(bh); 827 bh = bh->b_this_page; 828 829 } while (bh != head); 830 831 return rc; 832 } 833 834 /* 835 * Migration function for pages with buffers. This function can only be used 836 * if the underlying filesystem guarantees that no other references to "page" 837 * exist. For example attached buffer heads are accessed only under page lock. 838 */ 839 int buffer_migrate_page(struct address_space *mapping, 840 struct page *newpage, struct page *page, enum migrate_mode mode) 841 { 842 return __buffer_migrate_page(mapping, newpage, page, mode, false); 843 } 844 EXPORT_SYMBOL(buffer_migrate_page); 845 846 /* 847 * Same as above except that this variant is more careful and checks that there 848 * are also no buffer head references. This function is the right one for 849 * mappings where buffer heads are directly looked up and referenced (such as 850 * block device mappings). 851 */ 852 int buffer_migrate_page_norefs(struct address_space *mapping, 853 struct page *newpage, struct page *page, enum migrate_mode mode) 854 { 855 return __buffer_migrate_page(mapping, newpage, page, mode, true); 856 } 857 #endif 858 859 /* 860 * Writeback a page to clean the dirty state 861 */ 862 static int writeout(struct address_space *mapping, struct page *page) 863 { 864 struct writeback_control wbc = { 865 .sync_mode = WB_SYNC_NONE, 866 .nr_to_write = 1, 867 .range_start = 0, 868 .range_end = LLONG_MAX, 869 .for_reclaim = 1 870 }; 871 int rc; 872 873 if (!mapping->a_ops->writepage) 874 /* No write method for the address space */ 875 return -EINVAL; 876 877 if (!clear_page_dirty_for_io(page)) 878 /* Someone else already triggered a write */ 879 return -EAGAIN; 880 881 /* 882 * A dirty page may imply that the underlying filesystem has 883 * the page on some queue. So the page must be clean for 884 * migration. Writeout may mean we loose the lock and the 885 * page state is no longer what we checked for earlier. 886 * At this point we know that the migration attempt cannot 887 * be successful. 888 */ 889 remove_migration_ptes(page, page, false); 890 891 rc = mapping->a_ops->writepage(page, &wbc); 892 893 if (rc != AOP_WRITEPAGE_ACTIVATE) 894 /* unlocked. Relock */ 895 lock_page(page); 896 897 return (rc < 0) ? -EIO : -EAGAIN; 898 } 899 900 /* 901 * Default handling if a filesystem does not provide a migration function. 902 */ 903 static int fallback_migrate_page(struct address_space *mapping, 904 struct page *newpage, struct page *page, enum migrate_mode mode) 905 { 906 if (PageDirty(page)) { 907 /* Only writeback pages in full synchronous migration */ 908 switch (mode) { 909 case MIGRATE_SYNC: 910 case MIGRATE_SYNC_NO_COPY: 911 break; 912 default: 913 return -EBUSY; 914 } 915 return writeout(mapping, page); 916 } 917 918 /* 919 * Buffers may be managed in a filesystem specific way. 920 * We must have no buffers or drop them. 921 */ 922 if (page_has_private(page) && 923 !try_to_release_page(page, GFP_KERNEL)) 924 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 925 926 return migrate_page(mapping, newpage, page, mode); 927 } 928 929 /* 930 * Move a page to a newly allocated page 931 * The page is locked and all ptes have been successfully removed. 932 * 933 * The new page will have replaced the old page if this function 934 * is successful. 935 * 936 * Return value: 937 * < 0 - error code 938 * MIGRATEPAGE_SUCCESS - success 939 */ 940 static int move_to_new_page(struct page *newpage, struct page *page, 941 enum migrate_mode mode) 942 { 943 struct address_space *mapping; 944 int rc = -EAGAIN; 945 bool is_lru = !__PageMovable(page); 946 947 VM_BUG_ON_PAGE(!PageLocked(page), page); 948 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 949 950 mapping = page_mapping(page); 951 952 if (likely(is_lru)) { 953 if (!mapping) 954 rc = migrate_page(mapping, newpage, page, mode); 955 else if (mapping->a_ops->migratepage) 956 /* 957 * Most pages have a mapping and most filesystems 958 * provide a migratepage callback. Anonymous pages 959 * are part of swap space which also has its own 960 * migratepage callback. This is the most common path 961 * for page migration. 962 */ 963 rc = mapping->a_ops->migratepage(mapping, newpage, 964 page, mode); 965 else 966 rc = fallback_migrate_page(mapping, newpage, 967 page, mode); 968 } else { 969 /* 970 * In case of non-lru page, it could be released after 971 * isolation step. In that case, we shouldn't try migration. 972 */ 973 VM_BUG_ON_PAGE(!PageIsolated(page), page); 974 if (!PageMovable(page)) { 975 rc = MIGRATEPAGE_SUCCESS; 976 __ClearPageIsolated(page); 977 goto out; 978 } 979 980 rc = mapping->a_ops->migratepage(mapping, newpage, 981 page, mode); 982 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 983 !PageIsolated(page)); 984 } 985 986 /* 987 * When successful, old pagecache page->mapping must be cleared before 988 * page is freed; but stats require that PageAnon be left as PageAnon. 989 */ 990 if (rc == MIGRATEPAGE_SUCCESS) { 991 if (__PageMovable(page)) { 992 VM_BUG_ON_PAGE(!PageIsolated(page), page); 993 994 /* 995 * We clear PG_movable under page_lock so any compactor 996 * cannot try to migrate this page. 997 */ 998 __ClearPageIsolated(page); 999 } 1000 1001 /* 1002 * Anonymous and movable page->mapping will be cleared by 1003 * free_pages_prepare so don't reset it here for keeping 1004 * the type to work PageAnon, for example. 1005 */ 1006 if (!PageMappingFlags(page)) 1007 page->mapping = NULL; 1008 1009 if (likely(!is_zone_device_page(newpage))) 1010 flush_dcache_page(newpage); 1011 1012 } 1013 out: 1014 return rc; 1015 } 1016 1017 static int __unmap_and_move(struct page *page, struct page *newpage, 1018 int force, enum migrate_mode mode) 1019 { 1020 int rc = -EAGAIN; 1021 int page_was_mapped = 0; 1022 struct anon_vma *anon_vma = NULL; 1023 bool is_lru = !__PageMovable(page); 1024 1025 if (!trylock_page(page)) { 1026 if (!force || mode == MIGRATE_ASYNC) 1027 goto out; 1028 1029 /* 1030 * It's not safe for direct compaction to call lock_page. 1031 * For example, during page readahead pages are added locked 1032 * to the LRU. Later, when the IO completes the pages are 1033 * marked uptodate and unlocked. However, the queueing 1034 * could be merging multiple pages for one bio (e.g. 1035 * mpage_readpages). If an allocation happens for the 1036 * second or third page, the process can end up locking 1037 * the same page twice and deadlocking. Rather than 1038 * trying to be clever about what pages can be locked, 1039 * avoid the use of lock_page for direct compaction 1040 * altogether. 1041 */ 1042 if (current->flags & PF_MEMALLOC) 1043 goto out; 1044 1045 lock_page(page); 1046 } 1047 1048 if (PageWriteback(page)) { 1049 /* 1050 * Only in the case of a full synchronous migration is it 1051 * necessary to wait for PageWriteback. In the async case, 1052 * the retry loop is too short and in the sync-light case, 1053 * the overhead of stalling is too much 1054 */ 1055 switch (mode) { 1056 case MIGRATE_SYNC: 1057 case MIGRATE_SYNC_NO_COPY: 1058 break; 1059 default: 1060 rc = -EBUSY; 1061 goto out_unlock; 1062 } 1063 if (!force) 1064 goto out_unlock; 1065 wait_on_page_writeback(page); 1066 } 1067 1068 /* 1069 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1070 * we cannot notice that anon_vma is freed while we migrates a page. 1071 * This get_anon_vma() delays freeing anon_vma pointer until the end 1072 * of migration. File cache pages are no problem because of page_lock() 1073 * File Caches may use write_page() or lock_page() in migration, then, 1074 * just care Anon page here. 1075 * 1076 * Only page_get_anon_vma() understands the subtleties of 1077 * getting a hold on an anon_vma from outside one of its mms. 1078 * But if we cannot get anon_vma, then we won't need it anyway, 1079 * because that implies that the anon page is no longer mapped 1080 * (and cannot be remapped so long as we hold the page lock). 1081 */ 1082 if (PageAnon(page) && !PageKsm(page)) 1083 anon_vma = page_get_anon_vma(page); 1084 1085 /* 1086 * Block others from accessing the new page when we get around to 1087 * establishing additional references. We are usually the only one 1088 * holding a reference to newpage at this point. We used to have a BUG 1089 * here if trylock_page(newpage) fails, but would like to allow for 1090 * cases where there might be a race with the previous use of newpage. 1091 * This is much like races on refcount of oldpage: just don't BUG(). 1092 */ 1093 if (unlikely(!trylock_page(newpage))) 1094 goto out_unlock; 1095 1096 if (unlikely(!is_lru)) { 1097 rc = move_to_new_page(newpage, page, mode); 1098 goto out_unlock_both; 1099 } 1100 1101 /* 1102 * Corner case handling: 1103 * 1. When a new swap-cache page is read into, it is added to the LRU 1104 * and treated as swapcache but it has no rmap yet. 1105 * Calling try_to_unmap() against a page->mapping==NULL page will 1106 * trigger a BUG. So handle it here. 1107 * 2. An orphaned page (see truncate_complete_page) might have 1108 * fs-private metadata. The page can be picked up due to memory 1109 * offlining. Everywhere else except page reclaim, the page is 1110 * invisible to the vm, so the page can not be migrated. So try to 1111 * free the metadata, so the page can be freed. 1112 */ 1113 if (!page->mapping) { 1114 VM_BUG_ON_PAGE(PageAnon(page), page); 1115 if (page_has_private(page)) { 1116 try_to_free_buffers(page); 1117 goto out_unlock_both; 1118 } 1119 } else if (page_mapped(page)) { 1120 /* Establish migration ptes */ 1121 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1122 page); 1123 try_to_unmap(page, 1124 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1125 page_was_mapped = 1; 1126 } 1127 1128 if (!page_mapped(page)) 1129 rc = move_to_new_page(newpage, page, mode); 1130 1131 if (page_was_mapped) 1132 remove_migration_ptes(page, 1133 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1134 1135 out_unlock_both: 1136 unlock_page(newpage); 1137 out_unlock: 1138 /* Drop an anon_vma reference if we took one */ 1139 if (anon_vma) 1140 put_anon_vma(anon_vma); 1141 unlock_page(page); 1142 out: 1143 /* 1144 * If migration is successful, decrease refcount of the newpage 1145 * which will not free the page because new page owner increased 1146 * refcounter. As well, if it is LRU page, add the page to LRU 1147 * list in here. Use the old state of the isolated source page to 1148 * determine if we migrated a LRU page. newpage was already unlocked 1149 * and possibly modified by its owner - don't rely on the page 1150 * state. 1151 */ 1152 if (rc == MIGRATEPAGE_SUCCESS) { 1153 if (unlikely(!is_lru)) 1154 put_page(newpage); 1155 else 1156 putback_lru_page(newpage); 1157 } 1158 1159 return rc; 1160 } 1161 1162 /* 1163 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1164 * around it. 1165 */ 1166 #if defined(CONFIG_ARM) && \ 1167 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1168 #define ICE_noinline noinline 1169 #else 1170 #define ICE_noinline 1171 #endif 1172 1173 /* 1174 * Obtain the lock on page, remove all ptes and migrate the page 1175 * to the newly allocated page in newpage. 1176 */ 1177 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1178 free_page_t put_new_page, 1179 unsigned long private, struct page *page, 1180 int force, enum migrate_mode mode, 1181 enum migrate_reason reason) 1182 { 1183 int rc = MIGRATEPAGE_SUCCESS; 1184 struct page *newpage = NULL; 1185 1186 if (!thp_migration_supported() && PageTransHuge(page)) 1187 return -ENOMEM; 1188 1189 if (page_count(page) == 1) { 1190 /* page was freed from under us. So we are done. */ 1191 ClearPageActive(page); 1192 ClearPageUnevictable(page); 1193 if (unlikely(__PageMovable(page))) { 1194 lock_page(page); 1195 if (!PageMovable(page)) 1196 __ClearPageIsolated(page); 1197 unlock_page(page); 1198 } 1199 goto out; 1200 } 1201 1202 newpage = get_new_page(page, private); 1203 if (!newpage) 1204 return -ENOMEM; 1205 1206 rc = __unmap_and_move(page, newpage, force, mode); 1207 if (rc == MIGRATEPAGE_SUCCESS) 1208 set_page_owner_migrate_reason(newpage, reason); 1209 1210 out: 1211 if (rc != -EAGAIN) { 1212 /* 1213 * A page that has been migrated has all references 1214 * removed and will be freed. A page that has not been 1215 * migrated will have kept its references and be restored. 1216 */ 1217 list_del(&page->lru); 1218 1219 /* 1220 * Compaction can migrate also non-LRU pages which are 1221 * not accounted to NR_ISOLATED_*. They can be recognized 1222 * as __PageMovable 1223 */ 1224 if (likely(!__PageMovable(page))) 1225 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1226 page_is_file_lru(page), -hpage_nr_pages(page)); 1227 } 1228 1229 /* 1230 * If migration is successful, releases reference grabbed during 1231 * isolation. Otherwise, restore the page to right list unless 1232 * we want to retry. 1233 */ 1234 if (rc == MIGRATEPAGE_SUCCESS) { 1235 put_page(page); 1236 if (reason == MR_MEMORY_FAILURE) { 1237 /* 1238 * Set PG_HWPoison on just freed page 1239 * intentionally. Although it's rather weird, 1240 * it's how HWPoison flag works at the moment. 1241 */ 1242 if (set_hwpoison_free_buddy_page(page)) 1243 num_poisoned_pages_inc(); 1244 } 1245 } else { 1246 if (rc != -EAGAIN) { 1247 if (likely(!__PageMovable(page))) { 1248 putback_lru_page(page); 1249 goto put_new; 1250 } 1251 1252 lock_page(page); 1253 if (PageMovable(page)) 1254 putback_movable_page(page); 1255 else 1256 __ClearPageIsolated(page); 1257 unlock_page(page); 1258 put_page(page); 1259 } 1260 put_new: 1261 if (put_new_page) 1262 put_new_page(newpage, private); 1263 else 1264 put_page(newpage); 1265 } 1266 1267 return rc; 1268 } 1269 1270 /* 1271 * Counterpart of unmap_and_move_page() for hugepage migration. 1272 * 1273 * This function doesn't wait the completion of hugepage I/O 1274 * because there is no race between I/O and migration for hugepage. 1275 * Note that currently hugepage I/O occurs only in direct I/O 1276 * where no lock is held and PG_writeback is irrelevant, 1277 * and writeback status of all subpages are counted in the reference 1278 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1279 * under direct I/O, the reference of the head page is 512 and a bit more.) 1280 * This means that when we try to migrate hugepage whose subpages are 1281 * doing direct I/O, some references remain after try_to_unmap() and 1282 * hugepage migration fails without data corruption. 1283 * 1284 * There is also no race when direct I/O is issued on the page under migration, 1285 * because then pte is replaced with migration swap entry and direct I/O code 1286 * will wait in the page fault for migration to complete. 1287 */ 1288 static int unmap_and_move_huge_page(new_page_t get_new_page, 1289 free_page_t put_new_page, unsigned long private, 1290 struct page *hpage, int force, 1291 enum migrate_mode mode, int reason) 1292 { 1293 int rc = -EAGAIN; 1294 int page_was_mapped = 0; 1295 struct page *new_hpage; 1296 struct anon_vma *anon_vma = NULL; 1297 struct address_space *mapping = NULL; 1298 1299 /* 1300 * Migratability of hugepages depends on architectures and their size. 1301 * This check is necessary because some callers of hugepage migration 1302 * like soft offline and memory hotremove don't walk through page 1303 * tables or check whether the hugepage is pmd-based or not before 1304 * kicking migration. 1305 */ 1306 if (!hugepage_migration_supported(page_hstate(hpage))) { 1307 putback_active_hugepage(hpage); 1308 return -ENOSYS; 1309 } 1310 1311 new_hpage = get_new_page(hpage, private); 1312 if (!new_hpage) 1313 return -ENOMEM; 1314 1315 if (!trylock_page(hpage)) { 1316 if (!force) 1317 goto out; 1318 switch (mode) { 1319 case MIGRATE_SYNC: 1320 case MIGRATE_SYNC_NO_COPY: 1321 break; 1322 default: 1323 goto out; 1324 } 1325 lock_page(hpage); 1326 } 1327 1328 /* 1329 * Check for pages which are in the process of being freed. Without 1330 * page_mapping() set, hugetlbfs specific move page routine will not 1331 * be called and we could leak usage counts for subpools. 1332 */ 1333 if (page_private(hpage) && !page_mapping(hpage)) { 1334 rc = -EBUSY; 1335 goto out_unlock; 1336 } 1337 1338 if (PageAnon(hpage)) 1339 anon_vma = page_get_anon_vma(hpage); 1340 1341 if (unlikely(!trylock_page(new_hpage))) 1342 goto put_anon; 1343 1344 if (page_mapped(hpage)) { 1345 /* 1346 * try_to_unmap could potentially call huge_pmd_unshare. 1347 * Because of this, take semaphore in write mode here and 1348 * set TTU_RMAP_LOCKED to let lower levels know we have 1349 * taken the lock. 1350 */ 1351 mapping = hugetlb_page_mapping_lock_write(hpage); 1352 if (unlikely(!mapping)) 1353 goto unlock_put_anon; 1354 1355 try_to_unmap(hpage, 1356 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS| 1357 TTU_RMAP_LOCKED); 1358 page_was_mapped = 1; 1359 /* 1360 * Leave mapping locked until after subsequent call to 1361 * remove_migration_ptes() 1362 */ 1363 } 1364 1365 if (!page_mapped(hpage)) 1366 rc = move_to_new_page(new_hpage, hpage, mode); 1367 1368 if (page_was_mapped) { 1369 remove_migration_ptes(hpage, 1370 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true); 1371 i_mmap_unlock_write(mapping); 1372 } 1373 1374 unlock_put_anon: 1375 unlock_page(new_hpage); 1376 1377 put_anon: 1378 if (anon_vma) 1379 put_anon_vma(anon_vma); 1380 1381 if (rc == MIGRATEPAGE_SUCCESS) { 1382 move_hugetlb_state(hpage, new_hpage, reason); 1383 put_new_page = NULL; 1384 } 1385 1386 out_unlock: 1387 unlock_page(hpage); 1388 out: 1389 if (rc != -EAGAIN) 1390 putback_active_hugepage(hpage); 1391 1392 /* 1393 * If migration was not successful and there's a freeing callback, use 1394 * it. Otherwise, put_page() will drop the reference grabbed during 1395 * isolation. 1396 */ 1397 if (put_new_page) 1398 put_new_page(new_hpage, private); 1399 else 1400 putback_active_hugepage(new_hpage); 1401 1402 return rc; 1403 } 1404 1405 /* 1406 * migrate_pages - migrate the pages specified in a list, to the free pages 1407 * supplied as the target for the page migration 1408 * 1409 * @from: The list of pages to be migrated. 1410 * @get_new_page: The function used to allocate free pages to be used 1411 * as the target of the page migration. 1412 * @put_new_page: The function used to free target pages if migration 1413 * fails, or NULL if no special handling is necessary. 1414 * @private: Private data to be passed on to get_new_page() 1415 * @mode: The migration mode that specifies the constraints for 1416 * page migration, if any. 1417 * @reason: The reason for page migration. 1418 * 1419 * The function returns after 10 attempts or if no pages are movable any more 1420 * because the list has become empty or no retryable pages exist any more. 1421 * The caller should call putback_movable_pages() to return pages to the LRU 1422 * or free list only if ret != 0. 1423 * 1424 * Returns the number of pages that were not migrated, or an error code. 1425 */ 1426 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1427 free_page_t put_new_page, unsigned long private, 1428 enum migrate_mode mode, int reason) 1429 { 1430 int retry = 1; 1431 int nr_failed = 0; 1432 int nr_succeeded = 0; 1433 int pass = 0; 1434 struct page *page; 1435 struct page *page2; 1436 int swapwrite = current->flags & PF_SWAPWRITE; 1437 int rc; 1438 1439 if (!swapwrite) 1440 current->flags |= PF_SWAPWRITE; 1441 1442 for(pass = 0; pass < 10 && retry; pass++) { 1443 retry = 0; 1444 1445 list_for_each_entry_safe(page, page2, from, lru) { 1446 retry: 1447 cond_resched(); 1448 1449 if (PageHuge(page)) 1450 rc = unmap_and_move_huge_page(get_new_page, 1451 put_new_page, private, page, 1452 pass > 2, mode, reason); 1453 else 1454 rc = unmap_and_move(get_new_page, put_new_page, 1455 private, page, pass > 2, mode, 1456 reason); 1457 1458 switch(rc) { 1459 case -ENOMEM: 1460 /* 1461 * THP migration might be unsupported or the 1462 * allocation could've failed so we should 1463 * retry on the same page with the THP split 1464 * to base pages. 1465 * 1466 * Head page is retried immediately and tail 1467 * pages are added to the tail of the list so 1468 * we encounter them after the rest of the list 1469 * is processed. 1470 */ 1471 if (PageTransHuge(page) && !PageHuge(page)) { 1472 lock_page(page); 1473 rc = split_huge_page_to_list(page, from); 1474 unlock_page(page); 1475 if (!rc) { 1476 list_safe_reset_next(page, page2, lru); 1477 goto retry; 1478 } 1479 } 1480 nr_failed++; 1481 goto out; 1482 case -EAGAIN: 1483 retry++; 1484 break; 1485 case MIGRATEPAGE_SUCCESS: 1486 nr_succeeded++; 1487 break; 1488 default: 1489 /* 1490 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1491 * unlike -EAGAIN case, the failed page is 1492 * removed from migration page list and not 1493 * retried in the next outer loop. 1494 */ 1495 nr_failed++; 1496 break; 1497 } 1498 } 1499 } 1500 nr_failed += retry; 1501 rc = nr_failed; 1502 out: 1503 if (nr_succeeded) 1504 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1505 if (nr_failed) 1506 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1507 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1508 1509 if (!swapwrite) 1510 current->flags &= ~PF_SWAPWRITE; 1511 1512 return rc; 1513 } 1514 1515 #ifdef CONFIG_NUMA 1516 1517 static int store_status(int __user *status, int start, int value, int nr) 1518 { 1519 while (nr-- > 0) { 1520 if (put_user(value, status + start)) 1521 return -EFAULT; 1522 start++; 1523 } 1524 1525 return 0; 1526 } 1527 1528 static int do_move_pages_to_node(struct mm_struct *mm, 1529 struct list_head *pagelist, int node) 1530 { 1531 int err; 1532 1533 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1534 MIGRATE_SYNC, MR_SYSCALL); 1535 if (err) 1536 putback_movable_pages(pagelist); 1537 return err; 1538 } 1539 1540 /* 1541 * Resolves the given address to a struct page, isolates it from the LRU and 1542 * puts it to the given pagelist. 1543 * Returns: 1544 * errno - if the page cannot be found/isolated 1545 * 0 - when it doesn't have to be migrated because it is already on the 1546 * target node 1547 * 1 - when it has been queued 1548 */ 1549 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1550 int node, struct list_head *pagelist, bool migrate_all) 1551 { 1552 struct vm_area_struct *vma; 1553 struct page *page; 1554 unsigned int follflags; 1555 int err; 1556 1557 down_read(&mm->mmap_sem); 1558 err = -EFAULT; 1559 vma = find_vma(mm, addr); 1560 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1561 goto out; 1562 1563 /* FOLL_DUMP to ignore special (like zero) pages */ 1564 follflags = FOLL_GET | FOLL_DUMP; 1565 page = follow_page(vma, addr, follflags); 1566 1567 err = PTR_ERR(page); 1568 if (IS_ERR(page)) 1569 goto out; 1570 1571 err = -ENOENT; 1572 if (!page) 1573 goto out; 1574 1575 err = 0; 1576 if (page_to_nid(page) == node) 1577 goto out_putpage; 1578 1579 err = -EACCES; 1580 if (page_mapcount(page) > 1 && !migrate_all) 1581 goto out_putpage; 1582 1583 if (PageHuge(page)) { 1584 if (PageHead(page)) { 1585 isolate_huge_page(page, pagelist); 1586 err = 1; 1587 } 1588 } else { 1589 struct page *head; 1590 1591 head = compound_head(page); 1592 err = isolate_lru_page(head); 1593 if (err) 1594 goto out_putpage; 1595 1596 err = 1; 1597 list_add_tail(&head->lru, pagelist); 1598 mod_node_page_state(page_pgdat(head), 1599 NR_ISOLATED_ANON + page_is_file_lru(head), 1600 hpage_nr_pages(head)); 1601 } 1602 out_putpage: 1603 /* 1604 * Either remove the duplicate refcount from 1605 * isolate_lru_page() or drop the page ref if it was 1606 * not isolated. 1607 */ 1608 put_page(page); 1609 out: 1610 up_read(&mm->mmap_sem); 1611 return err; 1612 } 1613 1614 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1615 struct list_head *pagelist, int __user *status, 1616 int start, int i, unsigned long nr_pages) 1617 { 1618 int err; 1619 1620 if (list_empty(pagelist)) 1621 return 0; 1622 1623 err = do_move_pages_to_node(mm, pagelist, node); 1624 if (err) { 1625 /* 1626 * Positive err means the number of failed 1627 * pages to migrate. Since we are going to 1628 * abort and return the number of non-migrated 1629 * pages, so need to incude the rest of the 1630 * nr_pages that have not been attempted as 1631 * well. 1632 */ 1633 if (err > 0) 1634 err += nr_pages - i - 1; 1635 return err; 1636 } 1637 return store_status(status, start, node, i - start); 1638 } 1639 1640 /* 1641 * Migrate an array of page address onto an array of nodes and fill 1642 * the corresponding array of status. 1643 */ 1644 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1645 unsigned long nr_pages, 1646 const void __user * __user *pages, 1647 const int __user *nodes, 1648 int __user *status, int flags) 1649 { 1650 int current_node = NUMA_NO_NODE; 1651 LIST_HEAD(pagelist); 1652 int start, i; 1653 int err = 0, err1; 1654 1655 migrate_prep(); 1656 1657 for (i = start = 0; i < nr_pages; i++) { 1658 const void __user *p; 1659 unsigned long addr; 1660 int node; 1661 1662 err = -EFAULT; 1663 if (get_user(p, pages + i)) 1664 goto out_flush; 1665 if (get_user(node, nodes + i)) 1666 goto out_flush; 1667 addr = (unsigned long)untagged_addr(p); 1668 1669 err = -ENODEV; 1670 if (node < 0 || node >= MAX_NUMNODES) 1671 goto out_flush; 1672 if (!node_state(node, N_MEMORY)) 1673 goto out_flush; 1674 1675 err = -EACCES; 1676 if (!node_isset(node, task_nodes)) 1677 goto out_flush; 1678 1679 if (current_node == NUMA_NO_NODE) { 1680 current_node = node; 1681 start = i; 1682 } else if (node != current_node) { 1683 err = move_pages_and_store_status(mm, current_node, 1684 &pagelist, status, start, i, nr_pages); 1685 if (err) 1686 goto out; 1687 start = i; 1688 current_node = node; 1689 } 1690 1691 /* 1692 * Errors in the page lookup or isolation are not fatal and we simply 1693 * report them via status 1694 */ 1695 err = add_page_for_migration(mm, addr, current_node, 1696 &pagelist, flags & MPOL_MF_MOVE_ALL); 1697 1698 if (err > 0) { 1699 /* The page is successfully queued for migration */ 1700 continue; 1701 } 1702 1703 /* 1704 * If the page is already on the target node (!err), store the 1705 * node, otherwise, store the err. 1706 */ 1707 err = store_status(status, i, err ? : current_node, 1); 1708 if (err) 1709 goto out_flush; 1710 1711 err = move_pages_and_store_status(mm, current_node, &pagelist, 1712 status, start, i, nr_pages); 1713 if (err) 1714 goto out; 1715 current_node = NUMA_NO_NODE; 1716 } 1717 out_flush: 1718 /* Make sure we do not overwrite the existing error */ 1719 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1720 status, start, i, nr_pages); 1721 if (err >= 0) 1722 err = err1; 1723 out: 1724 return err; 1725 } 1726 1727 /* 1728 * Determine the nodes of an array of pages and store it in an array of status. 1729 */ 1730 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1731 const void __user **pages, int *status) 1732 { 1733 unsigned long i; 1734 1735 down_read(&mm->mmap_sem); 1736 1737 for (i = 0; i < nr_pages; i++) { 1738 unsigned long addr = (unsigned long)(*pages); 1739 struct vm_area_struct *vma; 1740 struct page *page; 1741 int err = -EFAULT; 1742 1743 vma = find_vma(mm, addr); 1744 if (!vma || addr < vma->vm_start) 1745 goto set_status; 1746 1747 /* FOLL_DUMP to ignore special (like zero) pages */ 1748 page = follow_page(vma, addr, FOLL_DUMP); 1749 1750 err = PTR_ERR(page); 1751 if (IS_ERR(page)) 1752 goto set_status; 1753 1754 err = page ? page_to_nid(page) : -ENOENT; 1755 set_status: 1756 *status = err; 1757 1758 pages++; 1759 status++; 1760 } 1761 1762 up_read(&mm->mmap_sem); 1763 } 1764 1765 /* 1766 * Determine the nodes of a user array of pages and store it in 1767 * a user array of status. 1768 */ 1769 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1770 const void __user * __user *pages, 1771 int __user *status) 1772 { 1773 #define DO_PAGES_STAT_CHUNK_NR 16 1774 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1775 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1776 1777 while (nr_pages) { 1778 unsigned long chunk_nr; 1779 1780 chunk_nr = nr_pages; 1781 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1782 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1783 1784 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1785 break; 1786 1787 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1788 1789 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1790 break; 1791 1792 pages += chunk_nr; 1793 status += chunk_nr; 1794 nr_pages -= chunk_nr; 1795 } 1796 return nr_pages ? -EFAULT : 0; 1797 } 1798 1799 /* 1800 * Move a list of pages in the address space of the currently executing 1801 * process. 1802 */ 1803 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1804 const void __user * __user *pages, 1805 const int __user *nodes, 1806 int __user *status, int flags) 1807 { 1808 struct task_struct *task; 1809 struct mm_struct *mm; 1810 int err; 1811 nodemask_t task_nodes; 1812 1813 /* Check flags */ 1814 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1815 return -EINVAL; 1816 1817 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1818 return -EPERM; 1819 1820 /* Find the mm_struct */ 1821 rcu_read_lock(); 1822 task = pid ? find_task_by_vpid(pid) : current; 1823 if (!task) { 1824 rcu_read_unlock(); 1825 return -ESRCH; 1826 } 1827 get_task_struct(task); 1828 1829 /* 1830 * Check if this process has the right to modify the specified 1831 * process. Use the regular "ptrace_may_access()" checks. 1832 */ 1833 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1834 rcu_read_unlock(); 1835 err = -EPERM; 1836 goto out; 1837 } 1838 rcu_read_unlock(); 1839 1840 err = security_task_movememory(task); 1841 if (err) 1842 goto out; 1843 1844 task_nodes = cpuset_mems_allowed(task); 1845 mm = get_task_mm(task); 1846 put_task_struct(task); 1847 1848 if (!mm) 1849 return -EINVAL; 1850 1851 if (nodes) 1852 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1853 nodes, status, flags); 1854 else 1855 err = do_pages_stat(mm, nr_pages, pages, status); 1856 1857 mmput(mm); 1858 return err; 1859 1860 out: 1861 put_task_struct(task); 1862 return err; 1863 } 1864 1865 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1866 const void __user * __user *, pages, 1867 const int __user *, nodes, 1868 int __user *, status, int, flags) 1869 { 1870 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1871 } 1872 1873 #ifdef CONFIG_COMPAT 1874 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1875 compat_uptr_t __user *, pages32, 1876 const int __user *, nodes, 1877 int __user *, status, 1878 int, flags) 1879 { 1880 const void __user * __user *pages; 1881 int i; 1882 1883 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1884 for (i = 0; i < nr_pages; i++) { 1885 compat_uptr_t p; 1886 1887 if (get_user(p, pages32 + i) || 1888 put_user(compat_ptr(p), pages + i)) 1889 return -EFAULT; 1890 } 1891 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1892 } 1893 #endif /* CONFIG_COMPAT */ 1894 1895 #ifdef CONFIG_NUMA_BALANCING 1896 /* 1897 * Returns true if this is a safe migration target node for misplaced NUMA 1898 * pages. Currently it only checks the watermarks which crude 1899 */ 1900 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1901 unsigned long nr_migrate_pages) 1902 { 1903 int z; 1904 1905 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1906 struct zone *zone = pgdat->node_zones + z; 1907 1908 if (!populated_zone(zone)) 1909 continue; 1910 1911 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1912 if (!zone_watermark_ok(zone, 0, 1913 high_wmark_pages(zone) + 1914 nr_migrate_pages, 1915 ZONE_MOVABLE, 0)) 1916 continue; 1917 return true; 1918 } 1919 return false; 1920 } 1921 1922 static struct page *alloc_misplaced_dst_page(struct page *page, 1923 unsigned long data) 1924 { 1925 int nid = (int) data; 1926 struct page *newpage; 1927 1928 newpage = __alloc_pages_node(nid, 1929 (GFP_HIGHUSER_MOVABLE | 1930 __GFP_THISNODE | __GFP_NOMEMALLOC | 1931 __GFP_NORETRY | __GFP_NOWARN) & 1932 ~__GFP_RECLAIM, 0); 1933 1934 return newpage; 1935 } 1936 1937 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1938 { 1939 int page_lru; 1940 1941 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1942 1943 /* Avoid migrating to a node that is nearly full */ 1944 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 1945 return 0; 1946 1947 if (isolate_lru_page(page)) 1948 return 0; 1949 1950 /* 1951 * migrate_misplaced_transhuge_page() skips page migration's usual 1952 * check on page_count(), so we must do it here, now that the page 1953 * has been isolated: a GUP pin, or any other pin, prevents migration. 1954 * The expected page count is 3: 1 for page's mapcount and 1 for the 1955 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1956 */ 1957 if (PageTransHuge(page) && page_count(page) != 3) { 1958 putback_lru_page(page); 1959 return 0; 1960 } 1961 1962 page_lru = page_is_file_lru(page); 1963 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1964 hpage_nr_pages(page)); 1965 1966 /* 1967 * Isolating the page has taken another reference, so the 1968 * caller's reference can be safely dropped without the page 1969 * disappearing underneath us during migration. 1970 */ 1971 put_page(page); 1972 return 1; 1973 } 1974 1975 bool pmd_trans_migrating(pmd_t pmd) 1976 { 1977 struct page *page = pmd_page(pmd); 1978 return PageLocked(page); 1979 } 1980 1981 /* 1982 * Attempt to migrate a misplaced page to the specified destination 1983 * node. Caller is expected to have an elevated reference count on 1984 * the page that will be dropped by this function before returning. 1985 */ 1986 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1987 int node) 1988 { 1989 pg_data_t *pgdat = NODE_DATA(node); 1990 int isolated; 1991 int nr_remaining; 1992 LIST_HEAD(migratepages); 1993 1994 /* 1995 * Don't migrate file pages that are mapped in multiple processes 1996 * with execute permissions as they are probably shared libraries. 1997 */ 1998 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 1999 (vma->vm_flags & VM_EXEC)) 2000 goto out; 2001 2002 /* 2003 * Also do not migrate dirty pages as not all filesystems can move 2004 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2005 */ 2006 if (page_is_file_lru(page) && PageDirty(page)) 2007 goto out; 2008 2009 isolated = numamigrate_isolate_page(pgdat, page); 2010 if (!isolated) 2011 goto out; 2012 2013 list_add(&page->lru, &migratepages); 2014 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2015 NULL, node, MIGRATE_ASYNC, 2016 MR_NUMA_MISPLACED); 2017 if (nr_remaining) { 2018 if (!list_empty(&migratepages)) { 2019 list_del(&page->lru); 2020 dec_node_page_state(page, NR_ISOLATED_ANON + 2021 page_is_file_lru(page)); 2022 putback_lru_page(page); 2023 } 2024 isolated = 0; 2025 } else 2026 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2027 BUG_ON(!list_empty(&migratepages)); 2028 return isolated; 2029 2030 out: 2031 put_page(page); 2032 return 0; 2033 } 2034 #endif /* CONFIG_NUMA_BALANCING */ 2035 2036 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2037 /* 2038 * Migrates a THP to a given target node. page must be locked and is unlocked 2039 * before returning. 2040 */ 2041 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2042 struct vm_area_struct *vma, 2043 pmd_t *pmd, pmd_t entry, 2044 unsigned long address, 2045 struct page *page, int node) 2046 { 2047 spinlock_t *ptl; 2048 pg_data_t *pgdat = NODE_DATA(node); 2049 int isolated = 0; 2050 struct page *new_page = NULL; 2051 int page_lru = page_is_file_lru(page); 2052 unsigned long start = address & HPAGE_PMD_MASK; 2053 2054 new_page = alloc_pages_node(node, 2055 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2056 HPAGE_PMD_ORDER); 2057 if (!new_page) 2058 goto out_fail; 2059 prep_transhuge_page(new_page); 2060 2061 isolated = numamigrate_isolate_page(pgdat, page); 2062 if (!isolated) { 2063 put_page(new_page); 2064 goto out_fail; 2065 } 2066 2067 /* Prepare a page as a migration target */ 2068 __SetPageLocked(new_page); 2069 if (PageSwapBacked(page)) 2070 __SetPageSwapBacked(new_page); 2071 2072 /* anon mapping, we can simply copy page->mapping to the new page: */ 2073 new_page->mapping = page->mapping; 2074 new_page->index = page->index; 2075 /* flush the cache before copying using the kernel virtual address */ 2076 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2077 migrate_page_copy(new_page, page); 2078 WARN_ON(PageLRU(new_page)); 2079 2080 /* Recheck the target PMD */ 2081 ptl = pmd_lock(mm, pmd); 2082 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2083 spin_unlock(ptl); 2084 2085 /* Reverse changes made by migrate_page_copy() */ 2086 if (TestClearPageActive(new_page)) 2087 SetPageActive(page); 2088 if (TestClearPageUnevictable(new_page)) 2089 SetPageUnevictable(page); 2090 2091 unlock_page(new_page); 2092 put_page(new_page); /* Free it */ 2093 2094 /* Retake the callers reference and putback on LRU */ 2095 get_page(page); 2096 putback_lru_page(page); 2097 mod_node_page_state(page_pgdat(page), 2098 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2099 2100 goto out_unlock; 2101 } 2102 2103 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2104 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2105 2106 /* 2107 * Overwrite the old entry under pagetable lock and establish 2108 * the new PTE. Any parallel GUP will either observe the old 2109 * page blocking on the page lock, block on the page table 2110 * lock or observe the new page. The SetPageUptodate on the 2111 * new page and page_add_new_anon_rmap guarantee the copy is 2112 * visible before the pagetable update. 2113 */ 2114 page_add_anon_rmap(new_page, vma, start, true); 2115 /* 2116 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2117 * has already been flushed globally. So no TLB can be currently 2118 * caching this non present pmd mapping. There's no need to clear the 2119 * pmd before doing set_pmd_at(), nor to flush the TLB after 2120 * set_pmd_at(). Clearing the pmd here would introduce a race 2121 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2122 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2123 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2124 * pmd. 2125 */ 2126 set_pmd_at(mm, start, pmd, entry); 2127 update_mmu_cache_pmd(vma, address, &entry); 2128 2129 page_ref_unfreeze(page, 2); 2130 mlock_migrate_page(new_page, page); 2131 page_remove_rmap(page, true); 2132 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2133 2134 spin_unlock(ptl); 2135 2136 /* Take an "isolate" reference and put new page on the LRU. */ 2137 get_page(new_page); 2138 putback_lru_page(new_page); 2139 2140 unlock_page(new_page); 2141 unlock_page(page); 2142 put_page(page); /* Drop the rmap reference */ 2143 put_page(page); /* Drop the LRU isolation reference */ 2144 2145 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2146 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2147 2148 mod_node_page_state(page_pgdat(page), 2149 NR_ISOLATED_ANON + page_lru, 2150 -HPAGE_PMD_NR); 2151 return isolated; 2152 2153 out_fail: 2154 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2155 ptl = pmd_lock(mm, pmd); 2156 if (pmd_same(*pmd, entry)) { 2157 entry = pmd_modify(entry, vma->vm_page_prot); 2158 set_pmd_at(mm, start, pmd, entry); 2159 update_mmu_cache_pmd(vma, address, &entry); 2160 } 2161 spin_unlock(ptl); 2162 2163 out_unlock: 2164 unlock_page(page); 2165 put_page(page); 2166 return 0; 2167 } 2168 #endif /* CONFIG_NUMA_BALANCING */ 2169 2170 #endif /* CONFIG_NUMA */ 2171 2172 #ifdef CONFIG_DEVICE_PRIVATE 2173 static int migrate_vma_collect_hole(unsigned long start, 2174 unsigned long end, 2175 __always_unused int depth, 2176 struct mm_walk *walk) 2177 { 2178 struct migrate_vma *migrate = walk->private; 2179 unsigned long addr; 2180 2181 for (addr = start; addr < end; addr += PAGE_SIZE) { 2182 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2183 migrate->dst[migrate->npages] = 0; 2184 migrate->npages++; 2185 migrate->cpages++; 2186 } 2187 2188 return 0; 2189 } 2190 2191 static int migrate_vma_collect_skip(unsigned long start, 2192 unsigned long end, 2193 struct mm_walk *walk) 2194 { 2195 struct migrate_vma *migrate = walk->private; 2196 unsigned long addr; 2197 2198 for (addr = start; addr < end; addr += PAGE_SIZE) { 2199 migrate->dst[migrate->npages] = 0; 2200 migrate->src[migrate->npages++] = 0; 2201 } 2202 2203 return 0; 2204 } 2205 2206 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2207 unsigned long start, 2208 unsigned long end, 2209 struct mm_walk *walk) 2210 { 2211 struct migrate_vma *migrate = walk->private; 2212 struct vm_area_struct *vma = walk->vma; 2213 struct mm_struct *mm = vma->vm_mm; 2214 unsigned long addr = start, unmapped = 0; 2215 spinlock_t *ptl; 2216 pte_t *ptep; 2217 2218 again: 2219 if (pmd_none(*pmdp)) 2220 return migrate_vma_collect_hole(start, end, -1, walk); 2221 2222 if (pmd_trans_huge(*pmdp)) { 2223 struct page *page; 2224 2225 ptl = pmd_lock(mm, pmdp); 2226 if (unlikely(!pmd_trans_huge(*pmdp))) { 2227 spin_unlock(ptl); 2228 goto again; 2229 } 2230 2231 page = pmd_page(*pmdp); 2232 if (is_huge_zero_page(page)) { 2233 spin_unlock(ptl); 2234 split_huge_pmd(vma, pmdp, addr); 2235 if (pmd_trans_unstable(pmdp)) 2236 return migrate_vma_collect_skip(start, end, 2237 walk); 2238 } else { 2239 int ret; 2240 2241 get_page(page); 2242 spin_unlock(ptl); 2243 if (unlikely(!trylock_page(page))) 2244 return migrate_vma_collect_skip(start, end, 2245 walk); 2246 ret = split_huge_page(page); 2247 unlock_page(page); 2248 put_page(page); 2249 if (ret) 2250 return migrate_vma_collect_skip(start, end, 2251 walk); 2252 if (pmd_none(*pmdp)) 2253 return migrate_vma_collect_hole(start, end, -1, 2254 walk); 2255 } 2256 } 2257 2258 if (unlikely(pmd_bad(*pmdp))) 2259 return migrate_vma_collect_skip(start, end, walk); 2260 2261 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2262 arch_enter_lazy_mmu_mode(); 2263 2264 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2265 unsigned long mpfn = 0, pfn; 2266 struct page *page; 2267 swp_entry_t entry; 2268 pte_t pte; 2269 2270 pte = *ptep; 2271 2272 if (pte_none(pte)) { 2273 mpfn = MIGRATE_PFN_MIGRATE; 2274 migrate->cpages++; 2275 goto next; 2276 } 2277 2278 if (!pte_present(pte)) { 2279 /* 2280 * Only care about unaddressable device page special 2281 * page table entry. Other special swap entries are not 2282 * migratable, and we ignore regular swapped page. 2283 */ 2284 entry = pte_to_swp_entry(pte); 2285 if (!is_device_private_entry(entry)) 2286 goto next; 2287 2288 page = device_private_entry_to_page(entry); 2289 if (page->pgmap->owner != migrate->src_owner) 2290 goto next; 2291 2292 mpfn = migrate_pfn(page_to_pfn(page)) | 2293 MIGRATE_PFN_MIGRATE; 2294 if (is_write_device_private_entry(entry)) 2295 mpfn |= MIGRATE_PFN_WRITE; 2296 } else { 2297 if (migrate->src_owner) 2298 goto next; 2299 pfn = pte_pfn(pte); 2300 if (is_zero_pfn(pfn)) { 2301 mpfn = MIGRATE_PFN_MIGRATE; 2302 migrate->cpages++; 2303 goto next; 2304 } 2305 page = vm_normal_page(migrate->vma, addr, pte); 2306 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2307 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2308 } 2309 2310 /* FIXME support THP */ 2311 if (!page || !page->mapping || PageTransCompound(page)) { 2312 mpfn = 0; 2313 goto next; 2314 } 2315 2316 /* 2317 * By getting a reference on the page we pin it and that blocks 2318 * any kind of migration. Side effect is that it "freezes" the 2319 * pte. 2320 * 2321 * We drop this reference after isolating the page from the lru 2322 * for non device page (device page are not on the lru and thus 2323 * can't be dropped from it). 2324 */ 2325 get_page(page); 2326 migrate->cpages++; 2327 2328 /* 2329 * Optimize for the common case where page is only mapped once 2330 * in one process. If we can lock the page, then we can safely 2331 * set up a special migration page table entry now. 2332 */ 2333 if (trylock_page(page)) { 2334 pte_t swp_pte; 2335 2336 mpfn |= MIGRATE_PFN_LOCKED; 2337 ptep_get_and_clear(mm, addr, ptep); 2338 2339 /* Setup special migration page table entry */ 2340 entry = make_migration_entry(page, mpfn & 2341 MIGRATE_PFN_WRITE); 2342 swp_pte = swp_entry_to_pte(entry); 2343 if (pte_soft_dirty(pte)) 2344 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2345 if (pte_uffd_wp(pte)) 2346 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2347 set_pte_at(mm, addr, ptep, swp_pte); 2348 2349 /* 2350 * This is like regular unmap: we remove the rmap and 2351 * drop page refcount. Page won't be freed, as we took 2352 * a reference just above. 2353 */ 2354 page_remove_rmap(page, false); 2355 put_page(page); 2356 2357 if (pte_present(pte)) 2358 unmapped++; 2359 } 2360 2361 next: 2362 migrate->dst[migrate->npages] = 0; 2363 migrate->src[migrate->npages++] = mpfn; 2364 } 2365 arch_leave_lazy_mmu_mode(); 2366 pte_unmap_unlock(ptep - 1, ptl); 2367 2368 /* Only flush the TLB if we actually modified any entries */ 2369 if (unmapped) 2370 flush_tlb_range(walk->vma, start, end); 2371 2372 return 0; 2373 } 2374 2375 static const struct mm_walk_ops migrate_vma_walk_ops = { 2376 .pmd_entry = migrate_vma_collect_pmd, 2377 .pte_hole = migrate_vma_collect_hole, 2378 }; 2379 2380 /* 2381 * migrate_vma_collect() - collect pages over a range of virtual addresses 2382 * @migrate: migrate struct containing all migration information 2383 * 2384 * This will walk the CPU page table. For each virtual address backed by a 2385 * valid page, it updates the src array and takes a reference on the page, in 2386 * order to pin the page until we lock it and unmap it. 2387 */ 2388 static void migrate_vma_collect(struct migrate_vma *migrate) 2389 { 2390 struct mmu_notifier_range range; 2391 2392 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, 2393 migrate->vma->vm_mm, migrate->start, migrate->end); 2394 mmu_notifier_invalidate_range_start(&range); 2395 2396 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2397 &migrate_vma_walk_ops, migrate); 2398 2399 mmu_notifier_invalidate_range_end(&range); 2400 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2401 } 2402 2403 /* 2404 * migrate_vma_check_page() - check if page is pinned or not 2405 * @page: struct page to check 2406 * 2407 * Pinned pages cannot be migrated. This is the same test as in 2408 * migrate_page_move_mapping(), except that here we allow migration of a 2409 * ZONE_DEVICE page. 2410 */ 2411 static bool migrate_vma_check_page(struct page *page) 2412 { 2413 /* 2414 * One extra ref because caller holds an extra reference, either from 2415 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2416 * a device page. 2417 */ 2418 int extra = 1; 2419 2420 /* 2421 * FIXME support THP (transparent huge page), it is bit more complex to 2422 * check them than regular pages, because they can be mapped with a pmd 2423 * or with a pte (split pte mapping). 2424 */ 2425 if (PageCompound(page)) 2426 return false; 2427 2428 /* Page from ZONE_DEVICE have one extra reference */ 2429 if (is_zone_device_page(page)) { 2430 /* 2431 * Private page can never be pin as they have no valid pte and 2432 * GUP will fail for those. Yet if there is a pending migration 2433 * a thread might try to wait on the pte migration entry and 2434 * will bump the page reference count. Sadly there is no way to 2435 * differentiate a regular pin from migration wait. Hence to 2436 * avoid 2 racing thread trying to migrate back to CPU to enter 2437 * infinite loop (one stoping migration because the other is 2438 * waiting on pte migration entry). We always return true here. 2439 * 2440 * FIXME proper solution is to rework migration_entry_wait() so 2441 * it does not need to take a reference on page. 2442 */ 2443 return is_device_private_page(page); 2444 } 2445 2446 /* For file back page */ 2447 if (page_mapping(page)) 2448 extra += 1 + page_has_private(page); 2449 2450 if ((page_count(page) - extra) > page_mapcount(page)) 2451 return false; 2452 2453 return true; 2454 } 2455 2456 /* 2457 * migrate_vma_prepare() - lock pages and isolate them from the lru 2458 * @migrate: migrate struct containing all migration information 2459 * 2460 * This locks pages that have been collected by migrate_vma_collect(). Once each 2461 * page is locked it is isolated from the lru (for non-device pages). Finally, 2462 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2463 * migrated by concurrent kernel threads. 2464 */ 2465 static void migrate_vma_prepare(struct migrate_vma *migrate) 2466 { 2467 const unsigned long npages = migrate->npages; 2468 const unsigned long start = migrate->start; 2469 unsigned long addr, i, restore = 0; 2470 bool allow_drain = true; 2471 2472 lru_add_drain(); 2473 2474 for (i = 0; (i < npages) && migrate->cpages; i++) { 2475 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2476 bool remap = true; 2477 2478 if (!page) 2479 continue; 2480 2481 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2482 /* 2483 * Because we are migrating several pages there can be 2484 * a deadlock between 2 concurrent migration where each 2485 * are waiting on each other page lock. 2486 * 2487 * Make migrate_vma() a best effort thing and backoff 2488 * for any page we can not lock right away. 2489 */ 2490 if (!trylock_page(page)) { 2491 migrate->src[i] = 0; 2492 migrate->cpages--; 2493 put_page(page); 2494 continue; 2495 } 2496 remap = false; 2497 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2498 } 2499 2500 /* ZONE_DEVICE pages are not on LRU */ 2501 if (!is_zone_device_page(page)) { 2502 if (!PageLRU(page) && allow_drain) { 2503 /* Drain CPU's pagevec */ 2504 lru_add_drain_all(); 2505 allow_drain = false; 2506 } 2507 2508 if (isolate_lru_page(page)) { 2509 if (remap) { 2510 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2511 migrate->cpages--; 2512 restore++; 2513 } else { 2514 migrate->src[i] = 0; 2515 unlock_page(page); 2516 migrate->cpages--; 2517 put_page(page); 2518 } 2519 continue; 2520 } 2521 2522 /* Drop the reference we took in collect */ 2523 put_page(page); 2524 } 2525 2526 if (!migrate_vma_check_page(page)) { 2527 if (remap) { 2528 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2529 migrate->cpages--; 2530 restore++; 2531 2532 if (!is_zone_device_page(page)) { 2533 get_page(page); 2534 putback_lru_page(page); 2535 } 2536 } else { 2537 migrate->src[i] = 0; 2538 unlock_page(page); 2539 migrate->cpages--; 2540 2541 if (!is_zone_device_page(page)) 2542 putback_lru_page(page); 2543 else 2544 put_page(page); 2545 } 2546 } 2547 } 2548 2549 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2550 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2551 2552 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2553 continue; 2554 2555 remove_migration_pte(page, migrate->vma, addr, page); 2556 2557 migrate->src[i] = 0; 2558 unlock_page(page); 2559 put_page(page); 2560 restore--; 2561 } 2562 } 2563 2564 /* 2565 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2566 * @migrate: migrate struct containing all migration information 2567 * 2568 * Replace page mapping (CPU page table pte) with a special migration pte entry 2569 * and check again if it has been pinned. Pinned pages are restored because we 2570 * cannot migrate them. 2571 * 2572 * This is the last step before we call the device driver callback to allocate 2573 * destination memory and copy contents of original page over to new page. 2574 */ 2575 static void migrate_vma_unmap(struct migrate_vma *migrate) 2576 { 2577 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2578 const unsigned long npages = migrate->npages; 2579 const unsigned long start = migrate->start; 2580 unsigned long addr, i, restore = 0; 2581 2582 for (i = 0; i < npages; i++) { 2583 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2584 2585 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2586 continue; 2587 2588 if (page_mapped(page)) { 2589 try_to_unmap(page, flags); 2590 if (page_mapped(page)) 2591 goto restore; 2592 } 2593 2594 if (migrate_vma_check_page(page)) 2595 continue; 2596 2597 restore: 2598 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2599 migrate->cpages--; 2600 restore++; 2601 } 2602 2603 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2604 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2605 2606 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2607 continue; 2608 2609 remove_migration_ptes(page, page, false); 2610 2611 migrate->src[i] = 0; 2612 unlock_page(page); 2613 restore--; 2614 2615 if (is_zone_device_page(page)) 2616 put_page(page); 2617 else 2618 putback_lru_page(page); 2619 } 2620 } 2621 2622 /** 2623 * migrate_vma_setup() - prepare to migrate a range of memory 2624 * @args: contains the vma, start, and and pfns arrays for the migration 2625 * 2626 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2627 * without an error. 2628 * 2629 * Prepare to migrate a range of memory virtual address range by collecting all 2630 * the pages backing each virtual address in the range, saving them inside the 2631 * src array. Then lock those pages and unmap them. Once the pages are locked 2632 * and unmapped, check whether each page is pinned or not. Pages that aren't 2633 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2634 * corresponding src array entry. Then restores any pages that are pinned, by 2635 * remapping and unlocking those pages. 2636 * 2637 * The caller should then allocate destination memory and copy source memory to 2638 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2639 * flag set). Once these are allocated and copied, the caller must update each 2640 * corresponding entry in the dst array with the pfn value of the destination 2641 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2642 * (destination pages must have their struct pages locked, via lock_page()). 2643 * 2644 * Note that the caller does not have to migrate all the pages that are marked 2645 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2646 * device memory to system memory. If the caller cannot migrate a device page 2647 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2648 * consequences for the userspace process, so it must be avoided if at all 2649 * possible. 2650 * 2651 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2652 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2653 * allowing the caller to allocate device memory for those unback virtual 2654 * address. For this the caller simply has to allocate device memory and 2655 * properly set the destination entry like for regular migration. Note that 2656 * this can still fails and thus inside the device driver must check if the 2657 * migration was successful for those entries after calling migrate_vma_pages() 2658 * just like for regular migration. 2659 * 2660 * After that, the callers must call migrate_vma_pages() to go over each entry 2661 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2662 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2663 * then migrate_vma_pages() to migrate struct page information from the source 2664 * struct page to the destination struct page. If it fails to migrate the 2665 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2666 * src array. 2667 * 2668 * At this point all successfully migrated pages have an entry in the src 2669 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2670 * array entry with MIGRATE_PFN_VALID flag set. 2671 * 2672 * Once migrate_vma_pages() returns the caller may inspect which pages were 2673 * successfully migrated, and which were not. Successfully migrated pages will 2674 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2675 * 2676 * It is safe to update device page table after migrate_vma_pages() because 2677 * both destination and source page are still locked, and the mmap_sem is held 2678 * in read mode (hence no one can unmap the range being migrated). 2679 * 2680 * Once the caller is done cleaning up things and updating its page table (if it 2681 * chose to do so, this is not an obligation) it finally calls 2682 * migrate_vma_finalize() to update the CPU page table to point to new pages 2683 * for successfully migrated pages or otherwise restore the CPU page table to 2684 * point to the original source pages. 2685 */ 2686 int migrate_vma_setup(struct migrate_vma *args) 2687 { 2688 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2689 2690 args->start &= PAGE_MASK; 2691 args->end &= PAGE_MASK; 2692 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2693 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2694 return -EINVAL; 2695 if (nr_pages <= 0) 2696 return -EINVAL; 2697 if (args->start < args->vma->vm_start || 2698 args->start >= args->vma->vm_end) 2699 return -EINVAL; 2700 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2701 return -EINVAL; 2702 if (!args->src || !args->dst) 2703 return -EINVAL; 2704 2705 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2706 args->cpages = 0; 2707 args->npages = 0; 2708 2709 migrate_vma_collect(args); 2710 2711 if (args->cpages) 2712 migrate_vma_prepare(args); 2713 if (args->cpages) 2714 migrate_vma_unmap(args); 2715 2716 /* 2717 * At this point pages are locked and unmapped, and thus they have 2718 * stable content and can safely be copied to destination memory that 2719 * is allocated by the drivers. 2720 */ 2721 return 0; 2722 2723 } 2724 EXPORT_SYMBOL(migrate_vma_setup); 2725 2726 /* 2727 * This code closely matches the code in: 2728 * __handle_mm_fault() 2729 * handle_pte_fault() 2730 * do_anonymous_page() 2731 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2732 * private page. 2733 */ 2734 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2735 unsigned long addr, 2736 struct page *page, 2737 unsigned long *src, 2738 unsigned long *dst) 2739 { 2740 struct vm_area_struct *vma = migrate->vma; 2741 struct mm_struct *mm = vma->vm_mm; 2742 struct mem_cgroup *memcg; 2743 bool flush = false; 2744 spinlock_t *ptl; 2745 pte_t entry; 2746 pgd_t *pgdp; 2747 p4d_t *p4dp; 2748 pud_t *pudp; 2749 pmd_t *pmdp; 2750 pte_t *ptep; 2751 2752 /* Only allow populating anonymous memory */ 2753 if (!vma_is_anonymous(vma)) 2754 goto abort; 2755 2756 pgdp = pgd_offset(mm, addr); 2757 p4dp = p4d_alloc(mm, pgdp, addr); 2758 if (!p4dp) 2759 goto abort; 2760 pudp = pud_alloc(mm, p4dp, addr); 2761 if (!pudp) 2762 goto abort; 2763 pmdp = pmd_alloc(mm, pudp, addr); 2764 if (!pmdp) 2765 goto abort; 2766 2767 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2768 goto abort; 2769 2770 /* 2771 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2772 * pte_offset_map() on pmds where a huge pmd might be created 2773 * from a different thread. 2774 * 2775 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2776 * parallel threads are excluded by other means. 2777 * 2778 * Here we only have down_read(mmap_sem). 2779 */ 2780 if (pte_alloc(mm, pmdp)) 2781 goto abort; 2782 2783 /* See the comment in pte_alloc_one_map() */ 2784 if (unlikely(pmd_trans_unstable(pmdp))) 2785 goto abort; 2786 2787 if (unlikely(anon_vma_prepare(vma))) 2788 goto abort; 2789 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2790 goto abort; 2791 2792 /* 2793 * The memory barrier inside __SetPageUptodate makes sure that 2794 * preceding stores to the page contents become visible before 2795 * the set_pte_at() write. 2796 */ 2797 __SetPageUptodate(page); 2798 2799 if (is_zone_device_page(page)) { 2800 if (is_device_private_page(page)) { 2801 swp_entry_t swp_entry; 2802 2803 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2804 entry = swp_entry_to_pte(swp_entry); 2805 } 2806 } else { 2807 entry = mk_pte(page, vma->vm_page_prot); 2808 if (vma->vm_flags & VM_WRITE) 2809 entry = pte_mkwrite(pte_mkdirty(entry)); 2810 } 2811 2812 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2813 2814 if (check_stable_address_space(mm)) 2815 goto unlock_abort; 2816 2817 if (pte_present(*ptep)) { 2818 unsigned long pfn = pte_pfn(*ptep); 2819 2820 if (!is_zero_pfn(pfn)) 2821 goto unlock_abort; 2822 flush = true; 2823 } else if (!pte_none(*ptep)) 2824 goto unlock_abort; 2825 2826 /* 2827 * Check for userfaultfd but do not deliver the fault. Instead, 2828 * just back off. 2829 */ 2830 if (userfaultfd_missing(vma)) 2831 goto unlock_abort; 2832 2833 inc_mm_counter(mm, MM_ANONPAGES); 2834 page_add_new_anon_rmap(page, vma, addr, false); 2835 mem_cgroup_commit_charge(page, memcg, false, false); 2836 if (!is_zone_device_page(page)) 2837 lru_cache_add_active_or_unevictable(page, vma); 2838 get_page(page); 2839 2840 if (flush) { 2841 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2842 ptep_clear_flush_notify(vma, addr, ptep); 2843 set_pte_at_notify(mm, addr, ptep, entry); 2844 update_mmu_cache(vma, addr, ptep); 2845 } else { 2846 /* No need to invalidate - it was non-present before */ 2847 set_pte_at(mm, addr, ptep, entry); 2848 update_mmu_cache(vma, addr, ptep); 2849 } 2850 2851 pte_unmap_unlock(ptep, ptl); 2852 *src = MIGRATE_PFN_MIGRATE; 2853 return; 2854 2855 unlock_abort: 2856 pte_unmap_unlock(ptep, ptl); 2857 mem_cgroup_cancel_charge(page, memcg, false); 2858 abort: 2859 *src &= ~MIGRATE_PFN_MIGRATE; 2860 } 2861 2862 /** 2863 * migrate_vma_pages() - migrate meta-data from src page to dst page 2864 * @migrate: migrate struct containing all migration information 2865 * 2866 * This migrates struct page meta-data from source struct page to destination 2867 * struct page. This effectively finishes the migration from source page to the 2868 * destination page. 2869 */ 2870 void migrate_vma_pages(struct migrate_vma *migrate) 2871 { 2872 const unsigned long npages = migrate->npages; 2873 const unsigned long start = migrate->start; 2874 struct mmu_notifier_range range; 2875 unsigned long addr, i; 2876 bool notified = false; 2877 2878 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2879 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2880 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2881 struct address_space *mapping; 2882 int r; 2883 2884 if (!newpage) { 2885 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2886 continue; 2887 } 2888 2889 if (!page) { 2890 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2891 continue; 2892 if (!notified) { 2893 notified = true; 2894 2895 mmu_notifier_range_init(&range, 2896 MMU_NOTIFY_CLEAR, 0, 2897 NULL, 2898 migrate->vma->vm_mm, 2899 addr, migrate->end); 2900 mmu_notifier_invalidate_range_start(&range); 2901 } 2902 migrate_vma_insert_page(migrate, addr, newpage, 2903 &migrate->src[i], 2904 &migrate->dst[i]); 2905 continue; 2906 } 2907 2908 mapping = page_mapping(page); 2909 2910 if (is_zone_device_page(newpage)) { 2911 if (is_device_private_page(newpage)) { 2912 /* 2913 * For now only support private anonymous when 2914 * migrating to un-addressable device memory. 2915 */ 2916 if (mapping) { 2917 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2918 continue; 2919 } 2920 } else { 2921 /* 2922 * Other types of ZONE_DEVICE page are not 2923 * supported. 2924 */ 2925 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2926 continue; 2927 } 2928 } 2929 2930 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2931 if (r != MIGRATEPAGE_SUCCESS) 2932 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2933 } 2934 2935 /* 2936 * No need to double call mmu_notifier->invalidate_range() callback as 2937 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2938 * did already call it. 2939 */ 2940 if (notified) 2941 mmu_notifier_invalidate_range_only_end(&range); 2942 } 2943 EXPORT_SYMBOL(migrate_vma_pages); 2944 2945 /** 2946 * migrate_vma_finalize() - restore CPU page table entry 2947 * @migrate: migrate struct containing all migration information 2948 * 2949 * This replaces the special migration pte entry with either a mapping to the 2950 * new page if migration was successful for that page, or to the original page 2951 * otherwise. 2952 * 2953 * This also unlocks the pages and puts them back on the lru, or drops the extra 2954 * refcount, for device pages. 2955 */ 2956 void migrate_vma_finalize(struct migrate_vma *migrate) 2957 { 2958 const unsigned long npages = migrate->npages; 2959 unsigned long i; 2960 2961 for (i = 0; i < npages; i++) { 2962 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2963 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2964 2965 if (!page) { 2966 if (newpage) { 2967 unlock_page(newpage); 2968 put_page(newpage); 2969 } 2970 continue; 2971 } 2972 2973 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2974 if (newpage) { 2975 unlock_page(newpage); 2976 put_page(newpage); 2977 } 2978 newpage = page; 2979 } 2980 2981 remove_migration_ptes(page, newpage, false); 2982 unlock_page(page); 2983 migrate->cpages--; 2984 2985 if (is_zone_device_page(page)) 2986 put_page(page); 2987 else 2988 putback_lru_page(page); 2989 2990 if (newpage != page) { 2991 unlock_page(newpage); 2992 if (is_zone_device_page(newpage)) 2993 put_page(newpage); 2994 else 2995 putback_lru_page(newpage); 2996 } 2997 } 2998 } 2999 EXPORT_SYMBOL(migrate_vma_finalize); 3000 #endif /* CONFIG_DEVICE_PRIVATE */ 3001