xref: /linux/mm/migrate.c (revision 31af04cd60d3162a58213363fd740a2b0cf0a08e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50 
51 #include <asm/tlbflush.h>
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55 
56 #include "internal.h"
57 
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65 	/*
66 	 * Clear the LRU lists so pages can be isolated.
67 	 * Note that pages may be moved off the LRU after we have
68 	 * drained them. Those pages will fail to migrate like other
69 	 * pages that may be busy.
70 	 */
71 	lru_add_drain_all();
72 
73 	return 0;
74 }
75 
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 	lru_add_drain();
80 
81 	return 0;
82 }
83 
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 	struct address_space *mapping;
87 
88 	/*
89 	 * Avoid burning cycles with pages that are yet under __free_pages(),
90 	 * or just got freed under us.
91 	 *
92 	 * In case we 'win' a race for a movable page being freed under us and
93 	 * raise its refcount preventing __free_pages() from doing its job
94 	 * the put_page() at the end of this block will take care of
95 	 * release this page, thus avoiding a nasty leakage.
96 	 */
97 	if (unlikely(!get_page_unless_zero(page)))
98 		goto out;
99 
100 	/*
101 	 * Check PageMovable before holding a PG_lock because page's owner
102 	 * assumes anybody doesn't touch PG_lock of newly allocated page
103 	 * so unconditionally grapping the lock ruins page's owner side.
104 	 */
105 	if (unlikely(!__PageMovable(page)))
106 		goto out_putpage;
107 	/*
108 	 * As movable pages are not isolated from LRU lists, concurrent
109 	 * compaction threads can race against page migration functions
110 	 * as well as race against the releasing a page.
111 	 *
112 	 * In order to avoid having an already isolated movable page
113 	 * being (wrongly) re-isolated while it is under migration,
114 	 * or to avoid attempting to isolate pages being released,
115 	 * lets be sure we have the page lock
116 	 * before proceeding with the movable page isolation steps.
117 	 */
118 	if (unlikely(!trylock_page(page)))
119 		goto out_putpage;
120 
121 	if (!PageMovable(page) || PageIsolated(page))
122 		goto out_no_isolated;
123 
124 	mapping = page_mapping(page);
125 	VM_BUG_ON_PAGE(!mapping, page);
126 
127 	if (!mapping->a_ops->isolate_page(page, mode))
128 		goto out_no_isolated;
129 
130 	/* Driver shouldn't use PG_isolated bit of page->flags */
131 	WARN_ON_ONCE(PageIsolated(page));
132 	__SetPageIsolated(page);
133 	unlock_page(page);
134 
135 	return 0;
136 
137 out_no_isolated:
138 	unlock_page(page);
139 out_putpage:
140 	put_page(page);
141 out:
142 	return -EBUSY;
143 }
144 
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 	struct address_space *mapping;
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(!PageMovable(page), page);
152 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
153 
154 	mapping = page_mapping(page);
155 	mapping->a_ops->putback_page(page);
156 	__ClearPageIsolated(page);
157 }
158 
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169 	struct page *page;
170 	struct page *page2;
171 
172 	list_for_each_entry_safe(page, page2, l, lru) {
173 		if (unlikely(PageHuge(page))) {
174 			putback_active_hugepage(page);
175 			continue;
176 		}
177 		list_del(&page->lru);
178 		/*
179 		 * We isolated non-lru movable page so here we can use
180 		 * __PageMovable because LRU page's mapping cannot have
181 		 * PAGE_MAPPING_MOVABLE.
182 		 */
183 		if (unlikely(__PageMovable(page))) {
184 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 			lock_page(page);
186 			if (PageMovable(page))
187 				putback_movable_page(page);
188 			else
189 				__ClearPageIsolated(page);
190 			unlock_page(page);
191 			put_page(page);
192 		} else {
193 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 					page_is_file_cache(page), -hpage_nr_pages(page));
195 			putback_lru_page(page);
196 		}
197 	}
198 }
199 
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 				 unsigned long addr, void *old)
205 {
206 	struct page_vma_mapped_walk pvmw = {
207 		.page = old,
208 		.vma = vma,
209 		.address = addr,
210 		.flags = PVMW_SYNC | PVMW_MIGRATION,
211 	};
212 	struct page *new;
213 	pte_t pte;
214 	swp_entry_t entry;
215 
216 	VM_BUG_ON_PAGE(PageTail(page), page);
217 	while (page_vma_mapped_walk(&pvmw)) {
218 		if (PageKsm(page))
219 			new = page;
220 		else
221 			new = page - pvmw.page->index +
222 				linear_page_index(vma, pvmw.address);
223 
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 		/* PMD-mapped THP migration entry */
226 		if (!pvmw.pte) {
227 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 			remove_migration_pmd(&pvmw, new);
229 			continue;
230 		}
231 #endif
232 
233 		get_page(new);
234 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 		if (pte_swp_soft_dirty(*pvmw.pte))
236 			pte = pte_mksoft_dirty(pte);
237 
238 		/*
239 		 * Recheck VMA as permissions can change since migration started
240 		 */
241 		entry = pte_to_swp_entry(*pvmw.pte);
242 		if (is_write_migration_entry(entry))
243 			pte = maybe_mkwrite(pte, vma);
244 
245 		if (unlikely(is_zone_device_page(new))) {
246 			if (is_device_private_page(new)) {
247 				entry = make_device_private_entry(new, pte_write(pte));
248 				pte = swp_entry_to_pte(entry);
249 			} else if (is_device_public_page(new)) {
250 				pte = pte_mkdevmap(pte);
251 				flush_dcache_page(new);
252 			}
253 		} else
254 			flush_dcache_page(new);
255 
256 #ifdef CONFIG_HUGETLB_PAGE
257 		if (PageHuge(new)) {
258 			pte = pte_mkhuge(pte);
259 			pte = arch_make_huge_pte(pte, vma, new, 0);
260 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 			if (PageAnon(new))
262 				hugepage_add_anon_rmap(new, vma, pvmw.address);
263 			else
264 				page_dup_rmap(new, true);
265 		} else
266 #endif
267 		{
268 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269 
270 			if (PageAnon(new))
271 				page_add_anon_rmap(new, vma, pvmw.address, false);
272 			else
273 				page_add_file_rmap(new, false);
274 		}
275 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 			mlock_vma_page(new);
277 
278 		if (PageTransHuge(page) && PageMlocked(page))
279 			clear_page_mlock(page);
280 
281 		/* No need to invalidate - it was non-present before */
282 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 	}
284 
285 	return true;
286 }
287 
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294 	struct rmap_walk_control rwc = {
295 		.rmap_one = remove_migration_pte,
296 		.arg = old,
297 	};
298 
299 	if (locked)
300 		rmap_walk_locked(new, &rwc);
301 	else
302 		rmap_walk(new, &rwc);
303 }
304 
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 				spinlock_t *ptl)
312 {
313 	pte_t pte;
314 	swp_entry_t entry;
315 	struct page *page;
316 
317 	spin_lock(ptl);
318 	pte = *ptep;
319 	if (!is_swap_pte(pte))
320 		goto out;
321 
322 	entry = pte_to_swp_entry(pte);
323 	if (!is_migration_entry(entry))
324 		goto out;
325 
326 	page = migration_entry_to_page(entry);
327 
328 	/*
329 	 * Once page cache replacement of page migration started, page_count
330 	 * is zero; but we must not call put_and_wait_on_page_locked() without
331 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
332 	 */
333 	if (!get_page_unless_zero(page))
334 		goto out;
335 	pte_unmap_unlock(ptep, ptl);
336 	put_and_wait_on_page_locked(page);
337 	return;
338 out:
339 	pte_unmap_unlock(ptep, ptl);
340 }
341 
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 				unsigned long address)
344 {
345 	spinlock_t *ptl = pte_lockptr(mm, pmd);
346 	pte_t *ptep = pte_offset_map(pmd, address);
347 	__migration_entry_wait(mm, ptep, ptl);
348 }
349 
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351 		struct mm_struct *mm, pte_t *pte)
352 {
353 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354 	__migration_entry_wait(mm, pte, ptl);
355 }
356 
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360 	spinlock_t *ptl;
361 	struct page *page;
362 
363 	ptl = pmd_lock(mm, pmd);
364 	if (!is_pmd_migration_entry(*pmd))
365 		goto unlock;
366 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 	if (!get_page_unless_zero(page))
368 		goto unlock;
369 	spin_unlock(ptl);
370 	put_and_wait_on_page_locked(page);
371 	return;
372 unlock:
373 	spin_unlock(ptl);
374 }
375 #endif
376 
377 static int expected_page_refs(struct page *page)
378 {
379 	int expected_count = 1;
380 
381 	/*
382 	 * Device public or private pages have an extra refcount as they are
383 	 * ZONE_DEVICE pages.
384 	 */
385 	expected_count += is_device_private_page(page);
386 	expected_count += is_device_public_page(page);
387 	if (page_mapping(page))
388 		expected_count += hpage_nr_pages(page) + page_has_private(page);
389 
390 	return expected_count;
391 }
392 
393 /*
394  * Replace the page in the mapping.
395  *
396  * The number of remaining references must be:
397  * 1 for anonymous pages without a mapping
398  * 2 for pages with a mapping
399  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
400  */
401 int migrate_page_move_mapping(struct address_space *mapping,
402 		struct page *newpage, struct page *page, enum migrate_mode mode,
403 		int extra_count)
404 {
405 	XA_STATE(xas, &mapping->i_pages, page_index(page));
406 	struct zone *oldzone, *newzone;
407 	int dirty;
408 	int expected_count = expected_page_refs(page) + extra_count;
409 
410 	if (!mapping) {
411 		/* Anonymous page without mapping */
412 		if (page_count(page) != expected_count)
413 			return -EAGAIN;
414 
415 		/* No turning back from here */
416 		newpage->index = page->index;
417 		newpage->mapping = page->mapping;
418 		if (PageSwapBacked(page))
419 			__SetPageSwapBacked(newpage);
420 
421 		return MIGRATEPAGE_SUCCESS;
422 	}
423 
424 	oldzone = page_zone(page);
425 	newzone = page_zone(newpage);
426 
427 	xas_lock_irq(&xas);
428 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	if (!page_ref_freeze(page, expected_count)) {
434 		xas_unlock_irq(&xas);
435 		return -EAGAIN;
436 	}
437 
438 	/*
439 	 * Now we know that no one else is looking at the page:
440 	 * no turning back from here.
441 	 */
442 	newpage->index = page->index;
443 	newpage->mapping = page->mapping;
444 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
445 	if (PageSwapBacked(page)) {
446 		__SetPageSwapBacked(newpage);
447 		if (PageSwapCache(page)) {
448 			SetPageSwapCache(newpage);
449 			set_page_private(newpage, page_private(page));
450 		}
451 	} else {
452 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 	}
454 
455 	/* Move dirty while page refs frozen and newpage not yet exposed */
456 	dirty = PageDirty(page);
457 	if (dirty) {
458 		ClearPageDirty(page);
459 		SetPageDirty(newpage);
460 	}
461 
462 	xas_store(&xas, newpage);
463 	if (PageTransHuge(page)) {
464 		int i;
465 
466 		for (i = 1; i < HPAGE_PMD_NR; i++) {
467 			xas_next(&xas);
468 			xas_store(&xas, newpage + i);
469 		}
470 	}
471 
472 	/*
473 	 * Drop cache reference from old page by unfreezing
474 	 * to one less reference.
475 	 * We know this isn't the last reference.
476 	 */
477 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
478 
479 	xas_unlock(&xas);
480 	/* Leave irq disabled to prevent preemption while updating stats */
481 
482 	/*
483 	 * If moved to a different zone then also account
484 	 * the page for that zone. Other VM counters will be
485 	 * taken care of when we establish references to the
486 	 * new page and drop references to the old page.
487 	 *
488 	 * Note that anonymous pages are accounted for
489 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 	 * are mapped to swap space.
491 	 */
492 	if (newzone != oldzone) {
493 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
495 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
496 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
498 		}
499 		if (dirty && mapping_cap_account_dirty(mapping)) {
500 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
501 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
502 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
503 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
504 		}
505 	}
506 	local_irq_enable();
507 
508 	return MIGRATEPAGE_SUCCESS;
509 }
510 EXPORT_SYMBOL(migrate_page_move_mapping);
511 
512 /*
513  * The expected number of remaining references is the same as that
514  * of migrate_page_move_mapping().
515  */
516 int migrate_huge_page_move_mapping(struct address_space *mapping,
517 				   struct page *newpage, struct page *page)
518 {
519 	XA_STATE(xas, &mapping->i_pages, page_index(page));
520 	int expected_count;
521 
522 	xas_lock_irq(&xas);
523 	expected_count = 2 + page_has_private(page);
524 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 		xas_unlock_irq(&xas);
526 		return -EAGAIN;
527 	}
528 
529 	if (!page_ref_freeze(page, expected_count)) {
530 		xas_unlock_irq(&xas);
531 		return -EAGAIN;
532 	}
533 
534 	newpage->index = page->index;
535 	newpage->mapping = page->mapping;
536 
537 	get_page(newpage);
538 
539 	xas_store(&xas, newpage);
540 
541 	page_ref_unfreeze(page, expected_count - 1);
542 
543 	xas_unlock_irq(&xas);
544 
545 	return MIGRATEPAGE_SUCCESS;
546 }
547 
548 /*
549  * Gigantic pages are so large that we do not guarantee that page++ pointer
550  * arithmetic will work across the entire page.  We need something more
551  * specialized.
552  */
553 static void __copy_gigantic_page(struct page *dst, struct page *src,
554 				int nr_pages)
555 {
556 	int i;
557 	struct page *dst_base = dst;
558 	struct page *src_base = src;
559 
560 	for (i = 0; i < nr_pages; ) {
561 		cond_resched();
562 		copy_highpage(dst, src);
563 
564 		i++;
565 		dst = mem_map_next(dst, dst_base, i);
566 		src = mem_map_next(src, src_base, i);
567 	}
568 }
569 
570 static void copy_huge_page(struct page *dst, struct page *src)
571 {
572 	int i;
573 	int nr_pages;
574 
575 	if (PageHuge(src)) {
576 		/* hugetlbfs page */
577 		struct hstate *h = page_hstate(src);
578 		nr_pages = pages_per_huge_page(h);
579 
580 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 			__copy_gigantic_page(dst, src, nr_pages);
582 			return;
583 		}
584 	} else {
585 		/* thp page */
586 		BUG_ON(!PageTransHuge(src));
587 		nr_pages = hpage_nr_pages(src);
588 	}
589 
590 	for (i = 0; i < nr_pages; i++) {
591 		cond_resched();
592 		copy_highpage(dst + i, src + i);
593 	}
594 }
595 
596 /*
597  * Copy the page to its new location
598  */
599 void migrate_page_states(struct page *newpage, struct page *page)
600 {
601 	int cpupid;
602 
603 	if (PageError(page))
604 		SetPageError(newpage);
605 	if (PageReferenced(page))
606 		SetPageReferenced(newpage);
607 	if (PageUptodate(page))
608 		SetPageUptodate(newpage);
609 	if (TestClearPageActive(page)) {
610 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
611 		SetPageActive(newpage);
612 	} else if (TestClearPageUnevictable(page))
613 		SetPageUnevictable(newpage);
614 	if (PageWorkingset(page))
615 		SetPageWorkingset(newpage);
616 	if (PageChecked(page))
617 		SetPageChecked(newpage);
618 	if (PageMappedToDisk(page))
619 		SetPageMappedToDisk(newpage);
620 
621 	/* Move dirty on pages not done by migrate_page_move_mapping() */
622 	if (PageDirty(page))
623 		SetPageDirty(newpage);
624 
625 	if (page_is_young(page))
626 		set_page_young(newpage);
627 	if (page_is_idle(page))
628 		set_page_idle(newpage);
629 
630 	/*
631 	 * Copy NUMA information to the new page, to prevent over-eager
632 	 * future migrations of this same page.
633 	 */
634 	cpupid = page_cpupid_xchg_last(page, -1);
635 	page_cpupid_xchg_last(newpage, cpupid);
636 
637 	ksm_migrate_page(newpage, page);
638 	/*
639 	 * Please do not reorder this without considering how mm/ksm.c's
640 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641 	 */
642 	if (PageSwapCache(page))
643 		ClearPageSwapCache(page);
644 	ClearPagePrivate(page);
645 	set_page_private(page, 0);
646 
647 	/*
648 	 * If any waiters have accumulated on the new page then
649 	 * wake them up.
650 	 */
651 	if (PageWriteback(newpage))
652 		end_page_writeback(newpage);
653 
654 	copy_page_owner(page, newpage);
655 
656 	mem_cgroup_migrate(page, newpage);
657 }
658 EXPORT_SYMBOL(migrate_page_states);
659 
660 void migrate_page_copy(struct page *newpage, struct page *page)
661 {
662 	if (PageHuge(page) || PageTransHuge(page))
663 		copy_huge_page(newpage, page);
664 	else
665 		copy_highpage(newpage, page);
666 
667 	migrate_page_states(newpage, page);
668 }
669 EXPORT_SYMBOL(migrate_page_copy);
670 
671 /************************************************************
672  *                    Migration functions
673  ***********************************************************/
674 
675 /*
676  * Common logic to directly migrate a single LRU page suitable for
677  * pages that do not use PagePrivate/PagePrivate2.
678  *
679  * Pages are locked upon entry and exit.
680  */
681 int migrate_page(struct address_space *mapping,
682 		struct page *newpage, struct page *page,
683 		enum migrate_mode mode)
684 {
685 	int rc;
686 
687 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
688 
689 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
690 
691 	if (rc != MIGRATEPAGE_SUCCESS)
692 		return rc;
693 
694 	if (mode != MIGRATE_SYNC_NO_COPY)
695 		migrate_page_copy(newpage, page);
696 	else
697 		migrate_page_states(newpage, page);
698 	return MIGRATEPAGE_SUCCESS;
699 }
700 EXPORT_SYMBOL(migrate_page);
701 
702 #ifdef CONFIG_BLOCK
703 /* Returns true if all buffers are successfully locked */
704 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705 							enum migrate_mode mode)
706 {
707 	struct buffer_head *bh = head;
708 
709 	/* Simple case, sync compaction */
710 	if (mode != MIGRATE_ASYNC) {
711 		do {
712 			get_bh(bh);
713 			lock_buffer(bh);
714 			bh = bh->b_this_page;
715 
716 		} while (bh != head);
717 
718 		return true;
719 	}
720 
721 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
722 	do {
723 		get_bh(bh);
724 		if (!trylock_buffer(bh)) {
725 			/*
726 			 * We failed to lock the buffer and cannot stall in
727 			 * async migration. Release the taken locks
728 			 */
729 			struct buffer_head *failed_bh = bh;
730 			put_bh(failed_bh);
731 			bh = head;
732 			while (bh != failed_bh) {
733 				unlock_buffer(bh);
734 				put_bh(bh);
735 				bh = bh->b_this_page;
736 			}
737 			return false;
738 		}
739 
740 		bh = bh->b_this_page;
741 	} while (bh != head);
742 	return true;
743 }
744 
745 static int __buffer_migrate_page(struct address_space *mapping,
746 		struct page *newpage, struct page *page, enum migrate_mode mode,
747 		bool check_refs)
748 {
749 	struct buffer_head *bh, *head;
750 	int rc;
751 	int expected_count;
752 
753 	if (!page_has_buffers(page))
754 		return migrate_page(mapping, newpage, page, mode);
755 
756 	/* Check whether page does not have extra refs before we do more work */
757 	expected_count = expected_page_refs(page);
758 	if (page_count(page) != expected_count)
759 		return -EAGAIN;
760 
761 	head = page_buffers(page);
762 	if (!buffer_migrate_lock_buffers(head, mode))
763 		return -EAGAIN;
764 
765 	if (check_refs) {
766 		bool busy;
767 		bool invalidated = false;
768 
769 recheck_buffers:
770 		busy = false;
771 		spin_lock(&mapping->private_lock);
772 		bh = head;
773 		do {
774 			if (atomic_read(&bh->b_count)) {
775 				busy = true;
776 				break;
777 			}
778 			bh = bh->b_this_page;
779 		} while (bh != head);
780 		spin_unlock(&mapping->private_lock);
781 		if (busy) {
782 			if (invalidated) {
783 				rc = -EAGAIN;
784 				goto unlock_buffers;
785 			}
786 			invalidate_bh_lrus();
787 			invalidated = true;
788 			goto recheck_buffers;
789 		}
790 	}
791 
792 	rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
793 	if (rc != MIGRATEPAGE_SUCCESS)
794 		goto unlock_buffers;
795 
796 	ClearPagePrivate(page);
797 	set_page_private(newpage, page_private(page));
798 	set_page_private(page, 0);
799 	put_page(page);
800 	get_page(newpage);
801 
802 	bh = head;
803 	do {
804 		set_bh_page(bh, newpage, bh_offset(bh));
805 		bh = bh->b_this_page;
806 
807 	} while (bh != head);
808 
809 	SetPagePrivate(newpage);
810 
811 	if (mode != MIGRATE_SYNC_NO_COPY)
812 		migrate_page_copy(newpage, page);
813 	else
814 		migrate_page_states(newpage, page);
815 
816 	rc = MIGRATEPAGE_SUCCESS;
817 unlock_buffers:
818 	bh = head;
819 	do {
820 		unlock_buffer(bh);
821 		put_bh(bh);
822 		bh = bh->b_this_page;
823 
824 	} while (bh != head);
825 
826 	return rc;
827 }
828 
829 /*
830  * Migration function for pages with buffers. This function can only be used
831  * if the underlying filesystem guarantees that no other references to "page"
832  * exist. For example attached buffer heads are accessed only under page lock.
833  */
834 int buffer_migrate_page(struct address_space *mapping,
835 		struct page *newpage, struct page *page, enum migrate_mode mode)
836 {
837 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
838 }
839 EXPORT_SYMBOL(buffer_migrate_page);
840 
841 /*
842  * Same as above except that this variant is more careful and checks that there
843  * are also no buffer head references. This function is the right one for
844  * mappings where buffer heads are directly looked up and referenced (such as
845  * block device mappings).
846  */
847 int buffer_migrate_page_norefs(struct address_space *mapping,
848 		struct page *newpage, struct page *page, enum migrate_mode mode)
849 {
850 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
851 }
852 #endif
853 
854 /*
855  * Writeback a page to clean the dirty state
856  */
857 static int writeout(struct address_space *mapping, struct page *page)
858 {
859 	struct writeback_control wbc = {
860 		.sync_mode = WB_SYNC_NONE,
861 		.nr_to_write = 1,
862 		.range_start = 0,
863 		.range_end = LLONG_MAX,
864 		.for_reclaim = 1
865 	};
866 	int rc;
867 
868 	if (!mapping->a_ops->writepage)
869 		/* No write method for the address space */
870 		return -EINVAL;
871 
872 	if (!clear_page_dirty_for_io(page))
873 		/* Someone else already triggered a write */
874 		return -EAGAIN;
875 
876 	/*
877 	 * A dirty page may imply that the underlying filesystem has
878 	 * the page on some queue. So the page must be clean for
879 	 * migration. Writeout may mean we loose the lock and the
880 	 * page state is no longer what we checked for earlier.
881 	 * At this point we know that the migration attempt cannot
882 	 * be successful.
883 	 */
884 	remove_migration_ptes(page, page, false);
885 
886 	rc = mapping->a_ops->writepage(page, &wbc);
887 
888 	if (rc != AOP_WRITEPAGE_ACTIVATE)
889 		/* unlocked. Relock */
890 		lock_page(page);
891 
892 	return (rc < 0) ? -EIO : -EAGAIN;
893 }
894 
895 /*
896  * Default handling if a filesystem does not provide a migration function.
897  */
898 static int fallback_migrate_page(struct address_space *mapping,
899 	struct page *newpage, struct page *page, enum migrate_mode mode)
900 {
901 	if (PageDirty(page)) {
902 		/* Only writeback pages in full synchronous migration */
903 		switch (mode) {
904 		case MIGRATE_SYNC:
905 		case MIGRATE_SYNC_NO_COPY:
906 			break;
907 		default:
908 			return -EBUSY;
909 		}
910 		return writeout(mapping, page);
911 	}
912 
913 	/*
914 	 * Buffers may be managed in a filesystem specific way.
915 	 * We must have no buffers or drop them.
916 	 */
917 	if (page_has_private(page) &&
918 	    !try_to_release_page(page, GFP_KERNEL))
919 		return -EAGAIN;
920 
921 	return migrate_page(mapping, newpage, page, mode);
922 }
923 
924 /*
925  * Move a page to a newly allocated page
926  * The page is locked and all ptes have been successfully removed.
927  *
928  * The new page will have replaced the old page if this function
929  * is successful.
930  *
931  * Return value:
932  *   < 0 - error code
933  *  MIGRATEPAGE_SUCCESS - success
934  */
935 static int move_to_new_page(struct page *newpage, struct page *page,
936 				enum migrate_mode mode)
937 {
938 	struct address_space *mapping;
939 	int rc = -EAGAIN;
940 	bool is_lru = !__PageMovable(page);
941 
942 	VM_BUG_ON_PAGE(!PageLocked(page), page);
943 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
944 
945 	mapping = page_mapping(page);
946 
947 	if (likely(is_lru)) {
948 		if (!mapping)
949 			rc = migrate_page(mapping, newpage, page, mode);
950 		else if (mapping->a_ops->migratepage)
951 			/*
952 			 * Most pages have a mapping and most filesystems
953 			 * provide a migratepage callback. Anonymous pages
954 			 * are part of swap space which also has its own
955 			 * migratepage callback. This is the most common path
956 			 * for page migration.
957 			 */
958 			rc = mapping->a_ops->migratepage(mapping, newpage,
959 							page, mode);
960 		else
961 			rc = fallback_migrate_page(mapping, newpage,
962 							page, mode);
963 	} else {
964 		/*
965 		 * In case of non-lru page, it could be released after
966 		 * isolation step. In that case, we shouldn't try migration.
967 		 */
968 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
969 		if (!PageMovable(page)) {
970 			rc = MIGRATEPAGE_SUCCESS;
971 			__ClearPageIsolated(page);
972 			goto out;
973 		}
974 
975 		rc = mapping->a_ops->migratepage(mapping, newpage,
976 						page, mode);
977 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
978 			!PageIsolated(page));
979 	}
980 
981 	/*
982 	 * When successful, old pagecache page->mapping must be cleared before
983 	 * page is freed; but stats require that PageAnon be left as PageAnon.
984 	 */
985 	if (rc == MIGRATEPAGE_SUCCESS) {
986 		if (__PageMovable(page)) {
987 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
988 
989 			/*
990 			 * We clear PG_movable under page_lock so any compactor
991 			 * cannot try to migrate this page.
992 			 */
993 			__ClearPageIsolated(page);
994 		}
995 
996 		/*
997 		 * Anonymous and movable page->mapping will be cleard by
998 		 * free_pages_prepare so don't reset it here for keeping
999 		 * the type to work PageAnon, for example.
1000 		 */
1001 		if (!PageMappingFlags(page))
1002 			page->mapping = NULL;
1003 	}
1004 out:
1005 	return rc;
1006 }
1007 
1008 static int __unmap_and_move(struct page *page, struct page *newpage,
1009 				int force, enum migrate_mode mode)
1010 {
1011 	int rc = -EAGAIN;
1012 	int page_was_mapped = 0;
1013 	struct anon_vma *anon_vma = NULL;
1014 	bool is_lru = !__PageMovable(page);
1015 
1016 	if (!trylock_page(page)) {
1017 		if (!force || mode == MIGRATE_ASYNC)
1018 			goto out;
1019 
1020 		/*
1021 		 * It's not safe for direct compaction to call lock_page.
1022 		 * For example, during page readahead pages are added locked
1023 		 * to the LRU. Later, when the IO completes the pages are
1024 		 * marked uptodate and unlocked. However, the queueing
1025 		 * could be merging multiple pages for one bio (e.g.
1026 		 * mpage_readpages). If an allocation happens for the
1027 		 * second or third page, the process can end up locking
1028 		 * the same page twice and deadlocking. Rather than
1029 		 * trying to be clever about what pages can be locked,
1030 		 * avoid the use of lock_page for direct compaction
1031 		 * altogether.
1032 		 */
1033 		if (current->flags & PF_MEMALLOC)
1034 			goto out;
1035 
1036 		lock_page(page);
1037 	}
1038 
1039 	if (PageWriteback(page)) {
1040 		/*
1041 		 * Only in the case of a full synchronous migration is it
1042 		 * necessary to wait for PageWriteback. In the async case,
1043 		 * the retry loop is too short and in the sync-light case,
1044 		 * the overhead of stalling is too much
1045 		 */
1046 		switch (mode) {
1047 		case MIGRATE_SYNC:
1048 		case MIGRATE_SYNC_NO_COPY:
1049 			break;
1050 		default:
1051 			rc = -EBUSY;
1052 			goto out_unlock;
1053 		}
1054 		if (!force)
1055 			goto out_unlock;
1056 		wait_on_page_writeback(page);
1057 	}
1058 
1059 	/*
1060 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1061 	 * we cannot notice that anon_vma is freed while we migrates a page.
1062 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1063 	 * of migration. File cache pages are no problem because of page_lock()
1064 	 * File Caches may use write_page() or lock_page() in migration, then,
1065 	 * just care Anon page here.
1066 	 *
1067 	 * Only page_get_anon_vma() understands the subtleties of
1068 	 * getting a hold on an anon_vma from outside one of its mms.
1069 	 * But if we cannot get anon_vma, then we won't need it anyway,
1070 	 * because that implies that the anon page is no longer mapped
1071 	 * (and cannot be remapped so long as we hold the page lock).
1072 	 */
1073 	if (PageAnon(page) && !PageKsm(page))
1074 		anon_vma = page_get_anon_vma(page);
1075 
1076 	/*
1077 	 * Block others from accessing the new page when we get around to
1078 	 * establishing additional references. We are usually the only one
1079 	 * holding a reference to newpage at this point. We used to have a BUG
1080 	 * here if trylock_page(newpage) fails, but would like to allow for
1081 	 * cases where there might be a race with the previous use of newpage.
1082 	 * This is much like races on refcount of oldpage: just don't BUG().
1083 	 */
1084 	if (unlikely(!trylock_page(newpage)))
1085 		goto out_unlock;
1086 
1087 	if (unlikely(!is_lru)) {
1088 		rc = move_to_new_page(newpage, page, mode);
1089 		goto out_unlock_both;
1090 	}
1091 
1092 	/*
1093 	 * Corner case handling:
1094 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1095 	 * and treated as swapcache but it has no rmap yet.
1096 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1097 	 * trigger a BUG.  So handle it here.
1098 	 * 2. An orphaned page (see truncate_complete_page) might have
1099 	 * fs-private metadata. The page can be picked up due to memory
1100 	 * offlining.  Everywhere else except page reclaim, the page is
1101 	 * invisible to the vm, so the page can not be migrated.  So try to
1102 	 * free the metadata, so the page can be freed.
1103 	 */
1104 	if (!page->mapping) {
1105 		VM_BUG_ON_PAGE(PageAnon(page), page);
1106 		if (page_has_private(page)) {
1107 			try_to_free_buffers(page);
1108 			goto out_unlock_both;
1109 		}
1110 	} else if (page_mapped(page)) {
1111 		/* Establish migration ptes */
1112 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1113 				page);
1114 		try_to_unmap(page,
1115 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1116 		page_was_mapped = 1;
1117 	}
1118 
1119 	if (!page_mapped(page))
1120 		rc = move_to_new_page(newpage, page, mode);
1121 
1122 	if (page_was_mapped)
1123 		remove_migration_ptes(page,
1124 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1125 
1126 out_unlock_both:
1127 	unlock_page(newpage);
1128 out_unlock:
1129 	/* Drop an anon_vma reference if we took one */
1130 	if (anon_vma)
1131 		put_anon_vma(anon_vma);
1132 	unlock_page(page);
1133 out:
1134 	/*
1135 	 * If migration is successful, decrease refcount of the newpage
1136 	 * which will not free the page because new page owner increased
1137 	 * refcounter. As well, if it is LRU page, add the page to LRU
1138 	 * list in here.
1139 	 */
1140 	if (rc == MIGRATEPAGE_SUCCESS) {
1141 		if (unlikely(__PageMovable(newpage)))
1142 			put_page(newpage);
1143 		else
1144 			putback_lru_page(newpage);
1145 	}
1146 
1147 	return rc;
1148 }
1149 
1150 /*
1151  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1152  * around it.
1153  */
1154 #if defined(CONFIG_ARM) && \
1155 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156 #define ICE_noinline noinline
1157 #else
1158 #define ICE_noinline
1159 #endif
1160 
1161 /*
1162  * Obtain the lock on page, remove all ptes and migrate the page
1163  * to the newly allocated page in newpage.
1164  */
1165 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166 				   free_page_t put_new_page,
1167 				   unsigned long private, struct page *page,
1168 				   int force, enum migrate_mode mode,
1169 				   enum migrate_reason reason)
1170 {
1171 	int rc = MIGRATEPAGE_SUCCESS;
1172 	struct page *newpage;
1173 
1174 	if (!thp_migration_supported() && PageTransHuge(page))
1175 		return -ENOMEM;
1176 
1177 	newpage = get_new_page(page, private);
1178 	if (!newpage)
1179 		return -ENOMEM;
1180 
1181 	if (page_count(page) == 1) {
1182 		/* page was freed from under us. So we are done. */
1183 		ClearPageActive(page);
1184 		ClearPageUnevictable(page);
1185 		if (unlikely(__PageMovable(page))) {
1186 			lock_page(page);
1187 			if (!PageMovable(page))
1188 				__ClearPageIsolated(page);
1189 			unlock_page(page);
1190 		}
1191 		if (put_new_page)
1192 			put_new_page(newpage, private);
1193 		else
1194 			put_page(newpage);
1195 		goto out;
1196 	}
1197 
1198 	rc = __unmap_and_move(page, newpage, force, mode);
1199 	if (rc == MIGRATEPAGE_SUCCESS)
1200 		set_page_owner_migrate_reason(newpage, reason);
1201 
1202 out:
1203 	if (rc != -EAGAIN) {
1204 		/*
1205 		 * A page that has been migrated has all references
1206 		 * removed and will be freed. A page that has not been
1207 		 * migrated will have kepts its references and be
1208 		 * restored.
1209 		 */
1210 		list_del(&page->lru);
1211 
1212 		/*
1213 		 * Compaction can migrate also non-LRU pages which are
1214 		 * not accounted to NR_ISOLATED_*. They can be recognized
1215 		 * as __PageMovable
1216 		 */
1217 		if (likely(!__PageMovable(page)))
1218 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1219 					page_is_file_cache(page), -hpage_nr_pages(page));
1220 	}
1221 
1222 	/*
1223 	 * If migration is successful, releases reference grabbed during
1224 	 * isolation. Otherwise, restore the page to right list unless
1225 	 * we want to retry.
1226 	 */
1227 	if (rc == MIGRATEPAGE_SUCCESS) {
1228 		put_page(page);
1229 		if (reason == MR_MEMORY_FAILURE) {
1230 			/*
1231 			 * Set PG_HWPoison on just freed page
1232 			 * intentionally. Although it's rather weird,
1233 			 * it's how HWPoison flag works at the moment.
1234 			 */
1235 			if (set_hwpoison_free_buddy_page(page))
1236 				num_poisoned_pages_inc();
1237 		}
1238 	} else {
1239 		if (rc != -EAGAIN) {
1240 			if (likely(!__PageMovable(page))) {
1241 				putback_lru_page(page);
1242 				goto put_new;
1243 			}
1244 
1245 			lock_page(page);
1246 			if (PageMovable(page))
1247 				putback_movable_page(page);
1248 			else
1249 				__ClearPageIsolated(page);
1250 			unlock_page(page);
1251 			put_page(page);
1252 		}
1253 put_new:
1254 		if (put_new_page)
1255 			put_new_page(newpage, private);
1256 		else
1257 			put_page(newpage);
1258 	}
1259 
1260 	return rc;
1261 }
1262 
1263 /*
1264  * Counterpart of unmap_and_move_page() for hugepage migration.
1265  *
1266  * This function doesn't wait the completion of hugepage I/O
1267  * because there is no race between I/O and migration for hugepage.
1268  * Note that currently hugepage I/O occurs only in direct I/O
1269  * where no lock is held and PG_writeback is irrelevant,
1270  * and writeback status of all subpages are counted in the reference
1271  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1272  * under direct I/O, the reference of the head page is 512 and a bit more.)
1273  * This means that when we try to migrate hugepage whose subpages are
1274  * doing direct I/O, some references remain after try_to_unmap() and
1275  * hugepage migration fails without data corruption.
1276  *
1277  * There is also no race when direct I/O is issued on the page under migration,
1278  * because then pte is replaced with migration swap entry and direct I/O code
1279  * will wait in the page fault for migration to complete.
1280  */
1281 static int unmap_and_move_huge_page(new_page_t get_new_page,
1282 				free_page_t put_new_page, unsigned long private,
1283 				struct page *hpage, int force,
1284 				enum migrate_mode mode, int reason)
1285 {
1286 	int rc = -EAGAIN;
1287 	int page_was_mapped = 0;
1288 	struct page *new_hpage;
1289 	struct anon_vma *anon_vma = NULL;
1290 
1291 	/*
1292 	 * Movability of hugepages depends on architectures and hugepage size.
1293 	 * This check is necessary because some callers of hugepage migration
1294 	 * like soft offline and memory hotremove don't walk through page
1295 	 * tables or check whether the hugepage is pmd-based or not before
1296 	 * kicking migration.
1297 	 */
1298 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1299 		putback_active_hugepage(hpage);
1300 		return -ENOSYS;
1301 	}
1302 
1303 	new_hpage = get_new_page(hpage, private);
1304 	if (!new_hpage)
1305 		return -ENOMEM;
1306 
1307 	if (!trylock_page(hpage)) {
1308 		if (!force)
1309 			goto out;
1310 		switch (mode) {
1311 		case MIGRATE_SYNC:
1312 		case MIGRATE_SYNC_NO_COPY:
1313 			break;
1314 		default:
1315 			goto out;
1316 		}
1317 		lock_page(hpage);
1318 	}
1319 
1320 	if (PageAnon(hpage))
1321 		anon_vma = page_get_anon_vma(hpage);
1322 
1323 	if (unlikely(!trylock_page(new_hpage)))
1324 		goto put_anon;
1325 
1326 	if (page_mapped(hpage)) {
1327 		try_to_unmap(hpage,
1328 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1329 		page_was_mapped = 1;
1330 	}
1331 
1332 	if (!page_mapped(hpage))
1333 		rc = move_to_new_page(new_hpage, hpage, mode);
1334 
1335 	if (page_was_mapped)
1336 		remove_migration_ptes(hpage,
1337 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1338 
1339 	unlock_page(new_hpage);
1340 
1341 put_anon:
1342 	if (anon_vma)
1343 		put_anon_vma(anon_vma);
1344 
1345 	if (rc == MIGRATEPAGE_SUCCESS) {
1346 		move_hugetlb_state(hpage, new_hpage, reason);
1347 		put_new_page = NULL;
1348 	}
1349 
1350 	unlock_page(hpage);
1351 out:
1352 	if (rc != -EAGAIN)
1353 		putback_active_hugepage(hpage);
1354 
1355 	/*
1356 	 * If migration was not successful and there's a freeing callback, use
1357 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1358 	 * isolation.
1359 	 */
1360 	if (put_new_page)
1361 		put_new_page(new_hpage, private);
1362 	else
1363 		putback_active_hugepage(new_hpage);
1364 
1365 	return rc;
1366 }
1367 
1368 /*
1369  * migrate_pages - migrate the pages specified in a list, to the free pages
1370  *		   supplied as the target for the page migration
1371  *
1372  * @from:		The list of pages to be migrated.
1373  * @get_new_page:	The function used to allocate free pages to be used
1374  *			as the target of the page migration.
1375  * @put_new_page:	The function used to free target pages if migration
1376  *			fails, or NULL if no special handling is necessary.
1377  * @private:		Private data to be passed on to get_new_page()
1378  * @mode:		The migration mode that specifies the constraints for
1379  *			page migration, if any.
1380  * @reason:		The reason for page migration.
1381  *
1382  * The function returns after 10 attempts or if no pages are movable any more
1383  * because the list has become empty or no retryable pages exist any more.
1384  * The caller should call putback_movable_pages() to return pages to the LRU
1385  * or free list only if ret != 0.
1386  *
1387  * Returns the number of pages that were not migrated, or an error code.
1388  */
1389 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1390 		free_page_t put_new_page, unsigned long private,
1391 		enum migrate_mode mode, int reason)
1392 {
1393 	int retry = 1;
1394 	int nr_failed = 0;
1395 	int nr_succeeded = 0;
1396 	int pass = 0;
1397 	struct page *page;
1398 	struct page *page2;
1399 	int swapwrite = current->flags & PF_SWAPWRITE;
1400 	int rc;
1401 
1402 	if (!swapwrite)
1403 		current->flags |= PF_SWAPWRITE;
1404 
1405 	for(pass = 0; pass < 10 && retry; pass++) {
1406 		retry = 0;
1407 
1408 		list_for_each_entry_safe(page, page2, from, lru) {
1409 retry:
1410 			cond_resched();
1411 
1412 			if (PageHuge(page))
1413 				rc = unmap_and_move_huge_page(get_new_page,
1414 						put_new_page, private, page,
1415 						pass > 2, mode, reason);
1416 			else
1417 				rc = unmap_and_move(get_new_page, put_new_page,
1418 						private, page, pass > 2, mode,
1419 						reason);
1420 
1421 			switch(rc) {
1422 			case -ENOMEM:
1423 				/*
1424 				 * THP migration might be unsupported or the
1425 				 * allocation could've failed so we should
1426 				 * retry on the same page with the THP split
1427 				 * to base pages.
1428 				 *
1429 				 * Head page is retried immediately and tail
1430 				 * pages are added to the tail of the list so
1431 				 * we encounter them after the rest of the list
1432 				 * is processed.
1433 				 */
1434 				if (PageTransHuge(page) && !PageHuge(page)) {
1435 					lock_page(page);
1436 					rc = split_huge_page_to_list(page, from);
1437 					unlock_page(page);
1438 					if (!rc) {
1439 						list_safe_reset_next(page, page2, lru);
1440 						goto retry;
1441 					}
1442 				}
1443 				nr_failed++;
1444 				goto out;
1445 			case -EAGAIN:
1446 				retry++;
1447 				break;
1448 			case MIGRATEPAGE_SUCCESS:
1449 				nr_succeeded++;
1450 				break;
1451 			default:
1452 				/*
1453 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1454 				 * unlike -EAGAIN case, the failed page is
1455 				 * removed from migration page list and not
1456 				 * retried in the next outer loop.
1457 				 */
1458 				nr_failed++;
1459 				break;
1460 			}
1461 		}
1462 	}
1463 	nr_failed += retry;
1464 	rc = nr_failed;
1465 out:
1466 	if (nr_succeeded)
1467 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1468 	if (nr_failed)
1469 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1470 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1471 
1472 	if (!swapwrite)
1473 		current->flags &= ~PF_SWAPWRITE;
1474 
1475 	return rc;
1476 }
1477 
1478 #ifdef CONFIG_NUMA
1479 
1480 static int store_status(int __user *status, int start, int value, int nr)
1481 {
1482 	while (nr-- > 0) {
1483 		if (put_user(value, status + start))
1484 			return -EFAULT;
1485 		start++;
1486 	}
1487 
1488 	return 0;
1489 }
1490 
1491 static int do_move_pages_to_node(struct mm_struct *mm,
1492 		struct list_head *pagelist, int node)
1493 {
1494 	int err;
1495 
1496 	if (list_empty(pagelist))
1497 		return 0;
1498 
1499 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1500 			MIGRATE_SYNC, MR_SYSCALL);
1501 	if (err)
1502 		putback_movable_pages(pagelist);
1503 	return err;
1504 }
1505 
1506 /*
1507  * Resolves the given address to a struct page, isolates it from the LRU and
1508  * puts it to the given pagelist.
1509  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1510  * queued or the page doesn't need to be migrated because it is already on
1511  * the target node
1512  */
1513 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1514 		int node, struct list_head *pagelist, bool migrate_all)
1515 {
1516 	struct vm_area_struct *vma;
1517 	struct page *page;
1518 	unsigned int follflags;
1519 	int err;
1520 
1521 	down_read(&mm->mmap_sem);
1522 	err = -EFAULT;
1523 	vma = find_vma(mm, addr);
1524 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1525 		goto out;
1526 
1527 	/* FOLL_DUMP to ignore special (like zero) pages */
1528 	follflags = FOLL_GET | FOLL_DUMP;
1529 	page = follow_page(vma, addr, follflags);
1530 
1531 	err = PTR_ERR(page);
1532 	if (IS_ERR(page))
1533 		goto out;
1534 
1535 	err = -ENOENT;
1536 	if (!page)
1537 		goto out;
1538 
1539 	err = 0;
1540 	if (page_to_nid(page) == node)
1541 		goto out_putpage;
1542 
1543 	err = -EACCES;
1544 	if (page_mapcount(page) > 1 && !migrate_all)
1545 		goto out_putpage;
1546 
1547 	if (PageHuge(page)) {
1548 		if (PageHead(page)) {
1549 			isolate_huge_page(page, pagelist);
1550 			err = 0;
1551 		}
1552 	} else {
1553 		struct page *head;
1554 
1555 		head = compound_head(page);
1556 		err = isolate_lru_page(head);
1557 		if (err)
1558 			goto out_putpage;
1559 
1560 		err = 0;
1561 		list_add_tail(&head->lru, pagelist);
1562 		mod_node_page_state(page_pgdat(head),
1563 			NR_ISOLATED_ANON + page_is_file_cache(head),
1564 			hpage_nr_pages(head));
1565 	}
1566 out_putpage:
1567 	/*
1568 	 * Either remove the duplicate refcount from
1569 	 * isolate_lru_page() or drop the page ref if it was
1570 	 * not isolated.
1571 	 */
1572 	put_page(page);
1573 out:
1574 	up_read(&mm->mmap_sem);
1575 	return err;
1576 }
1577 
1578 /*
1579  * Migrate an array of page address onto an array of nodes and fill
1580  * the corresponding array of status.
1581  */
1582 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1583 			 unsigned long nr_pages,
1584 			 const void __user * __user *pages,
1585 			 const int __user *nodes,
1586 			 int __user *status, int flags)
1587 {
1588 	int current_node = NUMA_NO_NODE;
1589 	LIST_HEAD(pagelist);
1590 	int start, i;
1591 	int err = 0, err1;
1592 
1593 	migrate_prep();
1594 
1595 	for (i = start = 0; i < nr_pages; i++) {
1596 		const void __user *p;
1597 		unsigned long addr;
1598 		int node;
1599 
1600 		err = -EFAULT;
1601 		if (get_user(p, pages + i))
1602 			goto out_flush;
1603 		if (get_user(node, nodes + i))
1604 			goto out_flush;
1605 		addr = (unsigned long)p;
1606 
1607 		err = -ENODEV;
1608 		if (node < 0 || node >= MAX_NUMNODES)
1609 			goto out_flush;
1610 		if (!node_state(node, N_MEMORY))
1611 			goto out_flush;
1612 
1613 		err = -EACCES;
1614 		if (!node_isset(node, task_nodes))
1615 			goto out_flush;
1616 
1617 		if (current_node == NUMA_NO_NODE) {
1618 			current_node = node;
1619 			start = i;
1620 		} else if (node != current_node) {
1621 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1622 			if (err)
1623 				goto out;
1624 			err = store_status(status, start, current_node, i - start);
1625 			if (err)
1626 				goto out;
1627 			start = i;
1628 			current_node = node;
1629 		}
1630 
1631 		/*
1632 		 * Errors in the page lookup or isolation are not fatal and we simply
1633 		 * report them via status
1634 		 */
1635 		err = add_page_for_migration(mm, addr, current_node,
1636 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1637 		if (!err)
1638 			continue;
1639 
1640 		err = store_status(status, i, err, 1);
1641 		if (err)
1642 			goto out_flush;
1643 
1644 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1645 		if (err)
1646 			goto out;
1647 		if (i > start) {
1648 			err = store_status(status, start, current_node, i - start);
1649 			if (err)
1650 				goto out;
1651 		}
1652 		current_node = NUMA_NO_NODE;
1653 	}
1654 out_flush:
1655 	if (list_empty(&pagelist))
1656 		return err;
1657 
1658 	/* Make sure we do not overwrite the existing error */
1659 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1660 	if (!err1)
1661 		err1 = store_status(status, start, current_node, i - start);
1662 	if (!err)
1663 		err = err1;
1664 out:
1665 	return err;
1666 }
1667 
1668 /*
1669  * Determine the nodes of an array of pages and store it in an array of status.
1670  */
1671 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1672 				const void __user **pages, int *status)
1673 {
1674 	unsigned long i;
1675 
1676 	down_read(&mm->mmap_sem);
1677 
1678 	for (i = 0; i < nr_pages; i++) {
1679 		unsigned long addr = (unsigned long)(*pages);
1680 		struct vm_area_struct *vma;
1681 		struct page *page;
1682 		int err = -EFAULT;
1683 
1684 		vma = find_vma(mm, addr);
1685 		if (!vma || addr < vma->vm_start)
1686 			goto set_status;
1687 
1688 		/* FOLL_DUMP to ignore special (like zero) pages */
1689 		page = follow_page(vma, addr, FOLL_DUMP);
1690 
1691 		err = PTR_ERR(page);
1692 		if (IS_ERR(page))
1693 			goto set_status;
1694 
1695 		err = page ? page_to_nid(page) : -ENOENT;
1696 set_status:
1697 		*status = err;
1698 
1699 		pages++;
1700 		status++;
1701 	}
1702 
1703 	up_read(&mm->mmap_sem);
1704 }
1705 
1706 /*
1707  * Determine the nodes of a user array of pages and store it in
1708  * a user array of status.
1709  */
1710 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1711 			 const void __user * __user *pages,
1712 			 int __user *status)
1713 {
1714 #define DO_PAGES_STAT_CHUNK_NR 16
1715 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1716 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1717 
1718 	while (nr_pages) {
1719 		unsigned long chunk_nr;
1720 
1721 		chunk_nr = nr_pages;
1722 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1723 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1724 
1725 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1726 			break;
1727 
1728 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1729 
1730 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1731 			break;
1732 
1733 		pages += chunk_nr;
1734 		status += chunk_nr;
1735 		nr_pages -= chunk_nr;
1736 	}
1737 	return nr_pages ? -EFAULT : 0;
1738 }
1739 
1740 /*
1741  * Move a list of pages in the address space of the currently executing
1742  * process.
1743  */
1744 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1745 			     const void __user * __user *pages,
1746 			     const int __user *nodes,
1747 			     int __user *status, int flags)
1748 {
1749 	struct task_struct *task;
1750 	struct mm_struct *mm;
1751 	int err;
1752 	nodemask_t task_nodes;
1753 
1754 	/* Check flags */
1755 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1756 		return -EINVAL;
1757 
1758 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1759 		return -EPERM;
1760 
1761 	/* Find the mm_struct */
1762 	rcu_read_lock();
1763 	task = pid ? find_task_by_vpid(pid) : current;
1764 	if (!task) {
1765 		rcu_read_unlock();
1766 		return -ESRCH;
1767 	}
1768 	get_task_struct(task);
1769 
1770 	/*
1771 	 * Check if this process has the right to modify the specified
1772 	 * process. Use the regular "ptrace_may_access()" checks.
1773 	 */
1774 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1775 		rcu_read_unlock();
1776 		err = -EPERM;
1777 		goto out;
1778 	}
1779 	rcu_read_unlock();
1780 
1781  	err = security_task_movememory(task);
1782  	if (err)
1783 		goto out;
1784 
1785 	task_nodes = cpuset_mems_allowed(task);
1786 	mm = get_task_mm(task);
1787 	put_task_struct(task);
1788 
1789 	if (!mm)
1790 		return -EINVAL;
1791 
1792 	if (nodes)
1793 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1794 				    nodes, status, flags);
1795 	else
1796 		err = do_pages_stat(mm, nr_pages, pages, status);
1797 
1798 	mmput(mm);
1799 	return err;
1800 
1801 out:
1802 	put_task_struct(task);
1803 	return err;
1804 }
1805 
1806 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1807 		const void __user * __user *, pages,
1808 		const int __user *, nodes,
1809 		int __user *, status, int, flags)
1810 {
1811 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1812 }
1813 
1814 #ifdef CONFIG_COMPAT
1815 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1816 		       compat_uptr_t __user *, pages32,
1817 		       const int __user *, nodes,
1818 		       int __user *, status,
1819 		       int, flags)
1820 {
1821 	const void __user * __user *pages;
1822 	int i;
1823 
1824 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1825 	for (i = 0; i < nr_pages; i++) {
1826 		compat_uptr_t p;
1827 
1828 		if (get_user(p, pages32 + i) ||
1829 			put_user(compat_ptr(p), pages + i))
1830 			return -EFAULT;
1831 	}
1832 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1833 }
1834 #endif /* CONFIG_COMPAT */
1835 
1836 #ifdef CONFIG_NUMA_BALANCING
1837 /*
1838  * Returns true if this is a safe migration target node for misplaced NUMA
1839  * pages. Currently it only checks the watermarks which crude
1840  */
1841 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1842 				   unsigned long nr_migrate_pages)
1843 {
1844 	int z;
1845 
1846 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1847 		struct zone *zone = pgdat->node_zones + z;
1848 
1849 		if (!populated_zone(zone))
1850 			continue;
1851 
1852 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1853 		if (!zone_watermark_ok(zone, 0,
1854 				       high_wmark_pages(zone) +
1855 				       nr_migrate_pages,
1856 				       0, 0))
1857 			continue;
1858 		return true;
1859 	}
1860 	return false;
1861 }
1862 
1863 static struct page *alloc_misplaced_dst_page(struct page *page,
1864 					   unsigned long data)
1865 {
1866 	int nid = (int) data;
1867 	struct page *newpage;
1868 
1869 	newpage = __alloc_pages_node(nid,
1870 					 (GFP_HIGHUSER_MOVABLE |
1871 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1872 					  __GFP_NORETRY | __GFP_NOWARN) &
1873 					 ~__GFP_RECLAIM, 0);
1874 
1875 	return newpage;
1876 }
1877 
1878 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1879 {
1880 	int page_lru;
1881 
1882 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1883 
1884 	/* Avoid migrating to a node that is nearly full */
1885 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1886 		return 0;
1887 
1888 	if (isolate_lru_page(page))
1889 		return 0;
1890 
1891 	/*
1892 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1893 	 * check on page_count(), so we must do it here, now that the page
1894 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1895 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1896 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1897 	 */
1898 	if (PageTransHuge(page) && page_count(page) != 3) {
1899 		putback_lru_page(page);
1900 		return 0;
1901 	}
1902 
1903 	page_lru = page_is_file_cache(page);
1904 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1905 				hpage_nr_pages(page));
1906 
1907 	/*
1908 	 * Isolating the page has taken another reference, so the
1909 	 * caller's reference can be safely dropped without the page
1910 	 * disappearing underneath us during migration.
1911 	 */
1912 	put_page(page);
1913 	return 1;
1914 }
1915 
1916 bool pmd_trans_migrating(pmd_t pmd)
1917 {
1918 	struct page *page = pmd_page(pmd);
1919 	return PageLocked(page);
1920 }
1921 
1922 /*
1923  * Attempt to migrate a misplaced page to the specified destination
1924  * node. Caller is expected to have an elevated reference count on
1925  * the page that will be dropped by this function before returning.
1926  */
1927 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1928 			   int node)
1929 {
1930 	pg_data_t *pgdat = NODE_DATA(node);
1931 	int isolated;
1932 	int nr_remaining;
1933 	LIST_HEAD(migratepages);
1934 
1935 	/*
1936 	 * Don't migrate file pages that are mapped in multiple processes
1937 	 * with execute permissions as they are probably shared libraries.
1938 	 */
1939 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1940 	    (vma->vm_flags & VM_EXEC))
1941 		goto out;
1942 
1943 	/*
1944 	 * Also do not migrate dirty pages as not all filesystems can move
1945 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1946 	 */
1947 	if (page_is_file_cache(page) && PageDirty(page))
1948 		goto out;
1949 
1950 	isolated = numamigrate_isolate_page(pgdat, page);
1951 	if (!isolated)
1952 		goto out;
1953 
1954 	list_add(&page->lru, &migratepages);
1955 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1956 				     NULL, node, MIGRATE_ASYNC,
1957 				     MR_NUMA_MISPLACED);
1958 	if (nr_remaining) {
1959 		if (!list_empty(&migratepages)) {
1960 			list_del(&page->lru);
1961 			dec_node_page_state(page, NR_ISOLATED_ANON +
1962 					page_is_file_cache(page));
1963 			putback_lru_page(page);
1964 		}
1965 		isolated = 0;
1966 	} else
1967 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1968 	BUG_ON(!list_empty(&migratepages));
1969 	return isolated;
1970 
1971 out:
1972 	put_page(page);
1973 	return 0;
1974 }
1975 #endif /* CONFIG_NUMA_BALANCING */
1976 
1977 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1978 /*
1979  * Migrates a THP to a given target node. page must be locked and is unlocked
1980  * before returning.
1981  */
1982 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1983 				struct vm_area_struct *vma,
1984 				pmd_t *pmd, pmd_t entry,
1985 				unsigned long address,
1986 				struct page *page, int node)
1987 {
1988 	spinlock_t *ptl;
1989 	pg_data_t *pgdat = NODE_DATA(node);
1990 	int isolated = 0;
1991 	struct page *new_page = NULL;
1992 	int page_lru = page_is_file_cache(page);
1993 	unsigned long start = address & HPAGE_PMD_MASK;
1994 
1995 	new_page = alloc_pages_node(node,
1996 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1997 		HPAGE_PMD_ORDER);
1998 	if (!new_page)
1999 		goto out_fail;
2000 	prep_transhuge_page(new_page);
2001 
2002 	isolated = numamigrate_isolate_page(pgdat, page);
2003 	if (!isolated) {
2004 		put_page(new_page);
2005 		goto out_fail;
2006 	}
2007 
2008 	/* Prepare a page as a migration target */
2009 	__SetPageLocked(new_page);
2010 	if (PageSwapBacked(page))
2011 		__SetPageSwapBacked(new_page);
2012 
2013 	/* anon mapping, we can simply copy page->mapping to the new page: */
2014 	new_page->mapping = page->mapping;
2015 	new_page->index = page->index;
2016 	/* flush the cache before copying using the kernel virtual address */
2017 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2018 	migrate_page_copy(new_page, page);
2019 	WARN_ON(PageLRU(new_page));
2020 
2021 	/* Recheck the target PMD */
2022 	ptl = pmd_lock(mm, pmd);
2023 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2024 		spin_unlock(ptl);
2025 
2026 		/* Reverse changes made by migrate_page_copy() */
2027 		if (TestClearPageActive(new_page))
2028 			SetPageActive(page);
2029 		if (TestClearPageUnevictable(new_page))
2030 			SetPageUnevictable(page);
2031 
2032 		unlock_page(new_page);
2033 		put_page(new_page);		/* Free it */
2034 
2035 		/* Retake the callers reference and putback on LRU */
2036 		get_page(page);
2037 		putback_lru_page(page);
2038 		mod_node_page_state(page_pgdat(page),
2039 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2040 
2041 		goto out_unlock;
2042 	}
2043 
2044 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2045 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2046 
2047 	/*
2048 	 * Overwrite the old entry under pagetable lock and establish
2049 	 * the new PTE. Any parallel GUP will either observe the old
2050 	 * page blocking on the page lock, block on the page table
2051 	 * lock or observe the new page. The SetPageUptodate on the
2052 	 * new page and page_add_new_anon_rmap guarantee the copy is
2053 	 * visible before the pagetable update.
2054 	 */
2055 	page_add_anon_rmap(new_page, vma, start, true);
2056 	/*
2057 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2058 	 * has already been flushed globally.  So no TLB can be currently
2059 	 * caching this non present pmd mapping.  There's no need to clear the
2060 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2061 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2062 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2063 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2064 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2065 	 * pmd.
2066 	 */
2067 	set_pmd_at(mm, start, pmd, entry);
2068 	update_mmu_cache_pmd(vma, address, &entry);
2069 
2070 	page_ref_unfreeze(page, 2);
2071 	mlock_migrate_page(new_page, page);
2072 	page_remove_rmap(page, true);
2073 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2074 
2075 	spin_unlock(ptl);
2076 
2077 	/* Take an "isolate" reference and put new page on the LRU. */
2078 	get_page(new_page);
2079 	putback_lru_page(new_page);
2080 
2081 	unlock_page(new_page);
2082 	unlock_page(page);
2083 	put_page(page);			/* Drop the rmap reference */
2084 	put_page(page);			/* Drop the LRU isolation reference */
2085 
2086 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2087 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2088 
2089 	mod_node_page_state(page_pgdat(page),
2090 			NR_ISOLATED_ANON + page_lru,
2091 			-HPAGE_PMD_NR);
2092 	return isolated;
2093 
2094 out_fail:
2095 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2096 	ptl = pmd_lock(mm, pmd);
2097 	if (pmd_same(*pmd, entry)) {
2098 		entry = pmd_modify(entry, vma->vm_page_prot);
2099 		set_pmd_at(mm, start, pmd, entry);
2100 		update_mmu_cache_pmd(vma, address, &entry);
2101 	}
2102 	spin_unlock(ptl);
2103 
2104 out_unlock:
2105 	unlock_page(page);
2106 	put_page(page);
2107 	return 0;
2108 }
2109 #endif /* CONFIG_NUMA_BALANCING */
2110 
2111 #endif /* CONFIG_NUMA */
2112 
2113 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2114 struct migrate_vma {
2115 	struct vm_area_struct	*vma;
2116 	unsigned long		*dst;
2117 	unsigned long		*src;
2118 	unsigned long		cpages;
2119 	unsigned long		npages;
2120 	unsigned long		start;
2121 	unsigned long		end;
2122 };
2123 
2124 static int migrate_vma_collect_hole(unsigned long start,
2125 				    unsigned long end,
2126 				    struct mm_walk *walk)
2127 {
2128 	struct migrate_vma *migrate = walk->private;
2129 	unsigned long addr;
2130 
2131 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2132 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2133 		migrate->dst[migrate->npages] = 0;
2134 		migrate->npages++;
2135 		migrate->cpages++;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static int migrate_vma_collect_skip(unsigned long start,
2142 				    unsigned long end,
2143 				    struct mm_walk *walk)
2144 {
2145 	struct migrate_vma *migrate = walk->private;
2146 	unsigned long addr;
2147 
2148 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2149 		migrate->dst[migrate->npages] = 0;
2150 		migrate->src[migrate->npages++] = 0;
2151 	}
2152 
2153 	return 0;
2154 }
2155 
2156 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2157 				   unsigned long start,
2158 				   unsigned long end,
2159 				   struct mm_walk *walk)
2160 {
2161 	struct migrate_vma *migrate = walk->private;
2162 	struct vm_area_struct *vma = walk->vma;
2163 	struct mm_struct *mm = vma->vm_mm;
2164 	unsigned long addr = start, unmapped = 0;
2165 	spinlock_t *ptl;
2166 	pte_t *ptep;
2167 
2168 again:
2169 	if (pmd_none(*pmdp))
2170 		return migrate_vma_collect_hole(start, end, walk);
2171 
2172 	if (pmd_trans_huge(*pmdp)) {
2173 		struct page *page;
2174 
2175 		ptl = pmd_lock(mm, pmdp);
2176 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2177 			spin_unlock(ptl);
2178 			goto again;
2179 		}
2180 
2181 		page = pmd_page(*pmdp);
2182 		if (is_huge_zero_page(page)) {
2183 			spin_unlock(ptl);
2184 			split_huge_pmd(vma, pmdp, addr);
2185 			if (pmd_trans_unstable(pmdp))
2186 				return migrate_vma_collect_skip(start, end,
2187 								walk);
2188 		} else {
2189 			int ret;
2190 
2191 			get_page(page);
2192 			spin_unlock(ptl);
2193 			if (unlikely(!trylock_page(page)))
2194 				return migrate_vma_collect_skip(start, end,
2195 								walk);
2196 			ret = split_huge_page(page);
2197 			unlock_page(page);
2198 			put_page(page);
2199 			if (ret)
2200 				return migrate_vma_collect_skip(start, end,
2201 								walk);
2202 			if (pmd_none(*pmdp))
2203 				return migrate_vma_collect_hole(start, end,
2204 								walk);
2205 		}
2206 	}
2207 
2208 	if (unlikely(pmd_bad(*pmdp)))
2209 		return migrate_vma_collect_skip(start, end, walk);
2210 
2211 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2212 	arch_enter_lazy_mmu_mode();
2213 
2214 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2215 		unsigned long mpfn, pfn;
2216 		struct page *page;
2217 		swp_entry_t entry;
2218 		pte_t pte;
2219 
2220 		pte = *ptep;
2221 		pfn = pte_pfn(pte);
2222 
2223 		if (pte_none(pte)) {
2224 			mpfn = MIGRATE_PFN_MIGRATE;
2225 			migrate->cpages++;
2226 			pfn = 0;
2227 			goto next;
2228 		}
2229 
2230 		if (!pte_present(pte)) {
2231 			mpfn = pfn = 0;
2232 
2233 			/*
2234 			 * Only care about unaddressable device page special
2235 			 * page table entry. Other special swap entries are not
2236 			 * migratable, and we ignore regular swapped page.
2237 			 */
2238 			entry = pte_to_swp_entry(pte);
2239 			if (!is_device_private_entry(entry))
2240 				goto next;
2241 
2242 			page = device_private_entry_to_page(entry);
2243 			mpfn = migrate_pfn(page_to_pfn(page))|
2244 				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2245 			if (is_write_device_private_entry(entry))
2246 				mpfn |= MIGRATE_PFN_WRITE;
2247 		} else {
2248 			if (is_zero_pfn(pfn)) {
2249 				mpfn = MIGRATE_PFN_MIGRATE;
2250 				migrate->cpages++;
2251 				pfn = 0;
2252 				goto next;
2253 			}
2254 			page = _vm_normal_page(migrate->vma, addr, pte, true);
2255 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2256 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2257 		}
2258 
2259 		/* FIXME support THP */
2260 		if (!page || !page->mapping || PageTransCompound(page)) {
2261 			mpfn = pfn = 0;
2262 			goto next;
2263 		}
2264 		pfn = page_to_pfn(page);
2265 
2266 		/*
2267 		 * By getting a reference on the page we pin it and that blocks
2268 		 * any kind of migration. Side effect is that it "freezes" the
2269 		 * pte.
2270 		 *
2271 		 * We drop this reference after isolating the page from the lru
2272 		 * for non device page (device page are not on the lru and thus
2273 		 * can't be dropped from it).
2274 		 */
2275 		get_page(page);
2276 		migrate->cpages++;
2277 
2278 		/*
2279 		 * Optimize for the common case where page is only mapped once
2280 		 * in one process. If we can lock the page, then we can safely
2281 		 * set up a special migration page table entry now.
2282 		 */
2283 		if (trylock_page(page)) {
2284 			pte_t swp_pte;
2285 
2286 			mpfn |= MIGRATE_PFN_LOCKED;
2287 			ptep_get_and_clear(mm, addr, ptep);
2288 
2289 			/* Setup special migration page table entry */
2290 			entry = make_migration_entry(page, mpfn &
2291 						     MIGRATE_PFN_WRITE);
2292 			swp_pte = swp_entry_to_pte(entry);
2293 			if (pte_soft_dirty(pte))
2294 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2295 			set_pte_at(mm, addr, ptep, swp_pte);
2296 
2297 			/*
2298 			 * This is like regular unmap: we remove the rmap and
2299 			 * drop page refcount. Page won't be freed, as we took
2300 			 * a reference just above.
2301 			 */
2302 			page_remove_rmap(page, false);
2303 			put_page(page);
2304 
2305 			if (pte_present(pte))
2306 				unmapped++;
2307 		}
2308 
2309 next:
2310 		migrate->dst[migrate->npages] = 0;
2311 		migrate->src[migrate->npages++] = mpfn;
2312 	}
2313 	arch_leave_lazy_mmu_mode();
2314 	pte_unmap_unlock(ptep - 1, ptl);
2315 
2316 	/* Only flush the TLB if we actually modified any entries */
2317 	if (unmapped)
2318 		flush_tlb_range(walk->vma, start, end);
2319 
2320 	return 0;
2321 }
2322 
2323 /*
2324  * migrate_vma_collect() - collect pages over a range of virtual addresses
2325  * @migrate: migrate struct containing all migration information
2326  *
2327  * This will walk the CPU page table. For each virtual address backed by a
2328  * valid page, it updates the src array and takes a reference on the page, in
2329  * order to pin the page until we lock it and unmap it.
2330  */
2331 static void migrate_vma_collect(struct migrate_vma *migrate)
2332 {
2333 	struct mmu_notifier_range range;
2334 	struct mm_walk mm_walk;
2335 
2336 	mm_walk.pmd_entry = migrate_vma_collect_pmd;
2337 	mm_walk.pte_entry = NULL;
2338 	mm_walk.pte_hole = migrate_vma_collect_hole;
2339 	mm_walk.hugetlb_entry = NULL;
2340 	mm_walk.test_walk = NULL;
2341 	mm_walk.vma = migrate->vma;
2342 	mm_walk.mm = migrate->vma->vm_mm;
2343 	mm_walk.private = migrate;
2344 
2345 	mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2346 				migrate->end);
2347 	mmu_notifier_invalidate_range_start(&range);
2348 	walk_page_range(migrate->start, migrate->end, &mm_walk);
2349 	mmu_notifier_invalidate_range_end(&range);
2350 
2351 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2352 }
2353 
2354 /*
2355  * migrate_vma_check_page() - check if page is pinned or not
2356  * @page: struct page to check
2357  *
2358  * Pinned pages cannot be migrated. This is the same test as in
2359  * migrate_page_move_mapping(), except that here we allow migration of a
2360  * ZONE_DEVICE page.
2361  */
2362 static bool migrate_vma_check_page(struct page *page)
2363 {
2364 	/*
2365 	 * One extra ref because caller holds an extra reference, either from
2366 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2367 	 * a device page.
2368 	 */
2369 	int extra = 1;
2370 
2371 	/*
2372 	 * FIXME support THP (transparent huge page), it is bit more complex to
2373 	 * check them than regular pages, because they can be mapped with a pmd
2374 	 * or with a pte (split pte mapping).
2375 	 */
2376 	if (PageCompound(page))
2377 		return false;
2378 
2379 	/* Page from ZONE_DEVICE have one extra reference */
2380 	if (is_zone_device_page(page)) {
2381 		/*
2382 		 * Private page can never be pin as they have no valid pte and
2383 		 * GUP will fail for those. Yet if there is a pending migration
2384 		 * a thread might try to wait on the pte migration entry and
2385 		 * will bump the page reference count. Sadly there is no way to
2386 		 * differentiate a regular pin from migration wait. Hence to
2387 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2388 		 * infinite loop (one stoping migration because the other is
2389 		 * waiting on pte migration entry). We always return true here.
2390 		 *
2391 		 * FIXME proper solution is to rework migration_entry_wait() so
2392 		 * it does not need to take a reference on page.
2393 		 */
2394 		if (is_device_private_page(page))
2395 			return true;
2396 
2397 		/*
2398 		 * Only allow device public page to be migrated and account for
2399 		 * the extra reference count imply by ZONE_DEVICE pages.
2400 		 */
2401 		if (!is_device_public_page(page))
2402 			return false;
2403 		extra++;
2404 	}
2405 
2406 	/* For file back page */
2407 	if (page_mapping(page))
2408 		extra += 1 + page_has_private(page);
2409 
2410 	if ((page_count(page) - extra) > page_mapcount(page))
2411 		return false;
2412 
2413 	return true;
2414 }
2415 
2416 /*
2417  * migrate_vma_prepare() - lock pages and isolate them from the lru
2418  * @migrate: migrate struct containing all migration information
2419  *
2420  * This locks pages that have been collected by migrate_vma_collect(). Once each
2421  * page is locked it is isolated from the lru (for non-device pages). Finally,
2422  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2423  * migrated by concurrent kernel threads.
2424  */
2425 static void migrate_vma_prepare(struct migrate_vma *migrate)
2426 {
2427 	const unsigned long npages = migrate->npages;
2428 	const unsigned long start = migrate->start;
2429 	unsigned long addr, i, restore = 0;
2430 	bool allow_drain = true;
2431 
2432 	lru_add_drain();
2433 
2434 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2435 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2436 		bool remap = true;
2437 
2438 		if (!page)
2439 			continue;
2440 
2441 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2442 			/*
2443 			 * Because we are migrating several pages there can be
2444 			 * a deadlock between 2 concurrent migration where each
2445 			 * are waiting on each other page lock.
2446 			 *
2447 			 * Make migrate_vma() a best effort thing and backoff
2448 			 * for any page we can not lock right away.
2449 			 */
2450 			if (!trylock_page(page)) {
2451 				migrate->src[i] = 0;
2452 				migrate->cpages--;
2453 				put_page(page);
2454 				continue;
2455 			}
2456 			remap = false;
2457 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2458 		}
2459 
2460 		/* ZONE_DEVICE pages are not on LRU */
2461 		if (!is_zone_device_page(page)) {
2462 			if (!PageLRU(page) && allow_drain) {
2463 				/* Drain CPU's pagevec */
2464 				lru_add_drain_all();
2465 				allow_drain = false;
2466 			}
2467 
2468 			if (isolate_lru_page(page)) {
2469 				if (remap) {
2470 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2471 					migrate->cpages--;
2472 					restore++;
2473 				} else {
2474 					migrate->src[i] = 0;
2475 					unlock_page(page);
2476 					migrate->cpages--;
2477 					put_page(page);
2478 				}
2479 				continue;
2480 			}
2481 
2482 			/* Drop the reference we took in collect */
2483 			put_page(page);
2484 		}
2485 
2486 		if (!migrate_vma_check_page(page)) {
2487 			if (remap) {
2488 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2489 				migrate->cpages--;
2490 				restore++;
2491 
2492 				if (!is_zone_device_page(page)) {
2493 					get_page(page);
2494 					putback_lru_page(page);
2495 				}
2496 			} else {
2497 				migrate->src[i] = 0;
2498 				unlock_page(page);
2499 				migrate->cpages--;
2500 
2501 				if (!is_zone_device_page(page))
2502 					putback_lru_page(page);
2503 				else
2504 					put_page(page);
2505 			}
2506 		}
2507 	}
2508 
2509 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2510 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2511 
2512 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2513 			continue;
2514 
2515 		remove_migration_pte(page, migrate->vma, addr, page);
2516 
2517 		migrate->src[i] = 0;
2518 		unlock_page(page);
2519 		put_page(page);
2520 		restore--;
2521 	}
2522 }
2523 
2524 /*
2525  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2526  * @migrate: migrate struct containing all migration information
2527  *
2528  * Replace page mapping (CPU page table pte) with a special migration pte entry
2529  * and check again if it has been pinned. Pinned pages are restored because we
2530  * cannot migrate them.
2531  *
2532  * This is the last step before we call the device driver callback to allocate
2533  * destination memory and copy contents of original page over to new page.
2534  */
2535 static void migrate_vma_unmap(struct migrate_vma *migrate)
2536 {
2537 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2538 	const unsigned long npages = migrate->npages;
2539 	const unsigned long start = migrate->start;
2540 	unsigned long addr, i, restore = 0;
2541 
2542 	for (i = 0; i < npages; i++) {
2543 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2544 
2545 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2546 			continue;
2547 
2548 		if (page_mapped(page)) {
2549 			try_to_unmap(page, flags);
2550 			if (page_mapped(page))
2551 				goto restore;
2552 		}
2553 
2554 		if (migrate_vma_check_page(page))
2555 			continue;
2556 
2557 restore:
2558 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2559 		migrate->cpages--;
2560 		restore++;
2561 	}
2562 
2563 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2564 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2565 
2566 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2567 			continue;
2568 
2569 		remove_migration_ptes(page, page, false);
2570 
2571 		migrate->src[i] = 0;
2572 		unlock_page(page);
2573 		restore--;
2574 
2575 		if (is_zone_device_page(page))
2576 			put_page(page);
2577 		else
2578 			putback_lru_page(page);
2579 	}
2580 }
2581 
2582 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2583 				    unsigned long addr,
2584 				    struct page *page,
2585 				    unsigned long *src,
2586 				    unsigned long *dst)
2587 {
2588 	struct vm_area_struct *vma = migrate->vma;
2589 	struct mm_struct *mm = vma->vm_mm;
2590 	struct mem_cgroup *memcg;
2591 	bool flush = false;
2592 	spinlock_t *ptl;
2593 	pte_t entry;
2594 	pgd_t *pgdp;
2595 	p4d_t *p4dp;
2596 	pud_t *pudp;
2597 	pmd_t *pmdp;
2598 	pte_t *ptep;
2599 
2600 	/* Only allow populating anonymous memory */
2601 	if (!vma_is_anonymous(vma))
2602 		goto abort;
2603 
2604 	pgdp = pgd_offset(mm, addr);
2605 	p4dp = p4d_alloc(mm, pgdp, addr);
2606 	if (!p4dp)
2607 		goto abort;
2608 	pudp = pud_alloc(mm, p4dp, addr);
2609 	if (!pudp)
2610 		goto abort;
2611 	pmdp = pmd_alloc(mm, pudp, addr);
2612 	if (!pmdp)
2613 		goto abort;
2614 
2615 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2616 		goto abort;
2617 
2618 	/*
2619 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2620 	 * pte_offset_map() on pmds where a huge pmd might be created
2621 	 * from a different thread.
2622 	 *
2623 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2624 	 * parallel threads are excluded by other means.
2625 	 *
2626 	 * Here we only have down_read(mmap_sem).
2627 	 */
2628 	if (pte_alloc(mm, pmdp))
2629 		goto abort;
2630 
2631 	/* See the comment in pte_alloc_one_map() */
2632 	if (unlikely(pmd_trans_unstable(pmdp)))
2633 		goto abort;
2634 
2635 	if (unlikely(anon_vma_prepare(vma)))
2636 		goto abort;
2637 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2638 		goto abort;
2639 
2640 	/*
2641 	 * The memory barrier inside __SetPageUptodate makes sure that
2642 	 * preceding stores to the page contents become visible before
2643 	 * the set_pte_at() write.
2644 	 */
2645 	__SetPageUptodate(page);
2646 
2647 	if (is_zone_device_page(page)) {
2648 		if (is_device_private_page(page)) {
2649 			swp_entry_t swp_entry;
2650 
2651 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2652 			entry = swp_entry_to_pte(swp_entry);
2653 		} else if (is_device_public_page(page)) {
2654 			entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2655 			if (vma->vm_flags & VM_WRITE)
2656 				entry = pte_mkwrite(pte_mkdirty(entry));
2657 			entry = pte_mkdevmap(entry);
2658 		}
2659 	} else {
2660 		entry = mk_pte(page, vma->vm_page_prot);
2661 		if (vma->vm_flags & VM_WRITE)
2662 			entry = pte_mkwrite(pte_mkdirty(entry));
2663 	}
2664 
2665 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2666 
2667 	if (pte_present(*ptep)) {
2668 		unsigned long pfn = pte_pfn(*ptep);
2669 
2670 		if (!is_zero_pfn(pfn)) {
2671 			pte_unmap_unlock(ptep, ptl);
2672 			mem_cgroup_cancel_charge(page, memcg, false);
2673 			goto abort;
2674 		}
2675 		flush = true;
2676 	} else if (!pte_none(*ptep)) {
2677 		pte_unmap_unlock(ptep, ptl);
2678 		mem_cgroup_cancel_charge(page, memcg, false);
2679 		goto abort;
2680 	}
2681 
2682 	/*
2683 	 * Check for usefaultfd but do not deliver the fault. Instead,
2684 	 * just back off.
2685 	 */
2686 	if (userfaultfd_missing(vma)) {
2687 		pte_unmap_unlock(ptep, ptl);
2688 		mem_cgroup_cancel_charge(page, memcg, false);
2689 		goto abort;
2690 	}
2691 
2692 	inc_mm_counter(mm, MM_ANONPAGES);
2693 	page_add_new_anon_rmap(page, vma, addr, false);
2694 	mem_cgroup_commit_charge(page, memcg, false, false);
2695 	if (!is_zone_device_page(page))
2696 		lru_cache_add_active_or_unevictable(page, vma);
2697 	get_page(page);
2698 
2699 	if (flush) {
2700 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2701 		ptep_clear_flush_notify(vma, addr, ptep);
2702 		set_pte_at_notify(mm, addr, ptep, entry);
2703 		update_mmu_cache(vma, addr, ptep);
2704 	} else {
2705 		/* No need to invalidate - it was non-present before */
2706 		set_pte_at(mm, addr, ptep, entry);
2707 		update_mmu_cache(vma, addr, ptep);
2708 	}
2709 
2710 	pte_unmap_unlock(ptep, ptl);
2711 	*src = MIGRATE_PFN_MIGRATE;
2712 	return;
2713 
2714 abort:
2715 	*src &= ~MIGRATE_PFN_MIGRATE;
2716 }
2717 
2718 /*
2719  * migrate_vma_pages() - migrate meta-data from src page to dst page
2720  * @migrate: migrate struct containing all migration information
2721  *
2722  * This migrates struct page meta-data from source struct page to destination
2723  * struct page. This effectively finishes the migration from source page to the
2724  * destination page.
2725  */
2726 static void migrate_vma_pages(struct migrate_vma *migrate)
2727 {
2728 	const unsigned long npages = migrate->npages;
2729 	const unsigned long start = migrate->start;
2730 	struct mmu_notifier_range range;
2731 	unsigned long addr, i;
2732 	bool notified = false;
2733 
2734 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2735 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2736 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2737 		struct address_space *mapping;
2738 		int r;
2739 
2740 		if (!newpage) {
2741 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2742 			continue;
2743 		}
2744 
2745 		if (!page) {
2746 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2747 				continue;
2748 			}
2749 			if (!notified) {
2750 				notified = true;
2751 
2752 				mmu_notifier_range_init(&range,
2753 							migrate->vma->vm_mm,
2754 							addr, migrate->end);
2755 				mmu_notifier_invalidate_range_start(&range);
2756 			}
2757 			migrate_vma_insert_page(migrate, addr, newpage,
2758 						&migrate->src[i],
2759 						&migrate->dst[i]);
2760 			continue;
2761 		}
2762 
2763 		mapping = page_mapping(page);
2764 
2765 		if (is_zone_device_page(newpage)) {
2766 			if (is_device_private_page(newpage)) {
2767 				/*
2768 				 * For now only support private anonymous when
2769 				 * migrating to un-addressable device memory.
2770 				 */
2771 				if (mapping) {
2772 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2773 					continue;
2774 				}
2775 			} else if (!is_device_public_page(newpage)) {
2776 				/*
2777 				 * Other types of ZONE_DEVICE page are not
2778 				 * supported.
2779 				 */
2780 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2781 				continue;
2782 			}
2783 		}
2784 
2785 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2786 		if (r != MIGRATEPAGE_SUCCESS)
2787 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2788 	}
2789 
2790 	/*
2791 	 * No need to double call mmu_notifier->invalidate_range() callback as
2792 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2793 	 * did already call it.
2794 	 */
2795 	if (notified)
2796 		mmu_notifier_invalidate_range_only_end(&range);
2797 }
2798 
2799 /*
2800  * migrate_vma_finalize() - restore CPU page table entry
2801  * @migrate: migrate struct containing all migration information
2802  *
2803  * This replaces the special migration pte entry with either a mapping to the
2804  * new page if migration was successful for that page, or to the original page
2805  * otherwise.
2806  *
2807  * This also unlocks the pages and puts them back on the lru, or drops the extra
2808  * refcount, for device pages.
2809  */
2810 static void migrate_vma_finalize(struct migrate_vma *migrate)
2811 {
2812 	const unsigned long npages = migrate->npages;
2813 	unsigned long i;
2814 
2815 	for (i = 0; i < npages; i++) {
2816 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2817 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2818 
2819 		if (!page) {
2820 			if (newpage) {
2821 				unlock_page(newpage);
2822 				put_page(newpage);
2823 			}
2824 			continue;
2825 		}
2826 
2827 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2828 			if (newpage) {
2829 				unlock_page(newpage);
2830 				put_page(newpage);
2831 			}
2832 			newpage = page;
2833 		}
2834 
2835 		remove_migration_ptes(page, newpage, false);
2836 		unlock_page(page);
2837 		migrate->cpages--;
2838 
2839 		if (is_zone_device_page(page))
2840 			put_page(page);
2841 		else
2842 			putback_lru_page(page);
2843 
2844 		if (newpage != page) {
2845 			unlock_page(newpage);
2846 			if (is_zone_device_page(newpage))
2847 				put_page(newpage);
2848 			else
2849 				putback_lru_page(newpage);
2850 		}
2851 	}
2852 }
2853 
2854 /*
2855  * migrate_vma() - migrate a range of memory inside vma
2856  *
2857  * @ops: migration callback for allocating destination memory and copying
2858  * @vma: virtual memory area containing the range to be migrated
2859  * @start: start address of the range to migrate (inclusive)
2860  * @end: end address of the range to migrate (exclusive)
2861  * @src: array of hmm_pfn_t containing source pfns
2862  * @dst: array of hmm_pfn_t containing destination pfns
2863  * @private: pointer passed back to each of the callback
2864  * Returns: 0 on success, error code otherwise
2865  *
2866  * This function tries to migrate a range of memory virtual address range, using
2867  * callbacks to allocate and copy memory from source to destination. First it
2868  * collects all the pages backing each virtual address in the range, saving this
2869  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2870  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2871  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2872  * in the corresponding src array entry. It then restores any pages that are
2873  * pinned, by remapping and unlocking those pages.
2874  *
2875  * At this point it calls the alloc_and_copy() callback. For documentation on
2876  * what is expected from that callback, see struct migrate_vma_ops comments in
2877  * include/linux/migrate.h
2878  *
2879  * After the alloc_and_copy() callback, this function goes over each entry in
2880  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2881  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2882  * then the function tries to migrate struct page information from the source
2883  * struct page to the destination struct page. If it fails to migrate the struct
2884  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2885  * array.
2886  *
2887  * At this point all successfully migrated pages have an entry in the src
2888  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2889  * array entry with MIGRATE_PFN_VALID flag set.
2890  *
2891  * It then calls the finalize_and_map() callback. See comments for "struct
2892  * migrate_vma_ops", in include/linux/migrate.h for details about
2893  * finalize_and_map() behavior.
2894  *
2895  * After the finalize_and_map() callback, for successfully migrated pages, this
2896  * function updates the CPU page table to point to new pages, otherwise it
2897  * restores the CPU page table to point to the original source pages.
2898  *
2899  * Function returns 0 after the above steps, even if no pages were migrated
2900  * (The function only returns an error if any of the arguments are invalid.)
2901  *
2902  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2903  * unsigned long entries.
2904  */
2905 int migrate_vma(const struct migrate_vma_ops *ops,
2906 		struct vm_area_struct *vma,
2907 		unsigned long start,
2908 		unsigned long end,
2909 		unsigned long *src,
2910 		unsigned long *dst,
2911 		void *private)
2912 {
2913 	struct migrate_vma migrate;
2914 
2915 	/* Sanity check the arguments */
2916 	start &= PAGE_MASK;
2917 	end &= PAGE_MASK;
2918 	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2919 			vma_is_dax(vma))
2920 		return -EINVAL;
2921 	if (start < vma->vm_start || start >= vma->vm_end)
2922 		return -EINVAL;
2923 	if (end <= vma->vm_start || end > vma->vm_end)
2924 		return -EINVAL;
2925 	if (!ops || !src || !dst || start >= end)
2926 		return -EINVAL;
2927 
2928 	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2929 	migrate.src = src;
2930 	migrate.dst = dst;
2931 	migrate.start = start;
2932 	migrate.npages = 0;
2933 	migrate.cpages = 0;
2934 	migrate.end = end;
2935 	migrate.vma = vma;
2936 
2937 	/* Collect, and try to unmap source pages */
2938 	migrate_vma_collect(&migrate);
2939 	if (!migrate.cpages)
2940 		return 0;
2941 
2942 	/* Lock and isolate page */
2943 	migrate_vma_prepare(&migrate);
2944 	if (!migrate.cpages)
2945 		return 0;
2946 
2947 	/* Unmap pages */
2948 	migrate_vma_unmap(&migrate);
2949 	if (!migrate.cpages)
2950 		return 0;
2951 
2952 	/*
2953 	 * At this point pages are locked and unmapped, and thus they have
2954 	 * stable content and can safely be copied to destination memory that
2955 	 * is allocated by the callback.
2956 	 *
2957 	 * Note that migration can fail in migrate_vma_struct_page() for each
2958 	 * individual page.
2959 	 */
2960 	ops->alloc_and_copy(vma, src, dst, start, end, private);
2961 
2962 	/* This does the real migration of struct page */
2963 	migrate_vma_pages(&migrate);
2964 
2965 	ops->finalize_and_map(vma, src, dst, start, end, private);
2966 
2967 	/* Unlock and remap pages */
2968 	migrate_vma_finalize(&migrate);
2969 
2970 	return 0;
2971 }
2972 EXPORT_SYMBOL(migrate_vma);
2973 #endif /* defined(MIGRATE_VMA_HELPER) */
2974