xref: /linux/mm/migrate.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 
41 #include <asm/tlbflush.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45 
46 #include "internal.h"
47 
48 /*
49  * migrate_prep() needs to be called before we start compiling a list of pages
50  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51  * undesirable, use migrate_prep_local()
52  */
53 int migrate_prep(void)
54 {
55 	/*
56 	 * Clear the LRU lists so pages can be isolated.
57 	 * Note that pages may be moved off the LRU after we have
58 	 * drained them. Those pages will fail to migrate like other
59 	 * pages that may be busy.
60 	 */
61 	lru_add_drain_all();
62 
63 	return 0;
64 }
65 
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 	lru_add_drain();
70 
71 	return 0;
72 }
73 
74 /*
75  * Put previously isolated pages back onto the appropriate lists
76  * from where they were once taken off for compaction/migration.
77  *
78  * This function shall be used whenever the isolated pageset has been
79  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80  * and isolate_huge_page().
81  */
82 void putback_movable_pages(struct list_head *l)
83 {
84 	struct page *page;
85 	struct page *page2;
86 
87 	list_for_each_entry_safe(page, page2, l, lru) {
88 		if (unlikely(PageHuge(page))) {
89 			putback_active_hugepage(page);
90 			continue;
91 		}
92 		list_del(&page->lru);
93 		dec_zone_page_state(page, NR_ISOLATED_ANON +
94 				page_is_file_cache(page));
95 		if (unlikely(isolated_balloon_page(page)))
96 			balloon_page_putback(page);
97 		else
98 			putback_lru_page(page);
99 	}
100 }
101 
102 /*
103  * Restore a potential migration pte to a working pte entry
104  */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 				 unsigned long addr, void *old)
107 {
108 	struct mm_struct *mm = vma->vm_mm;
109 	swp_entry_t entry;
110  	pmd_t *pmd;
111 	pte_t *ptep, pte;
112  	spinlock_t *ptl;
113 
114 	if (unlikely(PageHuge(new))) {
115 		ptep = huge_pte_offset(mm, addr);
116 		if (!ptep)
117 			goto out;
118 		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 	} else {
120 		pmd = mm_find_pmd(mm, addr);
121 		if (!pmd)
122 			goto out;
123 
124 		ptep = pte_offset_map(pmd, addr);
125 
126 		/*
127 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
128 		 * can race mremap's move_ptes(), which skips anon_vma lock.
129 		 */
130 
131 		ptl = pte_lockptr(mm, pmd);
132 	}
133 
134  	spin_lock(ptl);
135 	pte = *ptep;
136 	if (!is_swap_pte(pte))
137 		goto unlock;
138 
139 	entry = pte_to_swp_entry(pte);
140 
141 	if (!is_migration_entry(entry) ||
142 	    migration_entry_to_page(entry) != old)
143 		goto unlock;
144 
145 	get_page(new);
146 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 	if (pte_swp_soft_dirty(*ptep))
148 		pte = pte_mksoft_dirty(pte);
149 
150 	/* Recheck VMA as permissions can change since migration started  */
151 	if (is_write_migration_entry(entry))
152 		pte = maybe_mkwrite(pte, vma);
153 
154 #ifdef CONFIG_HUGETLB_PAGE
155 	if (PageHuge(new)) {
156 		pte = pte_mkhuge(pte);
157 		pte = arch_make_huge_pte(pte, vma, new, 0);
158 	}
159 #endif
160 	flush_dcache_page(new);
161 	set_pte_at(mm, addr, ptep, pte);
162 
163 	if (PageHuge(new)) {
164 		if (PageAnon(new))
165 			hugepage_add_anon_rmap(new, vma, addr);
166 		else
167 			page_dup_rmap(new);
168 	} else if (PageAnon(new))
169 		page_add_anon_rmap(new, vma, addr);
170 	else
171 		page_add_file_rmap(new);
172 
173 	/* No need to invalidate - it was non-present before */
174 	update_mmu_cache(vma, addr, ptep);
175 unlock:
176 	pte_unmap_unlock(ptep, ptl);
177 out:
178 	return SWAP_AGAIN;
179 }
180 
181 /*
182  * Get rid of all migration entries and replace them by
183  * references to the indicated page.
184  */
185 static void remove_migration_ptes(struct page *old, struct page *new)
186 {
187 	struct rmap_walk_control rwc = {
188 		.rmap_one = remove_migration_pte,
189 		.arg = old,
190 	};
191 
192 	rmap_walk(new, &rwc);
193 }
194 
195 /*
196  * Something used the pte of a page under migration. We need to
197  * get to the page and wait until migration is finished.
198  * When we return from this function the fault will be retried.
199  */
200 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
201 				spinlock_t *ptl)
202 {
203 	pte_t pte;
204 	swp_entry_t entry;
205 	struct page *page;
206 
207 	spin_lock(ptl);
208 	pte = *ptep;
209 	if (!is_swap_pte(pte))
210 		goto out;
211 
212 	entry = pte_to_swp_entry(pte);
213 	if (!is_migration_entry(entry))
214 		goto out;
215 
216 	page = migration_entry_to_page(entry);
217 
218 	/*
219 	 * Once radix-tree replacement of page migration started, page_count
220 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
221 	 * against a page without get_page().
222 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
223 	 * will occur again.
224 	 */
225 	if (!get_page_unless_zero(page))
226 		goto out;
227 	pte_unmap_unlock(ptep, ptl);
228 	wait_on_page_locked(page);
229 	put_page(page);
230 	return;
231 out:
232 	pte_unmap_unlock(ptep, ptl);
233 }
234 
235 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
236 				unsigned long address)
237 {
238 	spinlock_t *ptl = pte_lockptr(mm, pmd);
239 	pte_t *ptep = pte_offset_map(pmd, address);
240 	__migration_entry_wait(mm, ptep, ptl);
241 }
242 
243 void migration_entry_wait_huge(struct vm_area_struct *vma,
244 		struct mm_struct *mm, pte_t *pte)
245 {
246 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
247 	__migration_entry_wait(mm, pte, ptl);
248 }
249 
250 #ifdef CONFIG_BLOCK
251 /* Returns true if all buffers are successfully locked */
252 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
253 							enum migrate_mode mode)
254 {
255 	struct buffer_head *bh = head;
256 
257 	/* Simple case, sync compaction */
258 	if (mode != MIGRATE_ASYNC) {
259 		do {
260 			get_bh(bh);
261 			lock_buffer(bh);
262 			bh = bh->b_this_page;
263 
264 		} while (bh != head);
265 
266 		return true;
267 	}
268 
269 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
270 	do {
271 		get_bh(bh);
272 		if (!trylock_buffer(bh)) {
273 			/*
274 			 * We failed to lock the buffer and cannot stall in
275 			 * async migration. Release the taken locks
276 			 */
277 			struct buffer_head *failed_bh = bh;
278 			put_bh(failed_bh);
279 			bh = head;
280 			while (bh != failed_bh) {
281 				unlock_buffer(bh);
282 				put_bh(bh);
283 				bh = bh->b_this_page;
284 			}
285 			return false;
286 		}
287 
288 		bh = bh->b_this_page;
289 	} while (bh != head);
290 	return true;
291 }
292 #else
293 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
294 							enum migrate_mode mode)
295 {
296 	return true;
297 }
298 #endif /* CONFIG_BLOCK */
299 
300 /*
301  * Replace the page in the mapping.
302  *
303  * The number of remaining references must be:
304  * 1 for anonymous pages without a mapping
305  * 2 for pages with a mapping
306  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
307  */
308 int migrate_page_move_mapping(struct address_space *mapping,
309 		struct page *newpage, struct page *page,
310 		struct buffer_head *head, enum migrate_mode mode,
311 		int extra_count)
312 {
313 	int expected_count = 1 + extra_count;
314 	void **pslot;
315 
316 	if (!mapping) {
317 		/* Anonymous page without mapping */
318 		if (page_count(page) != expected_count)
319 			return -EAGAIN;
320 		return MIGRATEPAGE_SUCCESS;
321 	}
322 
323 	spin_lock_irq(&mapping->tree_lock);
324 
325 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
326  					page_index(page));
327 
328 	expected_count += 1 + page_has_private(page);
329 	if (page_count(page) != expected_count ||
330 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
331 		spin_unlock_irq(&mapping->tree_lock);
332 		return -EAGAIN;
333 	}
334 
335 	if (!page_freeze_refs(page, expected_count)) {
336 		spin_unlock_irq(&mapping->tree_lock);
337 		return -EAGAIN;
338 	}
339 
340 	/*
341 	 * In the async migration case of moving a page with buffers, lock the
342 	 * buffers using trylock before the mapping is moved. If the mapping
343 	 * was moved, we later failed to lock the buffers and could not move
344 	 * the mapping back due to an elevated page count, we would have to
345 	 * block waiting on other references to be dropped.
346 	 */
347 	if (mode == MIGRATE_ASYNC && head &&
348 			!buffer_migrate_lock_buffers(head, mode)) {
349 		page_unfreeze_refs(page, expected_count);
350 		spin_unlock_irq(&mapping->tree_lock);
351 		return -EAGAIN;
352 	}
353 
354 	/*
355 	 * Now we know that no one else is looking at the page.
356 	 */
357 	get_page(newpage);	/* add cache reference */
358 	if (PageSwapCache(page)) {
359 		SetPageSwapCache(newpage);
360 		set_page_private(newpage, page_private(page));
361 	}
362 
363 	radix_tree_replace_slot(pslot, newpage);
364 
365 	/*
366 	 * Drop cache reference from old page by unfreezing
367 	 * to one less reference.
368 	 * We know this isn't the last reference.
369 	 */
370 	page_unfreeze_refs(page, expected_count - 1);
371 
372 	/*
373 	 * If moved to a different zone then also account
374 	 * the page for that zone. Other VM counters will be
375 	 * taken care of when we establish references to the
376 	 * new page and drop references to the old page.
377 	 *
378 	 * Note that anonymous pages are accounted for
379 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
380 	 * are mapped to swap space.
381 	 */
382 	__dec_zone_page_state(page, NR_FILE_PAGES);
383 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
384 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
385 		__dec_zone_page_state(page, NR_SHMEM);
386 		__inc_zone_page_state(newpage, NR_SHMEM);
387 	}
388 	spin_unlock_irq(&mapping->tree_lock);
389 
390 	return MIGRATEPAGE_SUCCESS;
391 }
392 
393 /*
394  * The expected number of remaining references is the same as that
395  * of migrate_page_move_mapping().
396  */
397 int migrate_huge_page_move_mapping(struct address_space *mapping,
398 				   struct page *newpage, struct page *page)
399 {
400 	int expected_count;
401 	void **pslot;
402 
403 	if (!mapping) {
404 		if (page_count(page) != 1)
405 			return -EAGAIN;
406 		return MIGRATEPAGE_SUCCESS;
407 	}
408 
409 	spin_lock_irq(&mapping->tree_lock);
410 
411 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
412 					page_index(page));
413 
414 	expected_count = 2 + page_has_private(page);
415 	if (page_count(page) != expected_count ||
416 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
417 		spin_unlock_irq(&mapping->tree_lock);
418 		return -EAGAIN;
419 	}
420 
421 	if (!page_freeze_refs(page, expected_count)) {
422 		spin_unlock_irq(&mapping->tree_lock);
423 		return -EAGAIN;
424 	}
425 
426 	get_page(newpage);
427 
428 	radix_tree_replace_slot(pslot, newpage);
429 
430 	page_unfreeze_refs(page, expected_count - 1);
431 
432 	spin_unlock_irq(&mapping->tree_lock);
433 	return MIGRATEPAGE_SUCCESS;
434 }
435 
436 /*
437  * Gigantic pages are so large that we do not guarantee that page++ pointer
438  * arithmetic will work across the entire page.  We need something more
439  * specialized.
440  */
441 static void __copy_gigantic_page(struct page *dst, struct page *src,
442 				int nr_pages)
443 {
444 	int i;
445 	struct page *dst_base = dst;
446 	struct page *src_base = src;
447 
448 	for (i = 0; i < nr_pages; ) {
449 		cond_resched();
450 		copy_highpage(dst, src);
451 
452 		i++;
453 		dst = mem_map_next(dst, dst_base, i);
454 		src = mem_map_next(src, src_base, i);
455 	}
456 }
457 
458 static void copy_huge_page(struct page *dst, struct page *src)
459 {
460 	int i;
461 	int nr_pages;
462 
463 	if (PageHuge(src)) {
464 		/* hugetlbfs page */
465 		struct hstate *h = page_hstate(src);
466 		nr_pages = pages_per_huge_page(h);
467 
468 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
469 			__copy_gigantic_page(dst, src, nr_pages);
470 			return;
471 		}
472 	} else {
473 		/* thp page */
474 		BUG_ON(!PageTransHuge(src));
475 		nr_pages = hpage_nr_pages(src);
476 	}
477 
478 	for (i = 0; i < nr_pages; i++) {
479 		cond_resched();
480 		copy_highpage(dst + i, src + i);
481 	}
482 }
483 
484 /*
485  * Copy the page to its new location
486  */
487 void migrate_page_copy(struct page *newpage, struct page *page)
488 {
489 	int cpupid;
490 
491 	if (PageHuge(page) || PageTransHuge(page))
492 		copy_huge_page(newpage, page);
493 	else
494 		copy_highpage(newpage, page);
495 
496 	if (PageError(page))
497 		SetPageError(newpage);
498 	if (PageReferenced(page))
499 		SetPageReferenced(newpage);
500 	if (PageUptodate(page))
501 		SetPageUptodate(newpage);
502 	if (TestClearPageActive(page)) {
503 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
504 		SetPageActive(newpage);
505 	} else if (TestClearPageUnevictable(page))
506 		SetPageUnevictable(newpage);
507 	if (PageChecked(page))
508 		SetPageChecked(newpage);
509 	if (PageMappedToDisk(page))
510 		SetPageMappedToDisk(newpage);
511 
512 	if (PageDirty(page)) {
513 		clear_page_dirty_for_io(page);
514 		/*
515 		 * Want to mark the page and the radix tree as dirty, and
516 		 * redo the accounting that clear_page_dirty_for_io undid,
517 		 * but we can't use set_page_dirty because that function
518 		 * is actually a signal that all of the page has become dirty.
519 		 * Whereas only part of our page may be dirty.
520 		 */
521 		if (PageSwapBacked(page))
522 			SetPageDirty(newpage);
523 		else
524 			__set_page_dirty_nobuffers(newpage);
525  	}
526 
527 	/*
528 	 * Copy NUMA information to the new page, to prevent over-eager
529 	 * future migrations of this same page.
530 	 */
531 	cpupid = page_cpupid_xchg_last(page, -1);
532 	page_cpupid_xchg_last(newpage, cpupid);
533 
534 	mlock_migrate_page(newpage, page);
535 	ksm_migrate_page(newpage, page);
536 	/*
537 	 * Please do not reorder this without considering how mm/ksm.c's
538 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
539 	 */
540 	ClearPageSwapCache(page);
541 	ClearPagePrivate(page);
542 	set_page_private(page, 0);
543 
544 	/*
545 	 * If any waiters have accumulated on the new page then
546 	 * wake them up.
547 	 */
548 	if (PageWriteback(newpage))
549 		end_page_writeback(newpage);
550 }
551 
552 /************************************************************
553  *                    Migration functions
554  ***********************************************************/
555 
556 /*
557  * Common logic to directly migrate a single page suitable for
558  * pages that do not use PagePrivate/PagePrivate2.
559  *
560  * Pages are locked upon entry and exit.
561  */
562 int migrate_page(struct address_space *mapping,
563 		struct page *newpage, struct page *page,
564 		enum migrate_mode mode)
565 {
566 	int rc;
567 
568 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
569 
570 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
571 
572 	if (rc != MIGRATEPAGE_SUCCESS)
573 		return rc;
574 
575 	migrate_page_copy(newpage, page);
576 	return MIGRATEPAGE_SUCCESS;
577 }
578 EXPORT_SYMBOL(migrate_page);
579 
580 #ifdef CONFIG_BLOCK
581 /*
582  * Migration function for pages with buffers. This function can only be used
583  * if the underlying filesystem guarantees that no other references to "page"
584  * exist.
585  */
586 int buffer_migrate_page(struct address_space *mapping,
587 		struct page *newpage, struct page *page, enum migrate_mode mode)
588 {
589 	struct buffer_head *bh, *head;
590 	int rc;
591 
592 	if (!page_has_buffers(page))
593 		return migrate_page(mapping, newpage, page, mode);
594 
595 	head = page_buffers(page);
596 
597 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
598 
599 	if (rc != MIGRATEPAGE_SUCCESS)
600 		return rc;
601 
602 	/*
603 	 * In the async case, migrate_page_move_mapping locked the buffers
604 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
605 	 * need to be locked now
606 	 */
607 	if (mode != MIGRATE_ASYNC)
608 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
609 
610 	ClearPagePrivate(page);
611 	set_page_private(newpage, page_private(page));
612 	set_page_private(page, 0);
613 	put_page(page);
614 	get_page(newpage);
615 
616 	bh = head;
617 	do {
618 		set_bh_page(bh, newpage, bh_offset(bh));
619 		bh = bh->b_this_page;
620 
621 	} while (bh != head);
622 
623 	SetPagePrivate(newpage);
624 
625 	migrate_page_copy(newpage, page);
626 
627 	bh = head;
628 	do {
629 		unlock_buffer(bh);
630  		put_bh(bh);
631 		bh = bh->b_this_page;
632 
633 	} while (bh != head);
634 
635 	return MIGRATEPAGE_SUCCESS;
636 }
637 EXPORT_SYMBOL(buffer_migrate_page);
638 #endif
639 
640 /*
641  * Writeback a page to clean the dirty state
642  */
643 static int writeout(struct address_space *mapping, struct page *page)
644 {
645 	struct writeback_control wbc = {
646 		.sync_mode = WB_SYNC_NONE,
647 		.nr_to_write = 1,
648 		.range_start = 0,
649 		.range_end = LLONG_MAX,
650 		.for_reclaim = 1
651 	};
652 	int rc;
653 
654 	if (!mapping->a_ops->writepage)
655 		/* No write method for the address space */
656 		return -EINVAL;
657 
658 	if (!clear_page_dirty_for_io(page))
659 		/* Someone else already triggered a write */
660 		return -EAGAIN;
661 
662 	/*
663 	 * A dirty page may imply that the underlying filesystem has
664 	 * the page on some queue. So the page must be clean for
665 	 * migration. Writeout may mean we loose the lock and the
666 	 * page state is no longer what we checked for earlier.
667 	 * At this point we know that the migration attempt cannot
668 	 * be successful.
669 	 */
670 	remove_migration_ptes(page, page);
671 
672 	rc = mapping->a_ops->writepage(page, &wbc);
673 
674 	if (rc != AOP_WRITEPAGE_ACTIVATE)
675 		/* unlocked. Relock */
676 		lock_page(page);
677 
678 	return (rc < 0) ? -EIO : -EAGAIN;
679 }
680 
681 /*
682  * Default handling if a filesystem does not provide a migration function.
683  */
684 static int fallback_migrate_page(struct address_space *mapping,
685 	struct page *newpage, struct page *page, enum migrate_mode mode)
686 {
687 	if (PageDirty(page)) {
688 		/* Only writeback pages in full synchronous migration */
689 		if (mode != MIGRATE_SYNC)
690 			return -EBUSY;
691 		return writeout(mapping, page);
692 	}
693 
694 	/*
695 	 * Buffers may be managed in a filesystem specific way.
696 	 * We must have no buffers or drop them.
697 	 */
698 	if (page_has_private(page) &&
699 	    !try_to_release_page(page, GFP_KERNEL))
700 		return -EAGAIN;
701 
702 	return migrate_page(mapping, newpage, page, mode);
703 }
704 
705 /*
706  * Move a page to a newly allocated page
707  * The page is locked and all ptes have been successfully removed.
708  *
709  * The new page will have replaced the old page if this function
710  * is successful.
711  *
712  * Return value:
713  *   < 0 - error code
714  *  MIGRATEPAGE_SUCCESS - success
715  */
716 static int move_to_new_page(struct page *newpage, struct page *page,
717 				int page_was_mapped, enum migrate_mode mode)
718 {
719 	struct address_space *mapping;
720 	int rc;
721 
722 	/*
723 	 * Block others from accessing the page when we get around to
724 	 * establishing additional references. We are the only one
725 	 * holding a reference to the new page at this point.
726 	 */
727 	if (!trylock_page(newpage))
728 		BUG();
729 
730 	/* Prepare mapping for the new page.*/
731 	newpage->index = page->index;
732 	newpage->mapping = page->mapping;
733 	if (PageSwapBacked(page))
734 		SetPageSwapBacked(newpage);
735 
736 	mapping = page_mapping(page);
737 	if (!mapping)
738 		rc = migrate_page(mapping, newpage, page, mode);
739 	else if (mapping->a_ops->migratepage)
740 		/*
741 		 * Most pages have a mapping and most filesystems provide a
742 		 * migratepage callback. Anonymous pages are part of swap
743 		 * space which also has its own migratepage callback. This
744 		 * is the most common path for page migration.
745 		 */
746 		rc = mapping->a_ops->migratepage(mapping,
747 						newpage, page, mode);
748 	else
749 		rc = fallback_migrate_page(mapping, newpage, page, mode);
750 
751 	if (rc != MIGRATEPAGE_SUCCESS) {
752 		newpage->mapping = NULL;
753 	} else {
754 		mem_cgroup_migrate(page, newpage, false);
755 		if (page_was_mapped)
756 			remove_migration_ptes(page, newpage);
757 		page->mapping = NULL;
758 	}
759 
760 	unlock_page(newpage);
761 
762 	return rc;
763 }
764 
765 static int __unmap_and_move(struct page *page, struct page *newpage,
766 				int force, enum migrate_mode mode)
767 {
768 	int rc = -EAGAIN;
769 	int page_was_mapped = 0;
770 	struct anon_vma *anon_vma = NULL;
771 
772 	if (!trylock_page(page)) {
773 		if (!force || mode == MIGRATE_ASYNC)
774 			goto out;
775 
776 		/*
777 		 * It's not safe for direct compaction to call lock_page.
778 		 * For example, during page readahead pages are added locked
779 		 * to the LRU. Later, when the IO completes the pages are
780 		 * marked uptodate and unlocked. However, the queueing
781 		 * could be merging multiple pages for one bio (e.g.
782 		 * mpage_readpages). If an allocation happens for the
783 		 * second or third page, the process can end up locking
784 		 * the same page twice and deadlocking. Rather than
785 		 * trying to be clever about what pages can be locked,
786 		 * avoid the use of lock_page for direct compaction
787 		 * altogether.
788 		 */
789 		if (current->flags & PF_MEMALLOC)
790 			goto out;
791 
792 		lock_page(page);
793 	}
794 
795 	if (PageWriteback(page)) {
796 		/*
797 		 * Only in the case of a full synchronous migration is it
798 		 * necessary to wait for PageWriteback. In the async case,
799 		 * the retry loop is too short and in the sync-light case,
800 		 * the overhead of stalling is too much
801 		 */
802 		if (mode != MIGRATE_SYNC) {
803 			rc = -EBUSY;
804 			goto out_unlock;
805 		}
806 		if (!force)
807 			goto out_unlock;
808 		wait_on_page_writeback(page);
809 	}
810 	/*
811 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
812 	 * we cannot notice that anon_vma is freed while we migrates a page.
813 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
814 	 * of migration. File cache pages are no problem because of page_lock()
815 	 * File Caches may use write_page() or lock_page() in migration, then,
816 	 * just care Anon page here.
817 	 */
818 	if (PageAnon(page) && !PageKsm(page)) {
819 		/*
820 		 * Only page_lock_anon_vma_read() understands the subtleties of
821 		 * getting a hold on an anon_vma from outside one of its mms.
822 		 */
823 		anon_vma = page_get_anon_vma(page);
824 		if (anon_vma) {
825 			/*
826 			 * Anon page
827 			 */
828 		} else if (PageSwapCache(page)) {
829 			/*
830 			 * We cannot be sure that the anon_vma of an unmapped
831 			 * swapcache page is safe to use because we don't
832 			 * know in advance if the VMA that this page belonged
833 			 * to still exists. If the VMA and others sharing the
834 			 * data have been freed, then the anon_vma could
835 			 * already be invalid.
836 			 *
837 			 * To avoid this possibility, swapcache pages get
838 			 * migrated but are not remapped when migration
839 			 * completes
840 			 */
841 		} else {
842 			goto out_unlock;
843 		}
844 	}
845 
846 	if (unlikely(isolated_balloon_page(page))) {
847 		/*
848 		 * A ballooned page does not need any special attention from
849 		 * physical to virtual reverse mapping procedures.
850 		 * Skip any attempt to unmap PTEs or to remap swap cache,
851 		 * in order to avoid burning cycles at rmap level, and perform
852 		 * the page migration right away (proteced by page lock).
853 		 */
854 		rc = balloon_page_migrate(newpage, page, mode);
855 		goto out_unlock;
856 	}
857 
858 	/*
859 	 * Corner case handling:
860 	 * 1. When a new swap-cache page is read into, it is added to the LRU
861 	 * and treated as swapcache but it has no rmap yet.
862 	 * Calling try_to_unmap() against a page->mapping==NULL page will
863 	 * trigger a BUG.  So handle it here.
864 	 * 2. An orphaned page (see truncate_complete_page) might have
865 	 * fs-private metadata. The page can be picked up due to memory
866 	 * offlining.  Everywhere else except page reclaim, the page is
867 	 * invisible to the vm, so the page can not be migrated.  So try to
868 	 * free the metadata, so the page can be freed.
869 	 */
870 	if (!page->mapping) {
871 		VM_BUG_ON_PAGE(PageAnon(page), page);
872 		if (page_has_private(page)) {
873 			try_to_free_buffers(page);
874 			goto out_unlock;
875 		}
876 		goto skip_unmap;
877 	}
878 
879 	/* Establish migration ptes or remove ptes */
880 	if (page_mapped(page)) {
881 		try_to_unmap(page,
882 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
883 		page_was_mapped = 1;
884 	}
885 
886 skip_unmap:
887 	if (!page_mapped(page))
888 		rc = move_to_new_page(newpage, page, page_was_mapped, mode);
889 
890 	if (rc && page_was_mapped)
891 		remove_migration_ptes(page, page);
892 
893 	/* Drop an anon_vma reference if we took one */
894 	if (anon_vma)
895 		put_anon_vma(anon_vma);
896 
897 out_unlock:
898 	unlock_page(page);
899 out:
900 	return rc;
901 }
902 
903 /*
904  * Obtain the lock on page, remove all ptes and migrate the page
905  * to the newly allocated page in newpage.
906  */
907 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
908 			unsigned long private, struct page *page, int force,
909 			enum migrate_mode mode)
910 {
911 	int rc = 0;
912 	int *result = NULL;
913 	struct page *newpage = get_new_page(page, private, &result);
914 
915 	if (!newpage)
916 		return -ENOMEM;
917 
918 	if (page_count(page) == 1) {
919 		/* page was freed from under us. So we are done. */
920 		goto out;
921 	}
922 
923 	if (unlikely(PageTransHuge(page)))
924 		if (unlikely(split_huge_page(page)))
925 			goto out;
926 
927 	rc = __unmap_and_move(page, newpage, force, mode);
928 
929 out:
930 	if (rc != -EAGAIN) {
931 		/*
932 		 * A page that has been migrated has all references
933 		 * removed and will be freed. A page that has not been
934 		 * migrated will have kepts its references and be
935 		 * restored.
936 		 */
937 		list_del(&page->lru);
938 		dec_zone_page_state(page, NR_ISOLATED_ANON +
939 				page_is_file_cache(page));
940 		putback_lru_page(page);
941 	}
942 
943 	/*
944 	 * If migration was not successful and there's a freeing callback, use
945 	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
946 	 * during isolation.
947 	 */
948 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
949 		ClearPageSwapBacked(newpage);
950 		put_new_page(newpage, private);
951 	} else if (unlikely(__is_movable_balloon_page(newpage))) {
952 		/* drop our reference, page already in the balloon */
953 		put_page(newpage);
954 	} else
955 		putback_lru_page(newpage);
956 
957 	if (result) {
958 		if (rc)
959 			*result = rc;
960 		else
961 			*result = page_to_nid(newpage);
962 	}
963 	return rc;
964 }
965 
966 /*
967  * Counterpart of unmap_and_move_page() for hugepage migration.
968  *
969  * This function doesn't wait the completion of hugepage I/O
970  * because there is no race between I/O and migration for hugepage.
971  * Note that currently hugepage I/O occurs only in direct I/O
972  * where no lock is held and PG_writeback is irrelevant,
973  * and writeback status of all subpages are counted in the reference
974  * count of the head page (i.e. if all subpages of a 2MB hugepage are
975  * under direct I/O, the reference of the head page is 512 and a bit more.)
976  * This means that when we try to migrate hugepage whose subpages are
977  * doing direct I/O, some references remain after try_to_unmap() and
978  * hugepage migration fails without data corruption.
979  *
980  * There is also no race when direct I/O is issued on the page under migration,
981  * because then pte is replaced with migration swap entry and direct I/O code
982  * will wait in the page fault for migration to complete.
983  */
984 static int unmap_and_move_huge_page(new_page_t get_new_page,
985 				free_page_t put_new_page, unsigned long private,
986 				struct page *hpage, int force,
987 				enum migrate_mode mode)
988 {
989 	int rc = 0;
990 	int *result = NULL;
991 	int page_was_mapped = 0;
992 	struct page *new_hpage;
993 	struct anon_vma *anon_vma = NULL;
994 
995 	/*
996 	 * Movability of hugepages depends on architectures and hugepage size.
997 	 * This check is necessary because some callers of hugepage migration
998 	 * like soft offline and memory hotremove don't walk through page
999 	 * tables or check whether the hugepage is pmd-based or not before
1000 	 * kicking migration.
1001 	 */
1002 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1003 		putback_active_hugepage(hpage);
1004 		return -ENOSYS;
1005 	}
1006 
1007 	new_hpage = get_new_page(hpage, private, &result);
1008 	if (!new_hpage)
1009 		return -ENOMEM;
1010 
1011 	rc = -EAGAIN;
1012 
1013 	if (!trylock_page(hpage)) {
1014 		if (!force || mode != MIGRATE_SYNC)
1015 			goto out;
1016 		lock_page(hpage);
1017 	}
1018 
1019 	if (PageAnon(hpage))
1020 		anon_vma = page_get_anon_vma(hpage);
1021 
1022 	if (page_mapped(hpage)) {
1023 		try_to_unmap(hpage,
1024 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1025 		page_was_mapped = 1;
1026 	}
1027 
1028 	if (!page_mapped(hpage))
1029 		rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1030 
1031 	if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1032 		remove_migration_ptes(hpage, hpage);
1033 
1034 	if (anon_vma)
1035 		put_anon_vma(anon_vma);
1036 
1037 	if (rc == MIGRATEPAGE_SUCCESS)
1038 		hugetlb_cgroup_migrate(hpage, new_hpage);
1039 
1040 	unlock_page(hpage);
1041 out:
1042 	if (rc != -EAGAIN)
1043 		putback_active_hugepage(hpage);
1044 
1045 	/*
1046 	 * If migration was not successful and there's a freeing callback, use
1047 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1048 	 * isolation.
1049 	 */
1050 	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1051 		put_new_page(new_hpage, private);
1052 	else
1053 		put_page(new_hpage);
1054 
1055 	if (result) {
1056 		if (rc)
1057 			*result = rc;
1058 		else
1059 			*result = page_to_nid(new_hpage);
1060 	}
1061 	return rc;
1062 }
1063 
1064 /*
1065  * migrate_pages - migrate the pages specified in a list, to the free pages
1066  *		   supplied as the target for the page migration
1067  *
1068  * @from:		The list of pages to be migrated.
1069  * @get_new_page:	The function used to allocate free pages to be used
1070  *			as the target of the page migration.
1071  * @put_new_page:	The function used to free target pages if migration
1072  *			fails, or NULL if no special handling is necessary.
1073  * @private:		Private data to be passed on to get_new_page()
1074  * @mode:		The migration mode that specifies the constraints for
1075  *			page migration, if any.
1076  * @reason:		The reason for page migration.
1077  *
1078  * The function returns after 10 attempts or if no pages are movable any more
1079  * because the list has become empty or no retryable pages exist any more.
1080  * The caller should call putback_lru_pages() to return pages to the LRU
1081  * or free list only if ret != 0.
1082  *
1083  * Returns the number of pages that were not migrated, or an error code.
1084  */
1085 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1086 		free_page_t put_new_page, unsigned long private,
1087 		enum migrate_mode mode, int reason)
1088 {
1089 	int retry = 1;
1090 	int nr_failed = 0;
1091 	int nr_succeeded = 0;
1092 	int pass = 0;
1093 	struct page *page;
1094 	struct page *page2;
1095 	int swapwrite = current->flags & PF_SWAPWRITE;
1096 	int rc;
1097 
1098 	if (!swapwrite)
1099 		current->flags |= PF_SWAPWRITE;
1100 
1101 	for(pass = 0; pass < 10 && retry; pass++) {
1102 		retry = 0;
1103 
1104 		list_for_each_entry_safe(page, page2, from, lru) {
1105 			cond_resched();
1106 
1107 			if (PageHuge(page))
1108 				rc = unmap_and_move_huge_page(get_new_page,
1109 						put_new_page, private, page,
1110 						pass > 2, mode);
1111 			else
1112 				rc = unmap_and_move(get_new_page, put_new_page,
1113 						private, page, pass > 2, mode);
1114 
1115 			switch(rc) {
1116 			case -ENOMEM:
1117 				goto out;
1118 			case -EAGAIN:
1119 				retry++;
1120 				break;
1121 			case MIGRATEPAGE_SUCCESS:
1122 				nr_succeeded++;
1123 				break;
1124 			default:
1125 				/*
1126 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1127 				 * unlike -EAGAIN case, the failed page is
1128 				 * removed from migration page list and not
1129 				 * retried in the next outer loop.
1130 				 */
1131 				nr_failed++;
1132 				break;
1133 			}
1134 		}
1135 	}
1136 	rc = nr_failed + retry;
1137 out:
1138 	if (nr_succeeded)
1139 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1140 	if (nr_failed)
1141 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1142 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1143 
1144 	if (!swapwrite)
1145 		current->flags &= ~PF_SWAPWRITE;
1146 
1147 	return rc;
1148 }
1149 
1150 #ifdef CONFIG_NUMA
1151 /*
1152  * Move a list of individual pages
1153  */
1154 struct page_to_node {
1155 	unsigned long addr;
1156 	struct page *page;
1157 	int node;
1158 	int status;
1159 };
1160 
1161 static struct page *new_page_node(struct page *p, unsigned long private,
1162 		int **result)
1163 {
1164 	struct page_to_node *pm = (struct page_to_node *)private;
1165 
1166 	while (pm->node != MAX_NUMNODES && pm->page != p)
1167 		pm++;
1168 
1169 	if (pm->node == MAX_NUMNODES)
1170 		return NULL;
1171 
1172 	*result = &pm->status;
1173 
1174 	if (PageHuge(p))
1175 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1176 					pm->node);
1177 	else
1178 		return alloc_pages_exact_node(pm->node,
1179 				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1180 }
1181 
1182 /*
1183  * Move a set of pages as indicated in the pm array. The addr
1184  * field must be set to the virtual address of the page to be moved
1185  * and the node number must contain a valid target node.
1186  * The pm array ends with node = MAX_NUMNODES.
1187  */
1188 static int do_move_page_to_node_array(struct mm_struct *mm,
1189 				      struct page_to_node *pm,
1190 				      int migrate_all)
1191 {
1192 	int err;
1193 	struct page_to_node *pp;
1194 	LIST_HEAD(pagelist);
1195 
1196 	down_read(&mm->mmap_sem);
1197 
1198 	/*
1199 	 * Build a list of pages to migrate
1200 	 */
1201 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1202 		struct vm_area_struct *vma;
1203 		struct page *page;
1204 
1205 		err = -EFAULT;
1206 		vma = find_vma(mm, pp->addr);
1207 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1208 			goto set_status;
1209 
1210 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1211 
1212 		err = PTR_ERR(page);
1213 		if (IS_ERR(page))
1214 			goto set_status;
1215 
1216 		err = -ENOENT;
1217 		if (!page)
1218 			goto set_status;
1219 
1220 		/* Use PageReserved to check for zero page */
1221 		if (PageReserved(page))
1222 			goto put_and_set;
1223 
1224 		pp->page = page;
1225 		err = page_to_nid(page);
1226 
1227 		if (err == pp->node)
1228 			/*
1229 			 * Node already in the right place
1230 			 */
1231 			goto put_and_set;
1232 
1233 		err = -EACCES;
1234 		if (page_mapcount(page) > 1 &&
1235 				!migrate_all)
1236 			goto put_and_set;
1237 
1238 		if (PageHuge(page)) {
1239 			if (PageHead(page))
1240 				isolate_huge_page(page, &pagelist);
1241 			goto put_and_set;
1242 		}
1243 
1244 		err = isolate_lru_page(page);
1245 		if (!err) {
1246 			list_add_tail(&page->lru, &pagelist);
1247 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1248 					    page_is_file_cache(page));
1249 		}
1250 put_and_set:
1251 		/*
1252 		 * Either remove the duplicate refcount from
1253 		 * isolate_lru_page() or drop the page ref if it was
1254 		 * not isolated.
1255 		 */
1256 		put_page(page);
1257 set_status:
1258 		pp->status = err;
1259 	}
1260 
1261 	err = 0;
1262 	if (!list_empty(&pagelist)) {
1263 		err = migrate_pages(&pagelist, new_page_node, NULL,
1264 				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1265 		if (err)
1266 			putback_movable_pages(&pagelist);
1267 	}
1268 
1269 	up_read(&mm->mmap_sem);
1270 	return err;
1271 }
1272 
1273 /*
1274  * Migrate an array of page address onto an array of nodes and fill
1275  * the corresponding array of status.
1276  */
1277 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1278 			 unsigned long nr_pages,
1279 			 const void __user * __user *pages,
1280 			 const int __user *nodes,
1281 			 int __user *status, int flags)
1282 {
1283 	struct page_to_node *pm;
1284 	unsigned long chunk_nr_pages;
1285 	unsigned long chunk_start;
1286 	int err;
1287 
1288 	err = -ENOMEM;
1289 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1290 	if (!pm)
1291 		goto out;
1292 
1293 	migrate_prep();
1294 
1295 	/*
1296 	 * Store a chunk of page_to_node array in a page,
1297 	 * but keep the last one as a marker
1298 	 */
1299 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1300 
1301 	for (chunk_start = 0;
1302 	     chunk_start < nr_pages;
1303 	     chunk_start += chunk_nr_pages) {
1304 		int j;
1305 
1306 		if (chunk_start + chunk_nr_pages > nr_pages)
1307 			chunk_nr_pages = nr_pages - chunk_start;
1308 
1309 		/* fill the chunk pm with addrs and nodes from user-space */
1310 		for (j = 0; j < chunk_nr_pages; j++) {
1311 			const void __user *p;
1312 			int node;
1313 
1314 			err = -EFAULT;
1315 			if (get_user(p, pages + j + chunk_start))
1316 				goto out_pm;
1317 			pm[j].addr = (unsigned long) p;
1318 
1319 			if (get_user(node, nodes + j + chunk_start))
1320 				goto out_pm;
1321 
1322 			err = -ENODEV;
1323 			if (node < 0 || node >= MAX_NUMNODES)
1324 				goto out_pm;
1325 
1326 			if (!node_state(node, N_MEMORY))
1327 				goto out_pm;
1328 
1329 			err = -EACCES;
1330 			if (!node_isset(node, task_nodes))
1331 				goto out_pm;
1332 
1333 			pm[j].node = node;
1334 		}
1335 
1336 		/* End marker for this chunk */
1337 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1338 
1339 		/* Migrate this chunk */
1340 		err = do_move_page_to_node_array(mm, pm,
1341 						 flags & MPOL_MF_MOVE_ALL);
1342 		if (err < 0)
1343 			goto out_pm;
1344 
1345 		/* Return status information */
1346 		for (j = 0; j < chunk_nr_pages; j++)
1347 			if (put_user(pm[j].status, status + j + chunk_start)) {
1348 				err = -EFAULT;
1349 				goto out_pm;
1350 			}
1351 	}
1352 	err = 0;
1353 
1354 out_pm:
1355 	free_page((unsigned long)pm);
1356 out:
1357 	return err;
1358 }
1359 
1360 /*
1361  * Determine the nodes of an array of pages and store it in an array of status.
1362  */
1363 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1364 				const void __user **pages, int *status)
1365 {
1366 	unsigned long i;
1367 
1368 	down_read(&mm->mmap_sem);
1369 
1370 	for (i = 0; i < nr_pages; i++) {
1371 		unsigned long addr = (unsigned long)(*pages);
1372 		struct vm_area_struct *vma;
1373 		struct page *page;
1374 		int err = -EFAULT;
1375 
1376 		vma = find_vma(mm, addr);
1377 		if (!vma || addr < vma->vm_start)
1378 			goto set_status;
1379 
1380 		page = follow_page(vma, addr, 0);
1381 
1382 		err = PTR_ERR(page);
1383 		if (IS_ERR(page))
1384 			goto set_status;
1385 
1386 		err = -ENOENT;
1387 		/* Use PageReserved to check for zero page */
1388 		if (!page || PageReserved(page))
1389 			goto set_status;
1390 
1391 		err = page_to_nid(page);
1392 set_status:
1393 		*status = err;
1394 
1395 		pages++;
1396 		status++;
1397 	}
1398 
1399 	up_read(&mm->mmap_sem);
1400 }
1401 
1402 /*
1403  * Determine the nodes of a user array of pages and store it in
1404  * a user array of status.
1405  */
1406 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1407 			 const void __user * __user *pages,
1408 			 int __user *status)
1409 {
1410 #define DO_PAGES_STAT_CHUNK_NR 16
1411 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1412 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1413 
1414 	while (nr_pages) {
1415 		unsigned long chunk_nr;
1416 
1417 		chunk_nr = nr_pages;
1418 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1419 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1420 
1421 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1422 			break;
1423 
1424 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1425 
1426 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1427 			break;
1428 
1429 		pages += chunk_nr;
1430 		status += chunk_nr;
1431 		nr_pages -= chunk_nr;
1432 	}
1433 	return nr_pages ? -EFAULT : 0;
1434 }
1435 
1436 /*
1437  * Move a list of pages in the address space of the currently executing
1438  * process.
1439  */
1440 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1441 		const void __user * __user *, pages,
1442 		const int __user *, nodes,
1443 		int __user *, status, int, flags)
1444 {
1445 	const struct cred *cred = current_cred(), *tcred;
1446 	struct task_struct *task;
1447 	struct mm_struct *mm;
1448 	int err;
1449 	nodemask_t task_nodes;
1450 
1451 	/* Check flags */
1452 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1453 		return -EINVAL;
1454 
1455 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1456 		return -EPERM;
1457 
1458 	/* Find the mm_struct */
1459 	rcu_read_lock();
1460 	task = pid ? find_task_by_vpid(pid) : current;
1461 	if (!task) {
1462 		rcu_read_unlock();
1463 		return -ESRCH;
1464 	}
1465 	get_task_struct(task);
1466 
1467 	/*
1468 	 * Check if this process has the right to modify the specified
1469 	 * process. The right exists if the process has administrative
1470 	 * capabilities, superuser privileges or the same
1471 	 * userid as the target process.
1472 	 */
1473 	tcred = __task_cred(task);
1474 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1475 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1476 	    !capable(CAP_SYS_NICE)) {
1477 		rcu_read_unlock();
1478 		err = -EPERM;
1479 		goto out;
1480 	}
1481 	rcu_read_unlock();
1482 
1483  	err = security_task_movememory(task);
1484  	if (err)
1485 		goto out;
1486 
1487 	task_nodes = cpuset_mems_allowed(task);
1488 	mm = get_task_mm(task);
1489 	put_task_struct(task);
1490 
1491 	if (!mm)
1492 		return -EINVAL;
1493 
1494 	if (nodes)
1495 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1496 				    nodes, status, flags);
1497 	else
1498 		err = do_pages_stat(mm, nr_pages, pages, status);
1499 
1500 	mmput(mm);
1501 	return err;
1502 
1503 out:
1504 	put_task_struct(task);
1505 	return err;
1506 }
1507 
1508 #ifdef CONFIG_NUMA_BALANCING
1509 /*
1510  * Returns true if this is a safe migration target node for misplaced NUMA
1511  * pages. Currently it only checks the watermarks which crude
1512  */
1513 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1514 				   unsigned long nr_migrate_pages)
1515 {
1516 	int z;
1517 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1518 		struct zone *zone = pgdat->node_zones + z;
1519 
1520 		if (!populated_zone(zone))
1521 			continue;
1522 
1523 		if (!zone_reclaimable(zone))
1524 			continue;
1525 
1526 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1527 		if (!zone_watermark_ok(zone, 0,
1528 				       high_wmark_pages(zone) +
1529 				       nr_migrate_pages,
1530 				       0, 0))
1531 			continue;
1532 		return true;
1533 	}
1534 	return false;
1535 }
1536 
1537 static struct page *alloc_misplaced_dst_page(struct page *page,
1538 					   unsigned long data,
1539 					   int **result)
1540 {
1541 	int nid = (int) data;
1542 	struct page *newpage;
1543 
1544 	newpage = alloc_pages_exact_node(nid,
1545 					 (GFP_HIGHUSER_MOVABLE |
1546 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1547 					  __GFP_NORETRY | __GFP_NOWARN) &
1548 					 ~GFP_IOFS, 0);
1549 
1550 	return newpage;
1551 }
1552 
1553 /*
1554  * page migration rate limiting control.
1555  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1556  * window of time. Default here says do not migrate more than 1280M per second.
1557  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1558  * as it is faults that reset the window, pte updates will happen unconditionally
1559  * if there has not been a fault since @pteupdate_interval_millisecs after the
1560  * throttle window closed.
1561  */
1562 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1563 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1564 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1565 
1566 /* Returns true if NUMA migration is currently rate limited */
1567 bool migrate_ratelimited(int node)
1568 {
1569 	pg_data_t *pgdat = NODE_DATA(node);
1570 
1571 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1572 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1573 		return false;
1574 
1575 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1576 		return false;
1577 
1578 	return true;
1579 }
1580 
1581 /* Returns true if the node is migrate rate-limited after the update */
1582 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1583 					unsigned long nr_pages)
1584 {
1585 	/*
1586 	 * Rate-limit the amount of data that is being migrated to a node.
1587 	 * Optimal placement is no good if the memory bus is saturated and
1588 	 * all the time is being spent migrating!
1589 	 */
1590 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1591 		spin_lock(&pgdat->numabalancing_migrate_lock);
1592 		pgdat->numabalancing_migrate_nr_pages = 0;
1593 		pgdat->numabalancing_migrate_next_window = jiffies +
1594 			msecs_to_jiffies(migrate_interval_millisecs);
1595 		spin_unlock(&pgdat->numabalancing_migrate_lock);
1596 	}
1597 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1598 		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1599 								nr_pages);
1600 		return true;
1601 	}
1602 
1603 	/*
1604 	 * This is an unlocked non-atomic update so errors are possible.
1605 	 * The consequences are failing to migrate when we potentiall should
1606 	 * have which is not severe enough to warrant locking. If it is ever
1607 	 * a problem, it can be converted to a per-cpu counter.
1608 	 */
1609 	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1610 	return false;
1611 }
1612 
1613 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1614 {
1615 	int page_lru;
1616 
1617 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1618 
1619 	/* Avoid migrating to a node that is nearly full */
1620 	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1621 		return 0;
1622 
1623 	if (isolate_lru_page(page))
1624 		return 0;
1625 
1626 	/*
1627 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1628 	 * check on page_count(), so we must do it here, now that the page
1629 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1630 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1631 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1632 	 */
1633 	if (PageTransHuge(page) && page_count(page) != 3) {
1634 		putback_lru_page(page);
1635 		return 0;
1636 	}
1637 
1638 	page_lru = page_is_file_cache(page);
1639 	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1640 				hpage_nr_pages(page));
1641 
1642 	/*
1643 	 * Isolating the page has taken another reference, so the
1644 	 * caller's reference can be safely dropped without the page
1645 	 * disappearing underneath us during migration.
1646 	 */
1647 	put_page(page);
1648 	return 1;
1649 }
1650 
1651 bool pmd_trans_migrating(pmd_t pmd)
1652 {
1653 	struct page *page = pmd_page(pmd);
1654 	return PageLocked(page);
1655 }
1656 
1657 /*
1658  * Attempt to migrate a misplaced page to the specified destination
1659  * node. Caller is expected to have an elevated reference count on
1660  * the page that will be dropped by this function before returning.
1661  */
1662 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1663 			   int node)
1664 {
1665 	pg_data_t *pgdat = NODE_DATA(node);
1666 	int isolated;
1667 	int nr_remaining;
1668 	LIST_HEAD(migratepages);
1669 
1670 	/*
1671 	 * Don't migrate file pages that are mapped in multiple processes
1672 	 * with execute permissions as they are probably shared libraries.
1673 	 */
1674 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1675 	    (vma->vm_flags & VM_EXEC))
1676 		goto out;
1677 
1678 	/*
1679 	 * Rate-limit the amount of data that is being migrated to a node.
1680 	 * Optimal placement is no good if the memory bus is saturated and
1681 	 * all the time is being spent migrating!
1682 	 */
1683 	if (numamigrate_update_ratelimit(pgdat, 1))
1684 		goto out;
1685 
1686 	isolated = numamigrate_isolate_page(pgdat, page);
1687 	if (!isolated)
1688 		goto out;
1689 
1690 	list_add(&page->lru, &migratepages);
1691 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1692 				     NULL, node, MIGRATE_ASYNC,
1693 				     MR_NUMA_MISPLACED);
1694 	if (nr_remaining) {
1695 		if (!list_empty(&migratepages)) {
1696 			list_del(&page->lru);
1697 			dec_zone_page_state(page, NR_ISOLATED_ANON +
1698 					page_is_file_cache(page));
1699 			putback_lru_page(page);
1700 		}
1701 		isolated = 0;
1702 	} else
1703 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1704 	BUG_ON(!list_empty(&migratepages));
1705 	return isolated;
1706 
1707 out:
1708 	put_page(page);
1709 	return 0;
1710 }
1711 #endif /* CONFIG_NUMA_BALANCING */
1712 
1713 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1714 /*
1715  * Migrates a THP to a given target node. page must be locked and is unlocked
1716  * before returning.
1717  */
1718 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1719 				struct vm_area_struct *vma,
1720 				pmd_t *pmd, pmd_t entry,
1721 				unsigned long address,
1722 				struct page *page, int node)
1723 {
1724 	spinlock_t *ptl;
1725 	pg_data_t *pgdat = NODE_DATA(node);
1726 	int isolated = 0;
1727 	struct page *new_page = NULL;
1728 	int page_lru = page_is_file_cache(page);
1729 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1730 	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1731 	pmd_t orig_entry;
1732 
1733 	/*
1734 	 * Rate-limit the amount of data that is being migrated to a node.
1735 	 * Optimal placement is no good if the memory bus is saturated and
1736 	 * all the time is being spent migrating!
1737 	 */
1738 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1739 		goto out_dropref;
1740 
1741 	new_page = alloc_pages_node(node,
1742 		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1743 		HPAGE_PMD_ORDER);
1744 	if (!new_page)
1745 		goto out_fail;
1746 
1747 	isolated = numamigrate_isolate_page(pgdat, page);
1748 	if (!isolated) {
1749 		put_page(new_page);
1750 		goto out_fail;
1751 	}
1752 
1753 	if (mm_tlb_flush_pending(mm))
1754 		flush_tlb_range(vma, mmun_start, mmun_end);
1755 
1756 	/* Prepare a page as a migration target */
1757 	__set_page_locked(new_page);
1758 	SetPageSwapBacked(new_page);
1759 
1760 	/* anon mapping, we can simply copy page->mapping to the new page: */
1761 	new_page->mapping = page->mapping;
1762 	new_page->index = page->index;
1763 	migrate_page_copy(new_page, page);
1764 	WARN_ON(PageLRU(new_page));
1765 
1766 	/* Recheck the target PMD */
1767 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1768 	ptl = pmd_lock(mm, pmd);
1769 	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1770 fail_putback:
1771 		spin_unlock(ptl);
1772 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1773 
1774 		/* Reverse changes made by migrate_page_copy() */
1775 		if (TestClearPageActive(new_page))
1776 			SetPageActive(page);
1777 		if (TestClearPageUnevictable(new_page))
1778 			SetPageUnevictable(page);
1779 		mlock_migrate_page(page, new_page);
1780 
1781 		unlock_page(new_page);
1782 		put_page(new_page);		/* Free it */
1783 
1784 		/* Retake the callers reference and putback on LRU */
1785 		get_page(page);
1786 		putback_lru_page(page);
1787 		mod_zone_page_state(page_zone(page),
1788 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1789 
1790 		goto out_unlock;
1791 	}
1792 
1793 	orig_entry = *pmd;
1794 	entry = mk_pmd(new_page, vma->vm_page_prot);
1795 	entry = pmd_mkhuge(entry);
1796 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1797 
1798 	/*
1799 	 * Clear the old entry under pagetable lock and establish the new PTE.
1800 	 * Any parallel GUP will either observe the old page blocking on the
1801 	 * page lock, block on the page table lock or observe the new page.
1802 	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1803 	 * guarantee the copy is visible before the pagetable update.
1804 	 */
1805 	flush_cache_range(vma, mmun_start, mmun_end);
1806 	page_add_anon_rmap(new_page, vma, mmun_start);
1807 	pmdp_clear_flush_notify(vma, mmun_start, pmd);
1808 	set_pmd_at(mm, mmun_start, pmd, entry);
1809 	flush_tlb_range(vma, mmun_start, mmun_end);
1810 	update_mmu_cache_pmd(vma, address, &entry);
1811 
1812 	if (page_count(page) != 2) {
1813 		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1814 		flush_tlb_range(vma, mmun_start, mmun_end);
1815 		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1816 		update_mmu_cache_pmd(vma, address, &entry);
1817 		page_remove_rmap(new_page);
1818 		goto fail_putback;
1819 	}
1820 
1821 	mem_cgroup_migrate(page, new_page, false);
1822 
1823 	page_remove_rmap(page);
1824 
1825 	spin_unlock(ptl);
1826 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1827 
1828 	/* Take an "isolate" reference and put new page on the LRU. */
1829 	get_page(new_page);
1830 	putback_lru_page(new_page);
1831 
1832 	unlock_page(new_page);
1833 	unlock_page(page);
1834 	put_page(page);			/* Drop the rmap reference */
1835 	put_page(page);			/* Drop the LRU isolation reference */
1836 
1837 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1838 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1839 
1840 	mod_zone_page_state(page_zone(page),
1841 			NR_ISOLATED_ANON + page_lru,
1842 			-HPAGE_PMD_NR);
1843 	return isolated;
1844 
1845 out_fail:
1846 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1847 out_dropref:
1848 	ptl = pmd_lock(mm, pmd);
1849 	if (pmd_same(*pmd, entry)) {
1850 		entry = pmd_modify(entry, vma->vm_page_prot);
1851 		set_pmd_at(mm, mmun_start, pmd, entry);
1852 		update_mmu_cache_pmd(vma, address, &entry);
1853 	}
1854 	spin_unlock(ptl);
1855 
1856 out_unlock:
1857 	unlock_page(page);
1858 	put_page(page);
1859 	return 0;
1860 }
1861 #endif /* CONFIG_NUMA_BALANCING */
1862 
1863 #endif /* CONFIG_NUMA */
1864