xref: /linux/mm/migrate.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/ksm.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/backing-dev.h>
33 #include <linux/compaction.h>
34 #include <linux/syscalls.h>
35 #include <linux/compat.h>
36 #include <linux/hugetlb.h>
37 #include <linux/gfp.h>
38 #include <linux/pfn_t.h>
39 #include <linux/page_idle.h>
40 #include <linux/page_owner.h>
41 #include <linux/sched/mm.h>
42 #include <linux/ptrace.h>
43 #include <linux/memory.h>
44 #include <linux/sched/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/pagewalk.h>
47 
48 #include <asm/tlbflush.h>
49 
50 #include <trace/events/migrate.h>
51 
52 #include "internal.h"
53 
54 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
55 {
56 	struct folio *folio = folio_get_nontail_page(page);
57 	const struct movable_operations *mops;
58 
59 	/*
60 	 * Avoid burning cycles with pages that are yet under __free_pages(),
61 	 * or just got freed under us.
62 	 *
63 	 * In case we 'win' a race for a movable page being freed under us and
64 	 * raise its refcount preventing __free_pages() from doing its job
65 	 * the put_page() at the end of this block will take care of
66 	 * release this page, thus avoiding a nasty leakage.
67 	 */
68 	if (!folio)
69 		goto out;
70 
71 	if (unlikely(folio_test_slab(folio)))
72 		goto out_putfolio;
73 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
74 	smp_rmb();
75 	/*
76 	 * Check movable flag before taking the page lock because
77 	 * we use non-atomic bitops on newly allocated page flags so
78 	 * unconditionally grabbing the lock ruins page's owner side.
79 	 */
80 	if (unlikely(!__folio_test_movable(folio)))
81 		goto out_putfolio;
82 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
83 	smp_rmb();
84 	if (unlikely(folio_test_slab(folio)))
85 		goto out_putfolio;
86 
87 	/*
88 	 * As movable pages are not isolated from LRU lists, concurrent
89 	 * compaction threads can race against page migration functions
90 	 * as well as race against the releasing a page.
91 	 *
92 	 * In order to avoid having an already isolated movable page
93 	 * being (wrongly) re-isolated while it is under migration,
94 	 * or to avoid attempting to isolate pages being released,
95 	 * lets be sure we have the page lock
96 	 * before proceeding with the movable page isolation steps.
97 	 */
98 	if (unlikely(!folio_trylock(folio)))
99 		goto out_putfolio;
100 
101 	if (!folio_test_movable(folio) || folio_test_isolated(folio))
102 		goto out_no_isolated;
103 
104 	mops = folio_movable_ops(folio);
105 	VM_BUG_ON_FOLIO(!mops, folio);
106 
107 	if (!mops->isolate_page(&folio->page, mode))
108 		goto out_no_isolated;
109 
110 	/* Driver shouldn't use the isolated flag */
111 	WARN_ON_ONCE(folio_test_isolated(folio));
112 	folio_set_isolated(folio);
113 	folio_unlock(folio);
114 
115 	return true;
116 
117 out_no_isolated:
118 	folio_unlock(folio);
119 out_putfolio:
120 	folio_put(folio);
121 out:
122 	return false;
123 }
124 
125 static void putback_movable_folio(struct folio *folio)
126 {
127 	const struct movable_operations *mops = folio_movable_ops(folio);
128 
129 	mops->putback_page(&folio->page);
130 	folio_clear_isolated(folio);
131 }
132 
133 /*
134  * Put previously isolated pages back onto the appropriate lists
135  * from where they were once taken off for compaction/migration.
136  *
137  * This function shall be used whenever the isolated pageset has been
138  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
139  * and isolate_hugetlb().
140  */
141 void putback_movable_pages(struct list_head *l)
142 {
143 	struct folio *folio;
144 	struct folio *folio2;
145 
146 	list_for_each_entry_safe(folio, folio2, l, lru) {
147 		if (unlikely(folio_test_hugetlb(folio))) {
148 			folio_putback_active_hugetlb(folio);
149 			continue;
150 		}
151 		list_del(&folio->lru);
152 		/*
153 		 * We isolated non-lru movable folio so here we can use
154 		 * __folio_test_movable because LRU folio's mapping cannot
155 		 * have PAGE_MAPPING_MOVABLE.
156 		 */
157 		if (unlikely(__folio_test_movable(folio))) {
158 			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
159 			folio_lock(folio);
160 			if (folio_test_movable(folio))
161 				putback_movable_folio(folio);
162 			else
163 				folio_clear_isolated(folio);
164 			folio_unlock(folio);
165 			folio_put(folio);
166 		} else {
167 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
168 					folio_is_file_lru(folio), -folio_nr_pages(folio));
169 			folio_putback_lru(folio);
170 		}
171 	}
172 }
173 
174 /* Must be called with an elevated refcount on the non-hugetlb folio */
175 bool isolate_folio_to_list(struct folio *folio, struct list_head *list)
176 {
177 	bool isolated, lru;
178 
179 	if (folio_test_hugetlb(folio))
180 		return isolate_hugetlb(folio, list);
181 
182 	lru = !__folio_test_movable(folio);
183 	if (lru)
184 		isolated = folio_isolate_lru(folio);
185 	else
186 		isolated = isolate_movable_page(&folio->page,
187 						ISOLATE_UNEVICTABLE);
188 
189 	if (!isolated)
190 		return false;
191 
192 	list_add(&folio->lru, list);
193 	if (lru)
194 		node_stat_add_folio(folio, NR_ISOLATED_ANON +
195 				    folio_is_file_lru(folio));
196 
197 	return true;
198 }
199 
200 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw,
201 					  struct folio *folio,
202 					  unsigned long idx)
203 {
204 	struct page *page = folio_page(folio, idx);
205 	bool contains_data;
206 	pte_t newpte;
207 	void *addr;
208 
209 	if (PageCompound(page))
210 		return false;
211 	VM_BUG_ON_PAGE(!PageAnon(page), page);
212 	VM_BUG_ON_PAGE(!PageLocked(page), page);
213 	VM_BUG_ON_PAGE(pte_present(*pvmw->pte), page);
214 
215 	if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) ||
216 	    mm_forbids_zeropage(pvmw->vma->vm_mm))
217 		return false;
218 
219 	/*
220 	 * The pmd entry mapping the old thp was flushed and the pte mapping
221 	 * this subpage has been non present. If the subpage is only zero-filled
222 	 * then map it to the shared zeropage.
223 	 */
224 	addr = kmap_local_page(page);
225 	contains_data = memchr_inv(addr, 0, PAGE_SIZE);
226 	kunmap_local(addr);
227 
228 	if (contains_data)
229 		return false;
230 
231 	newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address),
232 					pvmw->vma->vm_page_prot));
233 	set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte);
234 
235 	dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio));
236 	return true;
237 }
238 
239 struct rmap_walk_arg {
240 	struct folio *folio;
241 	bool map_unused_to_zeropage;
242 };
243 
244 /*
245  * Restore a potential migration pte to a working pte entry
246  */
247 static bool remove_migration_pte(struct folio *folio,
248 		struct vm_area_struct *vma, unsigned long addr, void *arg)
249 {
250 	struct rmap_walk_arg *rmap_walk_arg = arg;
251 	DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
252 
253 	while (page_vma_mapped_walk(&pvmw)) {
254 		rmap_t rmap_flags = RMAP_NONE;
255 		pte_t old_pte;
256 		pte_t pte;
257 		swp_entry_t entry;
258 		struct page *new;
259 		unsigned long idx = 0;
260 
261 		/* pgoff is invalid for ksm pages, but they are never large */
262 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
263 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
264 		new = folio_page(folio, idx);
265 
266 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
267 		/* PMD-mapped THP migration entry */
268 		if (!pvmw.pte) {
269 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
270 					!folio_test_pmd_mappable(folio), folio);
271 			remove_migration_pmd(&pvmw, new);
272 			continue;
273 		}
274 #endif
275 		if (rmap_walk_arg->map_unused_to_zeropage &&
276 		    try_to_map_unused_to_zeropage(&pvmw, folio, idx))
277 			continue;
278 
279 		folio_get(folio);
280 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
281 		old_pte = ptep_get(pvmw.pte);
282 
283 		entry = pte_to_swp_entry(old_pte);
284 		if (!is_migration_entry_young(entry))
285 			pte = pte_mkold(pte);
286 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
287 			pte = pte_mkdirty(pte);
288 		if (pte_swp_soft_dirty(old_pte))
289 			pte = pte_mksoft_dirty(pte);
290 		else
291 			pte = pte_clear_soft_dirty(pte);
292 
293 		if (is_writable_migration_entry(entry))
294 			pte = pte_mkwrite(pte, vma);
295 		else if (pte_swp_uffd_wp(old_pte))
296 			pte = pte_mkuffd_wp(pte);
297 
298 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
299 			rmap_flags |= RMAP_EXCLUSIVE;
300 
301 		if (unlikely(is_device_private_page(new))) {
302 			if (pte_write(pte))
303 				entry = make_writable_device_private_entry(
304 							page_to_pfn(new));
305 			else
306 				entry = make_readable_device_private_entry(
307 							page_to_pfn(new));
308 			pte = swp_entry_to_pte(entry);
309 			if (pte_swp_soft_dirty(old_pte))
310 				pte = pte_swp_mksoft_dirty(pte);
311 			if (pte_swp_uffd_wp(old_pte))
312 				pte = pte_swp_mkuffd_wp(pte);
313 		}
314 
315 #ifdef CONFIG_HUGETLB_PAGE
316 		if (folio_test_hugetlb(folio)) {
317 			struct hstate *h = hstate_vma(vma);
318 			unsigned int shift = huge_page_shift(h);
319 			unsigned long psize = huge_page_size(h);
320 
321 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
322 			if (folio_test_anon(folio))
323 				hugetlb_add_anon_rmap(folio, vma, pvmw.address,
324 						      rmap_flags);
325 			else
326 				hugetlb_add_file_rmap(folio);
327 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
328 					psize);
329 		} else
330 #endif
331 		{
332 			if (folio_test_anon(folio))
333 				folio_add_anon_rmap_pte(folio, new, vma,
334 							pvmw.address, rmap_flags);
335 			else
336 				folio_add_file_rmap_pte(folio, new, vma);
337 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
338 		}
339 		if (vma->vm_flags & VM_LOCKED)
340 			mlock_drain_local();
341 
342 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
343 					   compound_order(new));
344 
345 		/* No need to invalidate - it was non-present before */
346 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
347 	}
348 
349 	return true;
350 }
351 
352 /*
353  * Get rid of all migration entries and replace them by
354  * references to the indicated page.
355  */
356 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags)
357 {
358 	struct rmap_walk_arg rmap_walk_arg = {
359 		.folio = src,
360 		.map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE,
361 	};
362 
363 	struct rmap_walk_control rwc = {
364 		.rmap_one = remove_migration_pte,
365 		.arg = &rmap_walk_arg,
366 	};
367 
368 	VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src);
369 
370 	if (flags & RMP_LOCKED)
371 		rmap_walk_locked(dst, &rwc);
372 	else
373 		rmap_walk(dst, &rwc);
374 }
375 
376 /*
377  * Something used the pte of a page under migration. We need to
378  * get to the page and wait until migration is finished.
379  * When we return from this function the fault will be retried.
380  */
381 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
382 			  unsigned long address)
383 {
384 	spinlock_t *ptl;
385 	pte_t *ptep;
386 	pte_t pte;
387 	swp_entry_t entry;
388 
389 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
390 	if (!ptep)
391 		return;
392 
393 	pte = ptep_get(ptep);
394 	pte_unmap(ptep);
395 
396 	if (!is_swap_pte(pte))
397 		goto out;
398 
399 	entry = pte_to_swp_entry(pte);
400 	if (!is_migration_entry(entry))
401 		goto out;
402 
403 	migration_entry_wait_on_locked(entry, ptl);
404 	return;
405 out:
406 	spin_unlock(ptl);
407 }
408 
409 #ifdef CONFIG_HUGETLB_PAGE
410 /*
411  * The vma read lock must be held upon entry. Holding that lock prevents either
412  * the pte or the ptl from being freed.
413  *
414  * This function will release the vma lock before returning.
415  */
416 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
417 {
418 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
419 	pte_t pte;
420 
421 	hugetlb_vma_assert_locked(vma);
422 	spin_lock(ptl);
423 	pte = huge_ptep_get(vma->vm_mm, addr, ptep);
424 
425 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
426 		spin_unlock(ptl);
427 		hugetlb_vma_unlock_read(vma);
428 	} else {
429 		/*
430 		 * If migration entry existed, safe to release vma lock
431 		 * here because the pgtable page won't be freed without the
432 		 * pgtable lock released.  See comment right above pgtable
433 		 * lock release in migration_entry_wait_on_locked().
434 		 */
435 		hugetlb_vma_unlock_read(vma);
436 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
437 	}
438 }
439 #endif
440 
441 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
442 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
443 {
444 	spinlock_t *ptl;
445 
446 	ptl = pmd_lock(mm, pmd);
447 	if (!is_pmd_migration_entry(*pmd))
448 		goto unlock;
449 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
450 	return;
451 unlock:
452 	spin_unlock(ptl);
453 }
454 #endif
455 
456 static int folio_expected_refs(struct address_space *mapping,
457 		struct folio *folio)
458 {
459 	int refs = 1;
460 	if (!mapping)
461 		return refs;
462 
463 	refs += folio_nr_pages(folio);
464 	if (folio_test_private(folio))
465 		refs++;
466 
467 	return refs;
468 }
469 
470 /*
471  * Replace the folio in the mapping.
472  *
473  * The number of remaining references must be:
474  * 1 for anonymous folios without a mapping
475  * 2 for folios with a mapping
476  * 3 for folios with a mapping and the private flag set.
477  */
478 static int __folio_migrate_mapping(struct address_space *mapping,
479 		struct folio *newfolio, struct folio *folio, int expected_count)
480 {
481 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
482 	struct zone *oldzone, *newzone;
483 	int dirty;
484 	long nr = folio_nr_pages(folio);
485 	long entries, i;
486 
487 	if (!mapping) {
488 		/* Take off deferred split queue while frozen and memcg set */
489 		if (folio_test_large(folio) &&
490 		    folio_test_large_rmappable(folio)) {
491 			if (!folio_ref_freeze(folio, expected_count))
492 				return -EAGAIN;
493 			folio_unqueue_deferred_split(folio);
494 			folio_ref_unfreeze(folio, expected_count);
495 		}
496 
497 		/* No turning back from here */
498 		newfolio->index = folio->index;
499 		newfolio->mapping = folio->mapping;
500 		if (folio_test_anon(folio) && folio_test_large(folio))
501 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
502 		if (folio_test_swapbacked(folio))
503 			__folio_set_swapbacked(newfolio);
504 
505 		return MIGRATEPAGE_SUCCESS;
506 	}
507 
508 	oldzone = folio_zone(folio);
509 	newzone = folio_zone(newfolio);
510 
511 	xas_lock_irq(&xas);
512 	if (!folio_ref_freeze(folio, expected_count)) {
513 		xas_unlock_irq(&xas);
514 		return -EAGAIN;
515 	}
516 
517 	/* Take off deferred split queue while frozen and memcg set */
518 	folio_unqueue_deferred_split(folio);
519 
520 	/*
521 	 * Now we know that no one else is looking at the folio:
522 	 * no turning back from here.
523 	 */
524 	newfolio->index = folio->index;
525 	newfolio->mapping = folio->mapping;
526 	if (folio_test_anon(folio) && folio_test_large(folio))
527 		mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
528 	folio_ref_add(newfolio, nr); /* add cache reference */
529 	if (folio_test_swapbacked(folio)) {
530 		__folio_set_swapbacked(newfolio);
531 		if (folio_test_swapcache(folio)) {
532 			folio_set_swapcache(newfolio);
533 			newfolio->private = folio_get_private(folio);
534 		}
535 		entries = nr;
536 	} else {
537 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
538 		entries = 1;
539 	}
540 
541 	/* Move dirty while folio refs frozen and newfolio not yet exposed */
542 	dirty = folio_test_dirty(folio);
543 	if (dirty) {
544 		folio_clear_dirty(folio);
545 		folio_set_dirty(newfolio);
546 	}
547 
548 	/* Swap cache still stores N entries instead of a high-order entry */
549 	for (i = 0; i < entries; i++) {
550 		xas_store(&xas, newfolio);
551 		xas_next(&xas);
552 	}
553 
554 	/*
555 	 * Drop cache reference from old folio by unfreezing
556 	 * to one less reference.
557 	 * We know this isn't the last reference.
558 	 */
559 	folio_ref_unfreeze(folio, expected_count - nr);
560 
561 	xas_unlock(&xas);
562 	/* Leave irq disabled to prevent preemption while updating stats */
563 
564 	/*
565 	 * If moved to a different zone then also account
566 	 * the folio for that zone. Other VM counters will be
567 	 * taken care of when we establish references to the
568 	 * new folio and drop references to the old folio.
569 	 *
570 	 * Note that anonymous folios are accounted for
571 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
572 	 * are mapped to swap space.
573 	 */
574 	if (newzone != oldzone) {
575 		struct lruvec *old_lruvec, *new_lruvec;
576 		struct mem_cgroup *memcg;
577 
578 		memcg = folio_memcg(folio);
579 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
580 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
581 
582 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
583 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
584 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
585 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
586 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
587 
588 			if (folio_test_pmd_mappable(folio)) {
589 				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
590 				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
591 			}
592 		}
593 #ifdef CONFIG_SWAP
594 		if (folio_test_swapcache(folio)) {
595 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
596 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
597 		}
598 #endif
599 		if (dirty && mapping_can_writeback(mapping)) {
600 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
601 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
602 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
603 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
604 		}
605 	}
606 	local_irq_enable();
607 
608 	return MIGRATEPAGE_SUCCESS;
609 }
610 
611 int folio_migrate_mapping(struct address_space *mapping,
612 		struct folio *newfolio, struct folio *folio, int extra_count)
613 {
614 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
615 
616 	if (folio_ref_count(folio) != expected_count)
617 		return -EAGAIN;
618 
619 	return __folio_migrate_mapping(mapping, newfolio, folio, expected_count);
620 }
621 EXPORT_SYMBOL(folio_migrate_mapping);
622 
623 /*
624  * The expected number of remaining references is the same as that
625  * of folio_migrate_mapping().
626  */
627 int migrate_huge_page_move_mapping(struct address_space *mapping,
628 				   struct folio *dst, struct folio *src)
629 {
630 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
631 	int rc, expected_count = folio_expected_refs(mapping, src);
632 
633 	if (folio_ref_count(src) != expected_count)
634 		return -EAGAIN;
635 
636 	rc = folio_mc_copy(dst, src);
637 	if (unlikely(rc))
638 		return rc;
639 
640 	xas_lock_irq(&xas);
641 	if (!folio_ref_freeze(src, expected_count)) {
642 		xas_unlock_irq(&xas);
643 		return -EAGAIN;
644 	}
645 
646 	dst->index = src->index;
647 	dst->mapping = src->mapping;
648 
649 	folio_ref_add(dst, folio_nr_pages(dst));
650 
651 	xas_store(&xas, dst);
652 
653 	folio_ref_unfreeze(src, expected_count - folio_nr_pages(src));
654 
655 	xas_unlock_irq(&xas);
656 
657 	return MIGRATEPAGE_SUCCESS;
658 }
659 
660 /*
661  * Copy the flags and some other ancillary information
662  */
663 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
664 {
665 	int cpupid;
666 
667 	if (folio_test_referenced(folio))
668 		folio_set_referenced(newfolio);
669 	if (folio_test_uptodate(folio))
670 		folio_mark_uptodate(newfolio);
671 	if (folio_test_clear_active(folio)) {
672 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
673 		folio_set_active(newfolio);
674 	} else if (folio_test_clear_unevictable(folio))
675 		folio_set_unevictable(newfolio);
676 	if (folio_test_workingset(folio))
677 		folio_set_workingset(newfolio);
678 	if (folio_test_checked(folio))
679 		folio_set_checked(newfolio);
680 	/*
681 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
682 	 * migration entries. We can still have PG_anon_exclusive set on an
683 	 * effectively unmapped and unreferenced first sub-pages of an
684 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
685 	 */
686 	if (folio_test_mappedtodisk(folio))
687 		folio_set_mappedtodisk(newfolio);
688 
689 	/* Move dirty on pages not done by folio_migrate_mapping() */
690 	if (folio_test_dirty(folio))
691 		folio_set_dirty(newfolio);
692 
693 	if (folio_test_young(folio))
694 		folio_set_young(newfolio);
695 	if (folio_test_idle(folio))
696 		folio_set_idle(newfolio);
697 
698 	/*
699 	 * Copy NUMA information to the new page, to prevent over-eager
700 	 * future migrations of this same page.
701 	 */
702 	cpupid = folio_xchg_last_cpupid(folio, -1);
703 	/*
704 	 * For memory tiering mode, when migrate between slow and fast
705 	 * memory node, reset cpupid, because that is used to record
706 	 * page access time in slow memory node.
707 	 */
708 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
709 		bool f_toptier = node_is_toptier(folio_nid(folio));
710 		bool t_toptier = node_is_toptier(folio_nid(newfolio));
711 
712 		if (f_toptier != t_toptier)
713 			cpupid = -1;
714 	}
715 	folio_xchg_last_cpupid(newfolio, cpupid);
716 
717 	folio_migrate_ksm(newfolio, folio);
718 	/*
719 	 * Please do not reorder this without considering how mm/ksm.c's
720 	 * ksm_get_folio() depends upon ksm_migrate_page() and the
721 	 * swapcache flag.
722 	 */
723 	if (folio_test_swapcache(folio))
724 		folio_clear_swapcache(folio);
725 	folio_clear_private(folio);
726 
727 	/* page->private contains hugetlb specific flags */
728 	if (!folio_test_hugetlb(folio))
729 		folio->private = NULL;
730 
731 	/*
732 	 * If any waiters have accumulated on the new page then
733 	 * wake them up.
734 	 */
735 	if (folio_test_writeback(newfolio))
736 		folio_end_writeback(newfolio);
737 
738 	/*
739 	 * PG_readahead shares the same bit with PG_reclaim.  The above
740 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
741 	 * bit after that.
742 	 */
743 	if (folio_test_readahead(folio))
744 		folio_set_readahead(newfolio);
745 
746 	folio_copy_owner(newfolio, folio);
747 	pgalloc_tag_copy(newfolio, folio);
748 
749 	mem_cgroup_migrate(folio, newfolio);
750 }
751 EXPORT_SYMBOL(folio_migrate_flags);
752 
753 /************************************************************
754  *                    Migration functions
755  ***********************************************************/
756 
757 static int __migrate_folio(struct address_space *mapping, struct folio *dst,
758 			   struct folio *src, void *src_private,
759 			   enum migrate_mode mode)
760 {
761 	int rc, expected_count = folio_expected_refs(mapping, src);
762 
763 	/* Check whether src does not have extra refs before we do more work */
764 	if (folio_ref_count(src) != expected_count)
765 		return -EAGAIN;
766 
767 	rc = folio_mc_copy(dst, src);
768 	if (unlikely(rc))
769 		return rc;
770 
771 	rc = __folio_migrate_mapping(mapping, dst, src, expected_count);
772 	if (rc != MIGRATEPAGE_SUCCESS)
773 		return rc;
774 
775 	if (src_private)
776 		folio_attach_private(dst, folio_detach_private(src));
777 
778 	folio_migrate_flags(dst, src);
779 	return MIGRATEPAGE_SUCCESS;
780 }
781 
782 /**
783  * migrate_folio() - Simple folio migration.
784  * @mapping: The address_space containing the folio.
785  * @dst: The folio to migrate the data to.
786  * @src: The folio containing the current data.
787  * @mode: How to migrate the page.
788  *
789  * Common logic to directly migrate a single LRU folio suitable for
790  * folios that do not have private data.
791  *
792  * Folios are locked upon entry and exit.
793  */
794 int migrate_folio(struct address_space *mapping, struct folio *dst,
795 		  struct folio *src, enum migrate_mode mode)
796 {
797 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
798 	return __migrate_folio(mapping, dst, src, NULL, mode);
799 }
800 EXPORT_SYMBOL(migrate_folio);
801 
802 #ifdef CONFIG_BUFFER_HEAD
803 /* Returns true if all buffers are successfully locked */
804 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
805 							enum migrate_mode mode)
806 {
807 	struct buffer_head *bh = head;
808 	struct buffer_head *failed_bh;
809 
810 	do {
811 		if (!trylock_buffer(bh)) {
812 			if (mode == MIGRATE_ASYNC)
813 				goto unlock;
814 			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
815 				goto unlock;
816 			lock_buffer(bh);
817 		}
818 
819 		bh = bh->b_this_page;
820 	} while (bh != head);
821 
822 	return true;
823 
824 unlock:
825 	/* We failed to lock the buffer and cannot stall. */
826 	failed_bh = bh;
827 	bh = head;
828 	while (bh != failed_bh) {
829 		unlock_buffer(bh);
830 		bh = bh->b_this_page;
831 	}
832 
833 	return false;
834 }
835 
836 static int __buffer_migrate_folio(struct address_space *mapping,
837 		struct folio *dst, struct folio *src, enum migrate_mode mode,
838 		bool check_refs)
839 {
840 	struct buffer_head *bh, *head;
841 	int rc;
842 	int expected_count;
843 
844 	head = folio_buffers(src);
845 	if (!head)
846 		return migrate_folio(mapping, dst, src, mode);
847 
848 	/* Check whether page does not have extra refs before we do more work */
849 	expected_count = folio_expected_refs(mapping, src);
850 	if (folio_ref_count(src) != expected_count)
851 		return -EAGAIN;
852 
853 	if (!buffer_migrate_lock_buffers(head, mode))
854 		return -EAGAIN;
855 
856 	if (check_refs) {
857 		bool busy;
858 		bool invalidated = false;
859 
860 recheck_buffers:
861 		busy = false;
862 		spin_lock(&mapping->i_private_lock);
863 		bh = head;
864 		do {
865 			if (atomic_read(&bh->b_count)) {
866 				busy = true;
867 				break;
868 			}
869 			bh = bh->b_this_page;
870 		} while (bh != head);
871 		if (busy) {
872 			if (invalidated) {
873 				rc = -EAGAIN;
874 				goto unlock_buffers;
875 			}
876 			spin_unlock(&mapping->i_private_lock);
877 			invalidate_bh_lrus();
878 			invalidated = true;
879 			goto recheck_buffers;
880 		}
881 	}
882 
883 	rc = filemap_migrate_folio(mapping, dst, src, mode);
884 	if (rc != MIGRATEPAGE_SUCCESS)
885 		goto unlock_buffers;
886 
887 	bh = head;
888 	do {
889 		folio_set_bh(bh, dst, bh_offset(bh));
890 		bh = bh->b_this_page;
891 	} while (bh != head);
892 
893 unlock_buffers:
894 	if (check_refs)
895 		spin_unlock(&mapping->i_private_lock);
896 	bh = head;
897 	do {
898 		unlock_buffer(bh);
899 		bh = bh->b_this_page;
900 	} while (bh != head);
901 
902 	return rc;
903 }
904 
905 /**
906  * buffer_migrate_folio() - Migration function for folios with buffers.
907  * @mapping: The address space containing @src.
908  * @dst: The folio to migrate to.
909  * @src: The folio to migrate from.
910  * @mode: How to migrate the folio.
911  *
912  * This function can only be used if the underlying filesystem guarantees
913  * that no other references to @src exist. For example attached buffer
914  * heads are accessed only under the folio lock.  If your filesystem cannot
915  * provide this guarantee, buffer_migrate_folio_norefs() may be more
916  * appropriate.
917  *
918  * Return: 0 on success or a negative errno on failure.
919  */
920 int buffer_migrate_folio(struct address_space *mapping,
921 		struct folio *dst, struct folio *src, enum migrate_mode mode)
922 {
923 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
924 }
925 EXPORT_SYMBOL(buffer_migrate_folio);
926 
927 /**
928  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
929  * @mapping: The address space containing @src.
930  * @dst: The folio to migrate to.
931  * @src: The folio to migrate from.
932  * @mode: How to migrate the folio.
933  *
934  * Like buffer_migrate_folio() except that this variant is more careful
935  * and checks that there are also no buffer head references. This function
936  * is the right one for mappings where buffer heads are directly looked
937  * up and referenced (such as block device mappings).
938  *
939  * Return: 0 on success or a negative errno on failure.
940  */
941 int buffer_migrate_folio_norefs(struct address_space *mapping,
942 		struct folio *dst, struct folio *src, enum migrate_mode mode)
943 {
944 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
945 }
946 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
947 #endif /* CONFIG_BUFFER_HEAD */
948 
949 int filemap_migrate_folio(struct address_space *mapping,
950 		struct folio *dst, struct folio *src, enum migrate_mode mode)
951 {
952 	return __migrate_folio(mapping, dst, src, folio_get_private(src), mode);
953 }
954 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
955 
956 /*
957  * Writeback a folio to clean the dirty state
958  */
959 static int writeout(struct address_space *mapping, struct folio *folio)
960 {
961 	struct writeback_control wbc = {
962 		.sync_mode = WB_SYNC_NONE,
963 		.nr_to_write = 1,
964 		.range_start = 0,
965 		.range_end = LLONG_MAX,
966 		.for_reclaim = 1
967 	};
968 	int rc;
969 
970 	if (!mapping->a_ops->writepage)
971 		/* No write method for the address space */
972 		return -EINVAL;
973 
974 	if (!folio_clear_dirty_for_io(folio))
975 		/* Someone else already triggered a write */
976 		return -EAGAIN;
977 
978 	/*
979 	 * A dirty folio may imply that the underlying filesystem has
980 	 * the folio on some queue. So the folio must be clean for
981 	 * migration. Writeout may mean we lose the lock and the
982 	 * folio state is no longer what we checked for earlier.
983 	 * At this point we know that the migration attempt cannot
984 	 * be successful.
985 	 */
986 	remove_migration_ptes(folio, folio, 0);
987 
988 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
989 
990 	if (rc != AOP_WRITEPAGE_ACTIVATE)
991 		/* unlocked. Relock */
992 		folio_lock(folio);
993 
994 	return (rc < 0) ? -EIO : -EAGAIN;
995 }
996 
997 /*
998  * Default handling if a filesystem does not provide a migration function.
999  */
1000 static int fallback_migrate_folio(struct address_space *mapping,
1001 		struct folio *dst, struct folio *src, enum migrate_mode mode)
1002 {
1003 	if (folio_test_dirty(src)) {
1004 		/* Only writeback folios in full synchronous migration */
1005 		switch (mode) {
1006 		case MIGRATE_SYNC:
1007 			break;
1008 		default:
1009 			return -EBUSY;
1010 		}
1011 		return writeout(mapping, src);
1012 	}
1013 
1014 	/*
1015 	 * Buffers may be managed in a filesystem specific way.
1016 	 * We must have no buffers or drop them.
1017 	 */
1018 	if (!filemap_release_folio(src, GFP_KERNEL))
1019 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
1020 
1021 	return migrate_folio(mapping, dst, src, mode);
1022 }
1023 
1024 /*
1025  * Move a page to a newly allocated page
1026  * The page is locked and all ptes have been successfully removed.
1027  *
1028  * The new page will have replaced the old page if this function
1029  * is successful.
1030  *
1031  * Return value:
1032  *   < 0 - error code
1033  *  MIGRATEPAGE_SUCCESS - success
1034  */
1035 static int move_to_new_folio(struct folio *dst, struct folio *src,
1036 				enum migrate_mode mode)
1037 {
1038 	int rc = -EAGAIN;
1039 	bool is_lru = !__folio_test_movable(src);
1040 
1041 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
1042 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
1043 
1044 	if (likely(is_lru)) {
1045 		struct address_space *mapping = folio_mapping(src);
1046 
1047 		if (!mapping)
1048 			rc = migrate_folio(mapping, dst, src, mode);
1049 		else if (mapping_inaccessible(mapping))
1050 			rc = -EOPNOTSUPP;
1051 		else if (mapping->a_ops->migrate_folio)
1052 			/*
1053 			 * Most folios have a mapping and most filesystems
1054 			 * provide a migrate_folio callback. Anonymous folios
1055 			 * are part of swap space which also has its own
1056 			 * migrate_folio callback. This is the most common path
1057 			 * for page migration.
1058 			 */
1059 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
1060 								mode);
1061 		else
1062 			rc = fallback_migrate_folio(mapping, dst, src, mode);
1063 	} else {
1064 		const struct movable_operations *mops;
1065 
1066 		/*
1067 		 * In case of non-lru page, it could be released after
1068 		 * isolation step. In that case, we shouldn't try migration.
1069 		 */
1070 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1071 		if (!folio_test_movable(src)) {
1072 			rc = MIGRATEPAGE_SUCCESS;
1073 			folio_clear_isolated(src);
1074 			goto out;
1075 		}
1076 
1077 		mops = folio_movable_ops(src);
1078 		rc = mops->migrate_page(&dst->page, &src->page, mode);
1079 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
1080 				!folio_test_isolated(src));
1081 	}
1082 
1083 	/*
1084 	 * When successful, old pagecache src->mapping must be cleared before
1085 	 * src is freed; but stats require that PageAnon be left as PageAnon.
1086 	 */
1087 	if (rc == MIGRATEPAGE_SUCCESS) {
1088 		if (__folio_test_movable(src)) {
1089 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
1090 
1091 			/*
1092 			 * We clear PG_movable under page_lock so any compactor
1093 			 * cannot try to migrate this page.
1094 			 */
1095 			folio_clear_isolated(src);
1096 		}
1097 
1098 		/*
1099 		 * Anonymous and movable src->mapping will be cleared by
1100 		 * free_pages_prepare so don't reset it here for keeping
1101 		 * the type to work PageAnon, for example.
1102 		 */
1103 		if (!folio_mapping_flags(src))
1104 			src->mapping = NULL;
1105 
1106 		if (likely(!folio_is_zone_device(dst)))
1107 			flush_dcache_folio(dst);
1108 	}
1109 out:
1110 	return rc;
1111 }
1112 
1113 /*
1114  * To record some information during migration, we use unused private
1115  * field of struct folio of the newly allocated destination folio.
1116  * This is safe because nobody is using it except us.
1117  */
1118 enum {
1119 	PAGE_WAS_MAPPED = BIT(0),
1120 	PAGE_WAS_MLOCKED = BIT(1),
1121 	PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED,
1122 };
1123 
1124 static void __migrate_folio_record(struct folio *dst,
1125 				   int old_page_state,
1126 				   struct anon_vma *anon_vma)
1127 {
1128 	dst->private = (void *)anon_vma + old_page_state;
1129 }
1130 
1131 static void __migrate_folio_extract(struct folio *dst,
1132 				   int *old_page_state,
1133 				   struct anon_vma **anon_vmap)
1134 {
1135 	unsigned long private = (unsigned long)dst->private;
1136 
1137 	*anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES);
1138 	*old_page_state = private & PAGE_OLD_STATES;
1139 	dst->private = NULL;
1140 }
1141 
1142 /* Restore the source folio to the original state upon failure */
1143 static void migrate_folio_undo_src(struct folio *src,
1144 				   int page_was_mapped,
1145 				   struct anon_vma *anon_vma,
1146 				   bool locked,
1147 				   struct list_head *ret)
1148 {
1149 	if (page_was_mapped)
1150 		remove_migration_ptes(src, src, 0);
1151 	/* Drop an anon_vma reference if we took one */
1152 	if (anon_vma)
1153 		put_anon_vma(anon_vma);
1154 	if (locked)
1155 		folio_unlock(src);
1156 	if (ret)
1157 		list_move_tail(&src->lru, ret);
1158 }
1159 
1160 /* Restore the destination folio to the original state upon failure */
1161 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1162 		free_folio_t put_new_folio, unsigned long private)
1163 {
1164 	if (locked)
1165 		folio_unlock(dst);
1166 	if (put_new_folio)
1167 		put_new_folio(dst, private);
1168 	else
1169 		folio_put(dst);
1170 }
1171 
1172 /* Cleanup src folio upon migration success */
1173 static void migrate_folio_done(struct folio *src,
1174 			       enum migrate_reason reason)
1175 {
1176 	/*
1177 	 * Compaction can migrate also non-LRU pages which are
1178 	 * not accounted to NR_ISOLATED_*. They can be recognized
1179 	 * as __folio_test_movable
1180 	 */
1181 	if (likely(!__folio_test_movable(src)) && reason != MR_DEMOTION)
1182 		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1183 				    folio_is_file_lru(src), -folio_nr_pages(src));
1184 
1185 	if (reason != MR_MEMORY_FAILURE)
1186 		/* We release the page in page_handle_poison. */
1187 		folio_put(src);
1188 }
1189 
1190 /* Obtain the lock on page, remove all ptes. */
1191 static int migrate_folio_unmap(new_folio_t get_new_folio,
1192 		free_folio_t put_new_folio, unsigned long private,
1193 		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1194 		enum migrate_reason reason, struct list_head *ret)
1195 {
1196 	struct folio *dst;
1197 	int rc = -EAGAIN;
1198 	int old_page_state = 0;
1199 	struct anon_vma *anon_vma = NULL;
1200 	bool is_lru = data_race(!__folio_test_movable(src));
1201 	bool locked = false;
1202 	bool dst_locked = false;
1203 
1204 	if (folio_ref_count(src) == 1) {
1205 		/* Folio was freed from under us. So we are done. */
1206 		folio_clear_active(src);
1207 		folio_clear_unevictable(src);
1208 		/* free_pages_prepare() will clear PG_isolated. */
1209 		list_del(&src->lru);
1210 		migrate_folio_done(src, reason);
1211 		return MIGRATEPAGE_SUCCESS;
1212 	}
1213 
1214 	dst = get_new_folio(src, private);
1215 	if (!dst)
1216 		return -ENOMEM;
1217 	*dstp = dst;
1218 
1219 	dst->private = NULL;
1220 
1221 	if (!folio_trylock(src)) {
1222 		if (mode == MIGRATE_ASYNC)
1223 			goto out;
1224 
1225 		/*
1226 		 * It's not safe for direct compaction to call lock_page.
1227 		 * For example, during page readahead pages are added locked
1228 		 * to the LRU. Later, when the IO completes the pages are
1229 		 * marked uptodate and unlocked. However, the queueing
1230 		 * could be merging multiple pages for one bio (e.g.
1231 		 * mpage_readahead). If an allocation happens for the
1232 		 * second or third page, the process can end up locking
1233 		 * the same page twice and deadlocking. Rather than
1234 		 * trying to be clever about what pages can be locked,
1235 		 * avoid the use of lock_page for direct compaction
1236 		 * altogether.
1237 		 */
1238 		if (current->flags & PF_MEMALLOC)
1239 			goto out;
1240 
1241 		/*
1242 		 * In "light" mode, we can wait for transient locks (eg
1243 		 * inserting a page into the page table), but it's not
1244 		 * worth waiting for I/O.
1245 		 */
1246 		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1247 			goto out;
1248 
1249 		folio_lock(src);
1250 	}
1251 	locked = true;
1252 	if (folio_test_mlocked(src))
1253 		old_page_state |= PAGE_WAS_MLOCKED;
1254 
1255 	if (folio_test_writeback(src)) {
1256 		/*
1257 		 * Only in the case of a full synchronous migration is it
1258 		 * necessary to wait for PageWriteback. In the async case,
1259 		 * the retry loop is too short and in the sync-light case,
1260 		 * the overhead of stalling is too much
1261 		 */
1262 		switch (mode) {
1263 		case MIGRATE_SYNC:
1264 			break;
1265 		default:
1266 			rc = -EBUSY;
1267 			goto out;
1268 		}
1269 		folio_wait_writeback(src);
1270 	}
1271 
1272 	/*
1273 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1274 	 * we cannot notice that anon_vma is freed while we migrate a page.
1275 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1276 	 * of migration. File cache pages are no problem because of page_lock()
1277 	 * File Caches may use write_page() or lock_page() in migration, then,
1278 	 * just care Anon page here.
1279 	 *
1280 	 * Only folio_get_anon_vma() understands the subtleties of
1281 	 * getting a hold on an anon_vma from outside one of its mms.
1282 	 * But if we cannot get anon_vma, then we won't need it anyway,
1283 	 * because that implies that the anon page is no longer mapped
1284 	 * (and cannot be remapped so long as we hold the page lock).
1285 	 */
1286 	if (folio_test_anon(src) && !folio_test_ksm(src))
1287 		anon_vma = folio_get_anon_vma(src);
1288 
1289 	/*
1290 	 * Block others from accessing the new page when we get around to
1291 	 * establishing additional references. We are usually the only one
1292 	 * holding a reference to dst at this point. We used to have a BUG
1293 	 * here if folio_trylock(dst) fails, but would like to allow for
1294 	 * cases where there might be a race with the previous use of dst.
1295 	 * This is much like races on refcount of oldpage: just don't BUG().
1296 	 */
1297 	if (unlikely(!folio_trylock(dst)))
1298 		goto out;
1299 	dst_locked = true;
1300 
1301 	if (unlikely(!is_lru)) {
1302 		__migrate_folio_record(dst, old_page_state, anon_vma);
1303 		return MIGRATEPAGE_UNMAP;
1304 	}
1305 
1306 	/*
1307 	 * Corner case handling:
1308 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1309 	 * and treated as swapcache but it has no rmap yet.
1310 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1311 	 * trigger a BUG.  So handle it here.
1312 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1313 	 * fs-private metadata. The page can be picked up due to memory
1314 	 * offlining.  Everywhere else except page reclaim, the page is
1315 	 * invisible to the vm, so the page can not be migrated.  So try to
1316 	 * free the metadata, so the page can be freed.
1317 	 */
1318 	if (!src->mapping) {
1319 		if (folio_test_private(src)) {
1320 			try_to_free_buffers(src);
1321 			goto out;
1322 		}
1323 	} else if (folio_mapped(src)) {
1324 		/* Establish migration ptes */
1325 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1326 			       !folio_test_ksm(src) && !anon_vma, src);
1327 		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1328 		old_page_state |= PAGE_WAS_MAPPED;
1329 	}
1330 
1331 	if (!folio_mapped(src)) {
1332 		__migrate_folio_record(dst, old_page_state, anon_vma);
1333 		return MIGRATEPAGE_UNMAP;
1334 	}
1335 
1336 out:
1337 	/*
1338 	 * A folio that has not been unmapped will be restored to
1339 	 * right list unless we want to retry.
1340 	 */
1341 	if (rc == -EAGAIN)
1342 		ret = NULL;
1343 
1344 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1345 			       anon_vma, locked, ret);
1346 	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1347 
1348 	return rc;
1349 }
1350 
1351 /* Migrate the folio to the newly allocated folio in dst. */
1352 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1353 			      struct folio *src, struct folio *dst,
1354 			      enum migrate_mode mode, enum migrate_reason reason,
1355 			      struct list_head *ret)
1356 {
1357 	int rc;
1358 	int old_page_state = 0;
1359 	struct anon_vma *anon_vma = NULL;
1360 	bool is_lru = !__folio_test_movable(src);
1361 	struct list_head *prev;
1362 
1363 	__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1364 	prev = dst->lru.prev;
1365 	list_del(&dst->lru);
1366 
1367 	rc = move_to_new_folio(dst, src, mode);
1368 	if (rc)
1369 		goto out;
1370 
1371 	if (unlikely(!is_lru))
1372 		goto out_unlock_both;
1373 
1374 	/*
1375 	 * When successful, push dst to LRU immediately: so that if it
1376 	 * turns out to be an mlocked page, remove_migration_ptes() will
1377 	 * automatically build up the correct dst->mlock_count for it.
1378 	 *
1379 	 * We would like to do something similar for the old page, when
1380 	 * unsuccessful, and other cases when a page has been temporarily
1381 	 * isolated from the unevictable LRU: but this case is the easiest.
1382 	 */
1383 	folio_add_lru(dst);
1384 	if (old_page_state & PAGE_WAS_MLOCKED)
1385 		lru_add_drain();
1386 
1387 	if (old_page_state & PAGE_WAS_MAPPED)
1388 		remove_migration_ptes(src, dst, 0);
1389 
1390 out_unlock_both:
1391 	folio_unlock(dst);
1392 	set_page_owner_migrate_reason(&dst->page, reason);
1393 	/*
1394 	 * If migration is successful, decrease refcount of dst,
1395 	 * which will not free the page because new page owner increased
1396 	 * refcounter.
1397 	 */
1398 	folio_put(dst);
1399 
1400 	/*
1401 	 * A folio that has been migrated has all references removed
1402 	 * and will be freed.
1403 	 */
1404 	list_del(&src->lru);
1405 	/* Drop an anon_vma reference if we took one */
1406 	if (anon_vma)
1407 		put_anon_vma(anon_vma);
1408 	folio_unlock(src);
1409 	migrate_folio_done(src, reason);
1410 
1411 	return rc;
1412 out:
1413 	/*
1414 	 * A folio that has not been migrated will be restored to
1415 	 * right list unless we want to retry.
1416 	 */
1417 	if (rc == -EAGAIN) {
1418 		list_add(&dst->lru, prev);
1419 		__migrate_folio_record(dst, old_page_state, anon_vma);
1420 		return rc;
1421 	}
1422 
1423 	migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED,
1424 			       anon_vma, true, ret);
1425 	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1426 
1427 	return rc;
1428 }
1429 
1430 /*
1431  * Counterpart of unmap_and_move_page() for hugepage migration.
1432  *
1433  * This function doesn't wait the completion of hugepage I/O
1434  * because there is no race between I/O and migration for hugepage.
1435  * Note that currently hugepage I/O occurs only in direct I/O
1436  * where no lock is held and PG_writeback is irrelevant,
1437  * and writeback status of all subpages are counted in the reference
1438  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1439  * under direct I/O, the reference of the head page is 512 and a bit more.)
1440  * This means that when we try to migrate hugepage whose subpages are
1441  * doing direct I/O, some references remain after try_to_unmap() and
1442  * hugepage migration fails without data corruption.
1443  *
1444  * There is also no race when direct I/O is issued on the page under migration,
1445  * because then pte is replaced with migration swap entry and direct I/O code
1446  * will wait in the page fault for migration to complete.
1447  */
1448 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1449 		free_folio_t put_new_folio, unsigned long private,
1450 		struct folio *src, int force, enum migrate_mode mode,
1451 		int reason, struct list_head *ret)
1452 {
1453 	struct folio *dst;
1454 	int rc = -EAGAIN;
1455 	int page_was_mapped = 0;
1456 	struct anon_vma *anon_vma = NULL;
1457 	struct address_space *mapping = NULL;
1458 
1459 	if (folio_ref_count(src) == 1) {
1460 		/* page was freed from under us. So we are done. */
1461 		folio_putback_active_hugetlb(src);
1462 		return MIGRATEPAGE_SUCCESS;
1463 	}
1464 
1465 	dst = get_new_folio(src, private);
1466 	if (!dst)
1467 		return -ENOMEM;
1468 
1469 	if (!folio_trylock(src)) {
1470 		if (!force)
1471 			goto out;
1472 		switch (mode) {
1473 		case MIGRATE_SYNC:
1474 			break;
1475 		default:
1476 			goto out;
1477 		}
1478 		folio_lock(src);
1479 	}
1480 
1481 	/*
1482 	 * Check for pages which are in the process of being freed.  Without
1483 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1484 	 * be called and we could leak usage counts for subpools.
1485 	 */
1486 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1487 		rc = -EBUSY;
1488 		goto out_unlock;
1489 	}
1490 
1491 	if (folio_test_anon(src))
1492 		anon_vma = folio_get_anon_vma(src);
1493 
1494 	if (unlikely(!folio_trylock(dst)))
1495 		goto put_anon;
1496 
1497 	if (folio_mapped(src)) {
1498 		enum ttu_flags ttu = 0;
1499 
1500 		if (!folio_test_anon(src)) {
1501 			/*
1502 			 * In shared mappings, try_to_unmap could potentially
1503 			 * call huge_pmd_unshare.  Because of this, take
1504 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1505 			 * to let lower levels know we have taken the lock.
1506 			 */
1507 			mapping = hugetlb_folio_mapping_lock_write(src);
1508 			if (unlikely(!mapping))
1509 				goto unlock_put_anon;
1510 
1511 			ttu = TTU_RMAP_LOCKED;
1512 		}
1513 
1514 		try_to_migrate(src, ttu);
1515 		page_was_mapped = 1;
1516 
1517 		if (ttu & TTU_RMAP_LOCKED)
1518 			i_mmap_unlock_write(mapping);
1519 	}
1520 
1521 	if (!folio_mapped(src))
1522 		rc = move_to_new_folio(dst, src, mode);
1523 
1524 	if (page_was_mapped)
1525 		remove_migration_ptes(src,
1526 			rc == MIGRATEPAGE_SUCCESS ? dst : src, 0);
1527 
1528 unlock_put_anon:
1529 	folio_unlock(dst);
1530 
1531 put_anon:
1532 	if (anon_vma)
1533 		put_anon_vma(anon_vma);
1534 
1535 	if (rc == MIGRATEPAGE_SUCCESS) {
1536 		move_hugetlb_state(src, dst, reason);
1537 		put_new_folio = NULL;
1538 	}
1539 
1540 out_unlock:
1541 	folio_unlock(src);
1542 out:
1543 	if (rc == MIGRATEPAGE_SUCCESS)
1544 		folio_putback_active_hugetlb(src);
1545 	else if (rc != -EAGAIN)
1546 		list_move_tail(&src->lru, ret);
1547 
1548 	/*
1549 	 * If migration was not successful and there's a freeing callback, use
1550 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1551 	 * isolation.
1552 	 */
1553 	if (put_new_folio)
1554 		put_new_folio(dst, private);
1555 	else
1556 		folio_putback_active_hugetlb(dst);
1557 
1558 	return rc;
1559 }
1560 
1561 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios,
1562 				  enum migrate_mode mode)
1563 {
1564 	int rc;
1565 
1566 	if (mode == MIGRATE_ASYNC) {
1567 		if (!folio_trylock(folio))
1568 			return -EAGAIN;
1569 	} else {
1570 		folio_lock(folio);
1571 	}
1572 	rc = split_folio_to_list(folio, split_folios);
1573 	folio_unlock(folio);
1574 	if (!rc)
1575 		list_move_tail(&folio->lru, split_folios);
1576 
1577 	return rc;
1578 }
1579 
1580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1581 #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1582 #else
1583 #define NR_MAX_BATCHED_MIGRATION	512
1584 #endif
1585 #define NR_MAX_MIGRATE_PAGES_RETRY	10
1586 #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1587 #define NR_MAX_MIGRATE_SYNC_RETRY					\
1588 	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1589 
1590 struct migrate_pages_stats {
1591 	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1592 				   units of base pages */
1593 	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1594 				   units of base pages.  Untried folios aren't counted */
1595 	int nr_thp_succeeded;	/* THP migrated successfully */
1596 	int nr_thp_failed;	/* THP failed to be migrated */
1597 	int nr_thp_split;	/* THP split before migrating */
1598 	int nr_split;	/* Large folio (include THP) split before migrating */
1599 };
1600 
1601 /*
1602  * Returns the number of hugetlb folios that were not migrated, or an error code
1603  * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1604  * any more because the list has become empty or no retryable hugetlb folios
1605  * exist any more. It is caller's responsibility to call putback_movable_pages()
1606  * only if ret != 0.
1607  */
1608 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1609 			    free_folio_t put_new_folio, unsigned long private,
1610 			    enum migrate_mode mode, int reason,
1611 			    struct migrate_pages_stats *stats,
1612 			    struct list_head *ret_folios)
1613 {
1614 	int retry = 1;
1615 	int nr_failed = 0;
1616 	int nr_retry_pages = 0;
1617 	int pass = 0;
1618 	struct folio *folio, *folio2;
1619 	int rc, nr_pages;
1620 
1621 	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1622 		retry = 0;
1623 		nr_retry_pages = 0;
1624 
1625 		list_for_each_entry_safe(folio, folio2, from, lru) {
1626 			if (!folio_test_hugetlb(folio))
1627 				continue;
1628 
1629 			nr_pages = folio_nr_pages(folio);
1630 
1631 			cond_resched();
1632 
1633 			/*
1634 			 * Migratability of hugepages depends on architectures and
1635 			 * their size.  This check is necessary because some callers
1636 			 * of hugepage migration like soft offline and memory
1637 			 * hotremove don't walk through page tables or check whether
1638 			 * the hugepage is pmd-based or not before kicking migration.
1639 			 */
1640 			if (!hugepage_migration_supported(folio_hstate(folio))) {
1641 				nr_failed++;
1642 				stats->nr_failed_pages += nr_pages;
1643 				list_move_tail(&folio->lru, ret_folios);
1644 				continue;
1645 			}
1646 
1647 			rc = unmap_and_move_huge_page(get_new_folio,
1648 						      put_new_folio, private,
1649 						      folio, pass > 2, mode,
1650 						      reason, ret_folios);
1651 			/*
1652 			 * The rules are:
1653 			 *	Success: hugetlb folio will be put back
1654 			 *	-EAGAIN: stay on the from list
1655 			 *	-ENOMEM: stay on the from list
1656 			 *	Other errno: put on ret_folios list
1657 			 */
1658 			switch(rc) {
1659 			case -ENOMEM:
1660 				/*
1661 				 * When memory is low, don't bother to try to migrate
1662 				 * other folios, just exit.
1663 				 */
1664 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1665 				return -ENOMEM;
1666 			case -EAGAIN:
1667 				retry++;
1668 				nr_retry_pages += nr_pages;
1669 				break;
1670 			case MIGRATEPAGE_SUCCESS:
1671 				stats->nr_succeeded += nr_pages;
1672 				break;
1673 			default:
1674 				/*
1675 				 * Permanent failure (-EBUSY, etc.):
1676 				 * unlike -EAGAIN case, the failed folio is
1677 				 * removed from migration folio list and not
1678 				 * retried in the next outer loop.
1679 				 */
1680 				nr_failed++;
1681 				stats->nr_failed_pages += nr_pages;
1682 				break;
1683 			}
1684 		}
1685 	}
1686 	/*
1687 	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1688 	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1689 	 * folios as failed.
1690 	 */
1691 	nr_failed += retry;
1692 	stats->nr_failed_pages += nr_retry_pages;
1693 
1694 	return nr_failed;
1695 }
1696 
1697 /*
1698  * migrate_pages_batch() first unmaps folios in the from list as many as
1699  * possible, then move the unmapped folios.
1700  *
1701  * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1702  * lock or bit when we have locked more than one folio.  Which may cause
1703  * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1704  * length of the from list must be <= 1.
1705  */
1706 static int migrate_pages_batch(struct list_head *from,
1707 		new_folio_t get_new_folio, free_folio_t put_new_folio,
1708 		unsigned long private, enum migrate_mode mode, int reason,
1709 		struct list_head *ret_folios, struct list_head *split_folios,
1710 		struct migrate_pages_stats *stats, int nr_pass)
1711 {
1712 	int retry = 1;
1713 	int thp_retry = 1;
1714 	int nr_failed = 0;
1715 	int nr_retry_pages = 0;
1716 	int pass = 0;
1717 	bool is_thp = false;
1718 	bool is_large = false;
1719 	struct folio *folio, *folio2, *dst = NULL, *dst2;
1720 	int rc, rc_saved = 0, nr_pages;
1721 	LIST_HEAD(unmap_folios);
1722 	LIST_HEAD(dst_folios);
1723 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1724 
1725 	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1726 			!list_empty(from) && !list_is_singular(from));
1727 
1728 	for (pass = 0; pass < nr_pass && retry; pass++) {
1729 		retry = 0;
1730 		thp_retry = 0;
1731 		nr_retry_pages = 0;
1732 
1733 		list_for_each_entry_safe(folio, folio2, from, lru) {
1734 			is_large = folio_test_large(folio);
1735 			is_thp = is_large && folio_test_pmd_mappable(folio);
1736 			nr_pages = folio_nr_pages(folio);
1737 
1738 			cond_resched();
1739 
1740 			/*
1741 			 * The rare folio on the deferred split list should
1742 			 * be split now. It should not count as a failure:
1743 			 * but increment nr_failed because, without doing so,
1744 			 * migrate_pages() may report success with (split but
1745 			 * unmigrated) pages still on its fromlist; whereas it
1746 			 * always reports success when its fromlist is empty.
1747 			 * stats->nr_thp_failed should be increased too,
1748 			 * otherwise stats inconsistency will happen when
1749 			 * migrate_pages_batch is called via migrate_pages()
1750 			 * with MIGRATE_SYNC and MIGRATE_ASYNC.
1751 			 *
1752 			 * Only check it without removing it from the list.
1753 			 * Since the folio can be on deferred_split_scan()
1754 			 * local list and removing it can cause the local list
1755 			 * corruption. Folio split process below can handle it
1756 			 * with the help of folio_ref_freeze().
1757 			 *
1758 			 * nr_pages > 2 is needed to avoid checking order-1
1759 			 * page cache folios. They exist, in contrast to
1760 			 * non-existent order-1 anonymous folios, and do not
1761 			 * use _deferred_list.
1762 			 */
1763 			if (nr_pages > 2 &&
1764 			   !list_empty(&folio->_deferred_list) &&
1765 			   folio_test_partially_mapped(folio)) {
1766 				if (!try_split_folio(folio, split_folios, mode)) {
1767 					nr_failed++;
1768 					stats->nr_thp_failed += is_thp;
1769 					stats->nr_thp_split += is_thp;
1770 					stats->nr_split++;
1771 					continue;
1772 				}
1773 			}
1774 
1775 			/*
1776 			 * Large folio migration might be unsupported or
1777 			 * the allocation might be failed so we should retry
1778 			 * on the same folio with the large folio split
1779 			 * to normal folios.
1780 			 *
1781 			 * Split folios are put in split_folios, and
1782 			 * we will migrate them after the rest of the
1783 			 * list is processed.
1784 			 */
1785 			if (!thp_migration_supported() && is_thp) {
1786 				nr_failed++;
1787 				stats->nr_thp_failed++;
1788 				if (!try_split_folio(folio, split_folios, mode)) {
1789 					stats->nr_thp_split++;
1790 					stats->nr_split++;
1791 					continue;
1792 				}
1793 				stats->nr_failed_pages += nr_pages;
1794 				list_move_tail(&folio->lru, ret_folios);
1795 				continue;
1796 			}
1797 
1798 			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1799 					private, folio, &dst, mode, reason,
1800 					ret_folios);
1801 			/*
1802 			 * The rules are:
1803 			 *	Success: folio will be freed
1804 			 *	Unmap: folio will be put on unmap_folios list,
1805 			 *	       dst folio put on dst_folios list
1806 			 *	-EAGAIN: stay on the from list
1807 			 *	-ENOMEM: stay on the from list
1808 			 *	Other errno: put on ret_folios list
1809 			 */
1810 			switch(rc) {
1811 			case -ENOMEM:
1812 				/*
1813 				 * When memory is low, don't bother to try to migrate
1814 				 * other folios, move unmapped folios, then exit.
1815 				 */
1816 				nr_failed++;
1817 				stats->nr_thp_failed += is_thp;
1818 				/* Large folio NUMA faulting doesn't split to retry. */
1819 				if (is_large && !nosplit) {
1820 					int ret = try_split_folio(folio, split_folios, mode);
1821 
1822 					if (!ret) {
1823 						stats->nr_thp_split += is_thp;
1824 						stats->nr_split++;
1825 						break;
1826 					} else if (reason == MR_LONGTERM_PIN &&
1827 						   ret == -EAGAIN) {
1828 						/*
1829 						 * Try again to split large folio to
1830 						 * mitigate the failure of longterm pinning.
1831 						 */
1832 						retry++;
1833 						thp_retry += is_thp;
1834 						nr_retry_pages += nr_pages;
1835 						/* Undo duplicated failure counting. */
1836 						nr_failed--;
1837 						stats->nr_thp_failed -= is_thp;
1838 						break;
1839 					}
1840 				}
1841 
1842 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1843 				/* nr_failed isn't updated for not used */
1844 				stats->nr_thp_failed += thp_retry;
1845 				rc_saved = rc;
1846 				if (list_empty(&unmap_folios))
1847 					goto out;
1848 				else
1849 					goto move;
1850 			case -EAGAIN:
1851 				retry++;
1852 				thp_retry += is_thp;
1853 				nr_retry_pages += nr_pages;
1854 				break;
1855 			case MIGRATEPAGE_SUCCESS:
1856 				stats->nr_succeeded += nr_pages;
1857 				stats->nr_thp_succeeded += is_thp;
1858 				break;
1859 			case MIGRATEPAGE_UNMAP:
1860 				list_move_tail(&folio->lru, &unmap_folios);
1861 				list_add_tail(&dst->lru, &dst_folios);
1862 				break;
1863 			default:
1864 				/*
1865 				 * Permanent failure (-EBUSY, etc.):
1866 				 * unlike -EAGAIN case, the failed folio is
1867 				 * removed from migration folio list and not
1868 				 * retried in the next outer loop.
1869 				 */
1870 				nr_failed++;
1871 				stats->nr_thp_failed += is_thp;
1872 				stats->nr_failed_pages += nr_pages;
1873 				break;
1874 			}
1875 		}
1876 	}
1877 	nr_failed += retry;
1878 	stats->nr_thp_failed += thp_retry;
1879 	stats->nr_failed_pages += nr_retry_pages;
1880 move:
1881 	/* Flush TLBs for all unmapped folios */
1882 	try_to_unmap_flush();
1883 
1884 	retry = 1;
1885 	for (pass = 0; pass < nr_pass && retry; pass++) {
1886 		retry = 0;
1887 		thp_retry = 0;
1888 		nr_retry_pages = 0;
1889 
1890 		dst = list_first_entry(&dst_folios, struct folio, lru);
1891 		dst2 = list_next_entry(dst, lru);
1892 		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1893 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1894 			nr_pages = folio_nr_pages(folio);
1895 
1896 			cond_resched();
1897 
1898 			rc = migrate_folio_move(put_new_folio, private,
1899 						folio, dst, mode,
1900 						reason, ret_folios);
1901 			/*
1902 			 * The rules are:
1903 			 *	Success: folio will be freed
1904 			 *	-EAGAIN: stay on the unmap_folios list
1905 			 *	Other errno: put on ret_folios list
1906 			 */
1907 			switch(rc) {
1908 			case -EAGAIN:
1909 				retry++;
1910 				thp_retry += is_thp;
1911 				nr_retry_pages += nr_pages;
1912 				break;
1913 			case MIGRATEPAGE_SUCCESS:
1914 				stats->nr_succeeded += nr_pages;
1915 				stats->nr_thp_succeeded += is_thp;
1916 				break;
1917 			default:
1918 				nr_failed++;
1919 				stats->nr_thp_failed += is_thp;
1920 				stats->nr_failed_pages += nr_pages;
1921 				break;
1922 			}
1923 			dst = dst2;
1924 			dst2 = list_next_entry(dst, lru);
1925 		}
1926 	}
1927 	nr_failed += retry;
1928 	stats->nr_thp_failed += thp_retry;
1929 	stats->nr_failed_pages += nr_retry_pages;
1930 
1931 	rc = rc_saved ? : nr_failed;
1932 out:
1933 	/* Cleanup remaining folios */
1934 	dst = list_first_entry(&dst_folios, struct folio, lru);
1935 	dst2 = list_next_entry(dst, lru);
1936 	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1937 		int old_page_state = 0;
1938 		struct anon_vma *anon_vma = NULL;
1939 
1940 		__migrate_folio_extract(dst, &old_page_state, &anon_vma);
1941 		migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED,
1942 				       anon_vma, true, ret_folios);
1943 		list_del(&dst->lru);
1944 		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1945 		dst = dst2;
1946 		dst2 = list_next_entry(dst, lru);
1947 	}
1948 
1949 	return rc;
1950 }
1951 
1952 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1953 		free_folio_t put_new_folio, unsigned long private,
1954 		enum migrate_mode mode, int reason,
1955 		struct list_head *ret_folios, struct list_head *split_folios,
1956 		struct migrate_pages_stats *stats)
1957 {
1958 	int rc, nr_failed = 0;
1959 	LIST_HEAD(folios);
1960 	struct migrate_pages_stats astats;
1961 
1962 	memset(&astats, 0, sizeof(astats));
1963 	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1964 	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1965 				 reason, &folios, split_folios, &astats,
1966 				 NR_MAX_MIGRATE_ASYNC_RETRY);
1967 	stats->nr_succeeded += astats.nr_succeeded;
1968 	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1969 	stats->nr_thp_split += astats.nr_thp_split;
1970 	stats->nr_split += astats.nr_split;
1971 	if (rc < 0) {
1972 		stats->nr_failed_pages += astats.nr_failed_pages;
1973 		stats->nr_thp_failed += astats.nr_thp_failed;
1974 		list_splice_tail(&folios, ret_folios);
1975 		return rc;
1976 	}
1977 	stats->nr_thp_failed += astats.nr_thp_split;
1978 	/*
1979 	 * Do not count rc, as pages will be retried below.
1980 	 * Count nr_split only, since it includes nr_thp_split.
1981 	 */
1982 	nr_failed += astats.nr_split;
1983 	/*
1984 	 * Fall back to migrate all failed folios one by one synchronously. All
1985 	 * failed folios except split THPs will be retried, so their failure
1986 	 * isn't counted
1987 	 */
1988 	list_splice_tail_init(&folios, from);
1989 	while (!list_empty(from)) {
1990 		list_move(from->next, &folios);
1991 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1992 					 private, mode, reason, ret_folios,
1993 					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1994 		list_splice_tail_init(&folios, ret_folios);
1995 		if (rc < 0)
1996 			return rc;
1997 		nr_failed += rc;
1998 	}
1999 
2000 	return nr_failed;
2001 }
2002 
2003 /*
2004  * migrate_pages - migrate the folios specified in a list, to the free folios
2005  *		   supplied as the target for the page migration
2006  *
2007  * @from:		The list of folios to be migrated.
2008  * @get_new_folio:	The function used to allocate free folios to be used
2009  *			as the target of the folio migration.
2010  * @put_new_folio:	The function used to free target folios if migration
2011  *			fails, or NULL if no special handling is necessary.
2012  * @private:		Private data to be passed on to get_new_folio()
2013  * @mode:		The migration mode that specifies the constraints for
2014  *			folio migration, if any.
2015  * @reason:		The reason for folio migration.
2016  * @ret_succeeded:	Set to the number of folios migrated successfully if
2017  *			the caller passes a non-NULL pointer.
2018  *
2019  * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
2020  * are movable any more because the list has become empty or no retryable folios
2021  * exist any more. It is caller's responsibility to call putback_movable_pages()
2022  * only if ret != 0.
2023  *
2024  * Returns the number of {normal folio, large folio, hugetlb} that were not
2025  * migrated, or an error code. The number of large folio splits will be
2026  * considered as the number of non-migrated large folio, no matter how many
2027  * split folios of the large folio are migrated successfully.
2028  */
2029 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
2030 		free_folio_t put_new_folio, unsigned long private,
2031 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
2032 {
2033 	int rc, rc_gather;
2034 	int nr_pages;
2035 	struct folio *folio, *folio2;
2036 	LIST_HEAD(folios);
2037 	LIST_HEAD(ret_folios);
2038 	LIST_HEAD(split_folios);
2039 	struct migrate_pages_stats stats;
2040 
2041 	trace_mm_migrate_pages_start(mode, reason);
2042 
2043 	memset(&stats, 0, sizeof(stats));
2044 
2045 	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
2046 				     mode, reason, &stats, &ret_folios);
2047 	if (rc_gather < 0)
2048 		goto out;
2049 
2050 again:
2051 	nr_pages = 0;
2052 	list_for_each_entry_safe(folio, folio2, from, lru) {
2053 		/* Retried hugetlb folios will be kept in list  */
2054 		if (folio_test_hugetlb(folio)) {
2055 			list_move_tail(&folio->lru, &ret_folios);
2056 			continue;
2057 		}
2058 
2059 		nr_pages += folio_nr_pages(folio);
2060 		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2061 			break;
2062 	}
2063 	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
2064 		list_cut_before(&folios, from, &folio2->lru);
2065 	else
2066 		list_splice_init(from, &folios);
2067 	if (mode == MIGRATE_ASYNC)
2068 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
2069 				private, mode, reason, &ret_folios,
2070 				&split_folios, &stats,
2071 				NR_MAX_MIGRATE_PAGES_RETRY);
2072 	else
2073 		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
2074 				private, mode, reason, &ret_folios,
2075 				&split_folios, &stats);
2076 	list_splice_tail_init(&folios, &ret_folios);
2077 	if (rc < 0) {
2078 		rc_gather = rc;
2079 		list_splice_tail(&split_folios, &ret_folios);
2080 		goto out;
2081 	}
2082 	if (!list_empty(&split_folios)) {
2083 		/*
2084 		 * Failure isn't counted since all split folios of a large folio
2085 		 * is counted as 1 failure already.  And, we only try to migrate
2086 		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
2087 		 */
2088 		migrate_pages_batch(&split_folios, get_new_folio,
2089 				put_new_folio, private, MIGRATE_ASYNC, reason,
2090 				&ret_folios, NULL, &stats, 1);
2091 		list_splice_tail_init(&split_folios, &ret_folios);
2092 	}
2093 	rc_gather += rc;
2094 	if (!list_empty(from))
2095 		goto again;
2096 out:
2097 	/*
2098 	 * Put the permanent failure folio back to migration list, they
2099 	 * will be put back to the right list by the caller.
2100 	 */
2101 	list_splice(&ret_folios, from);
2102 
2103 	/*
2104 	 * Return 0 in case all split folios of fail-to-migrate large folios
2105 	 * are migrated successfully.
2106 	 */
2107 	if (list_empty(from))
2108 		rc_gather = 0;
2109 
2110 	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
2111 	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
2112 	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
2113 	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
2114 	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
2115 	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
2116 			       stats.nr_thp_succeeded, stats.nr_thp_failed,
2117 			       stats.nr_thp_split, stats.nr_split, mode,
2118 			       reason);
2119 
2120 	if (ret_succeeded)
2121 		*ret_succeeded = stats.nr_succeeded;
2122 
2123 	return rc_gather;
2124 }
2125 
2126 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
2127 {
2128 	struct migration_target_control *mtc;
2129 	gfp_t gfp_mask;
2130 	unsigned int order = 0;
2131 	int nid;
2132 	int zidx;
2133 
2134 	mtc = (struct migration_target_control *)private;
2135 	gfp_mask = mtc->gfp_mask;
2136 	nid = mtc->nid;
2137 	if (nid == NUMA_NO_NODE)
2138 		nid = folio_nid(src);
2139 
2140 	if (folio_test_hugetlb(src)) {
2141 		struct hstate *h = folio_hstate(src);
2142 
2143 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
2144 		return alloc_hugetlb_folio_nodemask(h, nid,
2145 						mtc->nmask, gfp_mask,
2146 						htlb_allow_alloc_fallback(mtc->reason));
2147 	}
2148 
2149 	if (folio_test_large(src)) {
2150 		/*
2151 		 * clear __GFP_RECLAIM to make the migration callback
2152 		 * consistent with regular THP allocations.
2153 		 */
2154 		gfp_mask &= ~__GFP_RECLAIM;
2155 		gfp_mask |= GFP_TRANSHUGE;
2156 		order = folio_order(src);
2157 	}
2158 	zidx = zone_idx(folio_zone(src));
2159 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2160 		gfp_mask |= __GFP_HIGHMEM;
2161 
2162 	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2163 }
2164 
2165 #ifdef CONFIG_NUMA
2166 
2167 static int store_status(int __user *status, int start, int value, int nr)
2168 {
2169 	while (nr-- > 0) {
2170 		if (put_user(value, status + start))
2171 			return -EFAULT;
2172 		start++;
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 static int do_move_pages_to_node(struct list_head *pagelist, int node)
2179 {
2180 	int err;
2181 	struct migration_target_control mtc = {
2182 		.nid = node,
2183 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2184 		.reason = MR_SYSCALL,
2185 	};
2186 
2187 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2188 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2189 	if (err)
2190 		putback_movable_pages(pagelist);
2191 	return err;
2192 }
2193 
2194 static int __add_folio_for_migration(struct folio *folio, int node,
2195 		struct list_head *pagelist, bool migrate_all)
2196 {
2197 	if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2198 		return -EFAULT;
2199 
2200 	if (folio_is_zone_device(folio))
2201 		return -ENOENT;
2202 
2203 	if (folio_nid(folio) == node)
2204 		return 0;
2205 
2206 	if (folio_likely_mapped_shared(folio) && !migrate_all)
2207 		return -EACCES;
2208 
2209 	if (folio_test_hugetlb(folio)) {
2210 		if (isolate_hugetlb(folio, pagelist))
2211 			return 1;
2212 	} else if (folio_isolate_lru(folio)) {
2213 		list_add_tail(&folio->lru, pagelist);
2214 		node_stat_mod_folio(folio,
2215 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
2216 			folio_nr_pages(folio));
2217 		return 1;
2218 	}
2219 	return -EBUSY;
2220 }
2221 
2222 /*
2223  * Resolves the given address to a struct folio, isolates it from the LRU and
2224  * puts it to the given pagelist.
2225  * Returns:
2226  *     errno - if the folio cannot be found/isolated
2227  *     0 - when it doesn't have to be migrated because it is already on the
2228  *         target node
2229  *     1 - when it has been queued
2230  */
2231 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p,
2232 		int node, struct list_head *pagelist, bool migrate_all)
2233 {
2234 	struct vm_area_struct *vma;
2235 	struct folio_walk fw;
2236 	struct folio *folio;
2237 	unsigned long addr;
2238 	int err = -EFAULT;
2239 
2240 	mmap_read_lock(mm);
2241 	addr = (unsigned long)untagged_addr_remote(mm, p);
2242 
2243 	vma = vma_lookup(mm, addr);
2244 	if (vma && vma_migratable(vma)) {
2245 		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2246 		if (folio) {
2247 			err = __add_folio_for_migration(folio, node, pagelist,
2248 							migrate_all);
2249 			folio_walk_end(&fw, vma);
2250 		} else {
2251 			err = -ENOENT;
2252 		}
2253 	}
2254 	mmap_read_unlock(mm);
2255 	return err;
2256 }
2257 
2258 static int move_pages_and_store_status(int node,
2259 		struct list_head *pagelist, int __user *status,
2260 		int start, int i, unsigned long nr_pages)
2261 {
2262 	int err;
2263 
2264 	if (list_empty(pagelist))
2265 		return 0;
2266 
2267 	err = do_move_pages_to_node(pagelist, node);
2268 	if (err) {
2269 		/*
2270 		 * Positive err means the number of failed
2271 		 * pages to migrate.  Since we are going to
2272 		 * abort and return the number of non-migrated
2273 		 * pages, so need to include the rest of the
2274 		 * nr_pages that have not been attempted as
2275 		 * well.
2276 		 */
2277 		if (err > 0)
2278 			err += nr_pages - i;
2279 		return err;
2280 	}
2281 	return store_status(status, start, node, i - start);
2282 }
2283 
2284 /*
2285  * Migrate an array of page address onto an array of nodes and fill
2286  * the corresponding array of status.
2287  */
2288 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2289 			 unsigned long nr_pages,
2290 			 const void __user * __user *pages,
2291 			 const int __user *nodes,
2292 			 int __user *status, int flags)
2293 {
2294 	compat_uptr_t __user *compat_pages = (void __user *)pages;
2295 	int current_node = NUMA_NO_NODE;
2296 	LIST_HEAD(pagelist);
2297 	int start, i;
2298 	int err = 0, err1;
2299 
2300 	lru_cache_disable();
2301 
2302 	for (i = start = 0; i < nr_pages; i++) {
2303 		const void __user *p;
2304 		int node;
2305 
2306 		err = -EFAULT;
2307 		if (in_compat_syscall()) {
2308 			compat_uptr_t cp;
2309 
2310 			if (get_user(cp, compat_pages + i))
2311 				goto out_flush;
2312 
2313 			p = compat_ptr(cp);
2314 		} else {
2315 			if (get_user(p, pages + i))
2316 				goto out_flush;
2317 		}
2318 		if (get_user(node, nodes + i))
2319 			goto out_flush;
2320 
2321 		err = -ENODEV;
2322 		if (node < 0 || node >= MAX_NUMNODES)
2323 			goto out_flush;
2324 		if (!node_state(node, N_MEMORY))
2325 			goto out_flush;
2326 
2327 		err = -EACCES;
2328 		if (!node_isset(node, task_nodes))
2329 			goto out_flush;
2330 
2331 		if (current_node == NUMA_NO_NODE) {
2332 			current_node = node;
2333 			start = i;
2334 		} else if (node != current_node) {
2335 			err = move_pages_and_store_status(current_node,
2336 					&pagelist, status, start, i, nr_pages);
2337 			if (err)
2338 				goto out;
2339 			start = i;
2340 			current_node = node;
2341 		}
2342 
2343 		/*
2344 		 * Errors in the page lookup or isolation are not fatal and we simply
2345 		 * report them via status
2346 		 */
2347 		err = add_folio_for_migration(mm, p, current_node, &pagelist,
2348 					      flags & MPOL_MF_MOVE_ALL);
2349 
2350 		if (err > 0) {
2351 			/* The page is successfully queued for migration */
2352 			continue;
2353 		}
2354 
2355 		/*
2356 		 * The move_pages() man page does not have an -EEXIST choice, so
2357 		 * use -EFAULT instead.
2358 		 */
2359 		if (err == -EEXIST)
2360 			err = -EFAULT;
2361 
2362 		/*
2363 		 * If the page is already on the target node (!err), store the
2364 		 * node, otherwise, store the err.
2365 		 */
2366 		err = store_status(status, i, err ? : current_node, 1);
2367 		if (err)
2368 			goto out_flush;
2369 
2370 		err = move_pages_and_store_status(current_node, &pagelist,
2371 				status, start, i, nr_pages);
2372 		if (err) {
2373 			/* We have accounted for page i */
2374 			if (err > 0)
2375 				err--;
2376 			goto out;
2377 		}
2378 		current_node = NUMA_NO_NODE;
2379 	}
2380 out_flush:
2381 	/* Make sure we do not overwrite the existing error */
2382 	err1 = move_pages_and_store_status(current_node, &pagelist,
2383 				status, start, i, nr_pages);
2384 	if (err >= 0)
2385 		err = err1;
2386 out:
2387 	lru_cache_enable();
2388 	return err;
2389 }
2390 
2391 /*
2392  * Determine the nodes of an array of pages and store it in an array of status.
2393  */
2394 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2395 				const void __user **pages, int *status)
2396 {
2397 	unsigned long i;
2398 
2399 	mmap_read_lock(mm);
2400 
2401 	for (i = 0; i < nr_pages; i++) {
2402 		unsigned long addr = (unsigned long)(*pages);
2403 		struct vm_area_struct *vma;
2404 		struct folio_walk fw;
2405 		struct folio *folio;
2406 		int err = -EFAULT;
2407 
2408 		vma = vma_lookup(mm, addr);
2409 		if (!vma)
2410 			goto set_status;
2411 
2412 		folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE);
2413 		if (folio) {
2414 			if (is_zero_folio(folio) || is_huge_zero_folio(folio))
2415 				err = -EFAULT;
2416 			else if (folio_is_zone_device(folio))
2417 				err = -ENOENT;
2418 			else
2419 				err = folio_nid(folio);
2420 			folio_walk_end(&fw, vma);
2421 		} else {
2422 			err = -ENOENT;
2423 		}
2424 set_status:
2425 		*status = err;
2426 
2427 		pages++;
2428 		status++;
2429 	}
2430 
2431 	mmap_read_unlock(mm);
2432 }
2433 
2434 static int get_compat_pages_array(const void __user *chunk_pages[],
2435 				  const void __user * __user *pages,
2436 				  unsigned long chunk_nr)
2437 {
2438 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2439 	compat_uptr_t p;
2440 	int i;
2441 
2442 	for (i = 0; i < chunk_nr; i++) {
2443 		if (get_user(p, pages32 + i))
2444 			return -EFAULT;
2445 		chunk_pages[i] = compat_ptr(p);
2446 	}
2447 
2448 	return 0;
2449 }
2450 
2451 /*
2452  * Determine the nodes of a user array of pages and store it in
2453  * a user array of status.
2454  */
2455 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2456 			 const void __user * __user *pages,
2457 			 int __user *status)
2458 {
2459 #define DO_PAGES_STAT_CHUNK_NR 16UL
2460 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2461 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2462 
2463 	while (nr_pages) {
2464 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2465 
2466 		if (in_compat_syscall()) {
2467 			if (get_compat_pages_array(chunk_pages, pages,
2468 						   chunk_nr))
2469 				break;
2470 		} else {
2471 			if (copy_from_user(chunk_pages, pages,
2472 				      chunk_nr * sizeof(*chunk_pages)))
2473 				break;
2474 		}
2475 
2476 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2477 
2478 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2479 			break;
2480 
2481 		pages += chunk_nr;
2482 		status += chunk_nr;
2483 		nr_pages -= chunk_nr;
2484 	}
2485 	return nr_pages ? -EFAULT : 0;
2486 }
2487 
2488 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2489 {
2490 	struct task_struct *task;
2491 	struct mm_struct *mm;
2492 
2493 	/*
2494 	 * There is no need to check if current process has the right to modify
2495 	 * the specified process when they are same.
2496 	 */
2497 	if (!pid) {
2498 		mmget(current->mm);
2499 		*mem_nodes = cpuset_mems_allowed(current);
2500 		return current->mm;
2501 	}
2502 
2503 	task = find_get_task_by_vpid(pid);
2504 	if (!task) {
2505 		return ERR_PTR(-ESRCH);
2506 	}
2507 
2508 	/*
2509 	 * Check if this process has the right to modify the specified
2510 	 * process. Use the regular "ptrace_may_access()" checks.
2511 	 */
2512 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2513 		mm = ERR_PTR(-EPERM);
2514 		goto out;
2515 	}
2516 
2517 	mm = ERR_PTR(security_task_movememory(task));
2518 	if (IS_ERR(mm))
2519 		goto out;
2520 	*mem_nodes = cpuset_mems_allowed(task);
2521 	mm = get_task_mm(task);
2522 out:
2523 	put_task_struct(task);
2524 	if (!mm)
2525 		mm = ERR_PTR(-EINVAL);
2526 	return mm;
2527 }
2528 
2529 /*
2530  * Move a list of pages in the address space of the currently executing
2531  * process.
2532  */
2533 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2534 			     const void __user * __user *pages,
2535 			     const int __user *nodes,
2536 			     int __user *status, int flags)
2537 {
2538 	struct mm_struct *mm;
2539 	int err;
2540 	nodemask_t task_nodes;
2541 
2542 	/* Check flags */
2543 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2544 		return -EINVAL;
2545 
2546 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2547 		return -EPERM;
2548 
2549 	mm = find_mm_struct(pid, &task_nodes);
2550 	if (IS_ERR(mm))
2551 		return PTR_ERR(mm);
2552 
2553 	if (nodes)
2554 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2555 				    nodes, status, flags);
2556 	else
2557 		err = do_pages_stat(mm, nr_pages, pages, status);
2558 
2559 	mmput(mm);
2560 	return err;
2561 }
2562 
2563 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2564 		const void __user * __user *, pages,
2565 		const int __user *, nodes,
2566 		int __user *, status, int, flags)
2567 {
2568 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2569 }
2570 
2571 #ifdef CONFIG_NUMA_BALANCING
2572 /*
2573  * Returns true if this is a safe migration target node for misplaced NUMA
2574  * pages. Currently it only checks the watermarks which is crude.
2575  */
2576 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2577 				   unsigned long nr_migrate_pages)
2578 {
2579 	int z;
2580 
2581 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2582 		struct zone *zone = pgdat->node_zones + z;
2583 
2584 		if (!managed_zone(zone))
2585 			continue;
2586 
2587 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2588 		if (!zone_watermark_ok(zone, 0,
2589 				       high_wmark_pages(zone) +
2590 				       nr_migrate_pages,
2591 				       ZONE_MOVABLE, ALLOC_CMA))
2592 			continue;
2593 		return true;
2594 	}
2595 	return false;
2596 }
2597 
2598 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2599 					   unsigned long data)
2600 {
2601 	int nid = (int) data;
2602 	int order = folio_order(src);
2603 	gfp_t gfp = __GFP_THISNODE;
2604 
2605 	if (order > 0)
2606 		gfp |= GFP_TRANSHUGE_LIGHT;
2607 	else {
2608 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2609 			__GFP_NOWARN;
2610 		gfp &= ~__GFP_RECLAIM;
2611 	}
2612 	return __folio_alloc_node(gfp, order, nid);
2613 }
2614 
2615 /*
2616  * Prepare for calling migrate_misplaced_folio() by isolating the folio if
2617  * permitted. Must be called with the PTL still held.
2618  */
2619 int migrate_misplaced_folio_prepare(struct folio *folio,
2620 		struct vm_area_struct *vma, int node)
2621 {
2622 	int nr_pages = folio_nr_pages(folio);
2623 	pg_data_t *pgdat = NODE_DATA(node);
2624 
2625 	if (folio_is_file_lru(folio)) {
2626 		/*
2627 		 * Do not migrate file folios that are mapped in multiple
2628 		 * processes with execute permissions as they are probably
2629 		 * shared libraries.
2630 		 *
2631 		 * See folio_likely_mapped_shared() on possible imprecision
2632 		 * when we cannot easily detect if a folio is shared.
2633 		 */
2634 		if ((vma->vm_flags & VM_EXEC) &&
2635 		    folio_likely_mapped_shared(folio))
2636 			return -EACCES;
2637 
2638 		/*
2639 		 * Do not migrate dirty folios as not all filesystems can move
2640 		 * dirty folios in MIGRATE_ASYNC mode which is a waste of
2641 		 * cycles.
2642 		 */
2643 		if (folio_test_dirty(folio))
2644 			return -EAGAIN;
2645 	}
2646 
2647 	/* Avoid migrating to a node that is nearly full */
2648 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2649 		int z;
2650 
2651 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2652 			return -EAGAIN;
2653 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2654 			if (managed_zone(pgdat->node_zones + z))
2655 				break;
2656 		}
2657 
2658 		/*
2659 		 * If there are no managed zones, it should not proceed
2660 		 * further.
2661 		 */
2662 		if (z < 0)
2663 			return -EAGAIN;
2664 
2665 		wakeup_kswapd(pgdat->node_zones + z, 0,
2666 			      folio_order(folio), ZONE_MOVABLE);
2667 		return -EAGAIN;
2668 	}
2669 
2670 	if (!folio_isolate_lru(folio))
2671 		return -EAGAIN;
2672 
2673 	node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio),
2674 			    nr_pages);
2675 	return 0;
2676 }
2677 
2678 /*
2679  * Attempt to migrate a misplaced folio to the specified destination
2680  * node. Caller is expected to have isolated the folio by calling
2681  * migrate_misplaced_folio_prepare(), which will result in an
2682  * elevated reference count on the folio. This function will un-isolate the
2683  * folio, dereferencing the folio before returning.
2684  */
2685 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma,
2686 			    int node)
2687 {
2688 	pg_data_t *pgdat = NODE_DATA(node);
2689 	int nr_remaining;
2690 	unsigned int nr_succeeded;
2691 	LIST_HEAD(migratepages);
2692 	struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio);
2693 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2694 
2695 	list_add(&folio->lru, &migratepages);
2696 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2697 				     NULL, node, MIGRATE_ASYNC,
2698 				     MR_NUMA_MISPLACED, &nr_succeeded);
2699 	if (nr_remaining && !list_empty(&migratepages))
2700 		putback_movable_pages(&migratepages);
2701 	if (nr_succeeded) {
2702 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2703 		count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded);
2704 		if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
2705 		    && !node_is_toptier(folio_nid(folio))
2706 		    && node_is_toptier(node))
2707 			mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded);
2708 	}
2709 	mem_cgroup_put(memcg);
2710 	BUG_ON(!list_empty(&migratepages));
2711 	return nr_remaining ? -EAGAIN : 0;
2712 }
2713 #endif /* CONFIG_NUMA_BALANCING */
2714 #endif /* CONFIG_NUMA */
2715