1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter <clameter@sgi.com> 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/pagevec.h> 23 #include <linux/rmap.h> 24 #include <linux/topology.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/writeback.h> 28 #include <linux/mempolicy.h> 29 #include <linux/vmalloc.h> 30 #include <linux/security.h> 31 32 #include "internal.h" 33 34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 35 36 /* 37 * Isolate one page from the LRU lists. If successful put it onto 38 * the indicated list with elevated page count. 39 * 40 * Result: 41 * -EBUSY: page not on LRU list 42 * 0: page removed from LRU list and added to the specified list. 43 */ 44 int isolate_lru_page(struct page *page, struct list_head *pagelist) 45 { 46 int ret = -EBUSY; 47 48 if (PageLRU(page)) { 49 struct zone *zone = page_zone(page); 50 51 spin_lock_irq(&zone->lru_lock); 52 if (PageLRU(page) && get_page_unless_zero(page)) { 53 ret = 0; 54 ClearPageLRU(page); 55 if (PageActive(page)) 56 del_page_from_active_list(zone, page); 57 else 58 del_page_from_inactive_list(zone, page); 59 list_add_tail(&page->lru, pagelist); 60 } 61 spin_unlock_irq(&zone->lru_lock); 62 } 63 return ret; 64 } 65 66 /* 67 * migrate_prep() needs to be called before we start compiling a list of pages 68 * to be migrated using isolate_lru_page(). 69 */ 70 int migrate_prep(void) 71 { 72 /* 73 * Clear the LRU lists so pages can be isolated. 74 * Note that pages may be moved off the LRU after we have 75 * drained them. Those pages will fail to migrate like other 76 * pages that may be busy. 77 */ 78 lru_add_drain_all(); 79 80 return 0; 81 } 82 83 static inline void move_to_lru(struct page *page) 84 { 85 if (PageActive(page)) { 86 /* 87 * lru_cache_add_active checks that 88 * the PG_active bit is off. 89 */ 90 ClearPageActive(page); 91 lru_cache_add_active(page); 92 } else { 93 lru_cache_add(page); 94 } 95 put_page(page); 96 } 97 98 /* 99 * Add isolated pages on the list back to the LRU. 100 * 101 * returns the number of pages put back. 102 */ 103 int putback_lru_pages(struct list_head *l) 104 { 105 struct page *page; 106 struct page *page2; 107 int count = 0; 108 109 list_for_each_entry_safe(page, page2, l, lru) { 110 list_del(&page->lru); 111 move_to_lru(page); 112 count++; 113 } 114 return count; 115 } 116 117 static inline int is_swap_pte(pte_t pte) 118 { 119 return !pte_none(pte) && !pte_present(pte) && !pte_file(pte); 120 } 121 122 /* 123 * Restore a potential migration pte to a working pte entry 124 */ 125 static void remove_migration_pte(struct vm_area_struct *vma, 126 struct page *old, struct page *new) 127 { 128 struct mm_struct *mm = vma->vm_mm; 129 swp_entry_t entry; 130 pgd_t *pgd; 131 pud_t *pud; 132 pmd_t *pmd; 133 pte_t *ptep, pte; 134 spinlock_t *ptl; 135 unsigned long addr = page_address_in_vma(new, vma); 136 137 if (addr == -EFAULT) 138 return; 139 140 pgd = pgd_offset(mm, addr); 141 if (!pgd_present(*pgd)) 142 return; 143 144 pud = pud_offset(pgd, addr); 145 if (!pud_present(*pud)) 146 return; 147 148 pmd = pmd_offset(pud, addr); 149 if (!pmd_present(*pmd)) 150 return; 151 152 ptep = pte_offset_map(pmd, addr); 153 154 if (!is_swap_pte(*ptep)) { 155 pte_unmap(ptep); 156 return; 157 } 158 159 ptl = pte_lockptr(mm, pmd); 160 spin_lock(ptl); 161 pte = *ptep; 162 if (!is_swap_pte(pte)) 163 goto out; 164 165 entry = pte_to_swp_entry(pte); 166 167 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) 168 goto out; 169 170 get_page(new); 171 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 172 if (is_write_migration_entry(entry)) 173 pte = pte_mkwrite(pte); 174 set_pte_at(mm, addr, ptep, pte); 175 176 if (PageAnon(new)) 177 page_add_anon_rmap(new, vma, addr); 178 else 179 page_add_file_rmap(new); 180 181 /* No need to invalidate - it was non-present before */ 182 update_mmu_cache(vma, addr, pte); 183 lazy_mmu_prot_update(pte); 184 185 out: 186 pte_unmap_unlock(ptep, ptl); 187 } 188 189 /* 190 * Note that remove_file_migration_ptes will only work on regular mappings, 191 * Nonlinear mappings do not use migration entries. 192 */ 193 static void remove_file_migration_ptes(struct page *old, struct page *new) 194 { 195 struct vm_area_struct *vma; 196 struct address_space *mapping = page_mapping(new); 197 struct prio_tree_iter iter; 198 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 199 200 if (!mapping) 201 return; 202 203 spin_lock(&mapping->i_mmap_lock); 204 205 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) 206 remove_migration_pte(vma, old, new); 207 208 spin_unlock(&mapping->i_mmap_lock); 209 } 210 211 /* 212 * Must hold mmap_sem lock on at least one of the vmas containing 213 * the page so that the anon_vma cannot vanish. 214 */ 215 static void remove_anon_migration_ptes(struct page *old, struct page *new) 216 { 217 struct anon_vma *anon_vma; 218 struct vm_area_struct *vma; 219 unsigned long mapping; 220 221 mapping = (unsigned long)new->mapping; 222 223 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) 224 return; 225 226 /* 227 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. 228 */ 229 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); 230 spin_lock(&anon_vma->lock); 231 232 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 233 remove_migration_pte(vma, old, new); 234 235 spin_unlock(&anon_vma->lock); 236 } 237 238 /* 239 * Get rid of all migration entries and replace them by 240 * references to the indicated page. 241 */ 242 static void remove_migration_ptes(struct page *old, struct page *new) 243 { 244 if (PageAnon(new)) 245 remove_anon_migration_ptes(old, new); 246 else 247 remove_file_migration_ptes(old, new); 248 } 249 250 /* 251 * Something used the pte of a page under migration. We need to 252 * get to the page and wait until migration is finished. 253 * When we return from this function the fault will be retried. 254 * 255 * This function is called from do_swap_page(). 256 */ 257 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 258 unsigned long address) 259 { 260 pte_t *ptep, pte; 261 spinlock_t *ptl; 262 swp_entry_t entry; 263 struct page *page; 264 265 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 266 pte = *ptep; 267 if (!is_swap_pte(pte)) 268 goto out; 269 270 entry = pte_to_swp_entry(pte); 271 if (!is_migration_entry(entry)) 272 goto out; 273 274 page = migration_entry_to_page(entry); 275 276 get_page(page); 277 pte_unmap_unlock(ptep, ptl); 278 wait_on_page_locked(page); 279 put_page(page); 280 return; 281 out: 282 pte_unmap_unlock(ptep, ptl); 283 } 284 285 /* 286 * Replace the page in the mapping. 287 * 288 * The number of remaining references must be: 289 * 1 for anonymous pages without a mapping 290 * 2 for pages with a mapping 291 * 3 for pages with a mapping and PagePrivate set. 292 */ 293 static int migrate_page_move_mapping(struct address_space *mapping, 294 struct page *newpage, struct page *page) 295 { 296 void **pslot; 297 298 if (!mapping) { 299 /* Anonymous page without mapping */ 300 if (page_count(page) != 1) 301 return -EAGAIN; 302 return 0; 303 } 304 305 write_lock_irq(&mapping->tree_lock); 306 307 pslot = radix_tree_lookup_slot(&mapping->page_tree, 308 page_index(page)); 309 310 if (page_count(page) != 2 + !!PagePrivate(page) || 311 (struct page *)radix_tree_deref_slot(pslot) != page) { 312 write_unlock_irq(&mapping->tree_lock); 313 return -EAGAIN; 314 } 315 316 /* 317 * Now we know that no one else is looking at the page. 318 */ 319 get_page(newpage); /* add cache reference */ 320 #ifdef CONFIG_SWAP 321 if (PageSwapCache(page)) { 322 SetPageSwapCache(newpage); 323 set_page_private(newpage, page_private(page)); 324 } 325 #endif 326 327 radix_tree_replace_slot(pslot, newpage); 328 329 /* 330 * Drop cache reference from old page. 331 * We know this isn't the last reference. 332 */ 333 __put_page(page); 334 335 /* 336 * If moved to a different zone then also account 337 * the page for that zone. Other VM counters will be 338 * taken care of when we establish references to the 339 * new page and drop references to the old page. 340 * 341 * Note that anonymous pages are accounted for 342 * via NR_FILE_PAGES and NR_ANON_PAGES if they 343 * are mapped to swap space. 344 */ 345 __dec_zone_page_state(page, NR_FILE_PAGES); 346 __inc_zone_page_state(newpage, NR_FILE_PAGES); 347 348 write_unlock_irq(&mapping->tree_lock); 349 350 return 0; 351 } 352 353 /* 354 * Copy the page to its new location 355 */ 356 static void migrate_page_copy(struct page *newpage, struct page *page) 357 { 358 copy_highpage(newpage, page); 359 360 if (PageError(page)) 361 SetPageError(newpage); 362 if (PageReferenced(page)) 363 SetPageReferenced(newpage); 364 if (PageUptodate(page)) 365 SetPageUptodate(newpage); 366 if (PageActive(page)) 367 SetPageActive(newpage); 368 if (PageChecked(page)) 369 SetPageChecked(newpage); 370 if (PageMappedToDisk(page)) 371 SetPageMappedToDisk(newpage); 372 373 if (PageDirty(page)) { 374 clear_page_dirty_for_io(page); 375 set_page_dirty(newpage); 376 } 377 378 #ifdef CONFIG_SWAP 379 ClearPageSwapCache(page); 380 #endif 381 ClearPageActive(page); 382 ClearPagePrivate(page); 383 set_page_private(page, 0); 384 page->mapping = NULL; 385 386 /* 387 * If any waiters have accumulated on the new page then 388 * wake them up. 389 */ 390 if (PageWriteback(newpage)) 391 end_page_writeback(newpage); 392 } 393 394 /************************************************************ 395 * Migration functions 396 ***********************************************************/ 397 398 /* Always fail migration. Used for mappings that are not movable */ 399 int fail_migrate_page(struct address_space *mapping, 400 struct page *newpage, struct page *page) 401 { 402 return -EIO; 403 } 404 EXPORT_SYMBOL(fail_migrate_page); 405 406 /* 407 * Common logic to directly migrate a single page suitable for 408 * pages that do not use PagePrivate. 409 * 410 * Pages are locked upon entry and exit. 411 */ 412 int migrate_page(struct address_space *mapping, 413 struct page *newpage, struct page *page) 414 { 415 int rc; 416 417 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 418 419 rc = migrate_page_move_mapping(mapping, newpage, page); 420 421 if (rc) 422 return rc; 423 424 migrate_page_copy(newpage, page); 425 return 0; 426 } 427 EXPORT_SYMBOL(migrate_page); 428 429 #ifdef CONFIG_BLOCK 430 /* 431 * Migration function for pages with buffers. This function can only be used 432 * if the underlying filesystem guarantees that no other references to "page" 433 * exist. 434 */ 435 int buffer_migrate_page(struct address_space *mapping, 436 struct page *newpage, struct page *page) 437 { 438 struct buffer_head *bh, *head; 439 int rc; 440 441 if (!page_has_buffers(page)) 442 return migrate_page(mapping, newpage, page); 443 444 head = page_buffers(page); 445 446 rc = migrate_page_move_mapping(mapping, newpage, page); 447 448 if (rc) 449 return rc; 450 451 bh = head; 452 do { 453 get_bh(bh); 454 lock_buffer(bh); 455 bh = bh->b_this_page; 456 457 } while (bh != head); 458 459 ClearPagePrivate(page); 460 set_page_private(newpage, page_private(page)); 461 set_page_private(page, 0); 462 put_page(page); 463 get_page(newpage); 464 465 bh = head; 466 do { 467 set_bh_page(bh, newpage, bh_offset(bh)); 468 bh = bh->b_this_page; 469 470 } while (bh != head); 471 472 SetPagePrivate(newpage); 473 474 migrate_page_copy(newpage, page); 475 476 bh = head; 477 do { 478 unlock_buffer(bh); 479 put_bh(bh); 480 bh = bh->b_this_page; 481 482 } while (bh != head); 483 484 return 0; 485 } 486 EXPORT_SYMBOL(buffer_migrate_page); 487 #endif 488 489 /* 490 * Writeback a page to clean the dirty state 491 */ 492 static int writeout(struct address_space *mapping, struct page *page) 493 { 494 struct writeback_control wbc = { 495 .sync_mode = WB_SYNC_NONE, 496 .nr_to_write = 1, 497 .range_start = 0, 498 .range_end = LLONG_MAX, 499 .nonblocking = 1, 500 .for_reclaim = 1 501 }; 502 int rc; 503 504 if (!mapping->a_ops->writepage) 505 /* No write method for the address space */ 506 return -EINVAL; 507 508 if (!clear_page_dirty_for_io(page)) 509 /* Someone else already triggered a write */ 510 return -EAGAIN; 511 512 /* 513 * A dirty page may imply that the underlying filesystem has 514 * the page on some queue. So the page must be clean for 515 * migration. Writeout may mean we loose the lock and the 516 * page state is no longer what we checked for earlier. 517 * At this point we know that the migration attempt cannot 518 * be successful. 519 */ 520 remove_migration_ptes(page, page); 521 522 rc = mapping->a_ops->writepage(page, &wbc); 523 if (rc < 0) 524 /* I/O Error writing */ 525 return -EIO; 526 527 if (rc != AOP_WRITEPAGE_ACTIVATE) 528 /* unlocked. Relock */ 529 lock_page(page); 530 531 return -EAGAIN; 532 } 533 534 /* 535 * Default handling if a filesystem does not provide a migration function. 536 */ 537 static int fallback_migrate_page(struct address_space *mapping, 538 struct page *newpage, struct page *page) 539 { 540 if (PageDirty(page)) 541 return writeout(mapping, page); 542 543 /* 544 * Buffers may be managed in a filesystem specific way. 545 * We must have no buffers or drop them. 546 */ 547 if (PagePrivate(page) && 548 !try_to_release_page(page, GFP_KERNEL)) 549 return -EAGAIN; 550 551 return migrate_page(mapping, newpage, page); 552 } 553 554 /* 555 * Move a page to a newly allocated page 556 * The page is locked and all ptes have been successfully removed. 557 * 558 * The new page will have replaced the old page if this function 559 * is successful. 560 */ 561 static int move_to_new_page(struct page *newpage, struct page *page) 562 { 563 struct address_space *mapping; 564 int rc; 565 566 /* 567 * Block others from accessing the page when we get around to 568 * establishing additional references. We are the only one 569 * holding a reference to the new page at this point. 570 */ 571 if (TestSetPageLocked(newpage)) 572 BUG(); 573 574 /* Prepare mapping for the new page.*/ 575 newpage->index = page->index; 576 newpage->mapping = page->mapping; 577 578 mapping = page_mapping(page); 579 if (!mapping) 580 rc = migrate_page(mapping, newpage, page); 581 else if (mapping->a_ops->migratepage) 582 /* 583 * Most pages have a mapping and most filesystems 584 * should provide a migration function. Anonymous 585 * pages are part of swap space which also has its 586 * own migration function. This is the most common 587 * path for page migration. 588 */ 589 rc = mapping->a_ops->migratepage(mapping, 590 newpage, page); 591 else 592 rc = fallback_migrate_page(mapping, newpage, page); 593 594 if (!rc) 595 remove_migration_ptes(page, newpage); 596 else 597 newpage->mapping = NULL; 598 599 unlock_page(newpage); 600 601 return rc; 602 } 603 604 /* 605 * Obtain the lock on page, remove all ptes and migrate the page 606 * to the newly allocated page in newpage. 607 */ 608 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 609 struct page *page, int force) 610 { 611 int rc = 0; 612 int *result = NULL; 613 struct page *newpage = get_new_page(page, private, &result); 614 int rcu_locked = 0; 615 616 if (!newpage) 617 return -ENOMEM; 618 619 if (page_count(page) == 1) 620 /* page was freed from under us. So we are done. */ 621 goto move_newpage; 622 623 rc = -EAGAIN; 624 if (TestSetPageLocked(page)) { 625 if (!force) 626 goto move_newpage; 627 lock_page(page); 628 } 629 630 if (PageWriteback(page)) { 631 if (!force) 632 goto unlock; 633 wait_on_page_writeback(page); 634 } 635 /* 636 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 637 * we cannot notice that anon_vma is freed while we migrates a page. 638 * This rcu_read_lock() delays freeing anon_vma pointer until the end 639 * of migration. File cache pages are no problem because of page_lock() 640 * File Caches may use write_page() or lock_page() in migration, then, 641 * just care Anon page here. 642 */ 643 if (PageAnon(page)) { 644 rcu_read_lock(); 645 rcu_locked = 1; 646 } 647 /* 648 * This is a corner case handling. 649 * When a new swap-cache is read into, it is linked to LRU 650 * and treated as swapcache but has no rmap yet. 651 * Calling try_to_unmap() against a page->mapping==NULL page is 652 * BUG. So handle it here. 653 */ 654 if (!page->mapping) 655 goto rcu_unlock; 656 /* Establish migration ptes or remove ptes */ 657 try_to_unmap(page, 1); 658 659 if (!page_mapped(page)) 660 rc = move_to_new_page(newpage, page); 661 662 if (rc) 663 remove_migration_ptes(page, page); 664 rcu_unlock: 665 if (rcu_locked) 666 rcu_read_unlock(); 667 668 unlock: 669 670 unlock_page(page); 671 672 if (rc != -EAGAIN) { 673 /* 674 * A page that has been migrated has all references 675 * removed and will be freed. A page that has not been 676 * migrated will have kepts its references and be 677 * restored. 678 */ 679 list_del(&page->lru); 680 move_to_lru(page); 681 } 682 683 move_newpage: 684 /* 685 * Move the new page to the LRU. If migration was not successful 686 * then this will free the page. 687 */ 688 move_to_lru(newpage); 689 if (result) { 690 if (rc) 691 *result = rc; 692 else 693 *result = page_to_nid(newpage); 694 } 695 return rc; 696 } 697 698 /* 699 * migrate_pages 700 * 701 * The function takes one list of pages to migrate and a function 702 * that determines from the page to be migrated and the private data 703 * the target of the move and allocates the page. 704 * 705 * The function returns after 10 attempts or if no pages 706 * are movable anymore because to has become empty 707 * or no retryable pages exist anymore. All pages will be 708 * retruned to the LRU or freed. 709 * 710 * Return: Number of pages not migrated or error code. 711 */ 712 int migrate_pages(struct list_head *from, 713 new_page_t get_new_page, unsigned long private) 714 { 715 int retry = 1; 716 int nr_failed = 0; 717 int pass = 0; 718 struct page *page; 719 struct page *page2; 720 int swapwrite = current->flags & PF_SWAPWRITE; 721 int rc; 722 723 if (!swapwrite) 724 current->flags |= PF_SWAPWRITE; 725 726 for(pass = 0; pass < 10 && retry; pass++) { 727 retry = 0; 728 729 list_for_each_entry_safe(page, page2, from, lru) { 730 cond_resched(); 731 732 rc = unmap_and_move(get_new_page, private, 733 page, pass > 2); 734 735 switch(rc) { 736 case -ENOMEM: 737 goto out; 738 case -EAGAIN: 739 retry++; 740 break; 741 case 0: 742 break; 743 default: 744 /* Permanent failure */ 745 nr_failed++; 746 break; 747 } 748 } 749 } 750 rc = 0; 751 out: 752 if (!swapwrite) 753 current->flags &= ~PF_SWAPWRITE; 754 755 putback_lru_pages(from); 756 757 if (rc) 758 return rc; 759 760 return nr_failed + retry; 761 } 762 763 #ifdef CONFIG_NUMA 764 /* 765 * Move a list of individual pages 766 */ 767 struct page_to_node { 768 unsigned long addr; 769 struct page *page; 770 int node; 771 int status; 772 }; 773 774 static struct page *new_page_node(struct page *p, unsigned long private, 775 int **result) 776 { 777 struct page_to_node *pm = (struct page_to_node *)private; 778 779 while (pm->node != MAX_NUMNODES && pm->page != p) 780 pm++; 781 782 if (pm->node == MAX_NUMNODES) 783 return NULL; 784 785 *result = &pm->status; 786 787 return alloc_pages_node(pm->node, 788 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 789 } 790 791 /* 792 * Move a set of pages as indicated in the pm array. The addr 793 * field must be set to the virtual address of the page to be moved 794 * and the node number must contain a valid target node. 795 */ 796 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, 797 int migrate_all) 798 { 799 int err; 800 struct page_to_node *pp; 801 LIST_HEAD(pagelist); 802 803 down_read(&mm->mmap_sem); 804 805 /* 806 * Build a list of pages to migrate 807 */ 808 migrate_prep(); 809 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 810 struct vm_area_struct *vma; 811 struct page *page; 812 813 /* 814 * A valid page pointer that will not match any of the 815 * pages that will be moved. 816 */ 817 pp->page = ZERO_PAGE(0); 818 819 err = -EFAULT; 820 vma = find_vma(mm, pp->addr); 821 if (!vma || !vma_migratable(vma)) 822 goto set_status; 823 824 page = follow_page(vma, pp->addr, FOLL_GET); 825 err = -ENOENT; 826 if (!page) 827 goto set_status; 828 829 if (PageReserved(page)) /* Check for zero page */ 830 goto put_and_set; 831 832 pp->page = page; 833 err = page_to_nid(page); 834 835 if (err == pp->node) 836 /* 837 * Node already in the right place 838 */ 839 goto put_and_set; 840 841 err = -EACCES; 842 if (page_mapcount(page) > 1 && 843 !migrate_all) 844 goto put_and_set; 845 846 err = isolate_lru_page(page, &pagelist); 847 put_and_set: 848 /* 849 * Either remove the duplicate refcount from 850 * isolate_lru_page() or drop the page ref if it was 851 * not isolated. 852 */ 853 put_page(page); 854 set_status: 855 pp->status = err; 856 } 857 858 if (!list_empty(&pagelist)) 859 err = migrate_pages(&pagelist, new_page_node, 860 (unsigned long)pm); 861 else 862 err = -ENOENT; 863 864 up_read(&mm->mmap_sem); 865 return err; 866 } 867 868 /* 869 * Determine the nodes of a list of pages. The addr in the pm array 870 * must have been set to the virtual address of which we want to determine 871 * the node number. 872 */ 873 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) 874 { 875 down_read(&mm->mmap_sem); 876 877 for ( ; pm->node != MAX_NUMNODES; pm++) { 878 struct vm_area_struct *vma; 879 struct page *page; 880 int err; 881 882 err = -EFAULT; 883 vma = find_vma(mm, pm->addr); 884 if (!vma) 885 goto set_status; 886 887 page = follow_page(vma, pm->addr, 0); 888 err = -ENOENT; 889 /* Use PageReserved to check for zero page */ 890 if (!page || PageReserved(page)) 891 goto set_status; 892 893 err = page_to_nid(page); 894 set_status: 895 pm->status = err; 896 } 897 898 up_read(&mm->mmap_sem); 899 return 0; 900 } 901 902 /* 903 * Move a list of pages in the address space of the currently executing 904 * process. 905 */ 906 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, 907 const void __user * __user *pages, 908 const int __user *nodes, 909 int __user *status, int flags) 910 { 911 int err = 0; 912 int i; 913 struct task_struct *task; 914 nodemask_t task_nodes; 915 struct mm_struct *mm; 916 struct page_to_node *pm = NULL; 917 918 /* Check flags */ 919 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 920 return -EINVAL; 921 922 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 923 return -EPERM; 924 925 /* Find the mm_struct */ 926 read_lock(&tasklist_lock); 927 task = pid ? find_task_by_pid(pid) : current; 928 if (!task) { 929 read_unlock(&tasklist_lock); 930 return -ESRCH; 931 } 932 mm = get_task_mm(task); 933 read_unlock(&tasklist_lock); 934 935 if (!mm) 936 return -EINVAL; 937 938 /* 939 * Check if this process has the right to modify the specified 940 * process. The right exists if the process has administrative 941 * capabilities, superuser privileges or the same 942 * userid as the target process. 943 */ 944 if ((current->euid != task->suid) && (current->euid != task->uid) && 945 (current->uid != task->suid) && (current->uid != task->uid) && 946 !capable(CAP_SYS_NICE)) { 947 err = -EPERM; 948 goto out2; 949 } 950 951 err = security_task_movememory(task); 952 if (err) 953 goto out2; 954 955 956 task_nodes = cpuset_mems_allowed(task); 957 958 /* Limit nr_pages so that the multiplication may not overflow */ 959 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { 960 err = -E2BIG; 961 goto out2; 962 } 963 964 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); 965 if (!pm) { 966 err = -ENOMEM; 967 goto out2; 968 } 969 970 /* 971 * Get parameters from user space and initialize the pm 972 * array. Return various errors if the user did something wrong. 973 */ 974 for (i = 0; i < nr_pages; i++) { 975 const void *p; 976 977 err = -EFAULT; 978 if (get_user(p, pages + i)) 979 goto out; 980 981 pm[i].addr = (unsigned long)p; 982 if (nodes) { 983 int node; 984 985 if (get_user(node, nodes + i)) 986 goto out; 987 988 err = -ENODEV; 989 if (!node_online(node)) 990 goto out; 991 992 err = -EACCES; 993 if (!node_isset(node, task_nodes)) 994 goto out; 995 996 pm[i].node = node; 997 } else 998 pm[i].node = 0; /* anything to not match MAX_NUMNODES */ 999 } 1000 /* End marker */ 1001 pm[nr_pages].node = MAX_NUMNODES; 1002 1003 if (nodes) 1004 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL); 1005 else 1006 err = do_pages_stat(mm, pm); 1007 1008 if (err >= 0) 1009 /* Return status information */ 1010 for (i = 0; i < nr_pages; i++) 1011 if (put_user(pm[i].status, status + i)) 1012 err = -EFAULT; 1013 1014 out: 1015 vfree(pm); 1016 out2: 1017 mmput(mm); 1018 return err; 1019 } 1020 #endif 1021 1022 /* 1023 * Call migration functions in the vma_ops that may prepare 1024 * memory in a vm for migration. migration functions may perform 1025 * the migration for vmas that do not have an underlying page struct. 1026 */ 1027 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1028 const nodemask_t *from, unsigned long flags) 1029 { 1030 struct vm_area_struct *vma; 1031 int err = 0; 1032 1033 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) { 1034 if (vma->vm_ops && vma->vm_ops->migrate) { 1035 err = vma->vm_ops->migrate(vma, to, from, flags); 1036 if (err) 1037 break; 1038 } 1039 } 1040 return err; 1041 } 1042