1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pfn_t.h> 42 #include <linux/memremap.h> 43 #include <linux/userfaultfd_k.h> 44 #include <linux/balloon_compaction.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/page_idle.h> 47 #include <linux/page_owner.h> 48 #include <linux/sched/mm.h> 49 #include <linux/ptrace.h> 50 51 #include <asm/tlbflush.h> 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/migrate.h> 55 56 #include "internal.h" 57 58 /* 59 * migrate_prep() needs to be called before we start compiling a list of pages 60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 61 * undesirable, use migrate_prep_local() 62 */ 63 int migrate_prep(void) 64 { 65 /* 66 * Clear the LRU lists so pages can be isolated. 67 * Note that pages may be moved off the LRU after we have 68 * drained them. Those pages will fail to migrate like other 69 * pages that may be busy. 70 */ 71 lru_add_drain_all(); 72 73 return 0; 74 } 75 76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 77 int migrate_prep_local(void) 78 { 79 lru_add_drain(); 80 81 return 0; 82 } 83 84 int isolate_movable_page(struct page *page, isolate_mode_t mode) 85 { 86 struct address_space *mapping; 87 88 /* 89 * Avoid burning cycles with pages that are yet under __free_pages(), 90 * or just got freed under us. 91 * 92 * In case we 'win' a race for a movable page being freed under us and 93 * raise its refcount preventing __free_pages() from doing its job 94 * the put_page() at the end of this block will take care of 95 * release this page, thus avoiding a nasty leakage. 96 */ 97 if (unlikely(!get_page_unless_zero(page))) 98 goto out; 99 100 /* 101 * Check PageMovable before holding a PG_lock because page's owner 102 * assumes anybody doesn't touch PG_lock of newly allocated page 103 * so unconditionally grapping the lock ruins page's owner side. 104 */ 105 if (unlikely(!__PageMovable(page))) 106 goto out_putpage; 107 /* 108 * As movable pages are not isolated from LRU lists, concurrent 109 * compaction threads can race against page migration functions 110 * as well as race against the releasing a page. 111 * 112 * In order to avoid having an already isolated movable page 113 * being (wrongly) re-isolated while it is under migration, 114 * or to avoid attempting to isolate pages being released, 115 * lets be sure we have the page lock 116 * before proceeding with the movable page isolation steps. 117 */ 118 if (unlikely(!trylock_page(page))) 119 goto out_putpage; 120 121 if (!PageMovable(page) || PageIsolated(page)) 122 goto out_no_isolated; 123 124 mapping = page_mapping(page); 125 VM_BUG_ON_PAGE(!mapping, page); 126 127 if (!mapping->a_ops->isolate_page(page, mode)) 128 goto out_no_isolated; 129 130 /* Driver shouldn't use PG_isolated bit of page->flags */ 131 WARN_ON_ONCE(PageIsolated(page)); 132 __SetPageIsolated(page); 133 unlock_page(page); 134 135 return 0; 136 137 out_no_isolated: 138 unlock_page(page); 139 out_putpage: 140 put_page(page); 141 out: 142 return -EBUSY; 143 } 144 145 /* It should be called on page which is PG_movable */ 146 void putback_movable_page(struct page *page) 147 { 148 struct address_space *mapping; 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(!PageMovable(page), page); 152 VM_BUG_ON_PAGE(!PageIsolated(page), page); 153 154 mapping = page_mapping(page); 155 mapping->a_ops->putback_page(page); 156 __ClearPageIsolated(page); 157 } 158 159 /* 160 * Put previously isolated pages back onto the appropriate lists 161 * from where they were once taken off for compaction/migration. 162 * 163 * This function shall be used whenever the isolated pageset has been 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 165 * and isolate_huge_page(). 166 */ 167 void putback_movable_pages(struct list_head *l) 168 { 169 struct page *page; 170 struct page *page2; 171 172 list_for_each_entry_safe(page, page2, l, lru) { 173 if (unlikely(PageHuge(page))) { 174 putback_active_hugepage(page); 175 continue; 176 } 177 list_del(&page->lru); 178 /* 179 * We isolated non-lru movable page so here we can use 180 * __PageMovable because LRU page's mapping cannot have 181 * PAGE_MAPPING_MOVABLE. 182 */ 183 if (unlikely(__PageMovable(page))) { 184 VM_BUG_ON_PAGE(!PageIsolated(page), page); 185 lock_page(page); 186 if (PageMovable(page)) 187 putback_movable_page(page); 188 else 189 __ClearPageIsolated(page); 190 unlock_page(page); 191 put_page(page); 192 } else { 193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 194 page_is_file_cache(page), -hpage_nr_pages(page)); 195 putback_lru_page(page); 196 } 197 } 198 } 199 200 /* 201 * Restore a potential migration pte to a working pte entry 202 */ 203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 204 unsigned long addr, void *old) 205 { 206 struct page_vma_mapped_walk pvmw = { 207 .page = old, 208 .vma = vma, 209 .address = addr, 210 .flags = PVMW_SYNC | PVMW_MIGRATION, 211 }; 212 struct page *new; 213 pte_t pte; 214 swp_entry_t entry; 215 216 VM_BUG_ON_PAGE(PageTail(page), page); 217 while (page_vma_mapped_walk(&pvmw)) { 218 if (PageKsm(page)) 219 new = page; 220 else 221 new = page - pvmw.page->index + 222 linear_page_index(vma, pvmw.address); 223 224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 225 /* PMD-mapped THP migration entry */ 226 if (!pvmw.pte) { 227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 228 remove_migration_pmd(&pvmw, new); 229 continue; 230 } 231 #endif 232 233 get_page(new); 234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 235 if (pte_swp_soft_dirty(*pvmw.pte)) 236 pte = pte_mksoft_dirty(pte); 237 238 /* 239 * Recheck VMA as permissions can change since migration started 240 */ 241 entry = pte_to_swp_entry(*pvmw.pte); 242 if (is_write_migration_entry(entry)) 243 pte = maybe_mkwrite(pte, vma); 244 245 if (unlikely(is_zone_device_page(new))) { 246 if (is_device_private_page(new)) { 247 entry = make_device_private_entry(new, pte_write(pte)); 248 pte = swp_entry_to_pte(entry); 249 } else if (is_device_public_page(new)) { 250 pte = pte_mkdevmap(pte); 251 flush_dcache_page(new); 252 } 253 } else 254 flush_dcache_page(new); 255 256 #ifdef CONFIG_HUGETLB_PAGE 257 if (PageHuge(new)) { 258 pte = pte_mkhuge(pte); 259 pte = arch_make_huge_pte(pte, vma, new, 0); 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 261 if (PageAnon(new)) 262 hugepage_add_anon_rmap(new, vma, pvmw.address); 263 else 264 page_dup_rmap(new, true); 265 } else 266 #endif 267 { 268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 269 270 if (PageAnon(new)) 271 page_add_anon_rmap(new, vma, pvmw.address, false); 272 else 273 page_add_file_rmap(new, false); 274 } 275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 276 mlock_vma_page(new); 277 278 if (PageTransHuge(page) && PageMlocked(page)) 279 clear_page_mlock(page); 280 281 /* No need to invalidate - it was non-present before */ 282 update_mmu_cache(vma, pvmw.address, pvmw.pte); 283 } 284 285 return true; 286 } 287 288 /* 289 * Get rid of all migration entries and replace them by 290 * references to the indicated page. 291 */ 292 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 293 { 294 struct rmap_walk_control rwc = { 295 .rmap_one = remove_migration_pte, 296 .arg = old, 297 }; 298 299 if (locked) 300 rmap_walk_locked(new, &rwc); 301 else 302 rmap_walk(new, &rwc); 303 } 304 305 /* 306 * Something used the pte of a page under migration. We need to 307 * get to the page and wait until migration is finished. 308 * When we return from this function the fault will be retried. 309 */ 310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 311 spinlock_t *ptl) 312 { 313 pte_t pte; 314 swp_entry_t entry; 315 struct page *page; 316 317 spin_lock(ptl); 318 pte = *ptep; 319 if (!is_swap_pte(pte)) 320 goto out; 321 322 entry = pte_to_swp_entry(pte); 323 if (!is_migration_entry(entry)) 324 goto out; 325 326 page = migration_entry_to_page(entry); 327 328 /* 329 * Once page cache replacement of page migration started, page_count 330 * is zero; but we must not call put_and_wait_on_page_locked() without 331 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 332 */ 333 if (!get_page_unless_zero(page)) 334 goto out; 335 pte_unmap_unlock(ptep, ptl); 336 put_and_wait_on_page_locked(page); 337 return; 338 out: 339 pte_unmap_unlock(ptep, ptl); 340 } 341 342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 343 unsigned long address) 344 { 345 spinlock_t *ptl = pte_lockptr(mm, pmd); 346 pte_t *ptep = pte_offset_map(pmd, address); 347 __migration_entry_wait(mm, ptep, ptl); 348 } 349 350 void migration_entry_wait_huge(struct vm_area_struct *vma, 351 struct mm_struct *mm, pte_t *pte) 352 { 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 354 __migration_entry_wait(mm, pte, ptl); 355 } 356 357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 359 { 360 spinlock_t *ptl; 361 struct page *page; 362 363 ptl = pmd_lock(mm, pmd); 364 if (!is_pmd_migration_entry(*pmd)) 365 goto unlock; 366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 367 if (!get_page_unless_zero(page)) 368 goto unlock; 369 spin_unlock(ptl); 370 put_and_wait_on_page_locked(page); 371 return; 372 unlock: 373 spin_unlock(ptl); 374 } 375 #endif 376 377 static int expected_page_refs(struct page *page) 378 { 379 int expected_count = 1; 380 381 /* 382 * Device public or private pages have an extra refcount as they are 383 * ZONE_DEVICE pages. 384 */ 385 expected_count += is_device_private_page(page); 386 expected_count += is_device_public_page(page); 387 if (page_mapping(page)) 388 expected_count += hpage_nr_pages(page) + page_has_private(page); 389 390 return expected_count; 391 } 392 393 /* 394 * Replace the page in the mapping. 395 * 396 * The number of remaining references must be: 397 * 1 for anonymous pages without a mapping 398 * 2 for pages with a mapping 399 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 400 */ 401 int migrate_page_move_mapping(struct address_space *mapping, 402 struct page *newpage, struct page *page, enum migrate_mode mode, 403 int extra_count) 404 { 405 XA_STATE(xas, &mapping->i_pages, page_index(page)); 406 struct zone *oldzone, *newzone; 407 int dirty; 408 int expected_count = expected_page_refs(page) + extra_count; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (page_count(page) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newpage->index = page->index; 417 newpage->mapping = page->mapping; 418 if (PageSwapBacked(page)) 419 __SetPageSwapBacked(newpage); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = page_zone(page); 425 newzone = page_zone(newpage); 426 427 xas_lock_irq(&xas); 428 if (page_count(page) != expected_count || xas_load(&xas) != page) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 if (!page_ref_freeze(page, expected_count)) { 434 xas_unlock_irq(&xas); 435 return -EAGAIN; 436 } 437 438 /* 439 * Now we know that no one else is looking at the page: 440 * no turning back from here. 441 */ 442 newpage->index = page->index; 443 newpage->mapping = page->mapping; 444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */ 445 if (PageSwapBacked(page)) { 446 __SetPageSwapBacked(newpage); 447 if (PageSwapCache(page)) { 448 SetPageSwapCache(newpage); 449 set_page_private(newpage, page_private(page)); 450 } 451 } else { 452 VM_BUG_ON_PAGE(PageSwapCache(page), page); 453 } 454 455 /* Move dirty while page refs frozen and newpage not yet exposed */ 456 dirty = PageDirty(page); 457 if (dirty) { 458 ClearPageDirty(page); 459 SetPageDirty(newpage); 460 } 461 462 xas_store(&xas, newpage); 463 if (PageTransHuge(page)) { 464 int i; 465 466 for (i = 1; i < HPAGE_PMD_NR; i++) { 467 xas_next(&xas); 468 xas_store(&xas, newpage + i); 469 } 470 } 471 472 /* 473 * Drop cache reference from old page by unfreezing 474 * to one less reference. 475 * We know this isn't the last reference. 476 */ 477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page)); 478 479 xas_unlock(&xas); 480 /* Leave irq disabled to prevent preemption while updating stats */ 481 482 /* 483 * If moved to a different zone then also account 484 * the page for that zone. Other VM counters will be 485 * taken care of when we establish references to the 486 * new page and drop references to the old page. 487 * 488 * Note that anonymous pages are accounted for 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 490 * are mapped to swap space. 491 */ 492 if (newzone != oldzone) { 493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES); 494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES); 495 if (PageSwapBacked(page) && !PageSwapCache(page)) { 496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM); 497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM); 498 } 499 if (dirty && mapping_cap_account_dirty(mapping)) { 500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 504 } 505 } 506 local_irq_enable(); 507 508 return MIGRATEPAGE_SUCCESS; 509 } 510 EXPORT_SYMBOL(migrate_page_move_mapping); 511 512 /* 513 * The expected number of remaining references is the same as that 514 * of migrate_page_move_mapping(). 515 */ 516 int migrate_huge_page_move_mapping(struct address_space *mapping, 517 struct page *newpage, struct page *page) 518 { 519 XA_STATE(xas, &mapping->i_pages, page_index(page)); 520 int expected_count; 521 522 xas_lock_irq(&xas); 523 expected_count = 2 + page_has_private(page); 524 if (page_count(page) != expected_count || xas_load(&xas) != page) { 525 xas_unlock_irq(&xas); 526 return -EAGAIN; 527 } 528 529 if (!page_ref_freeze(page, expected_count)) { 530 xas_unlock_irq(&xas); 531 return -EAGAIN; 532 } 533 534 newpage->index = page->index; 535 newpage->mapping = page->mapping; 536 537 get_page(newpage); 538 539 xas_store(&xas, newpage); 540 541 page_ref_unfreeze(page, expected_count - 1); 542 543 xas_unlock_irq(&xas); 544 545 return MIGRATEPAGE_SUCCESS; 546 } 547 548 /* 549 * Gigantic pages are so large that we do not guarantee that page++ pointer 550 * arithmetic will work across the entire page. We need something more 551 * specialized. 552 */ 553 static void __copy_gigantic_page(struct page *dst, struct page *src, 554 int nr_pages) 555 { 556 int i; 557 struct page *dst_base = dst; 558 struct page *src_base = src; 559 560 for (i = 0; i < nr_pages; ) { 561 cond_resched(); 562 copy_highpage(dst, src); 563 564 i++; 565 dst = mem_map_next(dst, dst_base, i); 566 src = mem_map_next(src, src_base, i); 567 } 568 } 569 570 static void copy_huge_page(struct page *dst, struct page *src) 571 { 572 int i; 573 int nr_pages; 574 575 if (PageHuge(src)) { 576 /* hugetlbfs page */ 577 struct hstate *h = page_hstate(src); 578 nr_pages = pages_per_huge_page(h); 579 580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 581 __copy_gigantic_page(dst, src, nr_pages); 582 return; 583 } 584 } else { 585 /* thp page */ 586 BUG_ON(!PageTransHuge(src)); 587 nr_pages = hpage_nr_pages(src); 588 } 589 590 for (i = 0; i < nr_pages; i++) { 591 cond_resched(); 592 copy_highpage(dst + i, src + i); 593 } 594 } 595 596 /* 597 * Copy the page to its new location 598 */ 599 void migrate_page_states(struct page *newpage, struct page *page) 600 { 601 int cpupid; 602 603 if (PageError(page)) 604 SetPageError(newpage); 605 if (PageReferenced(page)) 606 SetPageReferenced(newpage); 607 if (PageUptodate(page)) 608 SetPageUptodate(newpage); 609 if (TestClearPageActive(page)) { 610 VM_BUG_ON_PAGE(PageUnevictable(page), page); 611 SetPageActive(newpage); 612 } else if (TestClearPageUnevictable(page)) 613 SetPageUnevictable(newpage); 614 if (PageWorkingset(page)) 615 SetPageWorkingset(newpage); 616 if (PageChecked(page)) 617 SetPageChecked(newpage); 618 if (PageMappedToDisk(page)) 619 SetPageMappedToDisk(newpage); 620 621 /* Move dirty on pages not done by migrate_page_move_mapping() */ 622 if (PageDirty(page)) 623 SetPageDirty(newpage); 624 625 if (page_is_young(page)) 626 set_page_young(newpage); 627 if (page_is_idle(page)) 628 set_page_idle(newpage); 629 630 /* 631 * Copy NUMA information to the new page, to prevent over-eager 632 * future migrations of this same page. 633 */ 634 cpupid = page_cpupid_xchg_last(page, -1); 635 page_cpupid_xchg_last(newpage, cpupid); 636 637 ksm_migrate_page(newpage, page); 638 /* 639 * Please do not reorder this without considering how mm/ksm.c's 640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 641 */ 642 if (PageSwapCache(page)) 643 ClearPageSwapCache(page); 644 ClearPagePrivate(page); 645 set_page_private(page, 0); 646 647 /* 648 * If any waiters have accumulated on the new page then 649 * wake them up. 650 */ 651 if (PageWriteback(newpage)) 652 end_page_writeback(newpage); 653 654 copy_page_owner(page, newpage); 655 656 mem_cgroup_migrate(page, newpage); 657 } 658 EXPORT_SYMBOL(migrate_page_states); 659 660 void migrate_page_copy(struct page *newpage, struct page *page) 661 { 662 if (PageHuge(page) || PageTransHuge(page)) 663 copy_huge_page(newpage, page); 664 else 665 copy_highpage(newpage, page); 666 667 migrate_page_states(newpage, page); 668 } 669 EXPORT_SYMBOL(migrate_page_copy); 670 671 /************************************************************ 672 * Migration functions 673 ***********************************************************/ 674 675 /* 676 * Common logic to directly migrate a single LRU page suitable for 677 * pages that do not use PagePrivate/PagePrivate2. 678 * 679 * Pages are locked upon entry and exit. 680 */ 681 int migrate_page(struct address_space *mapping, 682 struct page *newpage, struct page *page, 683 enum migrate_mode mode) 684 { 685 int rc; 686 687 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 688 689 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0); 690 691 if (rc != MIGRATEPAGE_SUCCESS) 692 return rc; 693 694 if (mode != MIGRATE_SYNC_NO_COPY) 695 migrate_page_copy(newpage, page); 696 else 697 migrate_page_states(newpage, page); 698 return MIGRATEPAGE_SUCCESS; 699 } 700 EXPORT_SYMBOL(migrate_page); 701 702 #ifdef CONFIG_BLOCK 703 /* Returns true if all buffers are successfully locked */ 704 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 705 enum migrate_mode mode) 706 { 707 struct buffer_head *bh = head; 708 709 /* Simple case, sync compaction */ 710 if (mode != MIGRATE_ASYNC) { 711 do { 712 get_bh(bh); 713 lock_buffer(bh); 714 bh = bh->b_this_page; 715 716 } while (bh != head); 717 718 return true; 719 } 720 721 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 722 do { 723 get_bh(bh); 724 if (!trylock_buffer(bh)) { 725 /* 726 * We failed to lock the buffer and cannot stall in 727 * async migration. Release the taken locks 728 */ 729 struct buffer_head *failed_bh = bh; 730 put_bh(failed_bh); 731 bh = head; 732 while (bh != failed_bh) { 733 unlock_buffer(bh); 734 put_bh(bh); 735 bh = bh->b_this_page; 736 } 737 return false; 738 } 739 740 bh = bh->b_this_page; 741 } while (bh != head); 742 return true; 743 } 744 745 static int __buffer_migrate_page(struct address_space *mapping, 746 struct page *newpage, struct page *page, enum migrate_mode mode, 747 bool check_refs) 748 { 749 struct buffer_head *bh, *head; 750 int rc; 751 int expected_count; 752 753 if (!page_has_buffers(page)) 754 return migrate_page(mapping, newpage, page, mode); 755 756 /* Check whether page does not have extra refs before we do more work */ 757 expected_count = expected_page_refs(page); 758 if (page_count(page) != expected_count) 759 return -EAGAIN; 760 761 head = page_buffers(page); 762 if (!buffer_migrate_lock_buffers(head, mode)) 763 return -EAGAIN; 764 765 if (check_refs) { 766 bool busy; 767 bool invalidated = false; 768 769 recheck_buffers: 770 busy = false; 771 spin_lock(&mapping->private_lock); 772 bh = head; 773 do { 774 if (atomic_read(&bh->b_count)) { 775 busy = true; 776 break; 777 } 778 bh = bh->b_this_page; 779 } while (bh != head); 780 spin_unlock(&mapping->private_lock); 781 if (busy) { 782 if (invalidated) { 783 rc = -EAGAIN; 784 goto unlock_buffers; 785 } 786 invalidate_bh_lrus(); 787 invalidated = true; 788 goto recheck_buffers; 789 } 790 } 791 792 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0); 793 if (rc != MIGRATEPAGE_SUCCESS) 794 goto unlock_buffers; 795 796 ClearPagePrivate(page); 797 set_page_private(newpage, page_private(page)); 798 set_page_private(page, 0); 799 put_page(page); 800 get_page(newpage); 801 802 bh = head; 803 do { 804 set_bh_page(bh, newpage, bh_offset(bh)); 805 bh = bh->b_this_page; 806 807 } while (bh != head); 808 809 SetPagePrivate(newpage); 810 811 if (mode != MIGRATE_SYNC_NO_COPY) 812 migrate_page_copy(newpage, page); 813 else 814 migrate_page_states(newpage, page); 815 816 rc = MIGRATEPAGE_SUCCESS; 817 unlock_buffers: 818 bh = head; 819 do { 820 unlock_buffer(bh); 821 put_bh(bh); 822 bh = bh->b_this_page; 823 824 } while (bh != head); 825 826 return rc; 827 } 828 829 /* 830 * Migration function for pages with buffers. This function can only be used 831 * if the underlying filesystem guarantees that no other references to "page" 832 * exist. For example attached buffer heads are accessed only under page lock. 833 */ 834 int buffer_migrate_page(struct address_space *mapping, 835 struct page *newpage, struct page *page, enum migrate_mode mode) 836 { 837 return __buffer_migrate_page(mapping, newpage, page, mode, false); 838 } 839 EXPORT_SYMBOL(buffer_migrate_page); 840 841 /* 842 * Same as above except that this variant is more careful and checks that there 843 * are also no buffer head references. This function is the right one for 844 * mappings where buffer heads are directly looked up and referenced (such as 845 * block device mappings). 846 */ 847 int buffer_migrate_page_norefs(struct address_space *mapping, 848 struct page *newpage, struct page *page, enum migrate_mode mode) 849 { 850 return __buffer_migrate_page(mapping, newpage, page, mode, true); 851 } 852 #endif 853 854 /* 855 * Writeback a page to clean the dirty state 856 */ 857 static int writeout(struct address_space *mapping, struct page *page) 858 { 859 struct writeback_control wbc = { 860 .sync_mode = WB_SYNC_NONE, 861 .nr_to_write = 1, 862 .range_start = 0, 863 .range_end = LLONG_MAX, 864 .for_reclaim = 1 865 }; 866 int rc; 867 868 if (!mapping->a_ops->writepage) 869 /* No write method for the address space */ 870 return -EINVAL; 871 872 if (!clear_page_dirty_for_io(page)) 873 /* Someone else already triggered a write */ 874 return -EAGAIN; 875 876 /* 877 * A dirty page may imply that the underlying filesystem has 878 * the page on some queue. So the page must be clean for 879 * migration. Writeout may mean we loose the lock and the 880 * page state is no longer what we checked for earlier. 881 * At this point we know that the migration attempt cannot 882 * be successful. 883 */ 884 remove_migration_ptes(page, page, false); 885 886 rc = mapping->a_ops->writepage(page, &wbc); 887 888 if (rc != AOP_WRITEPAGE_ACTIVATE) 889 /* unlocked. Relock */ 890 lock_page(page); 891 892 return (rc < 0) ? -EIO : -EAGAIN; 893 } 894 895 /* 896 * Default handling if a filesystem does not provide a migration function. 897 */ 898 static int fallback_migrate_page(struct address_space *mapping, 899 struct page *newpage, struct page *page, enum migrate_mode mode) 900 { 901 if (PageDirty(page)) { 902 /* Only writeback pages in full synchronous migration */ 903 switch (mode) { 904 case MIGRATE_SYNC: 905 case MIGRATE_SYNC_NO_COPY: 906 break; 907 default: 908 return -EBUSY; 909 } 910 return writeout(mapping, page); 911 } 912 913 /* 914 * Buffers may be managed in a filesystem specific way. 915 * We must have no buffers or drop them. 916 */ 917 if (page_has_private(page) && 918 !try_to_release_page(page, GFP_KERNEL)) 919 return -EAGAIN; 920 921 return migrate_page(mapping, newpage, page, mode); 922 } 923 924 /* 925 * Move a page to a newly allocated page 926 * The page is locked and all ptes have been successfully removed. 927 * 928 * The new page will have replaced the old page if this function 929 * is successful. 930 * 931 * Return value: 932 * < 0 - error code 933 * MIGRATEPAGE_SUCCESS - success 934 */ 935 static int move_to_new_page(struct page *newpage, struct page *page, 936 enum migrate_mode mode) 937 { 938 struct address_space *mapping; 939 int rc = -EAGAIN; 940 bool is_lru = !__PageMovable(page); 941 942 VM_BUG_ON_PAGE(!PageLocked(page), page); 943 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 944 945 mapping = page_mapping(page); 946 947 if (likely(is_lru)) { 948 if (!mapping) 949 rc = migrate_page(mapping, newpage, page, mode); 950 else if (mapping->a_ops->migratepage) 951 /* 952 * Most pages have a mapping and most filesystems 953 * provide a migratepage callback. Anonymous pages 954 * are part of swap space which also has its own 955 * migratepage callback. This is the most common path 956 * for page migration. 957 */ 958 rc = mapping->a_ops->migratepage(mapping, newpage, 959 page, mode); 960 else 961 rc = fallback_migrate_page(mapping, newpage, 962 page, mode); 963 } else { 964 /* 965 * In case of non-lru page, it could be released after 966 * isolation step. In that case, we shouldn't try migration. 967 */ 968 VM_BUG_ON_PAGE(!PageIsolated(page), page); 969 if (!PageMovable(page)) { 970 rc = MIGRATEPAGE_SUCCESS; 971 __ClearPageIsolated(page); 972 goto out; 973 } 974 975 rc = mapping->a_ops->migratepage(mapping, newpage, 976 page, mode); 977 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 978 !PageIsolated(page)); 979 } 980 981 /* 982 * When successful, old pagecache page->mapping must be cleared before 983 * page is freed; but stats require that PageAnon be left as PageAnon. 984 */ 985 if (rc == MIGRATEPAGE_SUCCESS) { 986 if (__PageMovable(page)) { 987 VM_BUG_ON_PAGE(!PageIsolated(page), page); 988 989 /* 990 * We clear PG_movable under page_lock so any compactor 991 * cannot try to migrate this page. 992 */ 993 __ClearPageIsolated(page); 994 } 995 996 /* 997 * Anonymous and movable page->mapping will be cleard by 998 * free_pages_prepare so don't reset it here for keeping 999 * the type to work PageAnon, for example. 1000 */ 1001 if (!PageMappingFlags(page)) 1002 page->mapping = NULL; 1003 } 1004 out: 1005 return rc; 1006 } 1007 1008 static int __unmap_and_move(struct page *page, struct page *newpage, 1009 int force, enum migrate_mode mode) 1010 { 1011 int rc = -EAGAIN; 1012 int page_was_mapped = 0; 1013 struct anon_vma *anon_vma = NULL; 1014 bool is_lru = !__PageMovable(page); 1015 1016 if (!trylock_page(page)) { 1017 if (!force || mode == MIGRATE_ASYNC) 1018 goto out; 1019 1020 /* 1021 * It's not safe for direct compaction to call lock_page. 1022 * For example, during page readahead pages are added locked 1023 * to the LRU. Later, when the IO completes the pages are 1024 * marked uptodate and unlocked. However, the queueing 1025 * could be merging multiple pages for one bio (e.g. 1026 * mpage_readpages). If an allocation happens for the 1027 * second or third page, the process can end up locking 1028 * the same page twice and deadlocking. Rather than 1029 * trying to be clever about what pages can be locked, 1030 * avoid the use of lock_page for direct compaction 1031 * altogether. 1032 */ 1033 if (current->flags & PF_MEMALLOC) 1034 goto out; 1035 1036 lock_page(page); 1037 } 1038 1039 if (PageWriteback(page)) { 1040 /* 1041 * Only in the case of a full synchronous migration is it 1042 * necessary to wait for PageWriteback. In the async case, 1043 * the retry loop is too short and in the sync-light case, 1044 * the overhead of stalling is too much 1045 */ 1046 switch (mode) { 1047 case MIGRATE_SYNC: 1048 case MIGRATE_SYNC_NO_COPY: 1049 break; 1050 default: 1051 rc = -EBUSY; 1052 goto out_unlock; 1053 } 1054 if (!force) 1055 goto out_unlock; 1056 wait_on_page_writeback(page); 1057 } 1058 1059 /* 1060 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1061 * we cannot notice that anon_vma is freed while we migrates a page. 1062 * This get_anon_vma() delays freeing anon_vma pointer until the end 1063 * of migration. File cache pages are no problem because of page_lock() 1064 * File Caches may use write_page() or lock_page() in migration, then, 1065 * just care Anon page here. 1066 * 1067 * Only page_get_anon_vma() understands the subtleties of 1068 * getting a hold on an anon_vma from outside one of its mms. 1069 * But if we cannot get anon_vma, then we won't need it anyway, 1070 * because that implies that the anon page is no longer mapped 1071 * (and cannot be remapped so long as we hold the page lock). 1072 */ 1073 if (PageAnon(page) && !PageKsm(page)) 1074 anon_vma = page_get_anon_vma(page); 1075 1076 /* 1077 * Block others from accessing the new page when we get around to 1078 * establishing additional references. We are usually the only one 1079 * holding a reference to newpage at this point. We used to have a BUG 1080 * here if trylock_page(newpage) fails, but would like to allow for 1081 * cases where there might be a race with the previous use of newpage. 1082 * This is much like races on refcount of oldpage: just don't BUG(). 1083 */ 1084 if (unlikely(!trylock_page(newpage))) 1085 goto out_unlock; 1086 1087 if (unlikely(!is_lru)) { 1088 rc = move_to_new_page(newpage, page, mode); 1089 goto out_unlock_both; 1090 } 1091 1092 /* 1093 * Corner case handling: 1094 * 1. When a new swap-cache page is read into, it is added to the LRU 1095 * and treated as swapcache but it has no rmap yet. 1096 * Calling try_to_unmap() against a page->mapping==NULL page will 1097 * trigger a BUG. So handle it here. 1098 * 2. An orphaned page (see truncate_complete_page) might have 1099 * fs-private metadata. The page can be picked up due to memory 1100 * offlining. Everywhere else except page reclaim, the page is 1101 * invisible to the vm, so the page can not be migrated. So try to 1102 * free the metadata, so the page can be freed. 1103 */ 1104 if (!page->mapping) { 1105 VM_BUG_ON_PAGE(PageAnon(page), page); 1106 if (page_has_private(page)) { 1107 try_to_free_buffers(page); 1108 goto out_unlock_both; 1109 } 1110 } else if (page_mapped(page)) { 1111 /* Establish migration ptes */ 1112 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1113 page); 1114 try_to_unmap(page, 1115 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1116 page_was_mapped = 1; 1117 } 1118 1119 if (!page_mapped(page)) 1120 rc = move_to_new_page(newpage, page, mode); 1121 1122 if (page_was_mapped) 1123 remove_migration_ptes(page, 1124 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1125 1126 out_unlock_both: 1127 unlock_page(newpage); 1128 out_unlock: 1129 /* Drop an anon_vma reference if we took one */ 1130 if (anon_vma) 1131 put_anon_vma(anon_vma); 1132 unlock_page(page); 1133 out: 1134 /* 1135 * If migration is successful, decrease refcount of the newpage 1136 * which will not free the page because new page owner increased 1137 * refcounter. As well, if it is LRU page, add the page to LRU 1138 * list in here. 1139 */ 1140 if (rc == MIGRATEPAGE_SUCCESS) { 1141 if (unlikely(__PageMovable(newpage))) 1142 put_page(newpage); 1143 else 1144 putback_lru_page(newpage); 1145 } 1146 1147 return rc; 1148 } 1149 1150 /* 1151 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work 1152 * around it. 1153 */ 1154 #if defined(CONFIG_ARM) && \ 1155 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700 1156 #define ICE_noinline noinline 1157 #else 1158 #define ICE_noinline 1159 #endif 1160 1161 /* 1162 * Obtain the lock on page, remove all ptes and migrate the page 1163 * to the newly allocated page in newpage. 1164 */ 1165 static ICE_noinline int unmap_and_move(new_page_t get_new_page, 1166 free_page_t put_new_page, 1167 unsigned long private, struct page *page, 1168 int force, enum migrate_mode mode, 1169 enum migrate_reason reason) 1170 { 1171 int rc = MIGRATEPAGE_SUCCESS; 1172 struct page *newpage; 1173 1174 if (!thp_migration_supported() && PageTransHuge(page)) 1175 return -ENOMEM; 1176 1177 newpage = get_new_page(page, private); 1178 if (!newpage) 1179 return -ENOMEM; 1180 1181 if (page_count(page) == 1) { 1182 /* page was freed from under us. So we are done. */ 1183 ClearPageActive(page); 1184 ClearPageUnevictable(page); 1185 if (unlikely(__PageMovable(page))) { 1186 lock_page(page); 1187 if (!PageMovable(page)) 1188 __ClearPageIsolated(page); 1189 unlock_page(page); 1190 } 1191 if (put_new_page) 1192 put_new_page(newpage, private); 1193 else 1194 put_page(newpage); 1195 goto out; 1196 } 1197 1198 rc = __unmap_and_move(page, newpage, force, mode); 1199 if (rc == MIGRATEPAGE_SUCCESS) 1200 set_page_owner_migrate_reason(newpage, reason); 1201 1202 out: 1203 if (rc != -EAGAIN) { 1204 /* 1205 * A page that has been migrated has all references 1206 * removed and will be freed. A page that has not been 1207 * migrated will have kepts its references and be 1208 * restored. 1209 */ 1210 list_del(&page->lru); 1211 1212 /* 1213 * Compaction can migrate also non-LRU pages which are 1214 * not accounted to NR_ISOLATED_*. They can be recognized 1215 * as __PageMovable 1216 */ 1217 if (likely(!__PageMovable(page))) 1218 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1219 page_is_file_cache(page), -hpage_nr_pages(page)); 1220 } 1221 1222 /* 1223 * If migration is successful, releases reference grabbed during 1224 * isolation. Otherwise, restore the page to right list unless 1225 * we want to retry. 1226 */ 1227 if (rc == MIGRATEPAGE_SUCCESS) { 1228 put_page(page); 1229 if (reason == MR_MEMORY_FAILURE) { 1230 /* 1231 * Set PG_HWPoison on just freed page 1232 * intentionally. Although it's rather weird, 1233 * it's how HWPoison flag works at the moment. 1234 */ 1235 if (set_hwpoison_free_buddy_page(page)) 1236 num_poisoned_pages_inc(); 1237 } 1238 } else { 1239 if (rc != -EAGAIN) { 1240 if (likely(!__PageMovable(page))) { 1241 putback_lru_page(page); 1242 goto put_new; 1243 } 1244 1245 lock_page(page); 1246 if (PageMovable(page)) 1247 putback_movable_page(page); 1248 else 1249 __ClearPageIsolated(page); 1250 unlock_page(page); 1251 put_page(page); 1252 } 1253 put_new: 1254 if (put_new_page) 1255 put_new_page(newpage, private); 1256 else 1257 put_page(newpage); 1258 } 1259 1260 return rc; 1261 } 1262 1263 /* 1264 * Counterpart of unmap_and_move_page() for hugepage migration. 1265 * 1266 * This function doesn't wait the completion of hugepage I/O 1267 * because there is no race between I/O and migration for hugepage. 1268 * Note that currently hugepage I/O occurs only in direct I/O 1269 * where no lock is held and PG_writeback is irrelevant, 1270 * and writeback status of all subpages are counted in the reference 1271 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1272 * under direct I/O, the reference of the head page is 512 and a bit more.) 1273 * This means that when we try to migrate hugepage whose subpages are 1274 * doing direct I/O, some references remain after try_to_unmap() and 1275 * hugepage migration fails without data corruption. 1276 * 1277 * There is also no race when direct I/O is issued on the page under migration, 1278 * because then pte is replaced with migration swap entry and direct I/O code 1279 * will wait in the page fault for migration to complete. 1280 */ 1281 static int unmap_and_move_huge_page(new_page_t get_new_page, 1282 free_page_t put_new_page, unsigned long private, 1283 struct page *hpage, int force, 1284 enum migrate_mode mode, int reason) 1285 { 1286 int rc = -EAGAIN; 1287 int page_was_mapped = 0; 1288 struct page *new_hpage; 1289 struct anon_vma *anon_vma = NULL; 1290 1291 /* 1292 * Movability of hugepages depends on architectures and hugepage size. 1293 * This check is necessary because some callers of hugepage migration 1294 * like soft offline and memory hotremove don't walk through page 1295 * tables or check whether the hugepage is pmd-based or not before 1296 * kicking migration. 1297 */ 1298 if (!hugepage_migration_supported(page_hstate(hpage))) { 1299 putback_active_hugepage(hpage); 1300 return -ENOSYS; 1301 } 1302 1303 new_hpage = get_new_page(hpage, private); 1304 if (!new_hpage) 1305 return -ENOMEM; 1306 1307 if (!trylock_page(hpage)) { 1308 if (!force) 1309 goto out; 1310 switch (mode) { 1311 case MIGRATE_SYNC: 1312 case MIGRATE_SYNC_NO_COPY: 1313 break; 1314 default: 1315 goto out; 1316 } 1317 lock_page(hpage); 1318 } 1319 1320 if (PageAnon(hpage)) 1321 anon_vma = page_get_anon_vma(hpage); 1322 1323 if (unlikely(!trylock_page(new_hpage))) 1324 goto put_anon; 1325 1326 if (page_mapped(hpage)) { 1327 try_to_unmap(hpage, 1328 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1329 page_was_mapped = 1; 1330 } 1331 1332 if (!page_mapped(hpage)) 1333 rc = move_to_new_page(new_hpage, hpage, mode); 1334 1335 if (page_was_mapped) 1336 remove_migration_ptes(hpage, 1337 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false); 1338 1339 unlock_page(new_hpage); 1340 1341 put_anon: 1342 if (anon_vma) 1343 put_anon_vma(anon_vma); 1344 1345 if (rc == MIGRATEPAGE_SUCCESS) { 1346 move_hugetlb_state(hpage, new_hpage, reason); 1347 put_new_page = NULL; 1348 } 1349 1350 unlock_page(hpage); 1351 out: 1352 if (rc != -EAGAIN) 1353 putback_active_hugepage(hpage); 1354 1355 /* 1356 * If migration was not successful and there's a freeing callback, use 1357 * it. Otherwise, put_page() will drop the reference grabbed during 1358 * isolation. 1359 */ 1360 if (put_new_page) 1361 put_new_page(new_hpage, private); 1362 else 1363 putback_active_hugepage(new_hpage); 1364 1365 return rc; 1366 } 1367 1368 /* 1369 * migrate_pages - migrate the pages specified in a list, to the free pages 1370 * supplied as the target for the page migration 1371 * 1372 * @from: The list of pages to be migrated. 1373 * @get_new_page: The function used to allocate free pages to be used 1374 * as the target of the page migration. 1375 * @put_new_page: The function used to free target pages if migration 1376 * fails, or NULL if no special handling is necessary. 1377 * @private: Private data to be passed on to get_new_page() 1378 * @mode: The migration mode that specifies the constraints for 1379 * page migration, if any. 1380 * @reason: The reason for page migration. 1381 * 1382 * The function returns after 10 attempts or if no pages are movable any more 1383 * because the list has become empty or no retryable pages exist any more. 1384 * The caller should call putback_movable_pages() to return pages to the LRU 1385 * or free list only if ret != 0. 1386 * 1387 * Returns the number of pages that were not migrated, or an error code. 1388 */ 1389 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1390 free_page_t put_new_page, unsigned long private, 1391 enum migrate_mode mode, int reason) 1392 { 1393 int retry = 1; 1394 int nr_failed = 0; 1395 int nr_succeeded = 0; 1396 int pass = 0; 1397 struct page *page; 1398 struct page *page2; 1399 int swapwrite = current->flags & PF_SWAPWRITE; 1400 int rc; 1401 1402 if (!swapwrite) 1403 current->flags |= PF_SWAPWRITE; 1404 1405 for(pass = 0; pass < 10 && retry; pass++) { 1406 retry = 0; 1407 1408 list_for_each_entry_safe(page, page2, from, lru) { 1409 retry: 1410 cond_resched(); 1411 1412 if (PageHuge(page)) 1413 rc = unmap_and_move_huge_page(get_new_page, 1414 put_new_page, private, page, 1415 pass > 2, mode, reason); 1416 else 1417 rc = unmap_and_move(get_new_page, put_new_page, 1418 private, page, pass > 2, mode, 1419 reason); 1420 1421 switch(rc) { 1422 case -ENOMEM: 1423 /* 1424 * THP migration might be unsupported or the 1425 * allocation could've failed so we should 1426 * retry on the same page with the THP split 1427 * to base pages. 1428 * 1429 * Head page is retried immediately and tail 1430 * pages are added to the tail of the list so 1431 * we encounter them after the rest of the list 1432 * is processed. 1433 */ 1434 if (PageTransHuge(page) && !PageHuge(page)) { 1435 lock_page(page); 1436 rc = split_huge_page_to_list(page, from); 1437 unlock_page(page); 1438 if (!rc) { 1439 list_safe_reset_next(page, page2, lru); 1440 goto retry; 1441 } 1442 } 1443 nr_failed++; 1444 goto out; 1445 case -EAGAIN: 1446 retry++; 1447 break; 1448 case MIGRATEPAGE_SUCCESS: 1449 nr_succeeded++; 1450 break; 1451 default: 1452 /* 1453 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1454 * unlike -EAGAIN case, the failed page is 1455 * removed from migration page list and not 1456 * retried in the next outer loop. 1457 */ 1458 nr_failed++; 1459 break; 1460 } 1461 } 1462 } 1463 nr_failed += retry; 1464 rc = nr_failed; 1465 out: 1466 if (nr_succeeded) 1467 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1468 if (nr_failed) 1469 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1470 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1471 1472 if (!swapwrite) 1473 current->flags &= ~PF_SWAPWRITE; 1474 1475 return rc; 1476 } 1477 1478 #ifdef CONFIG_NUMA 1479 1480 static int store_status(int __user *status, int start, int value, int nr) 1481 { 1482 while (nr-- > 0) { 1483 if (put_user(value, status + start)) 1484 return -EFAULT; 1485 start++; 1486 } 1487 1488 return 0; 1489 } 1490 1491 static int do_move_pages_to_node(struct mm_struct *mm, 1492 struct list_head *pagelist, int node) 1493 { 1494 int err; 1495 1496 if (list_empty(pagelist)) 1497 return 0; 1498 1499 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node, 1500 MIGRATE_SYNC, MR_SYSCALL); 1501 if (err) 1502 putback_movable_pages(pagelist); 1503 return err; 1504 } 1505 1506 /* 1507 * Resolves the given address to a struct page, isolates it from the LRU and 1508 * puts it to the given pagelist. 1509 * Returns -errno if the page cannot be found/isolated or 0 when it has been 1510 * queued or the page doesn't need to be migrated because it is already on 1511 * the target node 1512 */ 1513 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1514 int node, struct list_head *pagelist, bool migrate_all) 1515 { 1516 struct vm_area_struct *vma; 1517 struct page *page; 1518 unsigned int follflags; 1519 int err; 1520 1521 down_read(&mm->mmap_sem); 1522 err = -EFAULT; 1523 vma = find_vma(mm, addr); 1524 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1525 goto out; 1526 1527 /* FOLL_DUMP to ignore special (like zero) pages */ 1528 follflags = FOLL_GET | FOLL_DUMP; 1529 page = follow_page(vma, addr, follflags); 1530 1531 err = PTR_ERR(page); 1532 if (IS_ERR(page)) 1533 goto out; 1534 1535 err = -ENOENT; 1536 if (!page) 1537 goto out; 1538 1539 err = 0; 1540 if (page_to_nid(page) == node) 1541 goto out_putpage; 1542 1543 err = -EACCES; 1544 if (page_mapcount(page) > 1 && !migrate_all) 1545 goto out_putpage; 1546 1547 if (PageHuge(page)) { 1548 if (PageHead(page)) { 1549 isolate_huge_page(page, pagelist); 1550 err = 0; 1551 } 1552 } else { 1553 struct page *head; 1554 1555 head = compound_head(page); 1556 err = isolate_lru_page(head); 1557 if (err) 1558 goto out_putpage; 1559 1560 err = 0; 1561 list_add_tail(&head->lru, pagelist); 1562 mod_node_page_state(page_pgdat(head), 1563 NR_ISOLATED_ANON + page_is_file_cache(head), 1564 hpage_nr_pages(head)); 1565 } 1566 out_putpage: 1567 /* 1568 * Either remove the duplicate refcount from 1569 * isolate_lru_page() or drop the page ref if it was 1570 * not isolated. 1571 */ 1572 put_page(page); 1573 out: 1574 up_read(&mm->mmap_sem); 1575 return err; 1576 } 1577 1578 /* 1579 * Migrate an array of page address onto an array of nodes and fill 1580 * the corresponding array of status. 1581 */ 1582 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1583 unsigned long nr_pages, 1584 const void __user * __user *pages, 1585 const int __user *nodes, 1586 int __user *status, int flags) 1587 { 1588 int current_node = NUMA_NO_NODE; 1589 LIST_HEAD(pagelist); 1590 int start, i; 1591 int err = 0, err1; 1592 1593 migrate_prep(); 1594 1595 for (i = start = 0; i < nr_pages; i++) { 1596 const void __user *p; 1597 unsigned long addr; 1598 int node; 1599 1600 err = -EFAULT; 1601 if (get_user(p, pages + i)) 1602 goto out_flush; 1603 if (get_user(node, nodes + i)) 1604 goto out_flush; 1605 addr = (unsigned long)p; 1606 1607 err = -ENODEV; 1608 if (node < 0 || node >= MAX_NUMNODES) 1609 goto out_flush; 1610 if (!node_state(node, N_MEMORY)) 1611 goto out_flush; 1612 1613 err = -EACCES; 1614 if (!node_isset(node, task_nodes)) 1615 goto out_flush; 1616 1617 if (current_node == NUMA_NO_NODE) { 1618 current_node = node; 1619 start = i; 1620 } else if (node != current_node) { 1621 err = do_move_pages_to_node(mm, &pagelist, current_node); 1622 if (err) 1623 goto out; 1624 err = store_status(status, start, current_node, i - start); 1625 if (err) 1626 goto out; 1627 start = i; 1628 current_node = node; 1629 } 1630 1631 /* 1632 * Errors in the page lookup or isolation are not fatal and we simply 1633 * report them via status 1634 */ 1635 err = add_page_for_migration(mm, addr, current_node, 1636 &pagelist, flags & MPOL_MF_MOVE_ALL); 1637 if (!err) 1638 continue; 1639 1640 err = store_status(status, i, err, 1); 1641 if (err) 1642 goto out_flush; 1643 1644 err = do_move_pages_to_node(mm, &pagelist, current_node); 1645 if (err) 1646 goto out; 1647 if (i > start) { 1648 err = store_status(status, start, current_node, i - start); 1649 if (err) 1650 goto out; 1651 } 1652 current_node = NUMA_NO_NODE; 1653 } 1654 out_flush: 1655 if (list_empty(&pagelist)) 1656 return err; 1657 1658 /* Make sure we do not overwrite the existing error */ 1659 err1 = do_move_pages_to_node(mm, &pagelist, current_node); 1660 if (!err1) 1661 err1 = store_status(status, start, current_node, i - start); 1662 if (!err) 1663 err = err1; 1664 out: 1665 return err; 1666 } 1667 1668 /* 1669 * Determine the nodes of an array of pages and store it in an array of status. 1670 */ 1671 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1672 const void __user **pages, int *status) 1673 { 1674 unsigned long i; 1675 1676 down_read(&mm->mmap_sem); 1677 1678 for (i = 0; i < nr_pages; i++) { 1679 unsigned long addr = (unsigned long)(*pages); 1680 struct vm_area_struct *vma; 1681 struct page *page; 1682 int err = -EFAULT; 1683 1684 vma = find_vma(mm, addr); 1685 if (!vma || addr < vma->vm_start) 1686 goto set_status; 1687 1688 /* FOLL_DUMP to ignore special (like zero) pages */ 1689 page = follow_page(vma, addr, FOLL_DUMP); 1690 1691 err = PTR_ERR(page); 1692 if (IS_ERR(page)) 1693 goto set_status; 1694 1695 err = page ? page_to_nid(page) : -ENOENT; 1696 set_status: 1697 *status = err; 1698 1699 pages++; 1700 status++; 1701 } 1702 1703 up_read(&mm->mmap_sem); 1704 } 1705 1706 /* 1707 * Determine the nodes of a user array of pages and store it in 1708 * a user array of status. 1709 */ 1710 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1711 const void __user * __user *pages, 1712 int __user *status) 1713 { 1714 #define DO_PAGES_STAT_CHUNK_NR 16 1715 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1716 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1717 1718 while (nr_pages) { 1719 unsigned long chunk_nr; 1720 1721 chunk_nr = nr_pages; 1722 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1723 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1724 1725 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1726 break; 1727 1728 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1729 1730 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1731 break; 1732 1733 pages += chunk_nr; 1734 status += chunk_nr; 1735 nr_pages -= chunk_nr; 1736 } 1737 return nr_pages ? -EFAULT : 0; 1738 } 1739 1740 /* 1741 * Move a list of pages in the address space of the currently executing 1742 * process. 1743 */ 1744 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1745 const void __user * __user *pages, 1746 const int __user *nodes, 1747 int __user *status, int flags) 1748 { 1749 struct task_struct *task; 1750 struct mm_struct *mm; 1751 int err; 1752 nodemask_t task_nodes; 1753 1754 /* Check flags */ 1755 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1756 return -EINVAL; 1757 1758 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1759 return -EPERM; 1760 1761 /* Find the mm_struct */ 1762 rcu_read_lock(); 1763 task = pid ? find_task_by_vpid(pid) : current; 1764 if (!task) { 1765 rcu_read_unlock(); 1766 return -ESRCH; 1767 } 1768 get_task_struct(task); 1769 1770 /* 1771 * Check if this process has the right to modify the specified 1772 * process. Use the regular "ptrace_may_access()" checks. 1773 */ 1774 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1775 rcu_read_unlock(); 1776 err = -EPERM; 1777 goto out; 1778 } 1779 rcu_read_unlock(); 1780 1781 err = security_task_movememory(task); 1782 if (err) 1783 goto out; 1784 1785 task_nodes = cpuset_mems_allowed(task); 1786 mm = get_task_mm(task); 1787 put_task_struct(task); 1788 1789 if (!mm) 1790 return -EINVAL; 1791 1792 if (nodes) 1793 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1794 nodes, status, flags); 1795 else 1796 err = do_pages_stat(mm, nr_pages, pages, status); 1797 1798 mmput(mm); 1799 return err; 1800 1801 out: 1802 put_task_struct(task); 1803 return err; 1804 } 1805 1806 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1807 const void __user * __user *, pages, 1808 const int __user *, nodes, 1809 int __user *, status, int, flags) 1810 { 1811 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1812 } 1813 1814 #ifdef CONFIG_COMPAT 1815 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1816 compat_uptr_t __user *, pages32, 1817 const int __user *, nodes, 1818 int __user *, status, 1819 int, flags) 1820 { 1821 const void __user * __user *pages; 1822 int i; 1823 1824 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1825 for (i = 0; i < nr_pages; i++) { 1826 compat_uptr_t p; 1827 1828 if (get_user(p, pages32 + i) || 1829 put_user(compat_ptr(p), pages + i)) 1830 return -EFAULT; 1831 } 1832 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1833 } 1834 #endif /* CONFIG_COMPAT */ 1835 1836 #ifdef CONFIG_NUMA_BALANCING 1837 /* 1838 * Returns true if this is a safe migration target node for misplaced NUMA 1839 * pages. Currently it only checks the watermarks which crude 1840 */ 1841 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1842 unsigned long nr_migrate_pages) 1843 { 1844 int z; 1845 1846 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1847 struct zone *zone = pgdat->node_zones + z; 1848 1849 if (!populated_zone(zone)) 1850 continue; 1851 1852 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1853 if (!zone_watermark_ok(zone, 0, 1854 high_wmark_pages(zone) + 1855 nr_migrate_pages, 1856 0, 0)) 1857 continue; 1858 return true; 1859 } 1860 return false; 1861 } 1862 1863 static struct page *alloc_misplaced_dst_page(struct page *page, 1864 unsigned long data) 1865 { 1866 int nid = (int) data; 1867 struct page *newpage; 1868 1869 newpage = __alloc_pages_node(nid, 1870 (GFP_HIGHUSER_MOVABLE | 1871 __GFP_THISNODE | __GFP_NOMEMALLOC | 1872 __GFP_NORETRY | __GFP_NOWARN) & 1873 ~__GFP_RECLAIM, 0); 1874 1875 return newpage; 1876 } 1877 1878 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1879 { 1880 int page_lru; 1881 1882 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 1883 1884 /* Avoid migrating to a node that is nearly full */ 1885 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) 1886 return 0; 1887 1888 if (isolate_lru_page(page)) 1889 return 0; 1890 1891 /* 1892 * migrate_misplaced_transhuge_page() skips page migration's usual 1893 * check on page_count(), so we must do it here, now that the page 1894 * has been isolated: a GUP pin, or any other pin, prevents migration. 1895 * The expected page count is 3: 1 for page's mapcount and 1 for the 1896 * caller's pin and 1 for the reference taken by isolate_lru_page(). 1897 */ 1898 if (PageTransHuge(page) && page_count(page) != 3) { 1899 putback_lru_page(page); 1900 return 0; 1901 } 1902 1903 page_lru = page_is_file_cache(page); 1904 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 1905 hpage_nr_pages(page)); 1906 1907 /* 1908 * Isolating the page has taken another reference, so the 1909 * caller's reference can be safely dropped without the page 1910 * disappearing underneath us during migration. 1911 */ 1912 put_page(page); 1913 return 1; 1914 } 1915 1916 bool pmd_trans_migrating(pmd_t pmd) 1917 { 1918 struct page *page = pmd_page(pmd); 1919 return PageLocked(page); 1920 } 1921 1922 /* 1923 * Attempt to migrate a misplaced page to the specified destination 1924 * node. Caller is expected to have an elevated reference count on 1925 * the page that will be dropped by this function before returning. 1926 */ 1927 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 1928 int node) 1929 { 1930 pg_data_t *pgdat = NODE_DATA(node); 1931 int isolated; 1932 int nr_remaining; 1933 LIST_HEAD(migratepages); 1934 1935 /* 1936 * Don't migrate file pages that are mapped in multiple processes 1937 * with execute permissions as they are probably shared libraries. 1938 */ 1939 if (page_mapcount(page) != 1 && page_is_file_cache(page) && 1940 (vma->vm_flags & VM_EXEC)) 1941 goto out; 1942 1943 /* 1944 * Also do not migrate dirty pages as not all filesystems can move 1945 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 1946 */ 1947 if (page_is_file_cache(page) && PageDirty(page)) 1948 goto out; 1949 1950 isolated = numamigrate_isolate_page(pgdat, page); 1951 if (!isolated) 1952 goto out; 1953 1954 list_add(&page->lru, &migratepages); 1955 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 1956 NULL, node, MIGRATE_ASYNC, 1957 MR_NUMA_MISPLACED); 1958 if (nr_remaining) { 1959 if (!list_empty(&migratepages)) { 1960 list_del(&page->lru); 1961 dec_node_page_state(page, NR_ISOLATED_ANON + 1962 page_is_file_cache(page)); 1963 putback_lru_page(page); 1964 } 1965 isolated = 0; 1966 } else 1967 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1968 BUG_ON(!list_empty(&migratepages)); 1969 return isolated; 1970 1971 out: 1972 put_page(page); 1973 return 0; 1974 } 1975 #endif /* CONFIG_NUMA_BALANCING */ 1976 1977 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1978 /* 1979 * Migrates a THP to a given target node. page must be locked and is unlocked 1980 * before returning. 1981 */ 1982 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1983 struct vm_area_struct *vma, 1984 pmd_t *pmd, pmd_t entry, 1985 unsigned long address, 1986 struct page *page, int node) 1987 { 1988 spinlock_t *ptl; 1989 pg_data_t *pgdat = NODE_DATA(node); 1990 int isolated = 0; 1991 struct page *new_page = NULL; 1992 int page_lru = page_is_file_cache(page); 1993 unsigned long start = address & HPAGE_PMD_MASK; 1994 1995 new_page = alloc_pages_node(node, 1996 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 1997 HPAGE_PMD_ORDER); 1998 if (!new_page) 1999 goto out_fail; 2000 prep_transhuge_page(new_page); 2001 2002 isolated = numamigrate_isolate_page(pgdat, page); 2003 if (!isolated) { 2004 put_page(new_page); 2005 goto out_fail; 2006 } 2007 2008 /* Prepare a page as a migration target */ 2009 __SetPageLocked(new_page); 2010 if (PageSwapBacked(page)) 2011 __SetPageSwapBacked(new_page); 2012 2013 /* anon mapping, we can simply copy page->mapping to the new page: */ 2014 new_page->mapping = page->mapping; 2015 new_page->index = page->index; 2016 /* flush the cache before copying using the kernel virtual address */ 2017 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2018 migrate_page_copy(new_page, page); 2019 WARN_ON(PageLRU(new_page)); 2020 2021 /* Recheck the target PMD */ 2022 ptl = pmd_lock(mm, pmd); 2023 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2024 spin_unlock(ptl); 2025 2026 /* Reverse changes made by migrate_page_copy() */ 2027 if (TestClearPageActive(new_page)) 2028 SetPageActive(page); 2029 if (TestClearPageUnevictable(new_page)) 2030 SetPageUnevictable(page); 2031 2032 unlock_page(new_page); 2033 put_page(new_page); /* Free it */ 2034 2035 /* Retake the callers reference and putback on LRU */ 2036 get_page(page); 2037 putback_lru_page(page); 2038 mod_node_page_state(page_pgdat(page), 2039 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2040 2041 goto out_unlock; 2042 } 2043 2044 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2045 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2046 2047 /* 2048 * Overwrite the old entry under pagetable lock and establish 2049 * the new PTE. Any parallel GUP will either observe the old 2050 * page blocking on the page lock, block on the page table 2051 * lock or observe the new page. The SetPageUptodate on the 2052 * new page and page_add_new_anon_rmap guarantee the copy is 2053 * visible before the pagetable update. 2054 */ 2055 page_add_anon_rmap(new_page, vma, start, true); 2056 /* 2057 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2058 * has already been flushed globally. So no TLB can be currently 2059 * caching this non present pmd mapping. There's no need to clear the 2060 * pmd before doing set_pmd_at(), nor to flush the TLB after 2061 * set_pmd_at(). Clearing the pmd here would introduce a race 2062 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2063 * mmap_sem for reading. If the pmd is set to NULL at any given time, 2064 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2065 * pmd. 2066 */ 2067 set_pmd_at(mm, start, pmd, entry); 2068 update_mmu_cache_pmd(vma, address, &entry); 2069 2070 page_ref_unfreeze(page, 2); 2071 mlock_migrate_page(new_page, page); 2072 page_remove_rmap(page, true); 2073 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2074 2075 spin_unlock(ptl); 2076 2077 /* Take an "isolate" reference and put new page on the LRU. */ 2078 get_page(new_page); 2079 putback_lru_page(new_page); 2080 2081 unlock_page(new_page); 2082 unlock_page(page); 2083 put_page(page); /* Drop the rmap reference */ 2084 put_page(page); /* Drop the LRU isolation reference */ 2085 2086 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2087 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2088 2089 mod_node_page_state(page_pgdat(page), 2090 NR_ISOLATED_ANON + page_lru, 2091 -HPAGE_PMD_NR); 2092 return isolated; 2093 2094 out_fail: 2095 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2096 ptl = pmd_lock(mm, pmd); 2097 if (pmd_same(*pmd, entry)) { 2098 entry = pmd_modify(entry, vma->vm_page_prot); 2099 set_pmd_at(mm, start, pmd, entry); 2100 update_mmu_cache_pmd(vma, address, &entry); 2101 } 2102 spin_unlock(ptl); 2103 2104 out_unlock: 2105 unlock_page(page); 2106 put_page(page); 2107 return 0; 2108 } 2109 #endif /* CONFIG_NUMA_BALANCING */ 2110 2111 #endif /* CONFIG_NUMA */ 2112 2113 #if defined(CONFIG_MIGRATE_VMA_HELPER) 2114 struct migrate_vma { 2115 struct vm_area_struct *vma; 2116 unsigned long *dst; 2117 unsigned long *src; 2118 unsigned long cpages; 2119 unsigned long npages; 2120 unsigned long start; 2121 unsigned long end; 2122 }; 2123 2124 static int migrate_vma_collect_hole(unsigned long start, 2125 unsigned long end, 2126 struct mm_walk *walk) 2127 { 2128 struct migrate_vma *migrate = walk->private; 2129 unsigned long addr; 2130 2131 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2132 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2133 migrate->dst[migrate->npages] = 0; 2134 migrate->npages++; 2135 migrate->cpages++; 2136 } 2137 2138 return 0; 2139 } 2140 2141 static int migrate_vma_collect_skip(unsigned long start, 2142 unsigned long end, 2143 struct mm_walk *walk) 2144 { 2145 struct migrate_vma *migrate = walk->private; 2146 unsigned long addr; 2147 2148 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) { 2149 migrate->dst[migrate->npages] = 0; 2150 migrate->src[migrate->npages++] = 0; 2151 } 2152 2153 return 0; 2154 } 2155 2156 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2157 unsigned long start, 2158 unsigned long end, 2159 struct mm_walk *walk) 2160 { 2161 struct migrate_vma *migrate = walk->private; 2162 struct vm_area_struct *vma = walk->vma; 2163 struct mm_struct *mm = vma->vm_mm; 2164 unsigned long addr = start, unmapped = 0; 2165 spinlock_t *ptl; 2166 pte_t *ptep; 2167 2168 again: 2169 if (pmd_none(*pmdp)) 2170 return migrate_vma_collect_hole(start, end, walk); 2171 2172 if (pmd_trans_huge(*pmdp)) { 2173 struct page *page; 2174 2175 ptl = pmd_lock(mm, pmdp); 2176 if (unlikely(!pmd_trans_huge(*pmdp))) { 2177 spin_unlock(ptl); 2178 goto again; 2179 } 2180 2181 page = pmd_page(*pmdp); 2182 if (is_huge_zero_page(page)) { 2183 spin_unlock(ptl); 2184 split_huge_pmd(vma, pmdp, addr); 2185 if (pmd_trans_unstable(pmdp)) 2186 return migrate_vma_collect_skip(start, end, 2187 walk); 2188 } else { 2189 int ret; 2190 2191 get_page(page); 2192 spin_unlock(ptl); 2193 if (unlikely(!trylock_page(page))) 2194 return migrate_vma_collect_skip(start, end, 2195 walk); 2196 ret = split_huge_page(page); 2197 unlock_page(page); 2198 put_page(page); 2199 if (ret) 2200 return migrate_vma_collect_skip(start, end, 2201 walk); 2202 if (pmd_none(*pmdp)) 2203 return migrate_vma_collect_hole(start, end, 2204 walk); 2205 } 2206 } 2207 2208 if (unlikely(pmd_bad(*pmdp))) 2209 return migrate_vma_collect_skip(start, end, walk); 2210 2211 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2212 arch_enter_lazy_mmu_mode(); 2213 2214 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2215 unsigned long mpfn, pfn; 2216 struct page *page; 2217 swp_entry_t entry; 2218 pte_t pte; 2219 2220 pte = *ptep; 2221 pfn = pte_pfn(pte); 2222 2223 if (pte_none(pte)) { 2224 mpfn = MIGRATE_PFN_MIGRATE; 2225 migrate->cpages++; 2226 pfn = 0; 2227 goto next; 2228 } 2229 2230 if (!pte_present(pte)) { 2231 mpfn = pfn = 0; 2232 2233 /* 2234 * Only care about unaddressable device page special 2235 * page table entry. Other special swap entries are not 2236 * migratable, and we ignore regular swapped page. 2237 */ 2238 entry = pte_to_swp_entry(pte); 2239 if (!is_device_private_entry(entry)) 2240 goto next; 2241 2242 page = device_private_entry_to_page(entry); 2243 mpfn = migrate_pfn(page_to_pfn(page))| 2244 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE; 2245 if (is_write_device_private_entry(entry)) 2246 mpfn |= MIGRATE_PFN_WRITE; 2247 } else { 2248 if (is_zero_pfn(pfn)) { 2249 mpfn = MIGRATE_PFN_MIGRATE; 2250 migrate->cpages++; 2251 pfn = 0; 2252 goto next; 2253 } 2254 page = _vm_normal_page(migrate->vma, addr, pte, true); 2255 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2256 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2257 } 2258 2259 /* FIXME support THP */ 2260 if (!page || !page->mapping || PageTransCompound(page)) { 2261 mpfn = pfn = 0; 2262 goto next; 2263 } 2264 pfn = page_to_pfn(page); 2265 2266 /* 2267 * By getting a reference on the page we pin it and that blocks 2268 * any kind of migration. Side effect is that it "freezes" the 2269 * pte. 2270 * 2271 * We drop this reference after isolating the page from the lru 2272 * for non device page (device page are not on the lru and thus 2273 * can't be dropped from it). 2274 */ 2275 get_page(page); 2276 migrate->cpages++; 2277 2278 /* 2279 * Optimize for the common case where page is only mapped once 2280 * in one process. If we can lock the page, then we can safely 2281 * set up a special migration page table entry now. 2282 */ 2283 if (trylock_page(page)) { 2284 pte_t swp_pte; 2285 2286 mpfn |= MIGRATE_PFN_LOCKED; 2287 ptep_get_and_clear(mm, addr, ptep); 2288 2289 /* Setup special migration page table entry */ 2290 entry = make_migration_entry(page, mpfn & 2291 MIGRATE_PFN_WRITE); 2292 swp_pte = swp_entry_to_pte(entry); 2293 if (pte_soft_dirty(pte)) 2294 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2295 set_pte_at(mm, addr, ptep, swp_pte); 2296 2297 /* 2298 * This is like regular unmap: we remove the rmap and 2299 * drop page refcount. Page won't be freed, as we took 2300 * a reference just above. 2301 */ 2302 page_remove_rmap(page, false); 2303 put_page(page); 2304 2305 if (pte_present(pte)) 2306 unmapped++; 2307 } 2308 2309 next: 2310 migrate->dst[migrate->npages] = 0; 2311 migrate->src[migrate->npages++] = mpfn; 2312 } 2313 arch_leave_lazy_mmu_mode(); 2314 pte_unmap_unlock(ptep - 1, ptl); 2315 2316 /* Only flush the TLB if we actually modified any entries */ 2317 if (unmapped) 2318 flush_tlb_range(walk->vma, start, end); 2319 2320 return 0; 2321 } 2322 2323 /* 2324 * migrate_vma_collect() - collect pages over a range of virtual addresses 2325 * @migrate: migrate struct containing all migration information 2326 * 2327 * This will walk the CPU page table. For each virtual address backed by a 2328 * valid page, it updates the src array and takes a reference on the page, in 2329 * order to pin the page until we lock it and unmap it. 2330 */ 2331 static void migrate_vma_collect(struct migrate_vma *migrate) 2332 { 2333 struct mmu_notifier_range range; 2334 struct mm_walk mm_walk; 2335 2336 mm_walk.pmd_entry = migrate_vma_collect_pmd; 2337 mm_walk.pte_entry = NULL; 2338 mm_walk.pte_hole = migrate_vma_collect_hole; 2339 mm_walk.hugetlb_entry = NULL; 2340 mm_walk.test_walk = NULL; 2341 mm_walk.vma = migrate->vma; 2342 mm_walk.mm = migrate->vma->vm_mm; 2343 mm_walk.private = migrate; 2344 2345 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start, 2346 migrate->end); 2347 mmu_notifier_invalidate_range_start(&range); 2348 walk_page_range(migrate->start, migrate->end, &mm_walk); 2349 mmu_notifier_invalidate_range_end(&range); 2350 2351 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2352 } 2353 2354 /* 2355 * migrate_vma_check_page() - check if page is pinned or not 2356 * @page: struct page to check 2357 * 2358 * Pinned pages cannot be migrated. This is the same test as in 2359 * migrate_page_move_mapping(), except that here we allow migration of a 2360 * ZONE_DEVICE page. 2361 */ 2362 static bool migrate_vma_check_page(struct page *page) 2363 { 2364 /* 2365 * One extra ref because caller holds an extra reference, either from 2366 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2367 * a device page. 2368 */ 2369 int extra = 1; 2370 2371 /* 2372 * FIXME support THP (transparent huge page), it is bit more complex to 2373 * check them than regular pages, because they can be mapped with a pmd 2374 * or with a pte (split pte mapping). 2375 */ 2376 if (PageCompound(page)) 2377 return false; 2378 2379 /* Page from ZONE_DEVICE have one extra reference */ 2380 if (is_zone_device_page(page)) { 2381 /* 2382 * Private page can never be pin as they have no valid pte and 2383 * GUP will fail for those. Yet if there is a pending migration 2384 * a thread might try to wait on the pte migration entry and 2385 * will bump the page reference count. Sadly there is no way to 2386 * differentiate a regular pin from migration wait. Hence to 2387 * avoid 2 racing thread trying to migrate back to CPU to enter 2388 * infinite loop (one stoping migration because the other is 2389 * waiting on pte migration entry). We always return true here. 2390 * 2391 * FIXME proper solution is to rework migration_entry_wait() so 2392 * it does not need to take a reference on page. 2393 */ 2394 if (is_device_private_page(page)) 2395 return true; 2396 2397 /* 2398 * Only allow device public page to be migrated and account for 2399 * the extra reference count imply by ZONE_DEVICE pages. 2400 */ 2401 if (!is_device_public_page(page)) 2402 return false; 2403 extra++; 2404 } 2405 2406 /* For file back page */ 2407 if (page_mapping(page)) 2408 extra += 1 + page_has_private(page); 2409 2410 if ((page_count(page) - extra) > page_mapcount(page)) 2411 return false; 2412 2413 return true; 2414 } 2415 2416 /* 2417 * migrate_vma_prepare() - lock pages and isolate them from the lru 2418 * @migrate: migrate struct containing all migration information 2419 * 2420 * This locks pages that have been collected by migrate_vma_collect(). Once each 2421 * page is locked it is isolated from the lru (for non-device pages). Finally, 2422 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2423 * migrated by concurrent kernel threads. 2424 */ 2425 static void migrate_vma_prepare(struct migrate_vma *migrate) 2426 { 2427 const unsigned long npages = migrate->npages; 2428 const unsigned long start = migrate->start; 2429 unsigned long addr, i, restore = 0; 2430 bool allow_drain = true; 2431 2432 lru_add_drain(); 2433 2434 for (i = 0; (i < npages) && migrate->cpages; i++) { 2435 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2436 bool remap = true; 2437 2438 if (!page) 2439 continue; 2440 2441 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2442 /* 2443 * Because we are migrating several pages there can be 2444 * a deadlock between 2 concurrent migration where each 2445 * are waiting on each other page lock. 2446 * 2447 * Make migrate_vma() a best effort thing and backoff 2448 * for any page we can not lock right away. 2449 */ 2450 if (!trylock_page(page)) { 2451 migrate->src[i] = 0; 2452 migrate->cpages--; 2453 put_page(page); 2454 continue; 2455 } 2456 remap = false; 2457 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2458 } 2459 2460 /* ZONE_DEVICE pages are not on LRU */ 2461 if (!is_zone_device_page(page)) { 2462 if (!PageLRU(page) && allow_drain) { 2463 /* Drain CPU's pagevec */ 2464 lru_add_drain_all(); 2465 allow_drain = false; 2466 } 2467 2468 if (isolate_lru_page(page)) { 2469 if (remap) { 2470 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2471 migrate->cpages--; 2472 restore++; 2473 } else { 2474 migrate->src[i] = 0; 2475 unlock_page(page); 2476 migrate->cpages--; 2477 put_page(page); 2478 } 2479 continue; 2480 } 2481 2482 /* Drop the reference we took in collect */ 2483 put_page(page); 2484 } 2485 2486 if (!migrate_vma_check_page(page)) { 2487 if (remap) { 2488 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2489 migrate->cpages--; 2490 restore++; 2491 2492 if (!is_zone_device_page(page)) { 2493 get_page(page); 2494 putback_lru_page(page); 2495 } 2496 } else { 2497 migrate->src[i] = 0; 2498 unlock_page(page); 2499 migrate->cpages--; 2500 2501 if (!is_zone_device_page(page)) 2502 putback_lru_page(page); 2503 else 2504 put_page(page); 2505 } 2506 } 2507 } 2508 2509 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2510 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2511 2512 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2513 continue; 2514 2515 remove_migration_pte(page, migrate->vma, addr, page); 2516 2517 migrate->src[i] = 0; 2518 unlock_page(page); 2519 put_page(page); 2520 restore--; 2521 } 2522 } 2523 2524 /* 2525 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2526 * @migrate: migrate struct containing all migration information 2527 * 2528 * Replace page mapping (CPU page table pte) with a special migration pte entry 2529 * and check again if it has been pinned. Pinned pages are restored because we 2530 * cannot migrate them. 2531 * 2532 * This is the last step before we call the device driver callback to allocate 2533 * destination memory and copy contents of original page over to new page. 2534 */ 2535 static void migrate_vma_unmap(struct migrate_vma *migrate) 2536 { 2537 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2538 const unsigned long npages = migrate->npages; 2539 const unsigned long start = migrate->start; 2540 unsigned long addr, i, restore = 0; 2541 2542 for (i = 0; i < npages; i++) { 2543 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2544 2545 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2546 continue; 2547 2548 if (page_mapped(page)) { 2549 try_to_unmap(page, flags); 2550 if (page_mapped(page)) 2551 goto restore; 2552 } 2553 2554 if (migrate_vma_check_page(page)) 2555 continue; 2556 2557 restore: 2558 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2559 migrate->cpages--; 2560 restore++; 2561 } 2562 2563 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2564 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2565 2566 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2567 continue; 2568 2569 remove_migration_ptes(page, page, false); 2570 2571 migrate->src[i] = 0; 2572 unlock_page(page); 2573 restore--; 2574 2575 if (is_zone_device_page(page)) 2576 put_page(page); 2577 else 2578 putback_lru_page(page); 2579 } 2580 } 2581 2582 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2583 unsigned long addr, 2584 struct page *page, 2585 unsigned long *src, 2586 unsigned long *dst) 2587 { 2588 struct vm_area_struct *vma = migrate->vma; 2589 struct mm_struct *mm = vma->vm_mm; 2590 struct mem_cgroup *memcg; 2591 bool flush = false; 2592 spinlock_t *ptl; 2593 pte_t entry; 2594 pgd_t *pgdp; 2595 p4d_t *p4dp; 2596 pud_t *pudp; 2597 pmd_t *pmdp; 2598 pte_t *ptep; 2599 2600 /* Only allow populating anonymous memory */ 2601 if (!vma_is_anonymous(vma)) 2602 goto abort; 2603 2604 pgdp = pgd_offset(mm, addr); 2605 p4dp = p4d_alloc(mm, pgdp, addr); 2606 if (!p4dp) 2607 goto abort; 2608 pudp = pud_alloc(mm, p4dp, addr); 2609 if (!pudp) 2610 goto abort; 2611 pmdp = pmd_alloc(mm, pudp, addr); 2612 if (!pmdp) 2613 goto abort; 2614 2615 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2616 goto abort; 2617 2618 /* 2619 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2620 * pte_offset_map() on pmds where a huge pmd might be created 2621 * from a different thread. 2622 * 2623 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2624 * parallel threads are excluded by other means. 2625 * 2626 * Here we only have down_read(mmap_sem). 2627 */ 2628 if (pte_alloc(mm, pmdp)) 2629 goto abort; 2630 2631 /* See the comment in pte_alloc_one_map() */ 2632 if (unlikely(pmd_trans_unstable(pmdp))) 2633 goto abort; 2634 2635 if (unlikely(anon_vma_prepare(vma))) 2636 goto abort; 2637 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2638 goto abort; 2639 2640 /* 2641 * The memory barrier inside __SetPageUptodate makes sure that 2642 * preceding stores to the page contents become visible before 2643 * the set_pte_at() write. 2644 */ 2645 __SetPageUptodate(page); 2646 2647 if (is_zone_device_page(page)) { 2648 if (is_device_private_page(page)) { 2649 swp_entry_t swp_entry; 2650 2651 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2652 entry = swp_entry_to_pte(swp_entry); 2653 } else if (is_device_public_page(page)) { 2654 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 2655 if (vma->vm_flags & VM_WRITE) 2656 entry = pte_mkwrite(pte_mkdirty(entry)); 2657 entry = pte_mkdevmap(entry); 2658 } 2659 } else { 2660 entry = mk_pte(page, vma->vm_page_prot); 2661 if (vma->vm_flags & VM_WRITE) 2662 entry = pte_mkwrite(pte_mkdirty(entry)); 2663 } 2664 2665 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2666 2667 if (pte_present(*ptep)) { 2668 unsigned long pfn = pte_pfn(*ptep); 2669 2670 if (!is_zero_pfn(pfn)) { 2671 pte_unmap_unlock(ptep, ptl); 2672 mem_cgroup_cancel_charge(page, memcg, false); 2673 goto abort; 2674 } 2675 flush = true; 2676 } else if (!pte_none(*ptep)) { 2677 pte_unmap_unlock(ptep, ptl); 2678 mem_cgroup_cancel_charge(page, memcg, false); 2679 goto abort; 2680 } 2681 2682 /* 2683 * Check for usefaultfd but do not deliver the fault. Instead, 2684 * just back off. 2685 */ 2686 if (userfaultfd_missing(vma)) { 2687 pte_unmap_unlock(ptep, ptl); 2688 mem_cgroup_cancel_charge(page, memcg, false); 2689 goto abort; 2690 } 2691 2692 inc_mm_counter(mm, MM_ANONPAGES); 2693 page_add_new_anon_rmap(page, vma, addr, false); 2694 mem_cgroup_commit_charge(page, memcg, false, false); 2695 if (!is_zone_device_page(page)) 2696 lru_cache_add_active_or_unevictable(page, vma); 2697 get_page(page); 2698 2699 if (flush) { 2700 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2701 ptep_clear_flush_notify(vma, addr, ptep); 2702 set_pte_at_notify(mm, addr, ptep, entry); 2703 update_mmu_cache(vma, addr, ptep); 2704 } else { 2705 /* No need to invalidate - it was non-present before */ 2706 set_pte_at(mm, addr, ptep, entry); 2707 update_mmu_cache(vma, addr, ptep); 2708 } 2709 2710 pte_unmap_unlock(ptep, ptl); 2711 *src = MIGRATE_PFN_MIGRATE; 2712 return; 2713 2714 abort: 2715 *src &= ~MIGRATE_PFN_MIGRATE; 2716 } 2717 2718 /* 2719 * migrate_vma_pages() - migrate meta-data from src page to dst page 2720 * @migrate: migrate struct containing all migration information 2721 * 2722 * This migrates struct page meta-data from source struct page to destination 2723 * struct page. This effectively finishes the migration from source page to the 2724 * destination page. 2725 */ 2726 static void migrate_vma_pages(struct migrate_vma *migrate) 2727 { 2728 const unsigned long npages = migrate->npages; 2729 const unsigned long start = migrate->start; 2730 struct mmu_notifier_range range; 2731 unsigned long addr, i; 2732 bool notified = false; 2733 2734 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2735 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2736 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2737 struct address_space *mapping; 2738 int r; 2739 2740 if (!newpage) { 2741 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2742 continue; 2743 } 2744 2745 if (!page) { 2746 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) { 2747 continue; 2748 } 2749 if (!notified) { 2750 notified = true; 2751 2752 mmu_notifier_range_init(&range, 2753 migrate->vma->vm_mm, 2754 addr, migrate->end); 2755 mmu_notifier_invalidate_range_start(&range); 2756 } 2757 migrate_vma_insert_page(migrate, addr, newpage, 2758 &migrate->src[i], 2759 &migrate->dst[i]); 2760 continue; 2761 } 2762 2763 mapping = page_mapping(page); 2764 2765 if (is_zone_device_page(newpage)) { 2766 if (is_device_private_page(newpage)) { 2767 /* 2768 * For now only support private anonymous when 2769 * migrating to un-addressable device memory. 2770 */ 2771 if (mapping) { 2772 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2773 continue; 2774 } 2775 } else if (!is_device_public_page(newpage)) { 2776 /* 2777 * Other types of ZONE_DEVICE page are not 2778 * supported. 2779 */ 2780 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2781 continue; 2782 } 2783 } 2784 2785 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 2786 if (r != MIGRATEPAGE_SUCCESS) 2787 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2788 } 2789 2790 /* 2791 * No need to double call mmu_notifier->invalidate_range() callback as 2792 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 2793 * did already call it. 2794 */ 2795 if (notified) 2796 mmu_notifier_invalidate_range_only_end(&range); 2797 } 2798 2799 /* 2800 * migrate_vma_finalize() - restore CPU page table entry 2801 * @migrate: migrate struct containing all migration information 2802 * 2803 * This replaces the special migration pte entry with either a mapping to the 2804 * new page if migration was successful for that page, or to the original page 2805 * otherwise. 2806 * 2807 * This also unlocks the pages and puts them back on the lru, or drops the extra 2808 * refcount, for device pages. 2809 */ 2810 static void migrate_vma_finalize(struct migrate_vma *migrate) 2811 { 2812 const unsigned long npages = migrate->npages; 2813 unsigned long i; 2814 2815 for (i = 0; i < npages; i++) { 2816 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2817 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2818 2819 if (!page) { 2820 if (newpage) { 2821 unlock_page(newpage); 2822 put_page(newpage); 2823 } 2824 continue; 2825 } 2826 2827 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 2828 if (newpage) { 2829 unlock_page(newpage); 2830 put_page(newpage); 2831 } 2832 newpage = page; 2833 } 2834 2835 remove_migration_ptes(page, newpage, false); 2836 unlock_page(page); 2837 migrate->cpages--; 2838 2839 if (is_zone_device_page(page)) 2840 put_page(page); 2841 else 2842 putback_lru_page(page); 2843 2844 if (newpage != page) { 2845 unlock_page(newpage); 2846 if (is_zone_device_page(newpage)) 2847 put_page(newpage); 2848 else 2849 putback_lru_page(newpage); 2850 } 2851 } 2852 } 2853 2854 /* 2855 * migrate_vma() - migrate a range of memory inside vma 2856 * 2857 * @ops: migration callback for allocating destination memory and copying 2858 * @vma: virtual memory area containing the range to be migrated 2859 * @start: start address of the range to migrate (inclusive) 2860 * @end: end address of the range to migrate (exclusive) 2861 * @src: array of hmm_pfn_t containing source pfns 2862 * @dst: array of hmm_pfn_t containing destination pfns 2863 * @private: pointer passed back to each of the callback 2864 * Returns: 0 on success, error code otherwise 2865 * 2866 * This function tries to migrate a range of memory virtual address range, using 2867 * callbacks to allocate and copy memory from source to destination. First it 2868 * collects all the pages backing each virtual address in the range, saving this 2869 * inside the src array. Then it locks those pages and unmaps them. Once the pages 2870 * are locked and unmapped, it checks whether each page is pinned or not. Pages 2871 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) 2872 * in the corresponding src array entry. It then restores any pages that are 2873 * pinned, by remapping and unlocking those pages. 2874 * 2875 * At this point it calls the alloc_and_copy() callback. For documentation on 2876 * what is expected from that callback, see struct migrate_vma_ops comments in 2877 * include/linux/migrate.h 2878 * 2879 * After the alloc_and_copy() callback, this function goes over each entry in 2880 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2881 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2882 * then the function tries to migrate struct page information from the source 2883 * struct page to the destination struct page. If it fails to migrate the struct 2884 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src 2885 * array. 2886 * 2887 * At this point all successfully migrated pages have an entry in the src 2888 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2889 * array entry with MIGRATE_PFN_VALID flag set. 2890 * 2891 * It then calls the finalize_and_map() callback. See comments for "struct 2892 * migrate_vma_ops", in include/linux/migrate.h for details about 2893 * finalize_and_map() behavior. 2894 * 2895 * After the finalize_and_map() callback, for successfully migrated pages, this 2896 * function updates the CPU page table to point to new pages, otherwise it 2897 * restores the CPU page table to point to the original source pages. 2898 * 2899 * Function returns 0 after the above steps, even if no pages were migrated 2900 * (The function only returns an error if any of the arguments are invalid.) 2901 * 2902 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT 2903 * unsigned long entries. 2904 */ 2905 int migrate_vma(const struct migrate_vma_ops *ops, 2906 struct vm_area_struct *vma, 2907 unsigned long start, 2908 unsigned long end, 2909 unsigned long *src, 2910 unsigned long *dst, 2911 void *private) 2912 { 2913 struct migrate_vma migrate; 2914 2915 /* Sanity check the arguments */ 2916 start &= PAGE_MASK; 2917 end &= PAGE_MASK; 2918 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 2919 vma_is_dax(vma)) 2920 return -EINVAL; 2921 if (start < vma->vm_start || start >= vma->vm_end) 2922 return -EINVAL; 2923 if (end <= vma->vm_start || end > vma->vm_end) 2924 return -EINVAL; 2925 if (!ops || !src || !dst || start >= end) 2926 return -EINVAL; 2927 2928 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT)); 2929 migrate.src = src; 2930 migrate.dst = dst; 2931 migrate.start = start; 2932 migrate.npages = 0; 2933 migrate.cpages = 0; 2934 migrate.end = end; 2935 migrate.vma = vma; 2936 2937 /* Collect, and try to unmap source pages */ 2938 migrate_vma_collect(&migrate); 2939 if (!migrate.cpages) 2940 return 0; 2941 2942 /* Lock and isolate page */ 2943 migrate_vma_prepare(&migrate); 2944 if (!migrate.cpages) 2945 return 0; 2946 2947 /* Unmap pages */ 2948 migrate_vma_unmap(&migrate); 2949 if (!migrate.cpages) 2950 return 0; 2951 2952 /* 2953 * At this point pages are locked and unmapped, and thus they have 2954 * stable content and can safely be copied to destination memory that 2955 * is allocated by the callback. 2956 * 2957 * Note that migration can fail in migrate_vma_struct_page() for each 2958 * individual page. 2959 */ 2960 ops->alloc_and_copy(vma, src, dst, start, end, private); 2961 2962 /* This does the real migration of struct page */ 2963 migrate_vma_pages(&migrate); 2964 2965 ops->finalize_and_map(vma, src, dst, start, end, private); 2966 2967 /* Unlock and remap pages */ 2968 migrate_vma_finalize(&migrate); 2969 2970 return 0; 2971 } 2972 EXPORT_SYMBOL(migrate_vma); 2973 #endif /* defined(MIGRATE_VMA_HELPER) */ 2974