xref: /linux/mm/migrate.c (revision 3652117f854819a148ff0fbe4492587d3520b5e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/compat.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48 #include <linux/oom.h>
49 #include <linux/memory.h>
50 #include <linux/random.h>
51 #include <linux/sched/sysctl.h>
52 #include <linux/memory-tiers.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
60 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct folio *folio = folio_get_nontail_page(page);
63 	const struct movable_operations *mops;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (!folio)
75 		goto out;
76 
77 	if (unlikely(folio_test_slab(folio)))
78 		goto out_putfolio;
79 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 	smp_rmb();
81 	/*
82 	 * Check movable flag before taking the page lock because
83 	 * we use non-atomic bitops on newly allocated page flags so
84 	 * unconditionally grabbing the lock ruins page's owner side.
85 	 */
86 	if (unlikely(!__folio_test_movable(folio)))
87 		goto out_putfolio;
88 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 	smp_rmb();
90 	if (unlikely(folio_test_slab(folio)))
91 		goto out_putfolio;
92 
93 	/*
94 	 * As movable pages are not isolated from LRU lists, concurrent
95 	 * compaction threads can race against page migration functions
96 	 * as well as race against the releasing a page.
97 	 *
98 	 * In order to avoid having an already isolated movable page
99 	 * being (wrongly) re-isolated while it is under migration,
100 	 * or to avoid attempting to isolate pages being released,
101 	 * lets be sure we have the page lock
102 	 * before proceeding with the movable page isolation steps.
103 	 */
104 	if (unlikely(!folio_trylock(folio)))
105 		goto out_putfolio;
106 
107 	if (!folio_test_movable(folio) || folio_test_isolated(folio))
108 		goto out_no_isolated;
109 
110 	mops = folio_movable_ops(folio);
111 	VM_BUG_ON_FOLIO(!mops, folio);
112 
113 	if (!mops->isolate_page(&folio->page, mode))
114 		goto out_no_isolated;
115 
116 	/* Driver shouldn't use PG_isolated bit of page->flags */
117 	WARN_ON_ONCE(folio_test_isolated(folio));
118 	folio_set_isolated(folio);
119 	folio_unlock(folio);
120 
121 	return true;
122 
123 out_no_isolated:
124 	folio_unlock(folio);
125 out_putfolio:
126 	folio_put(folio);
127 out:
128 	return false;
129 }
130 
131 static void putback_movable_folio(struct folio *folio)
132 {
133 	const struct movable_operations *mops = folio_movable_ops(folio);
134 
135 	mops->putback_page(&folio->page);
136 	folio_clear_isolated(folio);
137 }
138 
139 /*
140  * Put previously isolated pages back onto the appropriate lists
141  * from where they were once taken off for compaction/migration.
142  *
143  * This function shall be used whenever the isolated pageset has been
144  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145  * and isolate_hugetlb().
146  */
147 void putback_movable_pages(struct list_head *l)
148 {
149 	struct folio *folio;
150 	struct folio *folio2;
151 
152 	list_for_each_entry_safe(folio, folio2, l, lru) {
153 		if (unlikely(folio_test_hugetlb(folio))) {
154 			folio_putback_active_hugetlb(folio);
155 			continue;
156 		}
157 		list_del(&folio->lru);
158 		/*
159 		 * We isolated non-lru movable folio so here we can use
160 		 * __folio_test_movable because LRU folio's mapping cannot
161 		 * have PAGE_MAPPING_MOVABLE.
162 		 */
163 		if (unlikely(__folio_test_movable(folio))) {
164 			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
165 			folio_lock(folio);
166 			if (folio_test_movable(folio))
167 				putback_movable_folio(folio);
168 			else
169 				folio_clear_isolated(folio);
170 			folio_unlock(folio);
171 			folio_put(folio);
172 		} else {
173 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
174 					folio_is_file_lru(folio), -folio_nr_pages(folio));
175 			folio_putback_lru(folio);
176 		}
177 	}
178 }
179 
180 /*
181  * Restore a potential migration pte to a working pte entry
182  */
183 static bool remove_migration_pte(struct folio *folio,
184 		struct vm_area_struct *vma, unsigned long addr, void *old)
185 {
186 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187 
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		rmap_t rmap_flags = RMAP_NONE;
190 		pte_t old_pte;
191 		pte_t pte;
192 		swp_entry_t entry;
193 		struct page *new;
194 		unsigned long idx = 0;
195 
196 		/* pgoff is invalid for ksm pages, but they are never large */
197 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 		new = folio_page(folio, idx);
200 
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 		/* PMD-mapped THP migration entry */
203 		if (!pvmw.pte) {
204 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 					!folio_test_pmd_mappable(folio), folio);
206 			remove_migration_pmd(&pvmw, new);
207 			continue;
208 		}
209 #endif
210 
211 		folio_get(folio);
212 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 		old_pte = ptep_get(pvmw.pte);
214 		if (pte_swp_soft_dirty(old_pte))
215 			pte = pte_mksoft_dirty(pte);
216 
217 		entry = pte_to_swp_entry(old_pte);
218 		if (!is_migration_entry_young(entry))
219 			pte = pte_mkold(pte);
220 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
221 			pte = pte_mkdirty(pte);
222 		if (is_writable_migration_entry(entry))
223 			pte = pte_mkwrite(pte, vma);
224 		else if (pte_swp_uffd_wp(old_pte))
225 			pte = pte_mkuffd_wp(pte);
226 
227 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
228 			rmap_flags |= RMAP_EXCLUSIVE;
229 
230 		if (unlikely(is_device_private_page(new))) {
231 			if (pte_write(pte))
232 				entry = make_writable_device_private_entry(
233 							page_to_pfn(new));
234 			else
235 				entry = make_readable_device_private_entry(
236 							page_to_pfn(new));
237 			pte = swp_entry_to_pte(entry);
238 			if (pte_swp_soft_dirty(old_pte))
239 				pte = pte_swp_mksoft_dirty(pte);
240 			if (pte_swp_uffd_wp(old_pte))
241 				pte = pte_swp_mkuffd_wp(pte);
242 		}
243 
244 #ifdef CONFIG_HUGETLB_PAGE
245 		if (folio_test_hugetlb(folio)) {
246 			struct hstate *h = hstate_vma(vma);
247 			unsigned int shift = huge_page_shift(h);
248 			unsigned long psize = huge_page_size(h);
249 
250 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
251 			if (folio_test_anon(folio))
252 				hugepage_add_anon_rmap(folio, vma, pvmw.address,
253 						       rmap_flags);
254 			else
255 				page_dup_file_rmap(new, true);
256 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
257 					psize);
258 		} else
259 #endif
260 		{
261 			if (folio_test_anon(folio))
262 				page_add_anon_rmap(new, vma, pvmw.address,
263 						   rmap_flags);
264 			else
265 				page_add_file_rmap(new, vma, false);
266 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 		}
268 		if (vma->vm_flags & VM_LOCKED)
269 			mlock_drain_local();
270 
271 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
272 					   compound_order(new));
273 
274 		/* No need to invalidate - it was non-present before */
275 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
276 	}
277 
278 	return true;
279 }
280 
281 /*
282  * Get rid of all migration entries and replace them by
283  * references to the indicated page.
284  */
285 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
286 {
287 	struct rmap_walk_control rwc = {
288 		.rmap_one = remove_migration_pte,
289 		.arg = src,
290 	};
291 
292 	if (locked)
293 		rmap_walk_locked(dst, &rwc);
294 	else
295 		rmap_walk(dst, &rwc);
296 }
297 
298 /*
299  * Something used the pte of a page under migration. We need to
300  * get to the page and wait until migration is finished.
301  * When we return from this function the fault will be retried.
302  */
303 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
304 			  unsigned long address)
305 {
306 	spinlock_t *ptl;
307 	pte_t *ptep;
308 	pte_t pte;
309 	swp_entry_t entry;
310 
311 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
312 	if (!ptep)
313 		return;
314 
315 	pte = ptep_get(ptep);
316 	pte_unmap(ptep);
317 
318 	if (!is_swap_pte(pte))
319 		goto out;
320 
321 	entry = pte_to_swp_entry(pte);
322 	if (!is_migration_entry(entry))
323 		goto out;
324 
325 	migration_entry_wait_on_locked(entry, ptl);
326 	return;
327 out:
328 	spin_unlock(ptl);
329 }
330 
331 #ifdef CONFIG_HUGETLB_PAGE
332 /*
333  * The vma read lock must be held upon entry. Holding that lock prevents either
334  * the pte or the ptl from being freed.
335  *
336  * This function will release the vma lock before returning.
337  */
338 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
339 {
340 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
341 	pte_t pte;
342 
343 	hugetlb_vma_assert_locked(vma);
344 	spin_lock(ptl);
345 	pte = huge_ptep_get(ptep);
346 
347 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
348 		spin_unlock(ptl);
349 		hugetlb_vma_unlock_read(vma);
350 	} else {
351 		/*
352 		 * If migration entry existed, safe to release vma lock
353 		 * here because the pgtable page won't be freed without the
354 		 * pgtable lock released.  See comment right above pgtable
355 		 * lock release in migration_entry_wait_on_locked().
356 		 */
357 		hugetlb_vma_unlock_read(vma);
358 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
359 	}
360 }
361 #endif
362 
363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
364 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
365 {
366 	spinlock_t *ptl;
367 
368 	ptl = pmd_lock(mm, pmd);
369 	if (!is_pmd_migration_entry(*pmd))
370 		goto unlock;
371 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
372 	return;
373 unlock:
374 	spin_unlock(ptl);
375 }
376 #endif
377 
378 static int folio_expected_refs(struct address_space *mapping,
379 		struct folio *folio)
380 {
381 	int refs = 1;
382 	if (!mapping)
383 		return refs;
384 
385 	refs += folio_nr_pages(folio);
386 	if (folio_test_private(folio))
387 		refs++;
388 
389 	return refs;
390 }
391 
392 /*
393  * Replace the page in the mapping.
394  *
395  * The number of remaining references must be:
396  * 1 for anonymous pages without a mapping
397  * 2 for pages with a mapping
398  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
399  */
400 int folio_migrate_mapping(struct address_space *mapping,
401 		struct folio *newfolio, struct folio *folio, int extra_count)
402 {
403 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
404 	struct zone *oldzone, *newzone;
405 	int dirty;
406 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
407 	long nr = folio_nr_pages(folio);
408 
409 	if (!mapping) {
410 		/* Anonymous page without mapping */
411 		if (folio_ref_count(folio) != expected_count)
412 			return -EAGAIN;
413 
414 		/* No turning back from here */
415 		newfolio->index = folio->index;
416 		newfolio->mapping = folio->mapping;
417 		if (folio_test_swapbacked(folio))
418 			__folio_set_swapbacked(newfolio);
419 
420 		return MIGRATEPAGE_SUCCESS;
421 	}
422 
423 	oldzone = folio_zone(folio);
424 	newzone = folio_zone(newfolio);
425 
426 	xas_lock_irq(&xas);
427 	if (!folio_ref_freeze(folio, expected_count)) {
428 		xas_unlock_irq(&xas);
429 		return -EAGAIN;
430 	}
431 
432 	/*
433 	 * Now we know that no one else is looking at the folio:
434 	 * no turning back from here.
435 	 */
436 	newfolio->index = folio->index;
437 	newfolio->mapping = folio->mapping;
438 	folio_ref_add(newfolio, nr); /* add cache reference */
439 	if (folio_test_swapbacked(folio)) {
440 		__folio_set_swapbacked(newfolio);
441 		if (folio_test_swapcache(folio)) {
442 			folio_set_swapcache(newfolio);
443 			newfolio->private = folio_get_private(folio);
444 		}
445 	} else {
446 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
447 	}
448 
449 	/* Move dirty while page refs frozen and newpage not yet exposed */
450 	dirty = folio_test_dirty(folio);
451 	if (dirty) {
452 		folio_clear_dirty(folio);
453 		folio_set_dirty(newfolio);
454 	}
455 
456 	xas_store(&xas, newfolio);
457 
458 	/*
459 	 * Drop cache reference from old page by unfreezing
460 	 * to one less reference.
461 	 * We know this isn't the last reference.
462 	 */
463 	folio_ref_unfreeze(folio, expected_count - nr);
464 
465 	xas_unlock(&xas);
466 	/* Leave irq disabled to prevent preemption while updating stats */
467 
468 	/*
469 	 * If moved to a different zone then also account
470 	 * the page for that zone. Other VM counters will be
471 	 * taken care of when we establish references to the
472 	 * new page and drop references to the old page.
473 	 *
474 	 * Note that anonymous pages are accounted for
475 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
476 	 * are mapped to swap space.
477 	 */
478 	if (newzone != oldzone) {
479 		struct lruvec *old_lruvec, *new_lruvec;
480 		struct mem_cgroup *memcg;
481 
482 		memcg = folio_memcg(folio);
483 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
484 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
485 
486 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
487 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
488 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
489 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
490 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
491 
492 			if (folio_test_pmd_mappable(folio)) {
493 				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
494 				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
495 			}
496 		}
497 #ifdef CONFIG_SWAP
498 		if (folio_test_swapcache(folio)) {
499 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
500 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
501 		}
502 #endif
503 		if (dirty && mapping_can_writeback(mapping)) {
504 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
505 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
506 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
507 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
508 		}
509 	}
510 	local_irq_enable();
511 
512 	return MIGRATEPAGE_SUCCESS;
513 }
514 EXPORT_SYMBOL(folio_migrate_mapping);
515 
516 /*
517  * The expected number of remaining references is the same as that
518  * of folio_migrate_mapping().
519  */
520 int migrate_huge_page_move_mapping(struct address_space *mapping,
521 				   struct folio *dst, struct folio *src)
522 {
523 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
524 	int expected_count;
525 
526 	xas_lock_irq(&xas);
527 	expected_count = folio_expected_refs(mapping, src);
528 	if (!folio_ref_freeze(src, expected_count)) {
529 		xas_unlock_irq(&xas);
530 		return -EAGAIN;
531 	}
532 
533 	dst->index = src->index;
534 	dst->mapping = src->mapping;
535 
536 	folio_ref_add(dst, folio_nr_pages(dst));
537 
538 	xas_store(&xas, dst);
539 
540 	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
541 
542 	xas_unlock_irq(&xas);
543 
544 	return MIGRATEPAGE_SUCCESS;
545 }
546 
547 /*
548  * Copy the flags and some other ancillary information
549  */
550 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
551 {
552 	int cpupid;
553 
554 	if (folio_test_error(folio))
555 		folio_set_error(newfolio);
556 	if (folio_test_referenced(folio))
557 		folio_set_referenced(newfolio);
558 	if (folio_test_uptodate(folio))
559 		folio_mark_uptodate(newfolio);
560 	if (folio_test_clear_active(folio)) {
561 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
562 		folio_set_active(newfolio);
563 	} else if (folio_test_clear_unevictable(folio))
564 		folio_set_unevictable(newfolio);
565 	if (folio_test_workingset(folio))
566 		folio_set_workingset(newfolio);
567 	if (folio_test_checked(folio))
568 		folio_set_checked(newfolio);
569 	/*
570 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
571 	 * migration entries. We can still have PG_anon_exclusive set on an
572 	 * effectively unmapped and unreferenced first sub-pages of an
573 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
574 	 */
575 	if (folio_test_mappedtodisk(folio))
576 		folio_set_mappedtodisk(newfolio);
577 
578 	/* Move dirty on pages not done by folio_migrate_mapping() */
579 	if (folio_test_dirty(folio))
580 		folio_set_dirty(newfolio);
581 
582 	if (folio_test_young(folio))
583 		folio_set_young(newfolio);
584 	if (folio_test_idle(folio))
585 		folio_set_idle(newfolio);
586 
587 	/*
588 	 * Copy NUMA information to the new page, to prevent over-eager
589 	 * future migrations of this same page.
590 	 */
591 	cpupid = folio_xchg_last_cpupid(folio, -1);
592 	/*
593 	 * For memory tiering mode, when migrate between slow and fast
594 	 * memory node, reset cpupid, because that is used to record
595 	 * page access time in slow memory node.
596 	 */
597 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
598 		bool f_toptier = node_is_toptier(folio_nid(folio));
599 		bool t_toptier = node_is_toptier(folio_nid(newfolio));
600 
601 		if (f_toptier != t_toptier)
602 			cpupid = -1;
603 	}
604 	folio_xchg_last_cpupid(newfolio, cpupid);
605 
606 	folio_migrate_ksm(newfolio, folio);
607 	/*
608 	 * Please do not reorder this without considering how mm/ksm.c's
609 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
610 	 */
611 	if (folio_test_swapcache(folio))
612 		folio_clear_swapcache(folio);
613 	folio_clear_private(folio);
614 
615 	/* page->private contains hugetlb specific flags */
616 	if (!folio_test_hugetlb(folio))
617 		folio->private = NULL;
618 
619 	/*
620 	 * If any waiters have accumulated on the new page then
621 	 * wake them up.
622 	 */
623 	if (folio_test_writeback(newfolio))
624 		folio_end_writeback(newfolio);
625 
626 	/*
627 	 * PG_readahead shares the same bit with PG_reclaim.  The above
628 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
629 	 * bit after that.
630 	 */
631 	if (folio_test_readahead(folio))
632 		folio_set_readahead(newfolio);
633 
634 	folio_copy_owner(newfolio, folio);
635 
636 	mem_cgroup_migrate(folio, newfolio);
637 }
638 EXPORT_SYMBOL(folio_migrate_flags);
639 
640 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
641 {
642 	folio_copy(newfolio, folio);
643 	folio_migrate_flags(newfolio, folio);
644 }
645 EXPORT_SYMBOL(folio_migrate_copy);
646 
647 /************************************************************
648  *                    Migration functions
649  ***********************************************************/
650 
651 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
652 		struct folio *src, enum migrate_mode mode, int extra_count)
653 {
654 	int rc;
655 
656 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
657 
658 	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
659 
660 	if (rc != MIGRATEPAGE_SUCCESS)
661 		return rc;
662 
663 	if (mode != MIGRATE_SYNC_NO_COPY)
664 		folio_migrate_copy(dst, src);
665 	else
666 		folio_migrate_flags(dst, src);
667 	return MIGRATEPAGE_SUCCESS;
668 }
669 
670 /**
671  * migrate_folio() - Simple folio migration.
672  * @mapping: The address_space containing the folio.
673  * @dst: The folio to migrate the data to.
674  * @src: The folio containing the current data.
675  * @mode: How to migrate the page.
676  *
677  * Common logic to directly migrate a single LRU folio suitable for
678  * folios that do not use PagePrivate/PagePrivate2.
679  *
680  * Folios are locked upon entry and exit.
681  */
682 int migrate_folio(struct address_space *mapping, struct folio *dst,
683 		struct folio *src, enum migrate_mode mode)
684 {
685 	return migrate_folio_extra(mapping, dst, src, mode, 0);
686 }
687 EXPORT_SYMBOL(migrate_folio);
688 
689 #ifdef CONFIG_BUFFER_HEAD
690 /* Returns true if all buffers are successfully locked */
691 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
692 							enum migrate_mode mode)
693 {
694 	struct buffer_head *bh = head;
695 	struct buffer_head *failed_bh;
696 
697 	do {
698 		if (!trylock_buffer(bh)) {
699 			if (mode == MIGRATE_ASYNC)
700 				goto unlock;
701 			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
702 				goto unlock;
703 			lock_buffer(bh);
704 		}
705 
706 		bh = bh->b_this_page;
707 	} while (bh != head);
708 
709 	return true;
710 
711 unlock:
712 	/* We failed to lock the buffer and cannot stall. */
713 	failed_bh = bh;
714 	bh = head;
715 	while (bh != failed_bh) {
716 		unlock_buffer(bh);
717 		bh = bh->b_this_page;
718 	}
719 
720 	return false;
721 }
722 
723 static int __buffer_migrate_folio(struct address_space *mapping,
724 		struct folio *dst, struct folio *src, enum migrate_mode mode,
725 		bool check_refs)
726 {
727 	struct buffer_head *bh, *head;
728 	int rc;
729 	int expected_count;
730 
731 	head = folio_buffers(src);
732 	if (!head)
733 		return migrate_folio(mapping, dst, src, mode);
734 
735 	/* Check whether page does not have extra refs before we do more work */
736 	expected_count = folio_expected_refs(mapping, src);
737 	if (folio_ref_count(src) != expected_count)
738 		return -EAGAIN;
739 
740 	if (!buffer_migrate_lock_buffers(head, mode))
741 		return -EAGAIN;
742 
743 	if (check_refs) {
744 		bool busy;
745 		bool invalidated = false;
746 
747 recheck_buffers:
748 		busy = false;
749 		spin_lock(&mapping->i_private_lock);
750 		bh = head;
751 		do {
752 			if (atomic_read(&bh->b_count)) {
753 				busy = true;
754 				break;
755 			}
756 			bh = bh->b_this_page;
757 		} while (bh != head);
758 		if (busy) {
759 			if (invalidated) {
760 				rc = -EAGAIN;
761 				goto unlock_buffers;
762 			}
763 			spin_unlock(&mapping->i_private_lock);
764 			invalidate_bh_lrus();
765 			invalidated = true;
766 			goto recheck_buffers;
767 		}
768 	}
769 
770 	rc = folio_migrate_mapping(mapping, dst, src, 0);
771 	if (rc != MIGRATEPAGE_SUCCESS)
772 		goto unlock_buffers;
773 
774 	folio_attach_private(dst, folio_detach_private(src));
775 
776 	bh = head;
777 	do {
778 		folio_set_bh(bh, dst, bh_offset(bh));
779 		bh = bh->b_this_page;
780 	} while (bh != head);
781 
782 	if (mode != MIGRATE_SYNC_NO_COPY)
783 		folio_migrate_copy(dst, src);
784 	else
785 		folio_migrate_flags(dst, src);
786 
787 	rc = MIGRATEPAGE_SUCCESS;
788 unlock_buffers:
789 	if (check_refs)
790 		spin_unlock(&mapping->i_private_lock);
791 	bh = head;
792 	do {
793 		unlock_buffer(bh);
794 		bh = bh->b_this_page;
795 	} while (bh != head);
796 
797 	return rc;
798 }
799 
800 /**
801  * buffer_migrate_folio() - Migration function for folios with buffers.
802  * @mapping: The address space containing @src.
803  * @dst: The folio to migrate to.
804  * @src: The folio to migrate from.
805  * @mode: How to migrate the folio.
806  *
807  * This function can only be used if the underlying filesystem guarantees
808  * that no other references to @src exist. For example attached buffer
809  * heads are accessed only under the folio lock.  If your filesystem cannot
810  * provide this guarantee, buffer_migrate_folio_norefs() may be more
811  * appropriate.
812  *
813  * Return: 0 on success or a negative errno on failure.
814  */
815 int buffer_migrate_folio(struct address_space *mapping,
816 		struct folio *dst, struct folio *src, enum migrate_mode mode)
817 {
818 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
819 }
820 EXPORT_SYMBOL(buffer_migrate_folio);
821 
822 /**
823  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
824  * @mapping: The address space containing @src.
825  * @dst: The folio to migrate to.
826  * @src: The folio to migrate from.
827  * @mode: How to migrate the folio.
828  *
829  * Like buffer_migrate_folio() except that this variant is more careful
830  * and checks that there are also no buffer head references. This function
831  * is the right one for mappings where buffer heads are directly looked
832  * up and referenced (such as block device mappings).
833  *
834  * Return: 0 on success or a negative errno on failure.
835  */
836 int buffer_migrate_folio_norefs(struct address_space *mapping,
837 		struct folio *dst, struct folio *src, enum migrate_mode mode)
838 {
839 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
840 }
841 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
842 #endif /* CONFIG_BUFFER_HEAD */
843 
844 int filemap_migrate_folio(struct address_space *mapping,
845 		struct folio *dst, struct folio *src, enum migrate_mode mode)
846 {
847 	int ret;
848 
849 	ret = folio_migrate_mapping(mapping, dst, src, 0);
850 	if (ret != MIGRATEPAGE_SUCCESS)
851 		return ret;
852 
853 	if (folio_get_private(src))
854 		folio_attach_private(dst, folio_detach_private(src));
855 
856 	if (mode != MIGRATE_SYNC_NO_COPY)
857 		folio_migrate_copy(dst, src);
858 	else
859 		folio_migrate_flags(dst, src);
860 	return MIGRATEPAGE_SUCCESS;
861 }
862 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
863 
864 /*
865  * Writeback a folio to clean the dirty state
866  */
867 static int writeout(struct address_space *mapping, struct folio *folio)
868 {
869 	struct writeback_control wbc = {
870 		.sync_mode = WB_SYNC_NONE,
871 		.nr_to_write = 1,
872 		.range_start = 0,
873 		.range_end = LLONG_MAX,
874 		.for_reclaim = 1
875 	};
876 	int rc;
877 
878 	if (!mapping->a_ops->writepage)
879 		/* No write method for the address space */
880 		return -EINVAL;
881 
882 	if (!folio_clear_dirty_for_io(folio))
883 		/* Someone else already triggered a write */
884 		return -EAGAIN;
885 
886 	/*
887 	 * A dirty folio may imply that the underlying filesystem has
888 	 * the folio on some queue. So the folio must be clean for
889 	 * migration. Writeout may mean we lose the lock and the
890 	 * folio state is no longer what we checked for earlier.
891 	 * At this point we know that the migration attempt cannot
892 	 * be successful.
893 	 */
894 	remove_migration_ptes(folio, folio, false);
895 
896 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
897 
898 	if (rc != AOP_WRITEPAGE_ACTIVATE)
899 		/* unlocked. Relock */
900 		folio_lock(folio);
901 
902 	return (rc < 0) ? -EIO : -EAGAIN;
903 }
904 
905 /*
906  * Default handling if a filesystem does not provide a migration function.
907  */
908 static int fallback_migrate_folio(struct address_space *mapping,
909 		struct folio *dst, struct folio *src, enum migrate_mode mode)
910 {
911 	if (folio_test_dirty(src)) {
912 		/* Only writeback folios in full synchronous migration */
913 		switch (mode) {
914 		case MIGRATE_SYNC:
915 		case MIGRATE_SYNC_NO_COPY:
916 			break;
917 		default:
918 			return -EBUSY;
919 		}
920 		return writeout(mapping, src);
921 	}
922 
923 	/*
924 	 * Buffers may be managed in a filesystem specific way.
925 	 * We must have no buffers or drop them.
926 	 */
927 	if (!filemap_release_folio(src, GFP_KERNEL))
928 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
929 
930 	return migrate_folio(mapping, dst, src, mode);
931 }
932 
933 /*
934  * Move a page to a newly allocated page
935  * The page is locked and all ptes have been successfully removed.
936  *
937  * The new page will have replaced the old page if this function
938  * is successful.
939  *
940  * Return value:
941  *   < 0 - error code
942  *  MIGRATEPAGE_SUCCESS - success
943  */
944 static int move_to_new_folio(struct folio *dst, struct folio *src,
945 				enum migrate_mode mode)
946 {
947 	int rc = -EAGAIN;
948 	bool is_lru = !__folio_test_movable(src);
949 
950 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
951 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
952 
953 	if (likely(is_lru)) {
954 		struct address_space *mapping = folio_mapping(src);
955 
956 		if (!mapping)
957 			rc = migrate_folio(mapping, dst, src, mode);
958 		else if (mapping->a_ops->migrate_folio)
959 			/*
960 			 * Most folios have a mapping and most filesystems
961 			 * provide a migrate_folio callback. Anonymous folios
962 			 * are part of swap space which also has its own
963 			 * migrate_folio callback. This is the most common path
964 			 * for page migration.
965 			 */
966 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
967 								mode);
968 		else
969 			rc = fallback_migrate_folio(mapping, dst, src, mode);
970 	} else {
971 		const struct movable_operations *mops;
972 
973 		/*
974 		 * In case of non-lru page, it could be released after
975 		 * isolation step. In that case, we shouldn't try migration.
976 		 */
977 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
978 		if (!folio_test_movable(src)) {
979 			rc = MIGRATEPAGE_SUCCESS;
980 			folio_clear_isolated(src);
981 			goto out;
982 		}
983 
984 		mops = folio_movable_ops(src);
985 		rc = mops->migrate_page(&dst->page, &src->page, mode);
986 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
987 				!folio_test_isolated(src));
988 	}
989 
990 	/*
991 	 * When successful, old pagecache src->mapping must be cleared before
992 	 * src is freed; but stats require that PageAnon be left as PageAnon.
993 	 */
994 	if (rc == MIGRATEPAGE_SUCCESS) {
995 		if (__folio_test_movable(src)) {
996 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
997 
998 			/*
999 			 * We clear PG_movable under page_lock so any compactor
1000 			 * cannot try to migrate this page.
1001 			 */
1002 			folio_clear_isolated(src);
1003 		}
1004 
1005 		/*
1006 		 * Anonymous and movable src->mapping will be cleared by
1007 		 * free_pages_prepare so don't reset it here for keeping
1008 		 * the type to work PageAnon, for example.
1009 		 */
1010 		if (!folio_mapping_flags(src))
1011 			src->mapping = NULL;
1012 
1013 		if (likely(!folio_is_zone_device(dst)))
1014 			flush_dcache_folio(dst);
1015 	}
1016 out:
1017 	return rc;
1018 }
1019 
1020 /*
1021  * To record some information during migration, we use some unused
1022  * fields (mapping and private) of struct folio of the newly allocated
1023  * destination folio.  This is safe because nobody is using them
1024  * except us.
1025  */
1026 union migration_ptr {
1027 	struct anon_vma *anon_vma;
1028 	struct address_space *mapping;
1029 };
1030 
1031 enum {
1032 	PAGE_WAS_MAPPED = BIT(0),
1033 	PAGE_WAS_MLOCKED = BIT(1),
1034 };
1035 
1036 static void __migrate_folio_record(struct folio *dst,
1037 				   unsigned long old_page_state,
1038 				   struct anon_vma *anon_vma)
1039 {
1040 	union migration_ptr ptr = { .anon_vma = anon_vma };
1041 	dst->mapping = ptr.mapping;
1042 	dst->private = (void *)old_page_state;
1043 }
1044 
1045 static void __migrate_folio_extract(struct folio *dst,
1046 				   int *old_page_state,
1047 				   struct anon_vma **anon_vmap)
1048 {
1049 	union migration_ptr ptr = { .mapping = dst->mapping };
1050 	*anon_vmap = ptr.anon_vma;
1051 	*old_page_state = (unsigned long)dst->private;
1052 	dst->mapping = NULL;
1053 	dst->private = NULL;
1054 }
1055 
1056 /* Restore the source folio to the original state upon failure */
1057 static void migrate_folio_undo_src(struct folio *src,
1058 				   int page_was_mapped,
1059 				   struct anon_vma *anon_vma,
1060 				   bool locked,
1061 				   struct list_head *ret)
1062 {
1063 	if (page_was_mapped)
1064 		remove_migration_ptes(src, src, false);
1065 	/* Drop an anon_vma reference if we took one */
1066 	if (anon_vma)
1067 		put_anon_vma(anon_vma);
1068 	if (locked)
1069 		folio_unlock(src);
1070 	if (ret)
1071 		list_move_tail(&src->lru, ret);
1072 }
1073 
1074 /* Restore the destination folio to the original state upon failure */
1075 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1076 		free_folio_t put_new_folio, unsigned long private)
1077 {
1078 	if (locked)
1079 		folio_unlock(dst);
1080 	if (put_new_folio)
1081 		put_new_folio(dst, private);
1082 	else
1083 		folio_put(dst);
1084 }
1085 
1086 /* Cleanup src folio upon migration success */
1087 static void migrate_folio_done(struct folio *src,
1088 			       enum migrate_reason reason)
1089 {
1090 	/*
1091 	 * Compaction can migrate also non-LRU pages which are
1092 	 * not accounted to NR_ISOLATED_*. They can be recognized
1093 	 * as __folio_test_movable
1094 	 */
1095 	if (likely(!__folio_test_movable(src)))
1096 		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1097 				    folio_is_file_lru(src), -folio_nr_pages(src));
1098 
1099 	if (reason != MR_MEMORY_FAILURE)
1100 		/* We release the page in page_handle_poison. */
1101 		folio_put(src);
1102 }
1103 
1104 /* Obtain the lock on page, remove all ptes. */
1105 static int migrate_folio_unmap(new_folio_t get_new_folio,
1106 		free_folio_t put_new_folio, unsigned long private,
1107 		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1108 		enum migrate_reason reason, struct list_head *ret)
1109 {
1110 	struct folio *dst;
1111 	int rc = -EAGAIN;
1112 	int old_page_state = 0;
1113 	struct anon_vma *anon_vma = NULL;
1114 	bool is_lru = !__folio_test_movable(src);
1115 	bool locked = false;
1116 	bool dst_locked = false;
1117 
1118 	if (folio_ref_count(src) == 1) {
1119 		/* Folio was freed from under us. So we are done. */
1120 		folio_clear_active(src);
1121 		folio_clear_unevictable(src);
1122 		/* free_pages_prepare() will clear PG_isolated. */
1123 		list_del(&src->lru);
1124 		migrate_folio_done(src, reason);
1125 		return MIGRATEPAGE_SUCCESS;
1126 	}
1127 
1128 	dst = get_new_folio(src, private);
1129 	if (!dst)
1130 		return -ENOMEM;
1131 	*dstp = dst;
1132 
1133 	dst->private = NULL;
1134 
1135 	if (!folio_trylock(src)) {
1136 		if (mode == MIGRATE_ASYNC)
1137 			goto out;
1138 
1139 		/*
1140 		 * It's not safe for direct compaction to call lock_page.
1141 		 * For example, during page readahead pages are added locked
1142 		 * to the LRU. Later, when the IO completes the pages are
1143 		 * marked uptodate and unlocked. However, the queueing
1144 		 * could be merging multiple pages for one bio (e.g.
1145 		 * mpage_readahead). If an allocation happens for the
1146 		 * second or third page, the process can end up locking
1147 		 * the same page twice and deadlocking. Rather than
1148 		 * trying to be clever about what pages can be locked,
1149 		 * avoid the use of lock_page for direct compaction
1150 		 * altogether.
1151 		 */
1152 		if (current->flags & PF_MEMALLOC)
1153 			goto out;
1154 
1155 		/*
1156 		 * In "light" mode, we can wait for transient locks (eg
1157 		 * inserting a page into the page table), but it's not
1158 		 * worth waiting for I/O.
1159 		 */
1160 		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1161 			goto out;
1162 
1163 		folio_lock(src);
1164 	}
1165 	locked = true;
1166 	if (folio_test_mlocked(src))
1167 		old_page_state |= PAGE_WAS_MLOCKED;
1168 
1169 	if (folio_test_writeback(src)) {
1170 		/*
1171 		 * Only in the case of a full synchronous migration is it
1172 		 * necessary to wait for PageWriteback. In the async case,
1173 		 * the retry loop is too short and in the sync-light case,
1174 		 * the overhead of stalling is too much
1175 		 */
1176 		switch (mode) {
1177 		case MIGRATE_SYNC:
1178 		case MIGRATE_SYNC_NO_COPY:
1179 			break;
1180 		default:
1181 			rc = -EBUSY;
1182 			goto out;
1183 		}
1184 		folio_wait_writeback(src);
1185 	}
1186 
1187 	/*
1188 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1189 	 * we cannot notice that anon_vma is freed while we migrate a page.
1190 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1191 	 * of migration. File cache pages are no problem because of page_lock()
1192 	 * File Caches may use write_page() or lock_page() in migration, then,
1193 	 * just care Anon page here.
1194 	 *
1195 	 * Only folio_get_anon_vma() understands the subtleties of
1196 	 * getting a hold on an anon_vma from outside one of its mms.
1197 	 * But if we cannot get anon_vma, then we won't need it anyway,
1198 	 * because that implies that the anon page is no longer mapped
1199 	 * (and cannot be remapped so long as we hold the page lock).
1200 	 */
1201 	if (folio_test_anon(src) && !folio_test_ksm(src))
1202 		anon_vma = folio_get_anon_vma(src);
1203 
1204 	/*
1205 	 * Block others from accessing the new page when we get around to
1206 	 * establishing additional references. We are usually the only one
1207 	 * holding a reference to dst at this point. We used to have a BUG
1208 	 * here if folio_trylock(dst) fails, but would like to allow for
1209 	 * cases where there might be a race with the previous use of dst.
1210 	 * This is much like races on refcount of oldpage: just don't BUG().
1211 	 */
1212 	if (unlikely(!folio_trylock(dst)))
1213 		goto out;
1214 	dst_locked = true;
1215 
1216 	if (unlikely(!is_lru)) {
1217 		__migrate_folio_record(dst, old_page_state, anon_vma);
1218 		return MIGRATEPAGE_UNMAP;
1219 	}
1220 
1221 	/*
1222 	 * Corner case handling:
1223 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1224 	 * and treated as swapcache but it has no rmap yet.
1225 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1226 	 * trigger a BUG.  So handle it here.
1227 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1228 	 * fs-private metadata. The page can be picked up due to memory
1229 	 * offlining.  Everywhere else except page reclaim, the page is
1230 	 * invisible to the vm, so the page can not be migrated.  So try to
1231 	 * free the metadata, so the page can be freed.
1232 	 */
1233 	if (!src->mapping) {
1234 		if (folio_test_private(src)) {
1235 			try_to_free_buffers(src);
1236 			goto out;
1237 		}
1238 	} else if (folio_mapped(src)) {
1239 		/* Establish migration ptes */
1240 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1241 			       !folio_test_ksm(src) && !anon_vma, src);
1242 		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1243 		old_page_state |= PAGE_WAS_MAPPED;
1244 	}
1245 
1246 	if (!folio_mapped(src)) {
1247 		__migrate_folio_record(dst, old_page_state, anon_vma);
1248 		return MIGRATEPAGE_UNMAP;
1249 	}
1250 
1251 out:
1252 	/*
1253 	 * A folio that has not been unmapped will be restored to
1254 	 * right list unless we want to retry.
1255 	 */
1256 	if (rc == -EAGAIN)
1257 		ret = NULL;
1258 
1259 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1260 			       anon_vma, locked, ret);
1261 	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1262 
1263 	return rc;
1264 }
1265 
1266 /* Migrate the folio to the newly allocated folio in dst. */
1267 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1268 			      struct folio *src, struct folio *dst,
1269 			      enum migrate_mode mode, enum migrate_reason reason,
1270 			      struct list_head *ret)
1271 {
1272 	int rc;
1273 	int old_page_state = 0;
1274 	struct anon_vma *anon_vma = NULL;
1275 	bool is_lru = !__folio_test_movable(src);
1276 	struct list_head *prev;
1277 
1278 	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1279 	prev = dst->lru.prev;
1280 	list_del(&dst->lru);
1281 
1282 	rc = move_to_new_folio(dst, src, mode);
1283 	if (rc)
1284 		goto out;
1285 
1286 	if (unlikely(!is_lru))
1287 		goto out_unlock_both;
1288 
1289 	/*
1290 	 * When successful, push dst to LRU immediately: so that if it
1291 	 * turns out to be an mlocked page, remove_migration_ptes() will
1292 	 * automatically build up the correct dst->mlock_count for it.
1293 	 *
1294 	 * We would like to do something similar for the old page, when
1295 	 * unsuccessful, and other cases when a page has been temporarily
1296 	 * isolated from the unevictable LRU: but this case is the easiest.
1297 	 */
1298 	folio_add_lru(dst);
1299 	if (old_page_state & PAGE_WAS_MLOCKED)
1300 		lru_add_drain();
1301 
1302 	if (old_page_state & PAGE_WAS_MAPPED)
1303 		remove_migration_ptes(src, dst, false);
1304 
1305 out_unlock_both:
1306 	folio_unlock(dst);
1307 	set_page_owner_migrate_reason(&dst->page, reason);
1308 	/*
1309 	 * If migration is successful, decrease refcount of dst,
1310 	 * which will not free the page because new page owner increased
1311 	 * refcounter.
1312 	 */
1313 	folio_put(dst);
1314 
1315 	/*
1316 	 * A folio that has been migrated has all references removed
1317 	 * and will be freed.
1318 	 */
1319 	list_del(&src->lru);
1320 	/* Drop an anon_vma reference if we took one */
1321 	if (anon_vma)
1322 		put_anon_vma(anon_vma);
1323 	folio_unlock(src);
1324 	migrate_folio_done(src, reason);
1325 
1326 	return rc;
1327 out:
1328 	/*
1329 	 * A folio that has not been migrated will be restored to
1330 	 * right list unless we want to retry.
1331 	 */
1332 	if (rc == -EAGAIN) {
1333 		list_add(&dst->lru, prev);
1334 		__migrate_folio_record(dst, old_page_state, anon_vma);
1335 		return rc;
1336 	}
1337 
1338 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1339 			       anon_vma, true, ret);
1340 	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1341 
1342 	return rc;
1343 }
1344 
1345 /*
1346  * Counterpart of unmap_and_move_page() for hugepage migration.
1347  *
1348  * This function doesn't wait the completion of hugepage I/O
1349  * because there is no race between I/O and migration for hugepage.
1350  * Note that currently hugepage I/O occurs only in direct I/O
1351  * where no lock is held and PG_writeback is irrelevant,
1352  * and writeback status of all subpages are counted in the reference
1353  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1354  * under direct I/O, the reference of the head page is 512 and a bit more.)
1355  * This means that when we try to migrate hugepage whose subpages are
1356  * doing direct I/O, some references remain after try_to_unmap() and
1357  * hugepage migration fails without data corruption.
1358  *
1359  * There is also no race when direct I/O is issued on the page under migration,
1360  * because then pte is replaced with migration swap entry and direct I/O code
1361  * will wait in the page fault for migration to complete.
1362  */
1363 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1364 		free_folio_t put_new_folio, unsigned long private,
1365 		struct folio *src, int force, enum migrate_mode mode,
1366 		int reason, struct list_head *ret)
1367 {
1368 	struct folio *dst;
1369 	int rc = -EAGAIN;
1370 	int page_was_mapped = 0;
1371 	struct anon_vma *anon_vma = NULL;
1372 	struct address_space *mapping = NULL;
1373 
1374 	if (folio_ref_count(src) == 1) {
1375 		/* page was freed from under us. So we are done. */
1376 		folio_putback_active_hugetlb(src);
1377 		return MIGRATEPAGE_SUCCESS;
1378 	}
1379 
1380 	dst = get_new_folio(src, private);
1381 	if (!dst)
1382 		return -ENOMEM;
1383 
1384 	if (!folio_trylock(src)) {
1385 		if (!force)
1386 			goto out;
1387 		switch (mode) {
1388 		case MIGRATE_SYNC:
1389 		case MIGRATE_SYNC_NO_COPY:
1390 			break;
1391 		default:
1392 			goto out;
1393 		}
1394 		folio_lock(src);
1395 	}
1396 
1397 	/*
1398 	 * Check for pages which are in the process of being freed.  Without
1399 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1400 	 * be called and we could leak usage counts for subpools.
1401 	 */
1402 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1403 		rc = -EBUSY;
1404 		goto out_unlock;
1405 	}
1406 
1407 	if (folio_test_anon(src))
1408 		anon_vma = folio_get_anon_vma(src);
1409 
1410 	if (unlikely(!folio_trylock(dst)))
1411 		goto put_anon;
1412 
1413 	if (folio_mapped(src)) {
1414 		enum ttu_flags ttu = 0;
1415 
1416 		if (!folio_test_anon(src)) {
1417 			/*
1418 			 * In shared mappings, try_to_unmap could potentially
1419 			 * call huge_pmd_unshare.  Because of this, take
1420 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1421 			 * to let lower levels know we have taken the lock.
1422 			 */
1423 			mapping = hugetlb_page_mapping_lock_write(&src->page);
1424 			if (unlikely(!mapping))
1425 				goto unlock_put_anon;
1426 
1427 			ttu = TTU_RMAP_LOCKED;
1428 		}
1429 
1430 		try_to_migrate(src, ttu);
1431 		page_was_mapped = 1;
1432 
1433 		if (ttu & TTU_RMAP_LOCKED)
1434 			i_mmap_unlock_write(mapping);
1435 	}
1436 
1437 	if (!folio_mapped(src))
1438 		rc = move_to_new_folio(dst, src, mode);
1439 
1440 	if (page_was_mapped)
1441 		remove_migration_ptes(src,
1442 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1443 
1444 unlock_put_anon:
1445 	folio_unlock(dst);
1446 
1447 put_anon:
1448 	if (anon_vma)
1449 		put_anon_vma(anon_vma);
1450 
1451 	if (rc == MIGRATEPAGE_SUCCESS) {
1452 		move_hugetlb_state(src, dst, reason);
1453 		put_new_folio = NULL;
1454 	}
1455 
1456 out_unlock:
1457 	folio_unlock(src);
1458 out:
1459 	if (rc == MIGRATEPAGE_SUCCESS)
1460 		folio_putback_active_hugetlb(src);
1461 	else if (rc != -EAGAIN)
1462 		list_move_tail(&src->lru, ret);
1463 
1464 	/*
1465 	 * If migration was not successful and there's a freeing callback, use
1466 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1467 	 * isolation.
1468 	 */
1469 	if (put_new_folio)
1470 		put_new_folio(dst, private);
1471 	else
1472 		folio_putback_active_hugetlb(dst);
1473 
1474 	return rc;
1475 }
1476 
1477 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1478 {
1479 	int rc;
1480 
1481 	folio_lock(folio);
1482 	rc = split_folio_to_list(folio, split_folios);
1483 	folio_unlock(folio);
1484 	if (!rc)
1485 		list_move_tail(&folio->lru, split_folios);
1486 
1487 	return rc;
1488 }
1489 
1490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1491 #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1492 #else
1493 #define NR_MAX_BATCHED_MIGRATION	512
1494 #endif
1495 #define NR_MAX_MIGRATE_PAGES_RETRY	10
1496 #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1497 #define NR_MAX_MIGRATE_SYNC_RETRY					\
1498 	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1499 
1500 struct migrate_pages_stats {
1501 	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1502 				   units of base pages */
1503 	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1504 				   units of base pages.  Untried folios aren't counted */
1505 	int nr_thp_succeeded;	/* THP migrated successfully */
1506 	int nr_thp_failed;	/* THP failed to be migrated */
1507 	int nr_thp_split;	/* THP split before migrating */
1508 	int nr_split;	/* Large folio (include THP) split before migrating */
1509 };
1510 
1511 /*
1512  * Returns the number of hugetlb folios that were not migrated, or an error code
1513  * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1514  * any more because the list has become empty or no retryable hugetlb folios
1515  * exist any more. It is caller's responsibility to call putback_movable_pages()
1516  * only if ret != 0.
1517  */
1518 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1519 			    free_folio_t put_new_folio, unsigned long private,
1520 			    enum migrate_mode mode, int reason,
1521 			    struct migrate_pages_stats *stats,
1522 			    struct list_head *ret_folios)
1523 {
1524 	int retry = 1;
1525 	int nr_failed = 0;
1526 	int nr_retry_pages = 0;
1527 	int pass = 0;
1528 	struct folio *folio, *folio2;
1529 	int rc, nr_pages;
1530 
1531 	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1532 		retry = 0;
1533 		nr_retry_pages = 0;
1534 
1535 		list_for_each_entry_safe(folio, folio2, from, lru) {
1536 			if (!folio_test_hugetlb(folio))
1537 				continue;
1538 
1539 			nr_pages = folio_nr_pages(folio);
1540 
1541 			cond_resched();
1542 
1543 			/*
1544 			 * Migratability of hugepages depends on architectures and
1545 			 * their size.  This check is necessary because some callers
1546 			 * of hugepage migration like soft offline and memory
1547 			 * hotremove don't walk through page tables or check whether
1548 			 * the hugepage is pmd-based or not before kicking migration.
1549 			 */
1550 			if (!hugepage_migration_supported(folio_hstate(folio))) {
1551 				nr_failed++;
1552 				stats->nr_failed_pages += nr_pages;
1553 				list_move_tail(&folio->lru, ret_folios);
1554 				continue;
1555 			}
1556 
1557 			rc = unmap_and_move_huge_page(get_new_folio,
1558 						      put_new_folio, private,
1559 						      folio, pass > 2, mode,
1560 						      reason, ret_folios);
1561 			/*
1562 			 * The rules are:
1563 			 *	Success: hugetlb folio will be put back
1564 			 *	-EAGAIN: stay on the from list
1565 			 *	-ENOMEM: stay on the from list
1566 			 *	Other errno: put on ret_folios list
1567 			 */
1568 			switch(rc) {
1569 			case -ENOMEM:
1570 				/*
1571 				 * When memory is low, don't bother to try to migrate
1572 				 * other folios, just exit.
1573 				 */
1574 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1575 				return -ENOMEM;
1576 			case -EAGAIN:
1577 				retry++;
1578 				nr_retry_pages += nr_pages;
1579 				break;
1580 			case MIGRATEPAGE_SUCCESS:
1581 				stats->nr_succeeded += nr_pages;
1582 				break;
1583 			default:
1584 				/*
1585 				 * Permanent failure (-EBUSY, etc.):
1586 				 * unlike -EAGAIN case, the failed folio is
1587 				 * removed from migration folio list and not
1588 				 * retried in the next outer loop.
1589 				 */
1590 				nr_failed++;
1591 				stats->nr_failed_pages += nr_pages;
1592 				break;
1593 			}
1594 		}
1595 	}
1596 	/*
1597 	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1598 	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1599 	 * folios as failed.
1600 	 */
1601 	nr_failed += retry;
1602 	stats->nr_failed_pages += nr_retry_pages;
1603 
1604 	return nr_failed;
1605 }
1606 
1607 /*
1608  * migrate_pages_batch() first unmaps folios in the from list as many as
1609  * possible, then move the unmapped folios.
1610  *
1611  * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1612  * lock or bit when we have locked more than one folio.  Which may cause
1613  * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1614  * length of the from list must be <= 1.
1615  */
1616 static int migrate_pages_batch(struct list_head *from,
1617 		new_folio_t get_new_folio, free_folio_t put_new_folio,
1618 		unsigned long private, enum migrate_mode mode, int reason,
1619 		struct list_head *ret_folios, struct list_head *split_folios,
1620 		struct migrate_pages_stats *stats, int nr_pass)
1621 {
1622 	int retry = 1;
1623 	int thp_retry = 1;
1624 	int nr_failed = 0;
1625 	int nr_retry_pages = 0;
1626 	int pass = 0;
1627 	bool is_thp = false;
1628 	bool is_large = false;
1629 	struct folio *folio, *folio2, *dst = NULL, *dst2;
1630 	int rc, rc_saved = 0, nr_pages;
1631 	LIST_HEAD(unmap_folios);
1632 	LIST_HEAD(dst_folios);
1633 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1634 
1635 	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1636 			!list_empty(from) && !list_is_singular(from));
1637 
1638 	for (pass = 0; pass < nr_pass && retry; pass++) {
1639 		retry = 0;
1640 		thp_retry = 0;
1641 		nr_retry_pages = 0;
1642 
1643 		list_for_each_entry_safe(folio, folio2, from, lru) {
1644 			is_large = folio_test_large(folio);
1645 			is_thp = is_large && folio_test_pmd_mappable(folio);
1646 			nr_pages = folio_nr_pages(folio);
1647 
1648 			cond_resched();
1649 
1650 			/*
1651 			 * Large folio migration might be unsupported or
1652 			 * the allocation might be failed so we should retry
1653 			 * on the same folio with the large folio split
1654 			 * to normal folios.
1655 			 *
1656 			 * Split folios are put in split_folios, and
1657 			 * we will migrate them after the rest of the
1658 			 * list is processed.
1659 			 */
1660 			if (!thp_migration_supported() && is_thp) {
1661 				nr_failed++;
1662 				stats->nr_thp_failed++;
1663 				if (!try_split_folio(folio, split_folios)) {
1664 					stats->nr_thp_split++;
1665 					stats->nr_split++;
1666 					continue;
1667 				}
1668 				stats->nr_failed_pages += nr_pages;
1669 				list_move_tail(&folio->lru, ret_folios);
1670 				continue;
1671 			}
1672 
1673 			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1674 					private, folio, &dst, mode, reason,
1675 					ret_folios);
1676 			/*
1677 			 * The rules are:
1678 			 *	Success: folio will be freed
1679 			 *	Unmap: folio will be put on unmap_folios list,
1680 			 *	       dst folio put on dst_folios list
1681 			 *	-EAGAIN: stay on the from list
1682 			 *	-ENOMEM: stay on the from list
1683 			 *	Other errno: put on ret_folios list
1684 			 */
1685 			switch(rc) {
1686 			case -ENOMEM:
1687 				/*
1688 				 * When memory is low, don't bother to try to migrate
1689 				 * other folios, move unmapped folios, then exit.
1690 				 */
1691 				nr_failed++;
1692 				stats->nr_thp_failed += is_thp;
1693 				/* Large folio NUMA faulting doesn't split to retry. */
1694 				if (is_large && !nosplit) {
1695 					int ret = try_split_folio(folio, split_folios);
1696 
1697 					if (!ret) {
1698 						stats->nr_thp_split += is_thp;
1699 						stats->nr_split++;
1700 						break;
1701 					} else if (reason == MR_LONGTERM_PIN &&
1702 						   ret == -EAGAIN) {
1703 						/*
1704 						 * Try again to split large folio to
1705 						 * mitigate the failure of longterm pinning.
1706 						 */
1707 						retry++;
1708 						thp_retry += is_thp;
1709 						nr_retry_pages += nr_pages;
1710 						/* Undo duplicated failure counting. */
1711 						nr_failed--;
1712 						stats->nr_thp_failed -= is_thp;
1713 						break;
1714 					}
1715 				}
1716 
1717 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1718 				/* nr_failed isn't updated for not used */
1719 				stats->nr_thp_failed += thp_retry;
1720 				rc_saved = rc;
1721 				if (list_empty(&unmap_folios))
1722 					goto out;
1723 				else
1724 					goto move;
1725 			case -EAGAIN:
1726 				retry++;
1727 				thp_retry += is_thp;
1728 				nr_retry_pages += nr_pages;
1729 				break;
1730 			case MIGRATEPAGE_SUCCESS:
1731 				stats->nr_succeeded += nr_pages;
1732 				stats->nr_thp_succeeded += is_thp;
1733 				break;
1734 			case MIGRATEPAGE_UNMAP:
1735 				list_move_tail(&folio->lru, &unmap_folios);
1736 				list_add_tail(&dst->lru, &dst_folios);
1737 				break;
1738 			default:
1739 				/*
1740 				 * Permanent failure (-EBUSY, etc.):
1741 				 * unlike -EAGAIN case, the failed folio is
1742 				 * removed from migration folio list and not
1743 				 * retried in the next outer loop.
1744 				 */
1745 				nr_failed++;
1746 				stats->nr_thp_failed += is_thp;
1747 				stats->nr_failed_pages += nr_pages;
1748 				break;
1749 			}
1750 		}
1751 	}
1752 	nr_failed += retry;
1753 	stats->nr_thp_failed += thp_retry;
1754 	stats->nr_failed_pages += nr_retry_pages;
1755 move:
1756 	/* Flush TLBs for all unmapped folios */
1757 	try_to_unmap_flush();
1758 
1759 	retry = 1;
1760 	for (pass = 0; pass < nr_pass && retry; pass++) {
1761 		retry = 0;
1762 		thp_retry = 0;
1763 		nr_retry_pages = 0;
1764 
1765 		dst = list_first_entry(&dst_folios, struct folio, lru);
1766 		dst2 = list_next_entry(dst, lru);
1767 		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1768 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1769 			nr_pages = folio_nr_pages(folio);
1770 
1771 			cond_resched();
1772 
1773 			rc = migrate_folio_move(put_new_folio, private,
1774 						folio, dst, mode,
1775 						reason, ret_folios);
1776 			/*
1777 			 * The rules are:
1778 			 *	Success: folio will be freed
1779 			 *	-EAGAIN: stay on the unmap_folios list
1780 			 *	Other errno: put on ret_folios list
1781 			 */
1782 			switch(rc) {
1783 			case -EAGAIN:
1784 				retry++;
1785 				thp_retry += is_thp;
1786 				nr_retry_pages += nr_pages;
1787 				break;
1788 			case MIGRATEPAGE_SUCCESS:
1789 				stats->nr_succeeded += nr_pages;
1790 				stats->nr_thp_succeeded += is_thp;
1791 				break;
1792 			default:
1793 				nr_failed++;
1794 				stats->nr_thp_failed += is_thp;
1795 				stats->nr_failed_pages += nr_pages;
1796 				break;
1797 			}
1798 			dst = dst2;
1799 			dst2 = list_next_entry(dst, lru);
1800 		}
1801 	}
1802 	nr_failed += retry;
1803 	stats->nr_thp_failed += thp_retry;
1804 	stats->nr_failed_pages += nr_retry_pages;
1805 
1806 	rc = rc_saved ? : nr_failed;
1807 out:
1808 	/* Cleanup remaining folios */
1809 	dst = list_first_entry(&dst_folios, struct folio, lru);
1810 	dst2 = list_next_entry(dst, lru);
1811 	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1812 		int old_page_state = 0;
1813 		struct anon_vma *anon_vma = NULL;
1814 
1815 		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1816 		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1817 				       anon_vma, true, ret_folios);
1818 		list_del(&dst->lru);
1819 		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1820 		dst = dst2;
1821 		dst2 = list_next_entry(dst, lru);
1822 	}
1823 
1824 	return rc;
1825 }
1826 
1827 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1828 		free_folio_t put_new_folio, unsigned long private,
1829 		enum migrate_mode mode, int reason,
1830 		struct list_head *ret_folios, struct list_head *split_folios,
1831 		struct migrate_pages_stats *stats)
1832 {
1833 	int rc, nr_failed = 0;
1834 	LIST_HEAD(folios);
1835 	struct migrate_pages_stats astats;
1836 
1837 	memset(&astats, 0, sizeof(astats));
1838 	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1839 	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1840 				 reason, &folios, split_folios, &astats,
1841 				 NR_MAX_MIGRATE_ASYNC_RETRY);
1842 	stats->nr_succeeded += astats.nr_succeeded;
1843 	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1844 	stats->nr_thp_split += astats.nr_thp_split;
1845 	stats->nr_split += astats.nr_split;
1846 	if (rc < 0) {
1847 		stats->nr_failed_pages += astats.nr_failed_pages;
1848 		stats->nr_thp_failed += astats.nr_thp_failed;
1849 		list_splice_tail(&folios, ret_folios);
1850 		return rc;
1851 	}
1852 	stats->nr_thp_failed += astats.nr_thp_split;
1853 	/*
1854 	 * Do not count rc, as pages will be retried below.
1855 	 * Count nr_split only, since it includes nr_thp_split.
1856 	 */
1857 	nr_failed += astats.nr_split;
1858 	/*
1859 	 * Fall back to migrate all failed folios one by one synchronously. All
1860 	 * failed folios except split THPs will be retried, so their failure
1861 	 * isn't counted
1862 	 */
1863 	list_splice_tail_init(&folios, from);
1864 	while (!list_empty(from)) {
1865 		list_move(from->next, &folios);
1866 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1867 					 private, mode, reason, ret_folios,
1868 					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1869 		list_splice_tail_init(&folios, ret_folios);
1870 		if (rc < 0)
1871 			return rc;
1872 		nr_failed += rc;
1873 	}
1874 
1875 	return nr_failed;
1876 }
1877 
1878 /*
1879  * migrate_pages - migrate the folios specified in a list, to the free folios
1880  *		   supplied as the target for the page migration
1881  *
1882  * @from:		The list of folios to be migrated.
1883  * @get_new_folio:	The function used to allocate free folios to be used
1884  *			as the target of the folio migration.
1885  * @put_new_folio:	The function used to free target folios if migration
1886  *			fails, or NULL if no special handling is necessary.
1887  * @private:		Private data to be passed on to get_new_folio()
1888  * @mode:		The migration mode that specifies the constraints for
1889  *			folio migration, if any.
1890  * @reason:		The reason for folio migration.
1891  * @ret_succeeded:	Set to the number of folios migrated successfully if
1892  *			the caller passes a non-NULL pointer.
1893  *
1894  * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1895  * are movable any more because the list has become empty or no retryable folios
1896  * exist any more. It is caller's responsibility to call putback_movable_pages()
1897  * only if ret != 0.
1898  *
1899  * Returns the number of {normal folio, large folio, hugetlb} that were not
1900  * migrated, or an error code. The number of large folio splits will be
1901  * considered as the number of non-migrated large folio, no matter how many
1902  * split folios of the large folio are migrated successfully.
1903  */
1904 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1905 		free_folio_t put_new_folio, unsigned long private,
1906 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1907 {
1908 	int rc, rc_gather;
1909 	int nr_pages;
1910 	struct folio *folio, *folio2;
1911 	LIST_HEAD(folios);
1912 	LIST_HEAD(ret_folios);
1913 	LIST_HEAD(split_folios);
1914 	struct migrate_pages_stats stats;
1915 
1916 	trace_mm_migrate_pages_start(mode, reason);
1917 
1918 	memset(&stats, 0, sizeof(stats));
1919 
1920 	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1921 				     mode, reason, &stats, &ret_folios);
1922 	if (rc_gather < 0)
1923 		goto out;
1924 
1925 again:
1926 	nr_pages = 0;
1927 	list_for_each_entry_safe(folio, folio2, from, lru) {
1928 		/* Retried hugetlb folios will be kept in list  */
1929 		if (folio_test_hugetlb(folio)) {
1930 			list_move_tail(&folio->lru, &ret_folios);
1931 			continue;
1932 		}
1933 
1934 		nr_pages += folio_nr_pages(folio);
1935 		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1936 			break;
1937 	}
1938 	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1939 		list_cut_before(&folios, from, &folio2->lru);
1940 	else
1941 		list_splice_init(from, &folios);
1942 	if (mode == MIGRATE_ASYNC)
1943 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1944 				private, mode, reason, &ret_folios,
1945 				&split_folios, &stats,
1946 				NR_MAX_MIGRATE_PAGES_RETRY);
1947 	else
1948 		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1949 				private, mode, reason, &ret_folios,
1950 				&split_folios, &stats);
1951 	list_splice_tail_init(&folios, &ret_folios);
1952 	if (rc < 0) {
1953 		rc_gather = rc;
1954 		list_splice_tail(&split_folios, &ret_folios);
1955 		goto out;
1956 	}
1957 	if (!list_empty(&split_folios)) {
1958 		/*
1959 		 * Failure isn't counted since all split folios of a large folio
1960 		 * is counted as 1 failure already.  And, we only try to migrate
1961 		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1962 		 */
1963 		migrate_pages_batch(&split_folios, get_new_folio,
1964 				put_new_folio, private, MIGRATE_ASYNC, reason,
1965 				&ret_folios, NULL, &stats, 1);
1966 		list_splice_tail_init(&split_folios, &ret_folios);
1967 	}
1968 	rc_gather += rc;
1969 	if (!list_empty(from))
1970 		goto again;
1971 out:
1972 	/*
1973 	 * Put the permanent failure folio back to migration list, they
1974 	 * will be put back to the right list by the caller.
1975 	 */
1976 	list_splice(&ret_folios, from);
1977 
1978 	/*
1979 	 * Return 0 in case all split folios of fail-to-migrate large folios
1980 	 * are migrated successfully.
1981 	 */
1982 	if (list_empty(from))
1983 		rc_gather = 0;
1984 
1985 	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
1986 	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
1987 	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
1988 	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
1989 	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
1990 	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
1991 			       stats.nr_thp_succeeded, stats.nr_thp_failed,
1992 			       stats.nr_thp_split, stats.nr_split, mode,
1993 			       reason);
1994 
1995 	if (ret_succeeded)
1996 		*ret_succeeded = stats.nr_succeeded;
1997 
1998 	return rc_gather;
1999 }
2000 
2001 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2002 {
2003 	struct migration_target_control *mtc;
2004 	gfp_t gfp_mask;
2005 	unsigned int order = 0;
2006 	int nid;
2007 	int zidx;
2008 
2009 	mtc = (struct migration_target_control *)private;
2010 	gfp_mask = mtc->gfp_mask;
2011 	nid = mtc->nid;
2012 	if (nid == NUMA_NO_NODE)
2013 		nid = folio_nid(src);
2014 
2015 	if (folio_test_hugetlb(src)) {
2016 		struct hstate *h = folio_hstate(src);
2017 
2018 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2019 		return alloc_hugetlb_folio_nodemask(h, nid,
2020 						mtc->nmask, gfp_mask);
2021 	}
2022 
2023 	if (folio_test_large(src)) {
2024 		/*
2025 		 * clear __GFP_RECLAIM to make the migration callback
2026 		 * consistent with regular THP allocations.
2027 		 */
2028 		gfp_mask &= ~__GFP_RECLAIM;
2029 		gfp_mask |= GFP_TRANSHUGE;
2030 		order = folio_order(src);
2031 	}
2032 	zidx = zone_idx(folio_zone(src));
2033 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2034 		gfp_mask |= __GFP_HIGHMEM;
2035 
2036 	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2037 }
2038 
2039 #ifdef CONFIG_NUMA
2040 
2041 static int store_status(int __user *status, int start, int value, int nr)
2042 {
2043 	while (nr-- > 0) {
2044 		if (put_user(value, status + start))
2045 			return -EFAULT;
2046 		start++;
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 static int do_move_pages_to_node(struct list_head *pagelist, int node)
2053 {
2054 	int err;
2055 	struct migration_target_control mtc = {
2056 		.nid = node,
2057 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2058 	};
2059 
2060 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2061 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2062 	if (err)
2063 		putback_movable_pages(pagelist);
2064 	return err;
2065 }
2066 
2067 /*
2068  * Resolves the given address to a struct page, isolates it from the LRU and
2069  * puts it to the given pagelist.
2070  * Returns:
2071  *     errno - if the page cannot be found/isolated
2072  *     0 - when it doesn't have to be migrated because it is already on the
2073  *         target node
2074  *     1 - when it has been queued
2075  */
2076 static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2077 		int node, struct list_head *pagelist, bool migrate_all)
2078 {
2079 	struct vm_area_struct *vma;
2080 	unsigned long addr;
2081 	struct page *page;
2082 	struct folio *folio;
2083 	int err;
2084 
2085 	mmap_read_lock(mm);
2086 	addr = (unsigned long)untagged_addr_remote(mm, p);
2087 
2088 	err = -EFAULT;
2089 	vma = vma_lookup(mm, addr);
2090 	if (!vma || !vma_migratable(vma))
2091 		goto out;
2092 
2093 	/* FOLL_DUMP to ignore special (like zero) pages */
2094 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2095 
2096 	err = PTR_ERR(page);
2097 	if (IS_ERR(page))
2098 		goto out;
2099 
2100 	err = -ENOENT;
2101 	if (!page)
2102 		goto out;
2103 
2104 	folio = page_folio(page);
2105 	if (folio_is_zone_device(folio))
2106 		goto out_putfolio;
2107 
2108 	err = 0;
2109 	if (folio_nid(folio) == node)
2110 		goto out_putfolio;
2111 
2112 	err = -EACCES;
2113 	if (page_mapcount(page) > 1 && !migrate_all)
2114 		goto out_putfolio;
2115 
2116 	err = -EBUSY;
2117 	if (folio_test_hugetlb(folio)) {
2118 		if (isolate_hugetlb(folio, pagelist))
2119 			err = 1;
2120 	} else {
2121 		if (!folio_isolate_lru(folio))
2122 			goto out_putfolio;
2123 
2124 		err = 1;
2125 		list_add_tail(&folio->lru, pagelist);
2126 		node_stat_mod_folio(folio,
2127 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2128 			folio_nr_pages(folio));
2129 	}
2130 out_putfolio:
2131 	/*
2132 	 * Either remove the duplicate refcount from folio_isolate_lru()
2133 	 * or drop the folio ref if it was not isolated.
2134 	 */
2135 	folio_put(folio);
2136 out:
2137 	mmap_read_unlock(mm);
2138 	return err;
2139 }
2140 
2141 static int move_pages_and_store_status(int node,
2142 		struct list_head *pagelist, int __user *status,
2143 		int start, int i, unsigned long nr_pages)
2144 {
2145 	int err;
2146 
2147 	if (list_empty(pagelist))
2148 		return 0;
2149 
2150 	err = do_move_pages_to_node(pagelist, node);
2151 	if (err) {
2152 		/*
2153 		 * Positive err means the number of failed
2154 		 * pages to migrate.  Since we are going to
2155 		 * abort and return the number of non-migrated
2156 		 * pages, so need to include the rest of the
2157 		 * nr_pages that have not been attempted as
2158 		 * well.
2159 		 */
2160 		if (err > 0)
2161 			err += nr_pages - i;
2162 		return err;
2163 	}
2164 	return store_status(status, start, node, i - start);
2165 }
2166 
2167 /*
2168  * Migrate an array of page address onto an array of nodes and fill
2169  * the corresponding array of status.
2170  */
2171 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2172 			 unsigned long nr_pages,
2173 			 const void __user * __user *pages,
2174 			 const int __user *nodes,
2175 			 int __user *status, int flags)
2176 {
2177 	compat_uptr_t __user *compat_pages = (void __user *)pages;
2178 	int current_node = NUMA_NO_NODE;
2179 	LIST_HEAD(pagelist);
2180 	int start, i;
2181 	int err = 0, err1;
2182 
2183 	lru_cache_disable();
2184 
2185 	for (i = start = 0; i < nr_pages; i++) {
2186 		const void __user *p;
2187 		int node;
2188 
2189 		err = -EFAULT;
2190 		if (in_compat_syscall()) {
2191 			compat_uptr_t cp;
2192 
2193 			if (get_user(cp, compat_pages + i))
2194 				goto out_flush;
2195 
2196 			p = compat_ptr(cp);
2197 		} else {
2198 			if (get_user(p, pages + i))
2199 				goto out_flush;
2200 		}
2201 		if (get_user(node, nodes + i))
2202 			goto out_flush;
2203 
2204 		err = -ENODEV;
2205 		if (node < 0 || node >= MAX_NUMNODES)
2206 			goto out_flush;
2207 		if (!node_state(node, N_MEMORY))
2208 			goto out_flush;
2209 
2210 		err = -EACCES;
2211 		if (!node_isset(node, task_nodes))
2212 			goto out_flush;
2213 
2214 		if (current_node == NUMA_NO_NODE) {
2215 			current_node = node;
2216 			start = i;
2217 		} else if (node != current_node) {
2218 			err = move_pages_and_store_status(current_node,
2219 					&pagelist, status, start, i, nr_pages);
2220 			if (err)
2221 				goto out;
2222 			start = i;
2223 			current_node = node;
2224 		}
2225 
2226 		/*
2227 		 * Errors in the page lookup or isolation are not fatal and we simply
2228 		 * report them via status
2229 		 */
2230 		err = add_page_for_migration(mm, p, current_node, &pagelist,
2231 					     flags & MPOL_MF_MOVE_ALL);
2232 
2233 		if (err > 0) {
2234 			/* The page is successfully queued for migration */
2235 			continue;
2236 		}
2237 
2238 		/*
2239 		 * The move_pages() man page does not have an -EEXIST choice, so
2240 		 * use -EFAULT instead.
2241 		 */
2242 		if (err == -EEXIST)
2243 			err = -EFAULT;
2244 
2245 		/*
2246 		 * If the page is already on the target node (!err), store the
2247 		 * node, otherwise, store the err.
2248 		 */
2249 		err = store_status(status, i, err ? : current_node, 1);
2250 		if (err)
2251 			goto out_flush;
2252 
2253 		err = move_pages_and_store_status(current_node, &pagelist,
2254 				status, start, i, nr_pages);
2255 		if (err) {
2256 			/* We have accounted for page i */
2257 			if (err > 0)
2258 				err--;
2259 			goto out;
2260 		}
2261 		current_node = NUMA_NO_NODE;
2262 	}
2263 out_flush:
2264 	/* Make sure we do not overwrite the existing error */
2265 	err1 = move_pages_and_store_status(current_node, &pagelist,
2266 				status, start, i, nr_pages);
2267 	if (err >= 0)
2268 		err = err1;
2269 out:
2270 	lru_cache_enable();
2271 	return err;
2272 }
2273 
2274 /*
2275  * Determine the nodes of an array of pages and store it in an array of status.
2276  */
2277 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2278 				const void __user **pages, int *status)
2279 {
2280 	unsigned long i;
2281 
2282 	mmap_read_lock(mm);
2283 
2284 	for (i = 0; i < nr_pages; i++) {
2285 		unsigned long addr = (unsigned long)(*pages);
2286 		struct vm_area_struct *vma;
2287 		struct page *page;
2288 		int err = -EFAULT;
2289 
2290 		vma = vma_lookup(mm, addr);
2291 		if (!vma)
2292 			goto set_status;
2293 
2294 		/* FOLL_DUMP to ignore special (like zero) pages */
2295 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2296 
2297 		err = PTR_ERR(page);
2298 		if (IS_ERR(page))
2299 			goto set_status;
2300 
2301 		err = -ENOENT;
2302 		if (!page)
2303 			goto set_status;
2304 
2305 		if (!is_zone_device_page(page))
2306 			err = page_to_nid(page);
2307 
2308 		put_page(page);
2309 set_status:
2310 		*status = err;
2311 
2312 		pages++;
2313 		status++;
2314 	}
2315 
2316 	mmap_read_unlock(mm);
2317 }
2318 
2319 static int get_compat_pages_array(const void __user *chunk_pages[],
2320 				  const void __user * __user *pages,
2321 				  unsigned long chunk_nr)
2322 {
2323 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2324 	compat_uptr_t p;
2325 	int i;
2326 
2327 	for (i = 0; i < chunk_nr; i++) {
2328 		if (get_user(p, pages32 + i))
2329 			return -EFAULT;
2330 		chunk_pages[i] = compat_ptr(p);
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 /*
2337  * Determine the nodes of a user array of pages and store it in
2338  * a user array of status.
2339  */
2340 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2341 			 const void __user * __user *pages,
2342 			 int __user *status)
2343 {
2344 #define DO_PAGES_STAT_CHUNK_NR 16UL
2345 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2346 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2347 
2348 	while (nr_pages) {
2349 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2350 
2351 		if (in_compat_syscall()) {
2352 			if (get_compat_pages_array(chunk_pages, pages,
2353 						   chunk_nr))
2354 				break;
2355 		} else {
2356 			if (copy_from_user(chunk_pages, pages,
2357 				      chunk_nr * sizeof(*chunk_pages)))
2358 				break;
2359 		}
2360 
2361 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2362 
2363 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2364 			break;
2365 
2366 		pages += chunk_nr;
2367 		status += chunk_nr;
2368 		nr_pages -= chunk_nr;
2369 	}
2370 	return nr_pages ? -EFAULT : 0;
2371 }
2372 
2373 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2374 {
2375 	struct task_struct *task;
2376 	struct mm_struct *mm;
2377 
2378 	/*
2379 	 * There is no need to check if current process has the right to modify
2380 	 * the specified process when they are same.
2381 	 */
2382 	if (!pid) {
2383 		mmget(current->mm);
2384 		*mem_nodes = cpuset_mems_allowed(current);
2385 		return current->mm;
2386 	}
2387 
2388 	/* Find the mm_struct */
2389 	rcu_read_lock();
2390 	task = find_task_by_vpid(pid);
2391 	if (!task) {
2392 		rcu_read_unlock();
2393 		return ERR_PTR(-ESRCH);
2394 	}
2395 	get_task_struct(task);
2396 
2397 	/*
2398 	 * Check if this process has the right to modify the specified
2399 	 * process. Use the regular "ptrace_may_access()" checks.
2400 	 */
2401 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2402 		rcu_read_unlock();
2403 		mm = ERR_PTR(-EPERM);
2404 		goto out;
2405 	}
2406 	rcu_read_unlock();
2407 
2408 	mm = ERR_PTR(security_task_movememory(task));
2409 	if (IS_ERR(mm))
2410 		goto out;
2411 	*mem_nodes = cpuset_mems_allowed(task);
2412 	mm = get_task_mm(task);
2413 out:
2414 	put_task_struct(task);
2415 	if (!mm)
2416 		mm = ERR_PTR(-EINVAL);
2417 	return mm;
2418 }
2419 
2420 /*
2421  * Move a list of pages in the address space of the currently executing
2422  * process.
2423  */
2424 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2425 			     const void __user * __user *pages,
2426 			     const int __user *nodes,
2427 			     int __user *status, int flags)
2428 {
2429 	struct mm_struct *mm;
2430 	int err;
2431 	nodemask_t task_nodes;
2432 
2433 	/* Check flags */
2434 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2435 		return -EINVAL;
2436 
2437 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2438 		return -EPERM;
2439 
2440 	mm = find_mm_struct(pid, &task_nodes);
2441 	if (IS_ERR(mm))
2442 		return PTR_ERR(mm);
2443 
2444 	if (nodes)
2445 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2446 				    nodes, status, flags);
2447 	else
2448 		err = do_pages_stat(mm, nr_pages, pages, status);
2449 
2450 	mmput(mm);
2451 	return err;
2452 }
2453 
2454 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2455 		const void __user * __user *, pages,
2456 		const int __user *, nodes,
2457 		int __user *, status, int, flags)
2458 {
2459 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2460 }
2461 
2462 #ifdef CONFIG_NUMA_BALANCING
2463 /*
2464  * Returns true if this is a safe migration target node for misplaced NUMA
2465  * pages. Currently it only checks the watermarks which is crude.
2466  */
2467 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2468 				   unsigned long nr_migrate_pages)
2469 {
2470 	int z;
2471 
2472 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2473 		struct zone *zone = pgdat->node_zones + z;
2474 
2475 		if (!managed_zone(zone))
2476 			continue;
2477 
2478 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2479 		if (!zone_watermark_ok(zone, 0,
2480 				       high_wmark_pages(zone) +
2481 				       nr_migrate_pages,
2482 				       ZONE_MOVABLE, 0))
2483 			continue;
2484 		return true;
2485 	}
2486 	return false;
2487 }
2488 
2489 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2490 					   unsigned long data)
2491 {
2492 	int nid = (int) data;
2493 	int order = folio_order(src);
2494 	gfp_t gfp = __GFP_THISNODE;
2495 
2496 	if (order > 0)
2497 		gfp |= GFP_TRANSHUGE_LIGHT;
2498 	else {
2499 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2500 			__GFP_NOWARN;
2501 		gfp &= ~__GFP_RECLAIM;
2502 	}
2503 	return __folio_alloc_node(gfp, order, nid);
2504 }
2505 
2506 static int numamigrate_isolate_folio(pg_data_t *pgdat, struct folio *folio)
2507 {
2508 	int nr_pages = folio_nr_pages(folio);
2509 
2510 	/* Avoid migrating to a node that is nearly full */
2511 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2512 		int z;
2513 
2514 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2515 			return 0;
2516 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2517 			if (managed_zone(pgdat->node_zones + z))
2518 				break;
2519 		}
2520 		wakeup_kswapd(pgdat->node_zones + z, 0,
2521 			      folio_order(folio), ZONE_MOVABLE);
2522 		return 0;
2523 	}
2524 
2525 	if (!folio_isolate_lru(folio))
2526 		return 0;
2527 
2528 	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2529 			    nr_pages);
2530 
2531 	/*
2532 	 * Isolating the folio has taken another reference, so the
2533 	 * caller's reference can be safely dropped without the folio
2534 	 * disappearing underneath us during migration.
2535 	 */
2536 	folio_put(folio);
2537 	return 1;
2538 }
2539 
2540 /*
2541  * Attempt to migrate a misplaced folio to the specified destination
2542  * node. Caller is expected to have an elevated reference count on
2543  * the folio that will be dropped by this function before returning.
2544  */
2545 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2546 			    int node)
2547 {
2548 	pg_data_t *pgdat = NODE_DATA(node);
2549 	int isolated;
2550 	int nr_remaining;
2551 	unsigned int nr_succeeded;
2552 	LIST_HEAD(migratepages);
2553 	int nr_pages = folio_nr_pages(folio);
2554 
2555 	/*
2556 	 * Don't migrate file folios that are mapped in multiple processes
2557 	 * with execute permissions as they are probably shared libraries.
2558 	 * To check if the folio is shared, ideally we want to make sure
2559 	 * every page is mapped to the same process. Doing that is very
2560 	 * expensive, so check the estimated mapcount of the folio instead.
2561 	 */
2562 	if (folio_estimated_sharers(folio) != 1 && folio_is_file_lru(folio) &&
2563 	    (vma->vm_flags & VM_EXEC))
2564 		goto out;
2565 
2566 	/*
2567 	 * Also do not migrate dirty folios as not all filesystems can move
2568 	 * dirty folios in MIGRATE_ASYNC mode which is a waste of cycles.
2569 	 */
2570 	if (folio_is_file_lru(folio) && folio_test_dirty(folio))
2571 		goto out;
2572 
2573 	isolated = numamigrate_isolate_folio(pgdat, folio);
2574 	if (!isolated)
2575 		goto out;
2576 
2577 	list_add(&folio->lru, &migratepages);
2578 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2579 				     NULL, node, MIGRATE_ASYNC,
2580 				     MR_NUMA_MISPLACED, &nr_succeeded);
2581 	if (nr_remaining) {
2582 		if (!list_empty(&migratepages)) {
2583 			list_del(&folio->lru);
2584 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
2585 					folio_is_file_lru(folio), -nr_pages);
2586 			folio_putback_lru(folio);
2587 		}
2588 		isolated = 0;
2589 	}
2590 	if (nr_succeeded) {
2591 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2592 		if (!node_is_toptier(folio_nid(folio)) && node_is_toptier(node))
2593 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2594 					    nr_succeeded);
2595 	}
2596 	BUG_ON(!list_empty(&migratepages));
2597 	return isolated;
2598 
2599 out:
2600 	folio_put(folio);
2601 	return 0;
2602 }
2603 #endif /* CONFIG_NUMA_BALANCING */
2604 #endif /* CONFIG_NUMA */
2605