1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/nsproxy.h> 24 #include <linux/pagevec.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/topology.h> 28 #include <linux/cpu.h> 29 #include <linux/cpuset.h> 30 #include <linux/writeback.h> 31 #include <linux/mempolicy.h> 32 #include <linux/vmalloc.h> 33 #include <linux/security.h> 34 #include <linux/backing-dev.h> 35 #include <linux/compaction.h> 36 #include <linux/syscalls.h> 37 #include <linux/compat.h> 38 #include <linux/hugetlb.h> 39 #include <linux/hugetlb_cgroup.h> 40 #include <linux/gfp.h> 41 #include <linux/pagewalk.h> 42 #include <linux/pfn_t.h> 43 #include <linux/memremap.h> 44 #include <linux/userfaultfd_k.h> 45 #include <linux/balloon_compaction.h> 46 #include <linux/mmu_notifier.h> 47 #include <linux/page_idle.h> 48 #include <linux/page_owner.h> 49 #include <linux/sched/mm.h> 50 #include <linux/ptrace.h> 51 #include <linux/oom.h> 52 53 #include <asm/tlbflush.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/migrate.h> 57 58 #include "internal.h" 59 60 /* 61 * migrate_prep() needs to be called before we start compiling a list of pages 62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 63 * undesirable, use migrate_prep_local() 64 */ 65 int migrate_prep(void) 66 { 67 /* 68 * Clear the LRU lists so pages can be isolated. 69 * Note that pages may be moved off the LRU after we have 70 * drained them. Those pages will fail to migrate like other 71 * pages that may be busy. 72 */ 73 lru_add_drain_all(); 74 75 return 0; 76 } 77 78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 79 int migrate_prep_local(void) 80 { 81 lru_add_drain(); 82 83 return 0; 84 } 85 86 int isolate_movable_page(struct page *page, isolate_mode_t mode) 87 { 88 struct address_space *mapping; 89 90 /* 91 * Avoid burning cycles with pages that are yet under __free_pages(), 92 * or just got freed under us. 93 * 94 * In case we 'win' a race for a movable page being freed under us and 95 * raise its refcount preventing __free_pages() from doing its job 96 * the put_page() at the end of this block will take care of 97 * release this page, thus avoiding a nasty leakage. 98 */ 99 if (unlikely(!get_page_unless_zero(page))) 100 goto out; 101 102 /* 103 * Check PageMovable before holding a PG_lock because page's owner 104 * assumes anybody doesn't touch PG_lock of newly allocated page 105 * so unconditionally grabbing the lock ruins page's owner side. 106 */ 107 if (unlikely(!__PageMovable(page))) 108 goto out_putpage; 109 /* 110 * As movable pages are not isolated from LRU lists, concurrent 111 * compaction threads can race against page migration functions 112 * as well as race against the releasing a page. 113 * 114 * In order to avoid having an already isolated movable page 115 * being (wrongly) re-isolated while it is under migration, 116 * or to avoid attempting to isolate pages being released, 117 * lets be sure we have the page lock 118 * before proceeding with the movable page isolation steps. 119 */ 120 if (unlikely(!trylock_page(page))) 121 goto out_putpage; 122 123 if (!PageMovable(page) || PageIsolated(page)) 124 goto out_no_isolated; 125 126 mapping = page_mapping(page); 127 VM_BUG_ON_PAGE(!mapping, page); 128 129 if (!mapping->a_ops->isolate_page(page, mode)) 130 goto out_no_isolated; 131 132 /* Driver shouldn't use PG_isolated bit of page->flags */ 133 WARN_ON_ONCE(PageIsolated(page)); 134 __SetPageIsolated(page); 135 unlock_page(page); 136 137 return 0; 138 139 out_no_isolated: 140 unlock_page(page); 141 out_putpage: 142 put_page(page); 143 out: 144 return -EBUSY; 145 } 146 147 /* It should be called on page which is PG_movable */ 148 void putback_movable_page(struct page *page) 149 { 150 struct address_space *mapping; 151 152 VM_BUG_ON_PAGE(!PageLocked(page), page); 153 VM_BUG_ON_PAGE(!PageMovable(page), page); 154 VM_BUG_ON_PAGE(!PageIsolated(page), page); 155 156 mapping = page_mapping(page); 157 mapping->a_ops->putback_page(page); 158 __ClearPageIsolated(page); 159 } 160 161 /* 162 * Put previously isolated pages back onto the appropriate lists 163 * from where they were once taken off for compaction/migration. 164 * 165 * This function shall be used whenever the isolated pageset has been 166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 167 * and isolate_huge_page(). 168 */ 169 void putback_movable_pages(struct list_head *l) 170 { 171 struct page *page; 172 struct page *page2; 173 174 list_for_each_entry_safe(page, page2, l, lru) { 175 if (unlikely(PageHuge(page))) { 176 putback_active_hugepage(page); 177 continue; 178 } 179 list_del(&page->lru); 180 /* 181 * We isolated non-lru movable page so here we can use 182 * __PageMovable because LRU page's mapping cannot have 183 * PAGE_MAPPING_MOVABLE. 184 */ 185 if (unlikely(__PageMovable(page))) { 186 VM_BUG_ON_PAGE(!PageIsolated(page), page); 187 lock_page(page); 188 if (PageMovable(page)) 189 putback_movable_page(page); 190 else 191 __ClearPageIsolated(page); 192 unlock_page(page); 193 put_page(page); 194 } else { 195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 196 page_is_file_lru(page), -thp_nr_pages(page)); 197 putback_lru_page(page); 198 } 199 } 200 } 201 202 /* 203 * Restore a potential migration pte to a working pte entry 204 */ 205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma, 206 unsigned long addr, void *old) 207 { 208 struct page_vma_mapped_walk pvmw = { 209 .page = old, 210 .vma = vma, 211 .address = addr, 212 .flags = PVMW_SYNC | PVMW_MIGRATION, 213 }; 214 struct page *new; 215 pte_t pte; 216 swp_entry_t entry; 217 218 VM_BUG_ON_PAGE(PageTail(page), page); 219 while (page_vma_mapped_walk(&pvmw)) { 220 if (PageKsm(page)) 221 new = page; 222 else 223 new = page - pvmw.page->index + 224 linear_page_index(vma, pvmw.address); 225 226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 227 /* PMD-mapped THP migration entry */ 228 if (!pvmw.pte) { 229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 230 remove_migration_pmd(&pvmw, new); 231 continue; 232 } 233 #endif 234 235 get_page(new); 236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot))); 237 if (pte_swp_soft_dirty(*pvmw.pte)) 238 pte = pte_mksoft_dirty(pte); 239 240 /* 241 * Recheck VMA as permissions can change since migration started 242 */ 243 entry = pte_to_swp_entry(*pvmw.pte); 244 if (is_write_migration_entry(entry)) 245 pte = maybe_mkwrite(pte, vma); 246 else if (pte_swp_uffd_wp(*pvmw.pte)) 247 pte = pte_mkuffd_wp(pte); 248 249 if (unlikely(is_device_private_page(new))) { 250 entry = make_device_private_entry(new, pte_write(pte)); 251 pte = swp_entry_to_pte(entry); 252 if (pte_swp_soft_dirty(*pvmw.pte)) 253 pte = pte_swp_mksoft_dirty(pte); 254 if (pte_swp_uffd_wp(*pvmw.pte)) 255 pte = pte_swp_mkuffd_wp(pte); 256 } 257 258 #ifdef CONFIG_HUGETLB_PAGE 259 if (PageHuge(new)) { 260 pte = pte_mkhuge(pte); 261 pte = arch_make_huge_pte(pte, vma, new, 0); 262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 263 if (PageAnon(new)) 264 hugepage_add_anon_rmap(new, vma, pvmw.address); 265 else 266 page_dup_rmap(new, true); 267 } else 268 #endif 269 { 270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 271 272 if (PageAnon(new)) 273 page_add_anon_rmap(new, vma, pvmw.address, false); 274 else 275 page_add_file_rmap(new, false); 276 } 277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new)) 278 mlock_vma_page(new); 279 280 if (PageTransHuge(page) && PageMlocked(page)) 281 clear_page_mlock(page); 282 283 /* No need to invalidate - it was non-present before */ 284 update_mmu_cache(vma, pvmw.address, pvmw.pte); 285 } 286 287 return true; 288 } 289 290 /* 291 * Get rid of all migration entries and replace them by 292 * references to the indicated page. 293 */ 294 void remove_migration_ptes(struct page *old, struct page *new, bool locked) 295 { 296 struct rmap_walk_control rwc = { 297 .rmap_one = remove_migration_pte, 298 .arg = old, 299 }; 300 301 if (locked) 302 rmap_walk_locked(new, &rwc); 303 else 304 rmap_walk(new, &rwc); 305 } 306 307 /* 308 * Something used the pte of a page under migration. We need to 309 * get to the page and wait until migration is finished. 310 * When we return from this function the fault will be retried. 311 */ 312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, 313 spinlock_t *ptl) 314 { 315 pte_t pte; 316 swp_entry_t entry; 317 struct page *page; 318 319 spin_lock(ptl); 320 pte = *ptep; 321 if (!is_swap_pte(pte)) 322 goto out; 323 324 entry = pte_to_swp_entry(pte); 325 if (!is_migration_entry(entry)) 326 goto out; 327 328 page = migration_entry_to_page(entry); 329 330 /* 331 * Once page cache replacement of page migration started, page_count 332 * is zero; but we must not call put_and_wait_on_page_locked() without 333 * a ref. Use get_page_unless_zero(), and just fault again if it fails. 334 */ 335 if (!get_page_unless_zero(page)) 336 goto out; 337 pte_unmap_unlock(ptep, ptl); 338 put_and_wait_on_page_locked(page); 339 return; 340 out: 341 pte_unmap_unlock(ptep, ptl); 342 } 343 344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 345 unsigned long address) 346 { 347 spinlock_t *ptl = pte_lockptr(mm, pmd); 348 pte_t *ptep = pte_offset_map(pmd, address); 349 __migration_entry_wait(mm, ptep, ptl); 350 } 351 352 void migration_entry_wait_huge(struct vm_area_struct *vma, 353 struct mm_struct *mm, pte_t *pte) 354 { 355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte); 356 __migration_entry_wait(mm, pte, ptl); 357 } 358 359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 361 { 362 spinlock_t *ptl; 363 struct page *page; 364 365 ptl = pmd_lock(mm, pmd); 366 if (!is_pmd_migration_entry(*pmd)) 367 goto unlock; 368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd)); 369 if (!get_page_unless_zero(page)) 370 goto unlock; 371 spin_unlock(ptl); 372 put_and_wait_on_page_locked(page); 373 return; 374 unlock: 375 spin_unlock(ptl); 376 } 377 #endif 378 379 static int expected_page_refs(struct address_space *mapping, struct page *page) 380 { 381 int expected_count = 1; 382 383 /* 384 * Device private pages have an extra refcount as they are 385 * ZONE_DEVICE pages. 386 */ 387 expected_count += is_device_private_page(page); 388 if (mapping) 389 expected_count += thp_nr_pages(page) + page_has_private(page); 390 391 return expected_count; 392 } 393 394 /* 395 * Replace the page in the mapping. 396 * 397 * The number of remaining references must be: 398 * 1 for anonymous pages without a mapping 399 * 2 for pages with a mapping 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 401 */ 402 int migrate_page_move_mapping(struct address_space *mapping, 403 struct page *newpage, struct page *page, int extra_count) 404 { 405 XA_STATE(xas, &mapping->i_pages, page_index(page)); 406 struct zone *oldzone, *newzone; 407 int dirty; 408 int expected_count = expected_page_refs(mapping, page) + extra_count; 409 410 if (!mapping) { 411 /* Anonymous page without mapping */ 412 if (page_count(page) != expected_count) 413 return -EAGAIN; 414 415 /* No turning back from here */ 416 newpage->index = page->index; 417 newpage->mapping = page->mapping; 418 if (PageSwapBacked(page)) 419 __SetPageSwapBacked(newpage); 420 421 return MIGRATEPAGE_SUCCESS; 422 } 423 424 oldzone = page_zone(page); 425 newzone = page_zone(newpage); 426 427 xas_lock_irq(&xas); 428 if (page_count(page) != expected_count || xas_load(&xas) != page) { 429 xas_unlock_irq(&xas); 430 return -EAGAIN; 431 } 432 433 if (!page_ref_freeze(page, expected_count)) { 434 xas_unlock_irq(&xas); 435 return -EAGAIN; 436 } 437 438 /* 439 * Now we know that no one else is looking at the page: 440 * no turning back from here. 441 */ 442 newpage->index = page->index; 443 newpage->mapping = page->mapping; 444 page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */ 445 if (PageSwapBacked(page)) { 446 __SetPageSwapBacked(newpage); 447 if (PageSwapCache(page)) { 448 SetPageSwapCache(newpage); 449 set_page_private(newpage, page_private(page)); 450 } 451 } else { 452 VM_BUG_ON_PAGE(PageSwapCache(page), page); 453 } 454 455 /* Move dirty while page refs frozen and newpage not yet exposed */ 456 dirty = PageDirty(page); 457 if (dirty) { 458 ClearPageDirty(page); 459 SetPageDirty(newpage); 460 } 461 462 xas_store(&xas, newpage); 463 if (PageTransHuge(page)) { 464 int i; 465 466 for (i = 1; i < HPAGE_PMD_NR; i++) { 467 xas_next(&xas); 468 xas_store(&xas, newpage); 469 } 470 } 471 472 /* 473 * Drop cache reference from old page by unfreezing 474 * to one less reference. 475 * We know this isn't the last reference. 476 */ 477 page_ref_unfreeze(page, expected_count - thp_nr_pages(page)); 478 479 xas_unlock(&xas); 480 /* Leave irq disabled to prevent preemption while updating stats */ 481 482 /* 483 * If moved to a different zone then also account 484 * the page for that zone. Other VM counters will be 485 * taken care of when we establish references to the 486 * new page and drop references to the old page. 487 * 488 * Note that anonymous pages are accounted for 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 490 * are mapped to swap space. 491 */ 492 if (newzone != oldzone) { 493 struct lruvec *old_lruvec, *new_lruvec; 494 struct mem_cgroup *memcg; 495 496 memcg = page_memcg(page); 497 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 498 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 499 500 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES); 501 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES); 502 if (PageSwapBacked(page) && !PageSwapCache(page)) { 503 __dec_lruvec_state(old_lruvec, NR_SHMEM); 504 __inc_lruvec_state(new_lruvec, NR_SHMEM); 505 } 506 if (dirty && mapping_can_writeback(mapping)) { 507 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY); 508 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING); 509 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY); 510 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING); 511 } 512 } 513 local_irq_enable(); 514 515 return MIGRATEPAGE_SUCCESS; 516 } 517 EXPORT_SYMBOL(migrate_page_move_mapping); 518 519 /* 520 * The expected number of remaining references is the same as that 521 * of migrate_page_move_mapping(). 522 */ 523 int migrate_huge_page_move_mapping(struct address_space *mapping, 524 struct page *newpage, struct page *page) 525 { 526 XA_STATE(xas, &mapping->i_pages, page_index(page)); 527 int expected_count; 528 529 xas_lock_irq(&xas); 530 expected_count = 2 + page_has_private(page); 531 if (page_count(page) != expected_count || xas_load(&xas) != page) { 532 xas_unlock_irq(&xas); 533 return -EAGAIN; 534 } 535 536 if (!page_ref_freeze(page, expected_count)) { 537 xas_unlock_irq(&xas); 538 return -EAGAIN; 539 } 540 541 newpage->index = page->index; 542 newpage->mapping = page->mapping; 543 544 get_page(newpage); 545 546 xas_store(&xas, newpage); 547 548 page_ref_unfreeze(page, expected_count - 1); 549 550 xas_unlock_irq(&xas); 551 552 return MIGRATEPAGE_SUCCESS; 553 } 554 555 /* 556 * Gigantic pages are so large that we do not guarantee that page++ pointer 557 * arithmetic will work across the entire page. We need something more 558 * specialized. 559 */ 560 static void __copy_gigantic_page(struct page *dst, struct page *src, 561 int nr_pages) 562 { 563 int i; 564 struct page *dst_base = dst; 565 struct page *src_base = src; 566 567 for (i = 0; i < nr_pages; ) { 568 cond_resched(); 569 copy_highpage(dst, src); 570 571 i++; 572 dst = mem_map_next(dst, dst_base, i); 573 src = mem_map_next(src, src_base, i); 574 } 575 } 576 577 static void copy_huge_page(struct page *dst, struct page *src) 578 { 579 int i; 580 int nr_pages; 581 582 if (PageHuge(src)) { 583 /* hugetlbfs page */ 584 struct hstate *h = page_hstate(src); 585 nr_pages = pages_per_huge_page(h); 586 587 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) { 588 __copy_gigantic_page(dst, src, nr_pages); 589 return; 590 } 591 } else { 592 /* thp page */ 593 BUG_ON(!PageTransHuge(src)); 594 nr_pages = thp_nr_pages(src); 595 } 596 597 for (i = 0; i < nr_pages; i++) { 598 cond_resched(); 599 copy_highpage(dst + i, src + i); 600 } 601 } 602 603 /* 604 * Copy the page to its new location 605 */ 606 void migrate_page_states(struct page *newpage, struct page *page) 607 { 608 int cpupid; 609 610 if (PageError(page)) 611 SetPageError(newpage); 612 if (PageReferenced(page)) 613 SetPageReferenced(newpage); 614 if (PageUptodate(page)) 615 SetPageUptodate(newpage); 616 if (TestClearPageActive(page)) { 617 VM_BUG_ON_PAGE(PageUnevictable(page), page); 618 SetPageActive(newpage); 619 } else if (TestClearPageUnevictable(page)) 620 SetPageUnevictable(newpage); 621 if (PageWorkingset(page)) 622 SetPageWorkingset(newpage); 623 if (PageChecked(page)) 624 SetPageChecked(newpage); 625 if (PageMappedToDisk(page)) 626 SetPageMappedToDisk(newpage); 627 628 /* Move dirty on pages not done by migrate_page_move_mapping() */ 629 if (PageDirty(page)) 630 SetPageDirty(newpage); 631 632 if (page_is_young(page)) 633 set_page_young(newpage); 634 if (page_is_idle(page)) 635 set_page_idle(newpage); 636 637 /* 638 * Copy NUMA information to the new page, to prevent over-eager 639 * future migrations of this same page. 640 */ 641 cpupid = page_cpupid_xchg_last(page, -1); 642 page_cpupid_xchg_last(newpage, cpupid); 643 644 ksm_migrate_page(newpage, page); 645 /* 646 * Please do not reorder this without considering how mm/ksm.c's 647 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache(). 648 */ 649 if (PageSwapCache(page)) 650 ClearPageSwapCache(page); 651 ClearPagePrivate(page); 652 set_page_private(page, 0); 653 654 /* 655 * If any waiters have accumulated on the new page then 656 * wake them up. 657 */ 658 if (PageWriteback(newpage)) 659 end_page_writeback(newpage); 660 661 /* 662 * PG_readahead shares the same bit with PG_reclaim. The above 663 * end_page_writeback() may clear PG_readahead mistakenly, so set the 664 * bit after that. 665 */ 666 if (PageReadahead(page)) 667 SetPageReadahead(newpage); 668 669 copy_page_owner(page, newpage); 670 671 if (!PageHuge(page)) 672 mem_cgroup_migrate(page, newpage); 673 } 674 EXPORT_SYMBOL(migrate_page_states); 675 676 void migrate_page_copy(struct page *newpage, struct page *page) 677 { 678 if (PageHuge(page) || PageTransHuge(page)) 679 copy_huge_page(newpage, page); 680 else 681 copy_highpage(newpage, page); 682 683 migrate_page_states(newpage, page); 684 } 685 EXPORT_SYMBOL(migrate_page_copy); 686 687 /************************************************************ 688 * Migration functions 689 ***********************************************************/ 690 691 /* 692 * Common logic to directly migrate a single LRU page suitable for 693 * pages that do not use PagePrivate/PagePrivate2. 694 * 695 * Pages are locked upon entry and exit. 696 */ 697 int migrate_page(struct address_space *mapping, 698 struct page *newpage, struct page *page, 699 enum migrate_mode mode) 700 { 701 int rc; 702 703 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 704 705 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 706 707 if (rc != MIGRATEPAGE_SUCCESS) 708 return rc; 709 710 if (mode != MIGRATE_SYNC_NO_COPY) 711 migrate_page_copy(newpage, page); 712 else 713 migrate_page_states(newpage, page); 714 return MIGRATEPAGE_SUCCESS; 715 } 716 EXPORT_SYMBOL(migrate_page); 717 718 #ifdef CONFIG_BLOCK 719 /* Returns true if all buffers are successfully locked */ 720 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 721 enum migrate_mode mode) 722 { 723 struct buffer_head *bh = head; 724 725 /* Simple case, sync compaction */ 726 if (mode != MIGRATE_ASYNC) { 727 do { 728 lock_buffer(bh); 729 bh = bh->b_this_page; 730 731 } while (bh != head); 732 733 return true; 734 } 735 736 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 737 do { 738 if (!trylock_buffer(bh)) { 739 /* 740 * We failed to lock the buffer and cannot stall in 741 * async migration. Release the taken locks 742 */ 743 struct buffer_head *failed_bh = bh; 744 bh = head; 745 while (bh != failed_bh) { 746 unlock_buffer(bh); 747 bh = bh->b_this_page; 748 } 749 return false; 750 } 751 752 bh = bh->b_this_page; 753 } while (bh != head); 754 return true; 755 } 756 757 static int __buffer_migrate_page(struct address_space *mapping, 758 struct page *newpage, struct page *page, enum migrate_mode mode, 759 bool check_refs) 760 { 761 struct buffer_head *bh, *head; 762 int rc; 763 int expected_count; 764 765 if (!page_has_buffers(page)) 766 return migrate_page(mapping, newpage, page, mode); 767 768 /* Check whether page does not have extra refs before we do more work */ 769 expected_count = expected_page_refs(mapping, page); 770 if (page_count(page) != expected_count) 771 return -EAGAIN; 772 773 head = page_buffers(page); 774 if (!buffer_migrate_lock_buffers(head, mode)) 775 return -EAGAIN; 776 777 if (check_refs) { 778 bool busy; 779 bool invalidated = false; 780 781 recheck_buffers: 782 busy = false; 783 spin_lock(&mapping->private_lock); 784 bh = head; 785 do { 786 if (atomic_read(&bh->b_count)) { 787 busy = true; 788 break; 789 } 790 bh = bh->b_this_page; 791 } while (bh != head); 792 if (busy) { 793 if (invalidated) { 794 rc = -EAGAIN; 795 goto unlock_buffers; 796 } 797 spin_unlock(&mapping->private_lock); 798 invalidate_bh_lrus(); 799 invalidated = true; 800 goto recheck_buffers; 801 } 802 } 803 804 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 805 if (rc != MIGRATEPAGE_SUCCESS) 806 goto unlock_buffers; 807 808 attach_page_private(newpage, detach_page_private(page)); 809 810 bh = head; 811 do { 812 set_bh_page(bh, newpage, bh_offset(bh)); 813 bh = bh->b_this_page; 814 815 } while (bh != head); 816 817 if (mode != MIGRATE_SYNC_NO_COPY) 818 migrate_page_copy(newpage, page); 819 else 820 migrate_page_states(newpage, page); 821 822 rc = MIGRATEPAGE_SUCCESS; 823 unlock_buffers: 824 if (check_refs) 825 spin_unlock(&mapping->private_lock); 826 bh = head; 827 do { 828 unlock_buffer(bh); 829 bh = bh->b_this_page; 830 831 } while (bh != head); 832 833 return rc; 834 } 835 836 /* 837 * Migration function for pages with buffers. This function can only be used 838 * if the underlying filesystem guarantees that no other references to "page" 839 * exist. For example attached buffer heads are accessed only under page lock. 840 */ 841 int buffer_migrate_page(struct address_space *mapping, 842 struct page *newpage, struct page *page, enum migrate_mode mode) 843 { 844 return __buffer_migrate_page(mapping, newpage, page, mode, false); 845 } 846 EXPORT_SYMBOL(buffer_migrate_page); 847 848 /* 849 * Same as above except that this variant is more careful and checks that there 850 * are also no buffer head references. This function is the right one for 851 * mappings where buffer heads are directly looked up and referenced (such as 852 * block device mappings). 853 */ 854 int buffer_migrate_page_norefs(struct address_space *mapping, 855 struct page *newpage, struct page *page, enum migrate_mode mode) 856 { 857 return __buffer_migrate_page(mapping, newpage, page, mode, true); 858 } 859 #endif 860 861 /* 862 * Writeback a page to clean the dirty state 863 */ 864 static int writeout(struct address_space *mapping, struct page *page) 865 { 866 struct writeback_control wbc = { 867 .sync_mode = WB_SYNC_NONE, 868 .nr_to_write = 1, 869 .range_start = 0, 870 .range_end = LLONG_MAX, 871 .for_reclaim = 1 872 }; 873 int rc; 874 875 if (!mapping->a_ops->writepage) 876 /* No write method for the address space */ 877 return -EINVAL; 878 879 if (!clear_page_dirty_for_io(page)) 880 /* Someone else already triggered a write */ 881 return -EAGAIN; 882 883 /* 884 * A dirty page may imply that the underlying filesystem has 885 * the page on some queue. So the page must be clean for 886 * migration. Writeout may mean we loose the lock and the 887 * page state is no longer what we checked for earlier. 888 * At this point we know that the migration attempt cannot 889 * be successful. 890 */ 891 remove_migration_ptes(page, page, false); 892 893 rc = mapping->a_ops->writepage(page, &wbc); 894 895 if (rc != AOP_WRITEPAGE_ACTIVATE) 896 /* unlocked. Relock */ 897 lock_page(page); 898 899 return (rc < 0) ? -EIO : -EAGAIN; 900 } 901 902 /* 903 * Default handling if a filesystem does not provide a migration function. 904 */ 905 static int fallback_migrate_page(struct address_space *mapping, 906 struct page *newpage, struct page *page, enum migrate_mode mode) 907 { 908 if (PageDirty(page)) { 909 /* Only writeback pages in full synchronous migration */ 910 switch (mode) { 911 case MIGRATE_SYNC: 912 case MIGRATE_SYNC_NO_COPY: 913 break; 914 default: 915 return -EBUSY; 916 } 917 return writeout(mapping, page); 918 } 919 920 /* 921 * Buffers may be managed in a filesystem specific way. 922 * We must have no buffers or drop them. 923 */ 924 if (page_has_private(page) && 925 !try_to_release_page(page, GFP_KERNEL)) 926 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 927 928 return migrate_page(mapping, newpage, page, mode); 929 } 930 931 /* 932 * Move a page to a newly allocated page 933 * The page is locked and all ptes have been successfully removed. 934 * 935 * The new page will have replaced the old page if this function 936 * is successful. 937 * 938 * Return value: 939 * < 0 - error code 940 * MIGRATEPAGE_SUCCESS - success 941 */ 942 static int move_to_new_page(struct page *newpage, struct page *page, 943 enum migrate_mode mode) 944 { 945 struct address_space *mapping; 946 int rc = -EAGAIN; 947 bool is_lru = !__PageMovable(page); 948 949 VM_BUG_ON_PAGE(!PageLocked(page), page); 950 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 951 952 mapping = page_mapping(page); 953 954 if (likely(is_lru)) { 955 if (!mapping) 956 rc = migrate_page(mapping, newpage, page, mode); 957 else if (mapping->a_ops->migratepage) 958 /* 959 * Most pages have a mapping and most filesystems 960 * provide a migratepage callback. Anonymous pages 961 * are part of swap space which also has its own 962 * migratepage callback. This is the most common path 963 * for page migration. 964 */ 965 rc = mapping->a_ops->migratepage(mapping, newpage, 966 page, mode); 967 else 968 rc = fallback_migrate_page(mapping, newpage, 969 page, mode); 970 } else { 971 /* 972 * In case of non-lru page, it could be released after 973 * isolation step. In that case, we shouldn't try migration. 974 */ 975 VM_BUG_ON_PAGE(!PageIsolated(page), page); 976 if (!PageMovable(page)) { 977 rc = MIGRATEPAGE_SUCCESS; 978 __ClearPageIsolated(page); 979 goto out; 980 } 981 982 rc = mapping->a_ops->migratepage(mapping, newpage, 983 page, mode); 984 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 985 !PageIsolated(page)); 986 } 987 988 /* 989 * When successful, old pagecache page->mapping must be cleared before 990 * page is freed; but stats require that PageAnon be left as PageAnon. 991 */ 992 if (rc == MIGRATEPAGE_SUCCESS) { 993 if (__PageMovable(page)) { 994 VM_BUG_ON_PAGE(!PageIsolated(page), page); 995 996 /* 997 * We clear PG_movable under page_lock so any compactor 998 * cannot try to migrate this page. 999 */ 1000 __ClearPageIsolated(page); 1001 } 1002 1003 /* 1004 * Anonymous and movable page->mapping will be cleared by 1005 * free_pages_prepare so don't reset it here for keeping 1006 * the type to work PageAnon, for example. 1007 */ 1008 if (!PageMappingFlags(page)) 1009 page->mapping = NULL; 1010 1011 if (likely(!is_zone_device_page(newpage))) 1012 flush_dcache_page(newpage); 1013 1014 } 1015 out: 1016 return rc; 1017 } 1018 1019 static int __unmap_and_move(struct page *page, struct page *newpage, 1020 int force, enum migrate_mode mode) 1021 { 1022 int rc = -EAGAIN; 1023 int page_was_mapped = 0; 1024 struct anon_vma *anon_vma = NULL; 1025 bool is_lru = !__PageMovable(page); 1026 1027 if (!trylock_page(page)) { 1028 if (!force || mode == MIGRATE_ASYNC) 1029 goto out; 1030 1031 /* 1032 * It's not safe for direct compaction to call lock_page. 1033 * For example, during page readahead pages are added locked 1034 * to the LRU. Later, when the IO completes the pages are 1035 * marked uptodate and unlocked. However, the queueing 1036 * could be merging multiple pages for one bio (e.g. 1037 * mpage_readahead). If an allocation happens for the 1038 * second or third page, the process can end up locking 1039 * the same page twice and deadlocking. Rather than 1040 * trying to be clever about what pages can be locked, 1041 * avoid the use of lock_page for direct compaction 1042 * altogether. 1043 */ 1044 if (current->flags & PF_MEMALLOC) 1045 goto out; 1046 1047 lock_page(page); 1048 } 1049 1050 if (PageWriteback(page)) { 1051 /* 1052 * Only in the case of a full synchronous migration is it 1053 * necessary to wait for PageWriteback. In the async case, 1054 * the retry loop is too short and in the sync-light case, 1055 * the overhead of stalling is too much 1056 */ 1057 switch (mode) { 1058 case MIGRATE_SYNC: 1059 case MIGRATE_SYNC_NO_COPY: 1060 break; 1061 default: 1062 rc = -EBUSY; 1063 goto out_unlock; 1064 } 1065 if (!force) 1066 goto out_unlock; 1067 wait_on_page_writeback(page); 1068 } 1069 1070 /* 1071 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 1072 * we cannot notice that anon_vma is freed while we migrates a page. 1073 * This get_anon_vma() delays freeing anon_vma pointer until the end 1074 * of migration. File cache pages are no problem because of page_lock() 1075 * File Caches may use write_page() or lock_page() in migration, then, 1076 * just care Anon page here. 1077 * 1078 * Only page_get_anon_vma() understands the subtleties of 1079 * getting a hold on an anon_vma from outside one of its mms. 1080 * But if we cannot get anon_vma, then we won't need it anyway, 1081 * because that implies that the anon page is no longer mapped 1082 * (and cannot be remapped so long as we hold the page lock). 1083 */ 1084 if (PageAnon(page) && !PageKsm(page)) 1085 anon_vma = page_get_anon_vma(page); 1086 1087 /* 1088 * Block others from accessing the new page when we get around to 1089 * establishing additional references. We are usually the only one 1090 * holding a reference to newpage at this point. We used to have a BUG 1091 * here if trylock_page(newpage) fails, but would like to allow for 1092 * cases where there might be a race with the previous use of newpage. 1093 * This is much like races on refcount of oldpage: just don't BUG(). 1094 */ 1095 if (unlikely(!trylock_page(newpage))) 1096 goto out_unlock; 1097 1098 if (unlikely(!is_lru)) { 1099 rc = move_to_new_page(newpage, page, mode); 1100 goto out_unlock_both; 1101 } 1102 1103 /* 1104 * Corner case handling: 1105 * 1. When a new swap-cache page is read into, it is added to the LRU 1106 * and treated as swapcache but it has no rmap yet. 1107 * Calling try_to_unmap() against a page->mapping==NULL page will 1108 * trigger a BUG. So handle it here. 1109 * 2. An orphaned page (see truncate_complete_page) might have 1110 * fs-private metadata. The page can be picked up due to memory 1111 * offlining. Everywhere else except page reclaim, the page is 1112 * invisible to the vm, so the page can not be migrated. So try to 1113 * free the metadata, so the page can be freed. 1114 */ 1115 if (!page->mapping) { 1116 VM_BUG_ON_PAGE(PageAnon(page), page); 1117 if (page_has_private(page)) { 1118 try_to_free_buffers(page); 1119 goto out_unlock_both; 1120 } 1121 } else if (page_mapped(page)) { 1122 /* Establish migration ptes */ 1123 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma, 1124 page); 1125 try_to_unmap(page, 1126 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 1127 page_was_mapped = 1; 1128 } 1129 1130 if (!page_mapped(page)) 1131 rc = move_to_new_page(newpage, page, mode); 1132 1133 if (page_was_mapped) 1134 remove_migration_ptes(page, 1135 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false); 1136 1137 out_unlock_both: 1138 unlock_page(newpage); 1139 out_unlock: 1140 /* Drop an anon_vma reference if we took one */ 1141 if (anon_vma) 1142 put_anon_vma(anon_vma); 1143 unlock_page(page); 1144 out: 1145 /* 1146 * If migration is successful, decrease refcount of the newpage 1147 * which will not free the page because new page owner increased 1148 * refcounter. As well, if it is LRU page, add the page to LRU 1149 * list in here. Use the old state of the isolated source page to 1150 * determine if we migrated a LRU page. newpage was already unlocked 1151 * and possibly modified by its owner - don't rely on the page 1152 * state. 1153 */ 1154 if (rc == MIGRATEPAGE_SUCCESS) { 1155 if (unlikely(!is_lru)) 1156 put_page(newpage); 1157 else 1158 putback_lru_page(newpage); 1159 } 1160 1161 return rc; 1162 } 1163 1164 /* 1165 * Obtain the lock on page, remove all ptes and migrate the page 1166 * to the newly allocated page in newpage. 1167 */ 1168 static int unmap_and_move(new_page_t get_new_page, 1169 free_page_t put_new_page, 1170 unsigned long private, struct page *page, 1171 int force, enum migrate_mode mode, 1172 enum migrate_reason reason) 1173 { 1174 int rc = MIGRATEPAGE_SUCCESS; 1175 struct page *newpage = NULL; 1176 1177 if (!thp_migration_supported() && PageTransHuge(page)) 1178 return -ENOMEM; 1179 1180 if (page_count(page) == 1) { 1181 /* page was freed from under us. So we are done. */ 1182 ClearPageActive(page); 1183 ClearPageUnevictable(page); 1184 if (unlikely(__PageMovable(page))) { 1185 lock_page(page); 1186 if (!PageMovable(page)) 1187 __ClearPageIsolated(page); 1188 unlock_page(page); 1189 } 1190 goto out; 1191 } 1192 1193 newpage = get_new_page(page, private); 1194 if (!newpage) 1195 return -ENOMEM; 1196 1197 rc = __unmap_and_move(page, newpage, force, mode); 1198 if (rc == MIGRATEPAGE_SUCCESS) 1199 set_page_owner_migrate_reason(newpage, reason); 1200 1201 out: 1202 if (rc != -EAGAIN) { 1203 /* 1204 * A page that has been migrated has all references 1205 * removed and will be freed. A page that has not been 1206 * migrated will have kept its references and be restored. 1207 */ 1208 list_del(&page->lru); 1209 1210 /* 1211 * Compaction can migrate also non-LRU pages which are 1212 * not accounted to NR_ISOLATED_*. They can be recognized 1213 * as __PageMovable 1214 */ 1215 if (likely(!__PageMovable(page))) 1216 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + 1217 page_is_file_lru(page), -thp_nr_pages(page)); 1218 } 1219 1220 /* 1221 * If migration is successful, releases reference grabbed during 1222 * isolation. Otherwise, restore the page to right list unless 1223 * we want to retry. 1224 */ 1225 if (rc == MIGRATEPAGE_SUCCESS) { 1226 if (reason != MR_MEMORY_FAILURE) 1227 /* 1228 * We release the page in page_handle_poison. 1229 */ 1230 put_page(page); 1231 } else { 1232 if (rc != -EAGAIN) { 1233 if (likely(!__PageMovable(page))) { 1234 putback_lru_page(page); 1235 goto put_new; 1236 } 1237 1238 lock_page(page); 1239 if (PageMovable(page)) 1240 putback_movable_page(page); 1241 else 1242 __ClearPageIsolated(page); 1243 unlock_page(page); 1244 put_page(page); 1245 } 1246 put_new: 1247 if (put_new_page) 1248 put_new_page(newpage, private); 1249 else 1250 put_page(newpage); 1251 } 1252 1253 return rc; 1254 } 1255 1256 /* 1257 * Counterpart of unmap_and_move_page() for hugepage migration. 1258 * 1259 * This function doesn't wait the completion of hugepage I/O 1260 * because there is no race between I/O and migration for hugepage. 1261 * Note that currently hugepage I/O occurs only in direct I/O 1262 * where no lock is held and PG_writeback is irrelevant, 1263 * and writeback status of all subpages are counted in the reference 1264 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1265 * under direct I/O, the reference of the head page is 512 and a bit more.) 1266 * This means that when we try to migrate hugepage whose subpages are 1267 * doing direct I/O, some references remain after try_to_unmap() and 1268 * hugepage migration fails without data corruption. 1269 * 1270 * There is also no race when direct I/O is issued on the page under migration, 1271 * because then pte is replaced with migration swap entry and direct I/O code 1272 * will wait in the page fault for migration to complete. 1273 */ 1274 static int unmap_and_move_huge_page(new_page_t get_new_page, 1275 free_page_t put_new_page, unsigned long private, 1276 struct page *hpage, int force, 1277 enum migrate_mode mode, int reason) 1278 { 1279 int rc = -EAGAIN; 1280 int page_was_mapped = 0; 1281 struct page *new_hpage; 1282 struct anon_vma *anon_vma = NULL; 1283 struct address_space *mapping = NULL; 1284 1285 /* 1286 * Migratability of hugepages depends on architectures and their size. 1287 * This check is necessary because some callers of hugepage migration 1288 * like soft offline and memory hotremove don't walk through page 1289 * tables or check whether the hugepage is pmd-based or not before 1290 * kicking migration. 1291 */ 1292 if (!hugepage_migration_supported(page_hstate(hpage))) { 1293 putback_active_hugepage(hpage); 1294 return -ENOSYS; 1295 } 1296 1297 new_hpage = get_new_page(hpage, private); 1298 if (!new_hpage) 1299 return -ENOMEM; 1300 1301 if (!trylock_page(hpage)) { 1302 if (!force) 1303 goto out; 1304 switch (mode) { 1305 case MIGRATE_SYNC: 1306 case MIGRATE_SYNC_NO_COPY: 1307 break; 1308 default: 1309 goto out; 1310 } 1311 lock_page(hpage); 1312 } 1313 1314 /* 1315 * Check for pages which are in the process of being freed. Without 1316 * page_mapping() set, hugetlbfs specific move page routine will not 1317 * be called and we could leak usage counts for subpools. 1318 */ 1319 if (page_private(hpage) && !page_mapping(hpage)) { 1320 rc = -EBUSY; 1321 goto out_unlock; 1322 } 1323 1324 if (PageAnon(hpage)) 1325 anon_vma = page_get_anon_vma(hpage); 1326 1327 if (unlikely(!trylock_page(new_hpage))) 1328 goto put_anon; 1329 1330 if (page_mapped(hpage)) { 1331 /* 1332 * try_to_unmap could potentially call huge_pmd_unshare. 1333 * Because of this, take semaphore in write mode here and 1334 * set TTU_RMAP_LOCKED to let lower levels know we have 1335 * taken the lock. 1336 */ 1337 mapping = hugetlb_page_mapping_lock_write(hpage); 1338 if (unlikely(!mapping)) 1339 goto unlock_put_anon; 1340 1341 try_to_unmap(hpage, 1342 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS| 1343 TTU_RMAP_LOCKED); 1344 page_was_mapped = 1; 1345 /* 1346 * Leave mapping locked until after subsequent call to 1347 * remove_migration_ptes() 1348 */ 1349 } 1350 1351 if (!page_mapped(hpage)) 1352 rc = move_to_new_page(new_hpage, hpage, mode); 1353 1354 if (page_was_mapped) { 1355 remove_migration_ptes(hpage, 1356 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true); 1357 i_mmap_unlock_write(mapping); 1358 } 1359 1360 unlock_put_anon: 1361 unlock_page(new_hpage); 1362 1363 put_anon: 1364 if (anon_vma) 1365 put_anon_vma(anon_vma); 1366 1367 if (rc == MIGRATEPAGE_SUCCESS) { 1368 move_hugetlb_state(hpage, new_hpage, reason); 1369 put_new_page = NULL; 1370 } 1371 1372 out_unlock: 1373 unlock_page(hpage); 1374 out: 1375 if (rc != -EAGAIN) 1376 putback_active_hugepage(hpage); 1377 1378 /* 1379 * If migration was not successful and there's a freeing callback, use 1380 * it. Otherwise, put_page() will drop the reference grabbed during 1381 * isolation. 1382 */ 1383 if (put_new_page) 1384 put_new_page(new_hpage, private); 1385 else 1386 putback_active_hugepage(new_hpage); 1387 1388 return rc; 1389 } 1390 1391 /* 1392 * migrate_pages - migrate the pages specified in a list, to the free pages 1393 * supplied as the target for the page migration 1394 * 1395 * @from: The list of pages to be migrated. 1396 * @get_new_page: The function used to allocate free pages to be used 1397 * as the target of the page migration. 1398 * @put_new_page: The function used to free target pages if migration 1399 * fails, or NULL if no special handling is necessary. 1400 * @private: Private data to be passed on to get_new_page() 1401 * @mode: The migration mode that specifies the constraints for 1402 * page migration, if any. 1403 * @reason: The reason for page migration. 1404 * 1405 * The function returns after 10 attempts or if no pages are movable any more 1406 * because the list has become empty or no retryable pages exist any more. 1407 * The caller should call putback_movable_pages() to return pages to the LRU 1408 * or free list only if ret != 0. 1409 * 1410 * Returns the number of pages that were not migrated, or an error code. 1411 */ 1412 int migrate_pages(struct list_head *from, new_page_t get_new_page, 1413 free_page_t put_new_page, unsigned long private, 1414 enum migrate_mode mode, int reason) 1415 { 1416 int retry = 1; 1417 int thp_retry = 1; 1418 int nr_failed = 0; 1419 int nr_succeeded = 0; 1420 int nr_thp_succeeded = 0; 1421 int nr_thp_failed = 0; 1422 int nr_thp_split = 0; 1423 int pass = 0; 1424 bool is_thp = false; 1425 struct page *page; 1426 struct page *page2; 1427 int swapwrite = current->flags & PF_SWAPWRITE; 1428 int rc, nr_subpages; 1429 1430 if (!swapwrite) 1431 current->flags |= PF_SWAPWRITE; 1432 1433 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) { 1434 retry = 0; 1435 thp_retry = 0; 1436 1437 list_for_each_entry_safe(page, page2, from, lru) { 1438 retry: 1439 /* 1440 * THP statistics is based on the source huge page. 1441 * Capture required information that might get lost 1442 * during migration. 1443 */ 1444 is_thp = PageTransHuge(page) && !PageHuge(page); 1445 nr_subpages = thp_nr_pages(page); 1446 cond_resched(); 1447 1448 if (PageHuge(page)) 1449 rc = unmap_and_move_huge_page(get_new_page, 1450 put_new_page, private, page, 1451 pass > 2, mode, reason); 1452 else 1453 rc = unmap_and_move(get_new_page, put_new_page, 1454 private, page, pass > 2, mode, 1455 reason); 1456 1457 switch(rc) { 1458 case -ENOMEM: 1459 /* 1460 * THP migration might be unsupported or the 1461 * allocation could've failed so we should 1462 * retry on the same page with the THP split 1463 * to base pages. 1464 * 1465 * Head page is retried immediately and tail 1466 * pages are added to the tail of the list so 1467 * we encounter them after the rest of the list 1468 * is processed. 1469 */ 1470 if (is_thp) { 1471 lock_page(page); 1472 rc = split_huge_page_to_list(page, from); 1473 unlock_page(page); 1474 if (!rc) { 1475 list_safe_reset_next(page, page2, lru); 1476 nr_thp_split++; 1477 goto retry; 1478 } 1479 1480 nr_thp_failed++; 1481 nr_failed += nr_subpages; 1482 goto out; 1483 } 1484 nr_failed++; 1485 goto out; 1486 case -EAGAIN: 1487 if (is_thp) { 1488 thp_retry++; 1489 break; 1490 } 1491 retry++; 1492 break; 1493 case MIGRATEPAGE_SUCCESS: 1494 if (is_thp) { 1495 nr_thp_succeeded++; 1496 nr_succeeded += nr_subpages; 1497 break; 1498 } 1499 nr_succeeded++; 1500 break; 1501 default: 1502 /* 1503 * Permanent failure (-EBUSY, -ENOSYS, etc.): 1504 * unlike -EAGAIN case, the failed page is 1505 * removed from migration page list and not 1506 * retried in the next outer loop. 1507 */ 1508 if (is_thp) { 1509 nr_thp_failed++; 1510 nr_failed += nr_subpages; 1511 break; 1512 } 1513 nr_failed++; 1514 break; 1515 } 1516 } 1517 } 1518 nr_failed += retry + thp_retry; 1519 nr_thp_failed += thp_retry; 1520 rc = nr_failed; 1521 out: 1522 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1523 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1524 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded); 1525 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed); 1526 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split); 1527 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded, 1528 nr_thp_failed, nr_thp_split, mode, reason); 1529 1530 if (!swapwrite) 1531 current->flags &= ~PF_SWAPWRITE; 1532 1533 return rc; 1534 } 1535 1536 struct page *alloc_migration_target(struct page *page, unsigned long private) 1537 { 1538 struct migration_target_control *mtc; 1539 gfp_t gfp_mask; 1540 unsigned int order = 0; 1541 struct page *new_page = NULL; 1542 int nid; 1543 int zidx; 1544 1545 mtc = (struct migration_target_control *)private; 1546 gfp_mask = mtc->gfp_mask; 1547 nid = mtc->nid; 1548 if (nid == NUMA_NO_NODE) 1549 nid = page_to_nid(page); 1550 1551 if (PageHuge(page)) { 1552 struct hstate *h = page_hstate(compound_head(page)); 1553 1554 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 1555 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask); 1556 } 1557 1558 if (PageTransHuge(page)) { 1559 /* 1560 * clear __GFP_RECLAIM to make the migration callback 1561 * consistent with regular THP allocations. 1562 */ 1563 gfp_mask &= ~__GFP_RECLAIM; 1564 gfp_mask |= GFP_TRANSHUGE; 1565 order = HPAGE_PMD_ORDER; 1566 } 1567 zidx = zone_idx(page_zone(page)); 1568 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 1569 gfp_mask |= __GFP_HIGHMEM; 1570 1571 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask); 1572 1573 if (new_page && PageTransHuge(new_page)) 1574 prep_transhuge_page(new_page); 1575 1576 return new_page; 1577 } 1578 1579 #ifdef CONFIG_NUMA 1580 1581 static int store_status(int __user *status, int start, int value, int nr) 1582 { 1583 while (nr-- > 0) { 1584 if (put_user(value, status + start)) 1585 return -EFAULT; 1586 start++; 1587 } 1588 1589 return 0; 1590 } 1591 1592 static int do_move_pages_to_node(struct mm_struct *mm, 1593 struct list_head *pagelist, int node) 1594 { 1595 int err; 1596 struct migration_target_control mtc = { 1597 .nid = node, 1598 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 1599 }; 1600 1601 err = migrate_pages(pagelist, alloc_migration_target, NULL, 1602 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL); 1603 if (err) 1604 putback_movable_pages(pagelist); 1605 return err; 1606 } 1607 1608 /* 1609 * Resolves the given address to a struct page, isolates it from the LRU and 1610 * puts it to the given pagelist. 1611 * Returns: 1612 * errno - if the page cannot be found/isolated 1613 * 0 - when it doesn't have to be migrated because it is already on the 1614 * target node 1615 * 1 - when it has been queued 1616 */ 1617 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr, 1618 int node, struct list_head *pagelist, bool migrate_all) 1619 { 1620 struct vm_area_struct *vma; 1621 struct page *page; 1622 unsigned int follflags; 1623 int err; 1624 1625 mmap_read_lock(mm); 1626 err = -EFAULT; 1627 vma = find_vma(mm, addr); 1628 if (!vma || addr < vma->vm_start || !vma_migratable(vma)) 1629 goto out; 1630 1631 /* FOLL_DUMP to ignore special (like zero) pages */ 1632 follflags = FOLL_GET | FOLL_DUMP; 1633 page = follow_page(vma, addr, follflags); 1634 1635 err = PTR_ERR(page); 1636 if (IS_ERR(page)) 1637 goto out; 1638 1639 err = -ENOENT; 1640 if (!page) 1641 goto out; 1642 1643 err = 0; 1644 if (page_to_nid(page) == node) 1645 goto out_putpage; 1646 1647 err = -EACCES; 1648 if (page_mapcount(page) > 1 && !migrate_all) 1649 goto out_putpage; 1650 1651 if (PageHuge(page)) { 1652 if (PageHead(page)) { 1653 isolate_huge_page(page, pagelist); 1654 err = 1; 1655 } 1656 } else { 1657 struct page *head; 1658 1659 head = compound_head(page); 1660 err = isolate_lru_page(head); 1661 if (err) 1662 goto out_putpage; 1663 1664 err = 1; 1665 list_add_tail(&head->lru, pagelist); 1666 mod_node_page_state(page_pgdat(head), 1667 NR_ISOLATED_ANON + page_is_file_lru(head), 1668 thp_nr_pages(head)); 1669 } 1670 out_putpage: 1671 /* 1672 * Either remove the duplicate refcount from 1673 * isolate_lru_page() or drop the page ref if it was 1674 * not isolated. 1675 */ 1676 put_page(page); 1677 out: 1678 mmap_read_unlock(mm); 1679 return err; 1680 } 1681 1682 static int move_pages_and_store_status(struct mm_struct *mm, int node, 1683 struct list_head *pagelist, int __user *status, 1684 int start, int i, unsigned long nr_pages) 1685 { 1686 int err; 1687 1688 if (list_empty(pagelist)) 1689 return 0; 1690 1691 err = do_move_pages_to_node(mm, pagelist, node); 1692 if (err) { 1693 /* 1694 * Positive err means the number of failed 1695 * pages to migrate. Since we are going to 1696 * abort and return the number of non-migrated 1697 * pages, so need to incude the rest of the 1698 * nr_pages that have not been attempted as 1699 * well. 1700 */ 1701 if (err > 0) 1702 err += nr_pages - i - 1; 1703 return err; 1704 } 1705 return store_status(status, start, node, i - start); 1706 } 1707 1708 /* 1709 * Migrate an array of page address onto an array of nodes and fill 1710 * the corresponding array of status. 1711 */ 1712 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1713 unsigned long nr_pages, 1714 const void __user * __user *pages, 1715 const int __user *nodes, 1716 int __user *status, int flags) 1717 { 1718 int current_node = NUMA_NO_NODE; 1719 LIST_HEAD(pagelist); 1720 int start, i; 1721 int err = 0, err1; 1722 1723 migrate_prep(); 1724 1725 for (i = start = 0; i < nr_pages; i++) { 1726 const void __user *p; 1727 unsigned long addr; 1728 int node; 1729 1730 err = -EFAULT; 1731 if (get_user(p, pages + i)) 1732 goto out_flush; 1733 if (get_user(node, nodes + i)) 1734 goto out_flush; 1735 addr = (unsigned long)untagged_addr(p); 1736 1737 err = -ENODEV; 1738 if (node < 0 || node >= MAX_NUMNODES) 1739 goto out_flush; 1740 if (!node_state(node, N_MEMORY)) 1741 goto out_flush; 1742 1743 err = -EACCES; 1744 if (!node_isset(node, task_nodes)) 1745 goto out_flush; 1746 1747 if (current_node == NUMA_NO_NODE) { 1748 current_node = node; 1749 start = i; 1750 } else if (node != current_node) { 1751 err = move_pages_and_store_status(mm, current_node, 1752 &pagelist, status, start, i, nr_pages); 1753 if (err) 1754 goto out; 1755 start = i; 1756 current_node = node; 1757 } 1758 1759 /* 1760 * Errors in the page lookup or isolation are not fatal and we simply 1761 * report them via status 1762 */ 1763 err = add_page_for_migration(mm, addr, current_node, 1764 &pagelist, flags & MPOL_MF_MOVE_ALL); 1765 1766 if (err > 0) { 1767 /* The page is successfully queued for migration */ 1768 continue; 1769 } 1770 1771 /* 1772 * If the page is already on the target node (!err), store the 1773 * node, otherwise, store the err. 1774 */ 1775 err = store_status(status, i, err ? : current_node, 1); 1776 if (err) 1777 goto out_flush; 1778 1779 err = move_pages_and_store_status(mm, current_node, &pagelist, 1780 status, start, i, nr_pages); 1781 if (err) 1782 goto out; 1783 current_node = NUMA_NO_NODE; 1784 } 1785 out_flush: 1786 /* Make sure we do not overwrite the existing error */ 1787 err1 = move_pages_and_store_status(mm, current_node, &pagelist, 1788 status, start, i, nr_pages); 1789 if (err >= 0) 1790 err = err1; 1791 out: 1792 return err; 1793 } 1794 1795 /* 1796 * Determine the nodes of an array of pages and store it in an array of status. 1797 */ 1798 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1799 const void __user **pages, int *status) 1800 { 1801 unsigned long i; 1802 1803 mmap_read_lock(mm); 1804 1805 for (i = 0; i < nr_pages; i++) { 1806 unsigned long addr = (unsigned long)(*pages); 1807 struct vm_area_struct *vma; 1808 struct page *page; 1809 int err = -EFAULT; 1810 1811 vma = find_vma(mm, addr); 1812 if (!vma || addr < vma->vm_start) 1813 goto set_status; 1814 1815 /* FOLL_DUMP to ignore special (like zero) pages */ 1816 page = follow_page(vma, addr, FOLL_DUMP); 1817 1818 err = PTR_ERR(page); 1819 if (IS_ERR(page)) 1820 goto set_status; 1821 1822 err = page ? page_to_nid(page) : -ENOENT; 1823 set_status: 1824 *status = err; 1825 1826 pages++; 1827 status++; 1828 } 1829 1830 mmap_read_unlock(mm); 1831 } 1832 1833 /* 1834 * Determine the nodes of a user array of pages and store it in 1835 * a user array of status. 1836 */ 1837 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1838 const void __user * __user *pages, 1839 int __user *status) 1840 { 1841 #define DO_PAGES_STAT_CHUNK_NR 16 1842 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1843 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1844 1845 while (nr_pages) { 1846 unsigned long chunk_nr; 1847 1848 chunk_nr = nr_pages; 1849 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1850 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1851 1852 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1853 break; 1854 1855 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1856 1857 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1858 break; 1859 1860 pages += chunk_nr; 1861 status += chunk_nr; 1862 nr_pages -= chunk_nr; 1863 } 1864 return nr_pages ? -EFAULT : 0; 1865 } 1866 1867 /* 1868 * Move a list of pages in the address space of the currently executing 1869 * process. 1870 */ 1871 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 1872 const void __user * __user *pages, 1873 const int __user *nodes, 1874 int __user *status, int flags) 1875 { 1876 struct task_struct *task; 1877 struct mm_struct *mm; 1878 int err; 1879 nodemask_t task_nodes; 1880 1881 /* Check flags */ 1882 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1883 return -EINVAL; 1884 1885 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1886 return -EPERM; 1887 1888 /* Find the mm_struct */ 1889 rcu_read_lock(); 1890 task = pid ? find_task_by_vpid(pid) : current; 1891 if (!task) { 1892 rcu_read_unlock(); 1893 return -ESRCH; 1894 } 1895 get_task_struct(task); 1896 1897 /* 1898 * Check if this process has the right to modify the specified 1899 * process. Use the regular "ptrace_may_access()" checks. 1900 */ 1901 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 1902 rcu_read_unlock(); 1903 err = -EPERM; 1904 goto out; 1905 } 1906 rcu_read_unlock(); 1907 1908 err = security_task_movememory(task); 1909 if (err) 1910 goto out; 1911 1912 task_nodes = cpuset_mems_allowed(task); 1913 mm = get_task_mm(task); 1914 put_task_struct(task); 1915 1916 if (!mm) 1917 return -EINVAL; 1918 1919 if (nodes) 1920 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1921 nodes, status, flags); 1922 else 1923 err = do_pages_stat(mm, nr_pages, pages, status); 1924 1925 mmput(mm); 1926 return err; 1927 1928 out: 1929 put_task_struct(task); 1930 return err; 1931 } 1932 1933 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1934 const void __user * __user *, pages, 1935 const int __user *, nodes, 1936 int __user *, status, int, flags) 1937 { 1938 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1939 } 1940 1941 #ifdef CONFIG_COMPAT 1942 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages, 1943 compat_uptr_t __user *, pages32, 1944 const int __user *, nodes, 1945 int __user *, status, 1946 int, flags) 1947 { 1948 const void __user * __user *pages; 1949 int i; 1950 1951 pages = compat_alloc_user_space(nr_pages * sizeof(void *)); 1952 for (i = 0; i < nr_pages; i++) { 1953 compat_uptr_t p; 1954 1955 if (get_user(p, pages32 + i) || 1956 put_user(compat_ptr(p), pages + i)) 1957 return -EFAULT; 1958 } 1959 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 1960 } 1961 #endif /* CONFIG_COMPAT */ 1962 1963 #ifdef CONFIG_NUMA_BALANCING 1964 /* 1965 * Returns true if this is a safe migration target node for misplaced NUMA 1966 * pages. Currently it only checks the watermarks which crude 1967 */ 1968 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1969 unsigned long nr_migrate_pages) 1970 { 1971 int z; 1972 1973 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1974 struct zone *zone = pgdat->node_zones + z; 1975 1976 if (!populated_zone(zone)) 1977 continue; 1978 1979 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1980 if (!zone_watermark_ok(zone, 0, 1981 high_wmark_pages(zone) + 1982 nr_migrate_pages, 1983 ZONE_MOVABLE, 0)) 1984 continue; 1985 return true; 1986 } 1987 return false; 1988 } 1989 1990 static struct page *alloc_misplaced_dst_page(struct page *page, 1991 unsigned long data) 1992 { 1993 int nid = (int) data; 1994 struct page *newpage; 1995 1996 newpage = __alloc_pages_node(nid, 1997 (GFP_HIGHUSER_MOVABLE | 1998 __GFP_THISNODE | __GFP_NOMEMALLOC | 1999 __GFP_NORETRY | __GFP_NOWARN) & 2000 ~__GFP_RECLAIM, 0); 2001 2002 return newpage; 2003 } 2004 2005 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 2006 { 2007 int page_lru; 2008 2009 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); 2010 2011 /* Avoid migrating to a node that is nearly full */ 2012 if (!migrate_balanced_pgdat(pgdat, compound_nr(page))) 2013 return 0; 2014 2015 if (isolate_lru_page(page)) 2016 return 0; 2017 2018 /* 2019 * migrate_misplaced_transhuge_page() skips page migration's usual 2020 * check on page_count(), so we must do it here, now that the page 2021 * has been isolated: a GUP pin, or any other pin, prevents migration. 2022 * The expected page count is 3: 1 for page's mapcount and 1 for the 2023 * caller's pin and 1 for the reference taken by isolate_lru_page(). 2024 */ 2025 if (PageTransHuge(page) && page_count(page) != 3) { 2026 putback_lru_page(page); 2027 return 0; 2028 } 2029 2030 page_lru = page_is_file_lru(page); 2031 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru, 2032 thp_nr_pages(page)); 2033 2034 /* 2035 * Isolating the page has taken another reference, so the 2036 * caller's reference can be safely dropped without the page 2037 * disappearing underneath us during migration. 2038 */ 2039 put_page(page); 2040 return 1; 2041 } 2042 2043 bool pmd_trans_migrating(pmd_t pmd) 2044 { 2045 struct page *page = pmd_page(pmd); 2046 return PageLocked(page); 2047 } 2048 2049 /* 2050 * Attempt to migrate a misplaced page to the specified destination 2051 * node. Caller is expected to have an elevated reference count on 2052 * the page that will be dropped by this function before returning. 2053 */ 2054 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, 2055 int node) 2056 { 2057 pg_data_t *pgdat = NODE_DATA(node); 2058 int isolated; 2059 int nr_remaining; 2060 LIST_HEAD(migratepages); 2061 2062 /* 2063 * Don't migrate file pages that are mapped in multiple processes 2064 * with execute permissions as they are probably shared libraries. 2065 */ 2066 if (page_mapcount(page) != 1 && page_is_file_lru(page) && 2067 (vma->vm_flags & VM_EXEC)) 2068 goto out; 2069 2070 /* 2071 * Also do not migrate dirty pages as not all filesystems can move 2072 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles. 2073 */ 2074 if (page_is_file_lru(page) && PageDirty(page)) 2075 goto out; 2076 2077 isolated = numamigrate_isolate_page(pgdat, page); 2078 if (!isolated) 2079 goto out; 2080 2081 list_add(&page->lru, &migratepages); 2082 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, 2083 NULL, node, MIGRATE_ASYNC, 2084 MR_NUMA_MISPLACED); 2085 if (nr_remaining) { 2086 if (!list_empty(&migratepages)) { 2087 list_del(&page->lru); 2088 dec_node_page_state(page, NR_ISOLATED_ANON + 2089 page_is_file_lru(page)); 2090 putback_lru_page(page); 2091 } 2092 isolated = 0; 2093 } else 2094 count_vm_numa_event(NUMA_PAGE_MIGRATE); 2095 BUG_ON(!list_empty(&migratepages)); 2096 return isolated; 2097 2098 out: 2099 put_page(page); 2100 return 0; 2101 } 2102 #endif /* CONFIG_NUMA_BALANCING */ 2103 2104 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2105 /* 2106 * Migrates a THP to a given target node. page must be locked and is unlocked 2107 * before returning. 2108 */ 2109 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 2110 struct vm_area_struct *vma, 2111 pmd_t *pmd, pmd_t entry, 2112 unsigned long address, 2113 struct page *page, int node) 2114 { 2115 spinlock_t *ptl; 2116 pg_data_t *pgdat = NODE_DATA(node); 2117 int isolated = 0; 2118 struct page *new_page = NULL; 2119 int page_lru = page_is_file_lru(page); 2120 unsigned long start = address & HPAGE_PMD_MASK; 2121 2122 new_page = alloc_pages_node(node, 2123 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE), 2124 HPAGE_PMD_ORDER); 2125 if (!new_page) 2126 goto out_fail; 2127 prep_transhuge_page(new_page); 2128 2129 isolated = numamigrate_isolate_page(pgdat, page); 2130 if (!isolated) { 2131 put_page(new_page); 2132 goto out_fail; 2133 } 2134 2135 /* Prepare a page as a migration target */ 2136 __SetPageLocked(new_page); 2137 if (PageSwapBacked(page)) 2138 __SetPageSwapBacked(new_page); 2139 2140 /* anon mapping, we can simply copy page->mapping to the new page: */ 2141 new_page->mapping = page->mapping; 2142 new_page->index = page->index; 2143 /* flush the cache before copying using the kernel virtual address */ 2144 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE); 2145 migrate_page_copy(new_page, page); 2146 WARN_ON(PageLRU(new_page)); 2147 2148 /* Recheck the target PMD */ 2149 ptl = pmd_lock(mm, pmd); 2150 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) { 2151 spin_unlock(ptl); 2152 2153 /* Reverse changes made by migrate_page_copy() */ 2154 if (TestClearPageActive(new_page)) 2155 SetPageActive(page); 2156 if (TestClearPageUnevictable(new_page)) 2157 SetPageUnevictable(page); 2158 2159 unlock_page(new_page); 2160 put_page(new_page); /* Free it */ 2161 2162 /* Retake the callers reference and putback on LRU */ 2163 get_page(page); 2164 putback_lru_page(page); 2165 mod_node_page_state(page_pgdat(page), 2166 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR); 2167 2168 goto out_unlock; 2169 } 2170 2171 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 2172 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2173 2174 /* 2175 * Overwrite the old entry under pagetable lock and establish 2176 * the new PTE. Any parallel GUP will either observe the old 2177 * page blocking on the page lock, block on the page table 2178 * lock or observe the new page. The SetPageUptodate on the 2179 * new page and page_add_new_anon_rmap guarantee the copy is 2180 * visible before the pagetable update. 2181 */ 2182 page_add_anon_rmap(new_page, vma, start, true); 2183 /* 2184 * At this point the pmd is numa/protnone (i.e. non present) and the TLB 2185 * has already been flushed globally. So no TLB can be currently 2186 * caching this non present pmd mapping. There's no need to clear the 2187 * pmd before doing set_pmd_at(), nor to flush the TLB after 2188 * set_pmd_at(). Clearing the pmd here would introduce a race 2189 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the 2190 * mmap_lock for reading. If the pmd is set to NULL at any given time, 2191 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this 2192 * pmd. 2193 */ 2194 set_pmd_at(mm, start, pmd, entry); 2195 update_mmu_cache_pmd(vma, address, &entry); 2196 2197 page_ref_unfreeze(page, 2); 2198 mlock_migrate_page(new_page, page); 2199 page_remove_rmap(page, true); 2200 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED); 2201 2202 spin_unlock(ptl); 2203 2204 /* Take an "isolate" reference and put new page on the LRU. */ 2205 get_page(new_page); 2206 putback_lru_page(new_page); 2207 2208 unlock_page(new_page); 2209 unlock_page(page); 2210 put_page(page); /* Drop the rmap reference */ 2211 put_page(page); /* Drop the LRU isolation reference */ 2212 2213 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 2214 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 2215 2216 mod_node_page_state(page_pgdat(page), 2217 NR_ISOLATED_ANON + page_lru, 2218 -HPAGE_PMD_NR); 2219 return isolated; 2220 2221 out_fail: 2222 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 2223 ptl = pmd_lock(mm, pmd); 2224 if (pmd_same(*pmd, entry)) { 2225 entry = pmd_modify(entry, vma->vm_page_prot); 2226 set_pmd_at(mm, start, pmd, entry); 2227 update_mmu_cache_pmd(vma, address, &entry); 2228 } 2229 spin_unlock(ptl); 2230 2231 out_unlock: 2232 unlock_page(page); 2233 put_page(page); 2234 return 0; 2235 } 2236 #endif /* CONFIG_NUMA_BALANCING */ 2237 2238 #endif /* CONFIG_NUMA */ 2239 2240 #ifdef CONFIG_DEVICE_PRIVATE 2241 static int migrate_vma_collect_hole(unsigned long start, 2242 unsigned long end, 2243 __always_unused int depth, 2244 struct mm_walk *walk) 2245 { 2246 struct migrate_vma *migrate = walk->private; 2247 unsigned long addr; 2248 2249 /* Only allow populating anonymous memory. */ 2250 if (!vma_is_anonymous(walk->vma)) { 2251 for (addr = start; addr < end; addr += PAGE_SIZE) { 2252 migrate->src[migrate->npages] = 0; 2253 migrate->dst[migrate->npages] = 0; 2254 migrate->npages++; 2255 } 2256 return 0; 2257 } 2258 2259 for (addr = start; addr < end; addr += PAGE_SIZE) { 2260 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; 2261 migrate->dst[migrate->npages] = 0; 2262 migrate->npages++; 2263 migrate->cpages++; 2264 } 2265 2266 return 0; 2267 } 2268 2269 static int migrate_vma_collect_skip(unsigned long start, 2270 unsigned long end, 2271 struct mm_walk *walk) 2272 { 2273 struct migrate_vma *migrate = walk->private; 2274 unsigned long addr; 2275 2276 for (addr = start; addr < end; addr += PAGE_SIZE) { 2277 migrate->dst[migrate->npages] = 0; 2278 migrate->src[migrate->npages++] = 0; 2279 } 2280 2281 return 0; 2282 } 2283 2284 static int migrate_vma_collect_pmd(pmd_t *pmdp, 2285 unsigned long start, 2286 unsigned long end, 2287 struct mm_walk *walk) 2288 { 2289 struct migrate_vma *migrate = walk->private; 2290 struct vm_area_struct *vma = walk->vma; 2291 struct mm_struct *mm = vma->vm_mm; 2292 unsigned long addr = start, unmapped = 0; 2293 spinlock_t *ptl; 2294 pte_t *ptep; 2295 2296 again: 2297 if (pmd_none(*pmdp)) 2298 return migrate_vma_collect_hole(start, end, -1, walk); 2299 2300 if (pmd_trans_huge(*pmdp)) { 2301 struct page *page; 2302 2303 ptl = pmd_lock(mm, pmdp); 2304 if (unlikely(!pmd_trans_huge(*pmdp))) { 2305 spin_unlock(ptl); 2306 goto again; 2307 } 2308 2309 page = pmd_page(*pmdp); 2310 if (is_huge_zero_page(page)) { 2311 spin_unlock(ptl); 2312 split_huge_pmd(vma, pmdp, addr); 2313 if (pmd_trans_unstable(pmdp)) 2314 return migrate_vma_collect_skip(start, end, 2315 walk); 2316 } else { 2317 int ret; 2318 2319 get_page(page); 2320 spin_unlock(ptl); 2321 if (unlikely(!trylock_page(page))) 2322 return migrate_vma_collect_skip(start, end, 2323 walk); 2324 ret = split_huge_page(page); 2325 unlock_page(page); 2326 put_page(page); 2327 if (ret) 2328 return migrate_vma_collect_skip(start, end, 2329 walk); 2330 if (pmd_none(*pmdp)) 2331 return migrate_vma_collect_hole(start, end, -1, 2332 walk); 2333 } 2334 } 2335 2336 if (unlikely(pmd_bad(*pmdp))) 2337 return migrate_vma_collect_skip(start, end, walk); 2338 2339 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2340 arch_enter_lazy_mmu_mode(); 2341 2342 for (; addr < end; addr += PAGE_SIZE, ptep++) { 2343 unsigned long mpfn = 0, pfn; 2344 struct page *page; 2345 swp_entry_t entry; 2346 pte_t pte; 2347 2348 pte = *ptep; 2349 2350 if (pte_none(pte)) { 2351 if (vma_is_anonymous(vma)) { 2352 mpfn = MIGRATE_PFN_MIGRATE; 2353 migrate->cpages++; 2354 } 2355 goto next; 2356 } 2357 2358 if (!pte_present(pte)) { 2359 /* 2360 * Only care about unaddressable device page special 2361 * page table entry. Other special swap entries are not 2362 * migratable, and we ignore regular swapped page. 2363 */ 2364 entry = pte_to_swp_entry(pte); 2365 if (!is_device_private_entry(entry)) 2366 goto next; 2367 2368 page = device_private_entry_to_page(entry); 2369 if (!(migrate->flags & 2370 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || 2371 page->pgmap->owner != migrate->pgmap_owner) 2372 goto next; 2373 2374 mpfn = migrate_pfn(page_to_pfn(page)) | 2375 MIGRATE_PFN_MIGRATE; 2376 if (is_write_device_private_entry(entry)) 2377 mpfn |= MIGRATE_PFN_WRITE; 2378 } else { 2379 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) 2380 goto next; 2381 pfn = pte_pfn(pte); 2382 if (is_zero_pfn(pfn)) { 2383 mpfn = MIGRATE_PFN_MIGRATE; 2384 migrate->cpages++; 2385 goto next; 2386 } 2387 page = vm_normal_page(migrate->vma, addr, pte); 2388 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; 2389 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; 2390 } 2391 2392 /* FIXME support THP */ 2393 if (!page || !page->mapping || PageTransCompound(page)) { 2394 mpfn = 0; 2395 goto next; 2396 } 2397 2398 /* 2399 * By getting a reference on the page we pin it and that blocks 2400 * any kind of migration. Side effect is that it "freezes" the 2401 * pte. 2402 * 2403 * We drop this reference after isolating the page from the lru 2404 * for non device page (device page are not on the lru and thus 2405 * can't be dropped from it). 2406 */ 2407 get_page(page); 2408 migrate->cpages++; 2409 2410 /* 2411 * Optimize for the common case where page is only mapped once 2412 * in one process. If we can lock the page, then we can safely 2413 * set up a special migration page table entry now. 2414 */ 2415 if (trylock_page(page)) { 2416 pte_t swp_pte; 2417 2418 mpfn |= MIGRATE_PFN_LOCKED; 2419 ptep_get_and_clear(mm, addr, ptep); 2420 2421 /* Setup special migration page table entry */ 2422 entry = make_migration_entry(page, mpfn & 2423 MIGRATE_PFN_WRITE); 2424 swp_pte = swp_entry_to_pte(entry); 2425 if (pte_present(pte)) { 2426 if (pte_soft_dirty(pte)) 2427 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2428 if (pte_uffd_wp(pte)) 2429 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2430 } else { 2431 if (pte_swp_soft_dirty(pte)) 2432 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2433 if (pte_swp_uffd_wp(pte)) 2434 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2435 } 2436 set_pte_at(mm, addr, ptep, swp_pte); 2437 2438 /* 2439 * This is like regular unmap: we remove the rmap and 2440 * drop page refcount. Page won't be freed, as we took 2441 * a reference just above. 2442 */ 2443 page_remove_rmap(page, false); 2444 put_page(page); 2445 2446 if (pte_present(pte)) 2447 unmapped++; 2448 } 2449 2450 next: 2451 migrate->dst[migrate->npages] = 0; 2452 migrate->src[migrate->npages++] = mpfn; 2453 } 2454 arch_leave_lazy_mmu_mode(); 2455 pte_unmap_unlock(ptep - 1, ptl); 2456 2457 /* Only flush the TLB if we actually modified any entries */ 2458 if (unmapped) 2459 flush_tlb_range(walk->vma, start, end); 2460 2461 return 0; 2462 } 2463 2464 static const struct mm_walk_ops migrate_vma_walk_ops = { 2465 .pmd_entry = migrate_vma_collect_pmd, 2466 .pte_hole = migrate_vma_collect_hole, 2467 }; 2468 2469 /* 2470 * migrate_vma_collect() - collect pages over a range of virtual addresses 2471 * @migrate: migrate struct containing all migration information 2472 * 2473 * This will walk the CPU page table. For each virtual address backed by a 2474 * valid page, it updates the src array and takes a reference on the page, in 2475 * order to pin the page until we lock it and unmap it. 2476 */ 2477 static void migrate_vma_collect(struct migrate_vma *migrate) 2478 { 2479 struct mmu_notifier_range range; 2480 2481 /* 2482 * Note that the pgmap_owner is passed to the mmu notifier callback so 2483 * that the registered device driver can skip invalidating device 2484 * private page mappings that won't be migrated. 2485 */ 2486 mmu_notifier_range_init_migrate(&range, 0, migrate->vma, 2487 migrate->vma->vm_mm, migrate->start, migrate->end, 2488 migrate->pgmap_owner); 2489 mmu_notifier_invalidate_range_start(&range); 2490 2491 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, 2492 &migrate_vma_walk_ops, migrate); 2493 2494 mmu_notifier_invalidate_range_end(&range); 2495 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); 2496 } 2497 2498 /* 2499 * migrate_vma_check_page() - check if page is pinned or not 2500 * @page: struct page to check 2501 * 2502 * Pinned pages cannot be migrated. This is the same test as in 2503 * migrate_page_move_mapping(), except that here we allow migration of a 2504 * ZONE_DEVICE page. 2505 */ 2506 static bool migrate_vma_check_page(struct page *page) 2507 { 2508 /* 2509 * One extra ref because caller holds an extra reference, either from 2510 * isolate_lru_page() for a regular page, or migrate_vma_collect() for 2511 * a device page. 2512 */ 2513 int extra = 1; 2514 2515 /* 2516 * FIXME support THP (transparent huge page), it is bit more complex to 2517 * check them than regular pages, because they can be mapped with a pmd 2518 * or with a pte (split pte mapping). 2519 */ 2520 if (PageCompound(page)) 2521 return false; 2522 2523 /* Page from ZONE_DEVICE have one extra reference */ 2524 if (is_zone_device_page(page)) { 2525 /* 2526 * Private page can never be pin as they have no valid pte and 2527 * GUP will fail for those. Yet if there is a pending migration 2528 * a thread might try to wait on the pte migration entry and 2529 * will bump the page reference count. Sadly there is no way to 2530 * differentiate a regular pin from migration wait. Hence to 2531 * avoid 2 racing thread trying to migrate back to CPU to enter 2532 * infinite loop (one stoping migration because the other is 2533 * waiting on pte migration entry). We always return true here. 2534 * 2535 * FIXME proper solution is to rework migration_entry_wait() so 2536 * it does not need to take a reference on page. 2537 */ 2538 return is_device_private_page(page); 2539 } 2540 2541 /* For file back page */ 2542 if (page_mapping(page)) 2543 extra += 1 + page_has_private(page); 2544 2545 if ((page_count(page) - extra) > page_mapcount(page)) 2546 return false; 2547 2548 return true; 2549 } 2550 2551 /* 2552 * migrate_vma_prepare() - lock pages and isolate them from the lru 2553 * @migrate: migrate struct containing all migration information 2554 * 2555 * This locks pages that have been collected by migrate_vma_collect(). Once each 2556 * page is locked it is isolated from the lru (for non-device pages). Finally, 2557 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be 2558 * migrated by concurrent kernel threads. 2559 */ 2560 static void migrate_vma_prepare(struct migrate_vma *migrate) 2561 { 2562 const unsigned long npages = migrate->npages; 2563 const unsigned long start = migrate->start; 2564 unsigned long addr, i, restore = 0; 2565 bool allow_drain = true; 2566 2567 lru_add_drain(); 2568 2569 for (i = 0; (i < npages) && migrate->cpages; i++) { 2570 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2571 bool remap = true; 2572 2573 if (!page) 2574 continue; 2575 2576 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) { 2577 /* 2578 * Because we are migrating several pages there can be 2579 * a deadlock between 2 concurrent migration where each 2580 * are waiting on each other page lock. 2581 * 2582 * Make migrate_vma() a best effort thing and backoff 2583 * for any page we can not lock right away. 2584 */ 2585 if (!trylock_page(page)) { 2586 migrate->src[i] = 0; 2587 migrate->cpages--; 2588 put_page(page); 2589 continue; 2590 } 2591 remap = false; 2592 migrate->src[i] |= MIGRATE_PFN_LOCKED; 2593 } 2594 2595 /* ZONE_DEVICE pages are not on LRU */ 2596 if (!is_zone_device_page(page)) { 2597 if (!PageLRU(page) && allow_drain) { 2598 /* Drain CPU's pagevec */ 2599 lru_add_drain_all(); 2600 allow_drain = false; 2601 } 2602 2603 if (isolate_lru_page(page)) { 2604 if (remap) { 2605 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2606 migrate->cpages--; 2607 restore++; 2608 } else { 2609 migrate->src[i] = 0; 2610 unlock_page(page); 2611 migrate->cpages--; 2612 put_page(page); 2613 } 2614 continue; 2615 } 2616 2617 /* Drop the reference we took in collect */ 2618 put_page(page); 2619 } 2620 2621 if (!migrate_vma_check_page(page)) { 2622 if (remap) { 2623 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2624 migrate->cpages--; 2625 restore++; 2626 2627 if (!is_zone_device_page(page)) { 2628 get_page(page); 2629 putback_lru_page(page); 2630 } 2631 } else { 2632 migrate->src[i] = 0; 2633 unlock_page(page); 2634 migrate->cpages--; 2635 2636 if (!is_zone_device_page(page)) 2637 putback_lru_page(page); 2638 else 2639 put_page(page); 2640 } 2641 } 2642 } 2643 2644 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) { 2645 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2646 2647 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2648 continue; 2649 2650 remove_migration_pte(page, migrate->vma, addr, page); 2651 2652 migrate->src[i] = 0; 2653 unlock_page(page); 2654 put_page(page); 2655 restore--; 2656 } 2657 } 2658 2659 /* 2660 * migrate_vma_unmap() - replace page mapping with special migration pte entry 2661 * @migrate: migrate struct containing all migration information 2662 * 2663 * Replace page mapping (CPU page table pte) with a special migration pte entry 2664 * and check again if it has been pinned. Pinned pages are restored because we 2665 * cannot migrate them. 2666 * 2667 * This is the last step before we call the device driver callback to allocate 2668 * destination memory and copy contents of original page over to new page. 2669 */ 2670 static void migrate_vma_unmap(struct migrate_vma *migrate) 2671 { 2672 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 2673 const unsigned long npages = migrate->npages; 2674 const unsigned long start = migrate->start; 2675 unsigned long addr, i, restore = 0; 2676 2677 for (i = 0; i < npages; i++) { 2678 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2679 2680 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2681 continue; 2682 2683 if (page_mapped(page)) { 2684 try_to_unmap(page, flags); 2685 if (page_mapped(page)) 2686 goto restore; 2687 } 2688 2689 if (migrate_vma_check_page(page)) 2690 continue; 2691 2692 restore: 2693 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2694 migrate->cpages--; 2695 restore++; 2696 } 2697 2698 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) { 2699 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2700 2701 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2702 continue; 2703 2704 remove_migration_ptes(page, page, false); 2705 2706 migrate->src[i] = 0; 2707 unlock_page(page); 2708 restore--; 2709 2710 if (is_zone_device_page(page)) 2711 put_page(page); 2712 else 2713 putback_lru_page(page); 2714 } 2715 } 2716 2717 /** 2718 * migrate_vma_setup() - prepare to migrate a range of memory 2719 * @args: contains the vma, start, and pfns arrays for the migration 2720 * 2721 * Returns: negative errno on failures, 0 when 0 or more pages were migrated 2722 * without an error. 2723 * 2724 * Prepare to migrate a range of memory virtual address range by collecting all 2725 * the pages backing each virtual address in the range, saving them inside the 2726 * src array. Then lock those pages and unmap them. Once the pages are locked 2727 * and unmapped, check whether each page is pinned or not. Pages that aren't 2728 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the 2729 * corresponding src array entry. Then restores any pages that are pinned, by 2730 * remapping and unlocking those pages. 2731 * 2732 * The caller should then allocate destination memory and copy source memory to 2733 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE 2734 * flag set). Once these are allocated and copied, the caller must update each 2735 * corresponding entry in the dst array with the pfn value of the destination 2736 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set 2737 * (destination pages must have their struct pages locked, via lock_page()). 2738 * 2739 * Note that the caller does not have to migrate all the pages that are marked 2740 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from 2741 * device memory to system memory. If the caller cannot migrate a device page 2742 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe 2743 * consequences for the userspace process, so it must be avoided if at all 2744 * possible. 2745 * 2746 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we 2747 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus 2748 * allowing the caller to allocate device memory for those unback virtual 2749 * address. For this the caller simply has to allocate device memory and 2750 * properly set the destination entry like for regular migration. Note that 2751 * this can still fails and thus inside the device driver must check if the 2752 * migration was successful for those entries after calling migrate_vma_pages() 2753 * just like for regular migration. 2754 * 2755 * After that, the callers must call migrate_vma_pages() to go over each entry 2756 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag 2757 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, 2758 * then migrate_vma_pages() to migrate struct page information from the source 2759 * struct page to the destination struct page. If it fails to migrate the 2760 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the 2761 * src array. 2762 * 2763 * At this point all successfully migrated pages have an entry in the src 2764 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst 2765 * array entry with MIGRATE_PFN_VALID flag set. 2766 * 2767 * Once migrate_vma_pages() returns the caller may inspect which pages were 2768 * successfully migrated, and which were not. Successfully migrated pages will 2769 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. 2770 * 2771 * It is safe to update device page table after migrate_vma_pages() because 2772 * both destination and source page are still locked, and the mmap_lock is held 2773 * in read mode (hence no one can unmap the range being migrated). 2774 * 2775 * Once the caller is done cleaning up things and updating its page table (if it 2776 * chose to do so, this is not an obligation) it finally calls 2777 * migrate_vma_finalize() to update the CPU page table to point to new pages 2778 * for successfully migrated pages or otherwise restore the CPU page table to 2779 * point to the original source pages. 2780 */ 2781 int migrate_vma_setup(struct migrate_vma *args) 2782 { 2783 long nr_pages = (args->end - args->start) >> PAGE_SHIFT; 2784 2785 args->start &= PAGE_MASK; 2786 args->end &= PAGE_MASK; 2787 if (!args->vma || is_vm_hugetlb_page(args->vma) || 2788 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) 2789 return -EINVAL; 2790 if (nr_pages <= 0) 2791 return -EINVAL; 2792 if (args->start < args->vma->vm_start || 2793 args->start >= args->vma->vm_end) 2794 return -EINVAL; 2795 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) 2796 return -EINVAL; 2797 if (!args->src || !args->dst) 2798 return -EINVAL; 2799 2800 memset(args->src, 0, sizeof(*args->src) * nr_pages); 2801 args->cpages = 0; 2802 args->npages = 0; 2803 2804 migrate_vma_collect(args); 2805 2806 if (args->cpages) 2807 migrate_vma_prepare(args); 2808 if (args->cpages) 2809 migrate_vma_unmap(args); 2810 2811 /* 2812 * At this point pages are locked and unmapped, and thus they have 2813 * stable content and can safely be copied to destination memory that 2814 * is allocated by the drivers. 2815 */ 2816 return 0; 2817 2818 } 2819 EXPORT_SYMBOL(migrate_vma_setup); 2820 2821 /* 2822 * This code closely matches the code in: 2823 * __handle_mm_fault() 2824 * handle_pte_fault() 2825 * do_anonymous_page() 2826 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE 2827 * private page. 2828 */ 2829 static void migrate_vma_insert_page(struct migrate_vma *migrate, 2830 unsigned long addr, 2831 struct page *page, 2832 unsigned long *src, 2833 unsigned long *dst) 2834 { 2835 struct vm_area_struct *vma = migrate->vma; 2836 struct mm_struct *mm = vma->vm_mm; 2837 bool flush = false; 2838 spinlock_t *ptl; 2839 pte_t entry; 2840 pgd_t *pgdp; 2841 p4d_t *p4dp; 2842 pud_t *pudp; 2843 pmd_t *pmdp; 2844 pte_t *ptep; 2845 2846 /* Only allow populating anonymous memory */ 2847 if (!vma_is_anonymous(vma)) 2848 goto abort; 2849 2850 pgdp = pgd_offset(mm, addr); 2851 p4dp = p4d_alloc(mm, pgdp, addr); 2852 if (!p4dp) 2853 goto abort; 2854 pudp = pud_alloc(mm, p4dp, addr); 2855 if (!pudp) 2856 goto abort; 2857 pmdp = pmd_alloc(mm, pudp, addr); 2858 if (!pmdp) 2859 goto abort; 2860 2861 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) 2862 goto abort; 2863 2864 /* 2865 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2866 * pte_offset_map() on pmds where a huge pmd might be created 2867 * from a different thread. 2868 * 2869 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 2870 * parallel threads are excluded by other means. 2871 * 2872 * Here we only have mmap_read_lock(mm). 2873 */ 2874 if (pte_alloc(mm, pmdp)) 2875 goto abort; 2876 2877 /* See the comment in pte_alloc_one_map() */ 2878 if (unlikely(pmd_trans_unstable(pmdp))) 2879 goto abort; 2880 2881 if (unlikely(anon_vma_prepare(vma))) 2882 goto abort; 2883 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 2884 goto abort; 2885 2886 /* 2887 * The memory barrier inside __SetPageUptodate makes sure that 2888 * preceding stores to the page contents become visible before 2889 * the set_pte_at() write. 2890 */ 2891 __SetPageUptodate(page); 2892 2893 if (is_zone_device_page(page)) { 2894 if (is_device_private_page(page)) { 2895 swp_entry_t swp_entry; 2896 2897 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE); 2898 entry = swp_entry_to_pte(swp_entry); 2899 } 2900 } else { 2901 entry = mk_pte(page, vma->vm_page_prot); 2902 if (vma->vm_flags & VM_WRITE) 2903 entry = pte_mkwrite(pte_mkdirty(entry)); 2904 } 2905 2906 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); 2907 2908 if (check_stable_address_space(mm)) 2909 goto unlock_abort; 2910 2911 if (pte_present(*ptep)) { 2912 unsigned long pfn = pte_pfn(*ptep); 2913 2914 if (!is_zero_pfn(pfn)) 2915 goto unlock_abort; 2916 flush = true; 2917 } else if (!pte_none(*ptep)) 2918 goto unlock_abort; 2919 2920 /* 2921 * Check for userfaultfd but do not deliver the fault. Instead, 2922 * just back off. 2923 */ 2924 if (userfaultfd_missing(vma)) 2925 goto unlock_abort; 2926 2927 inc_mm_counter(mm, MM_ANONPAGES); 2928 page_add_new_anon_rmap(page, vma, addr, false); 2929 if (!is_zone_device_page(page)) 2930 lru_cache_add_inactive_or_unevictable(page, vma); 2931 get_page(page); 2932 2933 if (flush) { 2934 flush_cache_page(vma, addr, pte_pfn(*ptep)); 2935 ptep_clear_flush_notify(vma, addr, ptep); 2936 set_pte_at_notify(mm, addr, ptep, entry); 2937 update_mmu_cache(vma, addr, ptep); 2938 } else { 2939 /* No need to invalidate - it was non-present before */ 2940 set_pte_at(mm, addr, ptep, entry); 2941 update_mmu_cache(vma, addr, ptep); 2942 } 2943 2944 pte_unmap_unlock(ptep, ptl); 2945 *src = MIGRATE_PFN_MIGRATE; 2946 return; 2947 2948 unlock_abort: 2949 pte_unmap_unlock(ptep, ptl); 2950 abort: 2951 *src &= ~MIGRATE_PFN_MIGRATE; 2952 } 2953 2954 /** 2955 * migrate_vma_pages() - migrate meta-data from src page to dst page 2956 * @migrate: migrate struct containing all migration information 2957 * 2958 * This migrates struct page meta-data from source struct page to destination 2959 * struct page. This effectively finishes the migration from source page to the 2960 * destination page. 2961 */ 2962 void migrate_vma_pages(struct migrate_vma *migrate) 2963 { 2964 const unsigned long npages = migrate->npages; 2965 const unsigned long start = migrate->start; 2966 struct mmu_notifier_range range; 2967 unsigned long addr, i; 2968 bool notified = false; 2969 2970 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { 2971 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 2972 struct page *page = migrate_pfn_to_page(migrate->src[i]); 2973 struct address_space *mapping; 2974 int r; 2975 2976 if (!newpage) { 2977 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 2978 continue; 2979 } 2980 2981 if (!page) { 2982 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 2983 continue; 2984 if (!notified) { 2985 notified = true; 2986 2987 mmu_notifier_range_init(&range, 2988 MMU_NOTIFY_CLEAR, 0, 2989 NULL, 2990 migrate->vma->vm_mm, 2991 addr, migrate->end); 2992 mmu_notifier_invalidate_range_start(&range); 2993 } 2994 migrate_vma_insert_page(migrate, addr, newpage, 2995 &migrate->src[i], 2996 &migrate->dst[i]); 2997 continue; 2998 } 2999 3000 mapping = page_mapping(page); 3001 3002 if (is_zone_device_page(newpage)) { 3003 if (is_device_private_page(newpage)) { 3004 /* 3005 * For now only support private anonymous when 3006 * migrating to un-addressable device memory. 3007 */ 3008 if (mapping) { 3009 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3010 continue; 3011 } 3012 } else { 3013 /* 3014 * Other types of ZONE_DEVICE page are not 3015 * supported. 3016 */ 3017 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3018 continue; 3019 } 3020 } 3021 3022 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); 3023 if (r != MIGRATEPAGE_SUCCESS) 3024 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; 3025 } 3026 3027 /* 3028 * No need to double call mmu_notifier->invalidate_range() callback as 3029 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() 3030 * did already call it. 3031 */ 3032 if (notified) 3033 mmu_notifier_invalidate_range_only_end(&range); 3034 } 3035 EXPORT_SYMBOL(migrate_vma_pages); 3036 3037 /** 3038 * migrate_vma_finalize() - restore CPU page table entry 3039 * @migrate: migrate struct containing all migration information 3040 * 3041 * This replaces the special migration pte entry with either a mapping to the 3042 * new page if migration was successful for that page, or to the original page 3043 * otherwise. 3044 * 3045 * This also unlocks the pages and puts them back on the lru, or drops the extra 3046 * refcount, for device pages. 3047 */ 3048 void migrate_vma_finalize(struct migrate_vma *migrate) 3049 { 3050 const unsigned long npages = migrate->npages; 3051 unsigned long i; 3052 3053 for (i = 0; i < npages; i++) { 3054 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); 3055 struct page *page = migrate_pfn_to_page(migrate->src[i]); 3056 3057 if (!page) { 3058 if (newpage) { 3059 unlock_page(newpage); 3060 put_page(newpage); 3061 } 3062 continue; 3063 } 3064 3065 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { 3066 if (newpage) { 3067 unlock_page(newpage); 3068 put_page(newpage); 3069 } 3070 newpage = page; 3071 } 3072 3073 remove_migration_ptes(page, newpage, false); 3074 unlock_page(page); 3075 3076 if (is_zone_device_page(page)) 3077 put_page(page); 3078 else 3079 putback_lru_page(page); 3080 3081 if (newpage != page) { 3082 unlock_page(newpage); 3083 if (is_zone_device_page(newpage)) 3084 put_page(newpage); 3085 else 3086 putback_lru_page(newpage); 3087 } 3088 } 3089 } 3090 EXPORT_SYMBOL(migrate_vma_finalize); 3091 #endif /* CONFIG_DEVICE_PRIVATE */ 3092