xref: /linux/mm/migrate.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
37 
38 #include <asm/tlbflush.h>
39 
40 #include "internal.h"
41 
42 /*
43  * migrate_prep() needs to be called before we start compiling a list of pages
44  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45  * undesirable, use migrate_prep_local()
46  */
47 int migrate_prep(void)
48 {
49 	/*
50 	 * Clear the LRU lists so pages can be isolated.
51 	 * Note that pages may be moved off the LRU after we have
52 	 * drained them. Those pages will fail to migrate like other
53 	 * pages that may be busy.
54 	 */
55 	lru_add_drain_all();
56 
57 	return 0;
58 }
59 
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
62 {
63 	lru_add_drain();
64 
65 	return 0;
66 }
67 
68 /*
69  * Add isolated pages on the list back to the LRU under page lock
70  * to avoid leaking evictable pages back onto unevictable list.
71  */
72 void putback_lru_pages(struct list_head *l)
73 {
74 	struct page *page;
75 	struct page *page2;
76 
77 	list_for_each_entry_safe(page, page2, l, lru) {
78 		list_del(&page->lru);
79 		dec_zone_page_state(page, NR_ISOLATED_ANON +
80 				page_is_file_cache(page));
81 		putback_lru_page(page);
82 	}
83 }
84 
85 /*
86  * Restore a potential migration pte to a working pte entry
87  */
88 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 				 unsigned long addr, void *old)
90 {
91 	struct mm_struct *mm = vma->vm_mm;
92 	swp_entry_t entry;
93  	pgd_t *pgd;
94  	pud_t *pud;
95  	pmd_t *pmd;
96 	pte_t *ptep, pte;
97  	spinlock_t *ptl;
98 
99 	if (unlikely(PageHuge(new))) {
100 		ptep = huge_pte_offset(mm, addr);
101 		if (!ptep)
102 			goto out;
103 		ptl = &mm->page_table_lock;
104 	} else {
105 		pgd = pgd_offset(mm, addr);
106 		if (!pgd_present(*pgd))
107 			goto out;
108 
109 		pud = pud_offset(pgd, addr);
110 		if (!pud_present(*pud))
111 			goto out;
112 
113 		pmd = pmd_offset(pud, addr);
114 		if (pmd_trans_huge(*pmd))
115 			goto out;
116 		if (!pmd_present(*pmd))
117 			goto out;
118 
119 		ptep = pte_offset_map(pmd, addr);
120 
121 		/*
122 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
123 		 * can race mremap's move_ptes(), which skips anon_vma lock.
124 		 */
125 
126 		ptl = pte_lockptr(mm, pmd);
127 	}
128 
129  	spin_lock(ptl);
130 	pte = *ptep;
131 	if (!is_swap_pte(pte))
132 		goto unlock;
133 
134 	entry = pte_to_swp_entry(pte);
135 
136 	if (!is_migration_entry(entry) ||
137 	    migration_entry_to_page(entry) != old)
138 		goto unlock;
139 
140 	get_page(new);
141 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 	if (is_write_migration_entry(entry))
143 		pte = pte_mkwrite(pte);
144 #ifdef CONFIG_HUGETLB_PAGE
145 	if (PageHuge(new))
146 		pte = pte_mkhuge(pte);
147 #endif
148 	flush_cache_page(vma, addr, pte_pfn(pte));
149 	set_pte_at(mm, addr, ptep, pte);
150 
151 	if (PageHuge(new)) {
152 		if (PageAnon(new))
153 			hugepage_add_anon_rmap(new, vma, addr);
154 		else
155 			page_dup_rmap(new);
156 	} else if (PageAnon(new))
157 		page_add_anon_rmap(new, vma, addr);
158 	else
159 		page_add_file_rmap(new);
160 
161 	/* No need to invalidate - it was non-present before */
162 	update_mmu_cache(vma, addr, ptep);
163 unlock:
164 	pte_unmap_unlock(ptep, ptl);
165 out:
166 	return SWAP_AGAIN;
167 }
168 
169 /*
170  * Get rid of all migration entries and replace them by
171  * references to the indicated page.
172  */
173 static void remove_migration_ptes(struct page *old, struct page *new)
174 {
175 	rmap_walk(new, remove_migration_pte, old);
176 }
177 
178 /*
179  * Something used the pte of a page under migration. We need to
180  * get to the page and wait until migration is finished.
181  * When we return from this function the fault will be retried.
182  */
183 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 				unsigned long address)
185 {
186 	pte_t *ptep, pte;
187 	spinlock_t *ptl;
188 	swp_entry_t entry;
189 	struct page *page;
190 
191 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 	pte = *ptep;
193 	if (!is_swap_pte(pte))
194 		goto out;
195 
196 	entry = pte_to_swp_entry(pte);
197 	if (!is_migration_entry(entry))
198 		goto out;
199 
200 	page = migration_entry_to_page(entry);
201 
202 	/*
203 	 * Once radix-tree replacement of page migration started, page_count
204 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 	 * against a page without get_page().
206 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 	 * will occur again.
208 	 */
209 	if (!get_page_unless_zero(page))
210 		goto out;
211 	pte_unmap_unlock(ptep, ptl);
212 	wait_on_page_locked(page);
213 	put_page(page);
214 	return;
215 out:
216 	pte_unmap_unlock(ptep, ptl);
217 }
218 
219 #ifdef CONFIG_BLOCK
220 /* Returns true if all buffers are successfully locked */
221 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
222 							enum migrate_mode mode)
223 {
224 	struct buffer_head *bh = head;
225 
226 	/* Simple case, sync compaction */
227 	if (mode != MIGRATE_ASYNC) {
228 		do {
229 			get_bh(bh);
230 			lock_buffer(bh);
231 			bh = bh->b_this_page;
232 
233 		} while (bh != head);
234 
235 		return true;
236 	}
237 
238 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
239 	do {
240 		get_bh(bh);
241 		if (!trylock_buffer(bh)) {
242 			/*
243 			 * We failed to lock the buffer and cannot stall in
244 			 * async migration. Release the taken locks
245 			 */
246 			struct buffer_head *failed_bh = bh;
247 			put_bh(failed_bh);
248 			bh = head;
249 			while (bh != failed_bh) {
250 				unlock_buffer(bh);
251 				put_bh(bh);
252 				bh = bh->b_this_page;
253 			}
254 			return false;
255 		}
256 
257 		bh = bh->b_this_page;
258 	} while (bh != head);
259 	return true;
260 }
261 #else
262 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
263 							enum migrate_mode mode)
264 {
265 	return true;
266 }
267 #endif /* CONFIG_BLOCK */
268 
269 /*
270  * Replace the page in the mapping.
271  *
272  * The number of remaining references must be:
273  * 1 for anonymous pages without a mapping
274  * 2 for pages with a mapping
275  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
276  */
277 static int migrate_page_move_mapping(struct address_space *mapping,
278 		struct page *newpage, struct page *page,
279 		struct buffer_head *head, enum migrate_mode mode)
280 {
281 	int expected_count;
282 	void **pslot;
283 
284 	if (!mapping) {
285 		/* Anonymous page without mapping */
286 		if (page_count(page) != 1)
287 			return -EAGAIN;
288 		return 0;
289 	}
290 
291 	spin_lock_irq(&mapping->tree_lock);
292 
293 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
294  					page_index(page));
295 
296 	expected_count = 2 + page_has_private(page);
297 	if (page_count(page) != expected_count ||
298 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
299 		spin_unlock_irq(&mapping->tree_lock);
300 		return -EAGAIN;
301 	}
302 
303 	if (!page_freeze_refs(page, expected_count)) {
304 		spin_unlock_irq(&mapping->tree_lock);
305 		return -EAGAIN;
306 	}
307 
308 	/*
309 	 * In the async migration case of moving a page with buffers, lock the
310 	 * buffers using trylock before the mapping is moved. If the mapping
311 	 * was moved, we later failed to lock the buffers and could not move
312 	 * the mapping back due to an elevated page count, we would have to
313 	 * block waiting on other references to be dropped.
314 	 */
315 	if (mode == MIGRATE_ASYNC && head &&
316 			!buffer_migrate_lock_buffers(head, mode)) {
317 		page_unfreeze_refs(page, expected_count);
318 		spin_unlock_irq(&mapping->tree_lock);
319 		return -EAGAIN;
320 	}
321 
322 	/*
323 	 * Now we know that no one else is looking at the page.
324 	 */
325 	get_page(newpage);	/* add cache reference */
326 	if (PageSwapCache(page)) {
327 		SetPageSwapCache(newpage);
328 		set_page_private(newpage, page_private(page));
329 	}
330 
331 	radix_tree_replace_slot(pslot, newpage);
332 
333 	/*
334 	 * Drop cache reference from old page by unfreezing
335 	 * to one less reference.
336 	 * We know this isn't the last reference.
337 	 */
338 	page_unfreeze_refs(page, expected_count - 1);
339 
340 	/*
341 	 * If moved to a different zone then also account
342 	 * the page for that zone. Other VM counters will be
343 	 * taken care of when we establish references to the
344 	 * new page and drop references to the old page.
345 	 *
346 	 * Note that anonymous pages are accounted for
347 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
348 	 * are mapped to swap space.
349 	 */
350 	__dec_zone_page_state(page, NR_FILE_PAGES);
351 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
352 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
353 		__dec_zone_page_state(page, NR_SHMEM);
354 		__inc_zone_page_state(newpage, NR_SHMEM);
355 	}
356 	spin_unlock_irq(&mapping->tree_lock);
357 
358 	return 0;
359 }
360 
361 /*
362  * The expected number of remaining references is the same as that
363  * of migrate_page_move_mapping().
364  */
365 int migrate_huge_page_move_mapping(struct address_space *mapping,
366 				   struct page *newpage, struct page *page)
367 {
368 	int expected_count;
369 	void **pslot;
370 
371 	if (!mapping) {
372 		if (page_count(page) != 1)
373 			return -EAGAIN;
374 		return 0;
375 	}
376 
377 	spin_lock_irq(&mapping->tree_lock);
378 
379 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
380 					page_index(page));
381 
382 	expected_count = 2 + page_has_private(page);
383 	if (page_count(page) != expected_count ||
384 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
385 		spin_unlock_irq(&mapping->tree_lock);
386 		return -EAGAIN;
387 	}
388 
389 	if (!page_freeze_refs(page, expected_count)) {
390 		spin_unlock_irq(&mapping->tree_lock);
391 		return -EAGAIN;
392 	}
393 
394 	get_page(newpage);
395 
396 	radix_tree_replace_slot(pslot, newpage);
397 
398 	page_unfreeze_refs(page, expected_count - 1);
399 
400 	spin_unlock_irq(&mapping->tree_lock);
401 	return 0;
402 }
403 
404 /*
405  * Copy the page to its new location
406  */
407 void migrate_page_copy(struct page *newpage, struct page *page)
408 {
409 	if (PageHuge(page))
410 		copy_huge_page(newpage, page);
411 	else
412 		copy_highpage(newpage, page);
413 
414 	if (PageError(page))
415 		SetPageError(newpage);
416 	if (PageReferenced(page))
417 		SetPageReferenced(newpage);
418 	if (PageUptodate(page))
419 		SetPageUptodate(newpage);
420 	if (TestClearPageActive(page)) {
421 		VM_BUG_ON(PageUnevictable(page));
422 		SetPageActive(newpage);
423 	} else if (TestClearPageUnevictable(page))
424 		SetPageUnevictable(newpage);
425 	if (PageChecked(page))
426 		SetPageChecked(newpage);
427 	if (PageMappedToDisk(page))
428 		SetPageMappedToDisk(newpage);
429 
430 	if (PageDirty(page)) {
431 		clear_page_dirty_for_io(page);
432 		/*
433 		 * Want to mark the page and the radix tree as dirty, and
434 		 * redo the accounting that clear_page_dirty_for_io undid,
435 		 * but we can't use set_page_dirty because that function
436 		 * is actually a signal that all of the page has become dirty.
437 		 * Whereas only part of our page may be dirty.
438 		 */
439 		if (PageSwapBacked(page))
440 			SetPageDirty(newpage);
441 		else
442 			__set_page_dirty_nobuffers(newpage);
443  	}
444 
445 	mlock_migrate_page(newpage, page);
446 	ksm_migrate_page(newpage, page);
447 
448 	ClearPageSwapCache(page);
449 	ClearPagePrivate(page);
450 	set_page_private(page, 0);
451 
452 	/*
453 	 * If any waiters have accumulated on the new page then
454 	 * wake them up.
455 	 */
456 	if (PageWriteback(newpage))
457 		end_page_writeback(newpage);
458 }
459 
460 /************************************************************
461  *                    Migration functions
462  ***********************************************************/
463 
464 /* Always fail migration. Used for mappings that are not movable */
465 int fail_migrate_page(struct address_space *mapping,
466 			struct page *newpage, struct page *page)
467 {
468 	return -EIO;
469 }
470 EXPORT_SYMBOL(fail_migrate_page);
471 
472 /*
473  * Common logic to directly migrate a single page suitable for
474  * pages that do not use PagePrivate/PagePrivate2.
475  *
476  * Pages are locked upon entry and exit.
477  */
478 int migrate_page(struct address_space *mapping,
479 		struct page *newpage, struct page *page,
480 		enum migrate_mode mode)
481 {
482 	int rc;
483 
484 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
485 
486 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
487 
488 	if (rc)
489 		return rc;
490 
491 	migrate_page_copy(newpage, page);
492 	return 0;
493 }
494 EXPORT_SYMBOL(migrate_page);
495 
496 #ifdef CONFIG_BLOCK
497 /*
498  * Migration function for pages with buffers. This function can only be used
499  * if the underlying filesystem guarantees that no other references to "page"
500  * exist.
501  */
502 int buffer_migrate_page(struct address_space *mapping,
503 		struct page *newpage, struct page *page, enum migrate_mode mode)
504 {
505 	struct buffer_head *bh, *head;
506 	int rc;
507 
508 	if (!page_has_buffers(page))
509 		return migrate_page(mapping, newpage, page, mode);
510 
511 	head = page_buffers(page);
512 
513 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
514 
515 	if (rc)
516 		return rc;
517 
518 	/*
519 	 * In the async case, migrate_page_move_mapping locked the buffers
520 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
521 	 * need to be locked now
522 	 */
523 	if (mode != MIGRATE_ASYNC)
524 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
525 
526 	ClearPagePrivate(page);
527 	set_page_private(newpage, page_private(page));
528 	set_page_private(page, 0);
529 	put_page(page);
530 	get_page(newpage);
531 
532 	bh = head;
533 	do {
534 		set_bh_page(bh, newpage, bh_offset(bh));
535 		bh = bh->b_this_page;
536 
537 	} while (bh != head);
538 
539 	SetPagePrivate(newpage);
540 
541 	migrate_page_copy(newpage, page);
542 
543 	bh = head;
544 	do {
545 		unlock_buffer(bh);
546  		put_bh(bh);
547 		bh = bh->b_this_page;
548 
549 	} while (bh != head);
550 
551 	return 0;
552 }
553 EXPORT_SYMBOL(buffer_migrate_page);
554 #endif
555 
556 /*
557  * Writeback a page to clean the dirty state
558  */
559 static int writeout(struct address_space *mapping, struct page *page)
560 {
561 	struct writeback_control wbc = {
562 		.sync_mode = WB_SYNC_NONE,
563 		.nr_to_write = 1,
564 		.range_start = 0,
565 		.range_end = LLONG_MAX,
566 		.for_reclaim = 1
567 	};
568 	int rc;
569 
570 	if (!mapping->a_ops->writepage)
571 		/* No write method for the address space */
572 		return -EINVAL;
573 
574 	if (!clear_page_dirty_for_io(page))
575 		/* Someone else already triggered a write */
576 		return -EAGAIN;
577 
578 	/*
579 	 * A dirty page may imply that the underlying filesystem has
580 	 * the page on some queue. So the page must be clean for
581 	 * migration. Writeout may mean we loose the lock and the
582 	 * page state is no longer what we checked for earlier.
583 	 * At this point we know that the migration attempt cannot
584 	 * be successful.
585 	 */
586 	remove_migration_ptes(page, page);
587 
588 	rc = mapping->a_ops->writepage(page, &wbc);
589 
590 	if (rc != AOP_WRITEPAGE_ACTIVATE)
591 		/* unlocked. Relock */
592 		lock_page(page);
593 
594 	return (rc < 0) ? -EIO : -EAGAIN;
595 }
596 
597 /*
598  * Default handling if a filesystem does not provide a migration function.
599  */
600 static int fallback_migrate_page(struct address_space *mapping,
601 	struct page *newpage, struct page *page, enum migrate_mode mode)
602 {
603 	if (PageDirty(page)) {
604 		/* Only writeback pages in full synchronous migration */
605 		if (mode != MIGRATE_SYNC)
606 			return -EBUSY;
607 		return writeout(mapping, page);
608 	}
609 
610 	/*
611 	 * Buffers may be managed in a filesystem specific way.
612 	 * We must have no buffers or drop them.
613 	 */
614 	if (page_has_private(page) &&
615 	    !try_to_release_page(page, GFP_KERNEL))
616 		return -EAGAIN;
617 
618 	return migrate_page(mapping, newpage, page, mode);
619 }
620 
621 /*
622  * Move a page to a newly allocated page
623  * The page is locked and all ptes have been successfully removed.
624  *
625  * The new page will have replaced the old page if this function
626  * is successful.
627  *
628  * Return value:
629  *   < 0 - error code
630  *  == 0 - success
631  */
632 static int move_to_new_page(struct page *newpage, struct page *page,
633 				int remap_swapcache, enum migrate_mode mode)
634 {
635 	struct address_space *mapping;
636 	int rc;
637 
638 	/*
639 	 * Block others from accessing the page when we get around to
640 	 * establishing additional references. We are the only one
641 	 * holding a reference to the new page at this point.
642 	 */
643 	if (!trylock_page(newpage))
644 		BUG();
645 
646 	/* Prepare mapping for the new page.*/
647 	newpage->index = page->index;
648 	newpage->mapping = page->mapping;
649 	if (PageSwapBacked(page))
650 		SetPageSwapBacked(newpage);
651 
652 	mapping = page_mapping(page);
653 	if (!mapping)
654 		rc = migrate_page(mapping, newpage, page, mode);
655 	else if (mapping->a_ops->migratepage)
656 		/*
657 		 * Most pages have a mapping and most filesystems provide a
658 		 * migratepage callback. Anonymous pages are part of swap
659 		 * space which also has its own migratepage callback. This
660 		 * is the most common path for page migration.
661 		 */
662 		rc = mapping->a_ops->migratepage(mapping,
663 						newpage, page, mode);
664 	else
665 		rc = fallback_migrate_page(mapping, newpage, page, mode);
666 
667 	if (rc) {
668 		newpage->mapping = NULL;
669 	} else {
670 		if (remap_swapcache)
671 			remove_migration_ptes(page, newpage);
672 		page->mapping = NULL;
673 	}
674 
675 	unlock_page(newpage);
676 
677 	return rc;
678 }
679 
680 static int __unmap_and_move(struct page *page, struct page *newpage,
681 			int force, bool offlining, enum migrate_mode mode)
682 {
683 	int rc = -EAGAIN;
684 	int remap_swapcache = 1;
685 	int charge = 0;
686 	struct mem_cgroup *mem;
687 	struct anon_vma *anon_vma = NULL;
688 
689 	if (!trylock_page(page)) {
690 		if (!force || mode == MIGRATE_ASYNC)
691 			goto out;
692 
693 		/*
694 		 * It's not safe for direct compaction to call lock_page.
695 		 * For example, during page readahead pages are added locked
696 		 * to the LRU. Later, when the IO completes the pages are
697 		 * marked uptodate and unlocked. However, the queueing
698 		 * could be merging multiple pages for one bio (e.g.
699 		 * mpage_readpages). If an allocation happens for the
700 		 * second or third page, the process can end up locking
701 		 * the same page twice and deadlocking. Rather than
702 		 * trying to be clever about what pages can be locked,
703 		 * avoid the use of lock_page for direct compaction
704 		 * altogether.
705 		 */
706 		if (current->flags & PF_MEMALLOC)
707 			goto out;
708 
709 		lock_page(page);
710 	}
711 
712 	/*
713 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
714 	 * and can safely migrate a KSM page.  The other cases have skipped
715 	 * PageKsm along with PageReserved - but it is only now when we have
716 	 * the page lock that we can be certain it will not go KSM beneath us
717 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
718 	 * its pagecount raised, but only here do we take the page lock which
719 	 * serializes that).
720 	 */
721 	if (PageKsm(page) && !offlining) {
722 		rc = -EBUSY;
723 		goto unlock;
724 	}
725 
726 	/* charge against new page */
727 	charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
728 	if (charge == -ENOMEM) {
729 		rc = -ENOMEM;
730 		goto unlock;
731 	}
732 	BUG_ON(charge);
733 
734 	if (PageWriteback(page)) {
735 		/*
736 		 * Only in the case of a full syncronous migration is it
737 		 * necessary to wait for PageWriteback. In the async case,
738 		 * the retry loop is too short and in the sync-light case,
739 		 * the overhead of stalling is too much
740 		 */
741 		if (mode != MIGRATE_SYNC) {
742 			rc = -EBUSY;
743 			goto uncharge;
744 		}
745 		if (!force)
746 			goto uncharge;
747 		wait_on_page_writeback(page);
748 	}
749 	/*
750 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
751 	 * we cannot notice that anon_vma is freed while we migrates a page.
752 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
753 	 * of migration. File cache pages are no problem because of page_lock()
754 	 * File Caches may use write_page() or lock_page() in migration, then,
755 	 * just care Anon page here.
756 	 */
757 	if (PageAnon(page)) {
758 		/*
759 		 * Only page_lock_anon_vma() understands the subtleties of
760 		 * getting a hold on an anon_vma from outside one of its mms.
761 		 */
762 		anon_vma = page_get_anon_vma(page);
763 		if (anon_vma) {
764 			/*
765 			 * Anon page
766 			 */
767 		} else if (PageSwapCache(page)) {
768 			/*
769 			 * We cannot be sure that the anon_vma of an unmapped
770 			 * swapcache page is safe to use because we don't
771 			 * know in advance if the VMA that this page belonged
772 			 * to still exists. If the VMA and others sharing the
773 			 * data have been freed, then the anon_vma could
774 			 * already be invalid.
775 			 *
776 			 * To avoid this possibility, swapcache pages get
777 			 * migrated but are not remapped when migration
778 			 * completes
779 			 */
780 			remap_swapcache = 0;
781 		} else {
782 			goto uncharge;
783 		}
784 	}
785 
786 	/*
787 	 * Corner case handling:
788 	 * 1. When a new swap-cache page is read into, it is added to the LRU
789 	 * and treated as swapcache but it has no rmap yet.
790 	 * Calling try_to_unmap() against a page->mapping==NULL page will
791 	 * trigger a BUG.  So handle it here.
792 	 * 2. An orphaned page (see truncate_complete_page) might have
793 	 * fs-private metadata. The page can be picked up due to memory
794 	 * offlining.  Everywhere else except page reclaim, the page is
795 	 * invisible to the vm, so the page can not be migrated.  So try to
796 	 * free the metadata, so the page can be freed.
797 	 */
798 	if (!page->mapping) {
799 		VM_BUG_ON(PageAnon(page));
800 		if (page_has_private(page)) {
801 			try_to_free_buffers(page);
802 			goto uncharge;
803 		}
804 		goto skip_unmap;
805 	}
806 
807 	/* Establish migration ptes or remove ptes */
808 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
809 
810 skip_unmap:
811 	if (!page_mapped(page))
812 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
813 
814 	if (rc && remap_swapcache)
815 		remove_migration_ptes(page, page);
816 
817 	/* Drop an anon_vma reference if we took one */
818 	if (anon_vma)
819 		put_anon_vma(anon_vma);
820 
821 uncharge:
822 	if (!charge)
823 		mem_cgroup_end_migration(mem, page, newpage, rc == 0);
824 unlock:
825 	unlock_page(page);
826 out:
827 	return rc;
828 }
829 
830 /*
831  * Obtain the lock on page, remove all ptes and migrate the page
832  * to the newly allocated page in newpage.
833  */
834 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
835 			struct page *page, int force, bool offlining,
836 			enum migrate_mode mode)
837 {
838 	int rc = 0;
839 	int *result = NULL;
840 	struct page *newpage = get_new_page(page, private, &result);
841 
842 	if (!newpage)
843 		return -ENOMEM;
844 
845 	if (page_count(page) == 1) {
846 		/* page was freed from under us. So we are done. */
847 		goto out;
848 	}
849 
850 	if (unlikely(PageTransHuge(page)))
851 		if (unlikely(split_huge_page(page)))
852 			goto out;
853 
854 	rc = __unmap_and_move(page, newpage, force, offlining, mode);
855 out:
856 	if (rc != -EAGAIN) {
857 		/*
858 		 * A page that has been migrated has all references
859 		 * removed and will be freed. A page that has not been
860 		 * migrated will have kepts its references and be
861 		 * restored.
862 		 */
863 		list_del(&page->lru);
864 		dec_zone_page_state(page, NR_ISOLATED_ANON +
865 				page_is_file_cache(page));
866 		putback_lru_page(page);
867 	}
868 	/*
869 	 * Move the new page to the LRU. If migration was not successful
870 	 * then this will free the page.
871 	 */
872 	putback_lru_page(newpage);
873 	if (result) {
874 		if (rc)
875 			*result = rc;
876 		else
877 			*result = page_to_nid(newpage);
878 	}
879 	return rc;
880 }
881 
882 /*
883  * Counterpart of unmap_and_move_page() for hugepage migration.
884  *
885  * This function doesn't wait the completion of hugepage I/O
886  * because there is no race between I/O and migration for hugepage.
887  * Note that currently hugepage I/O occurs only in direct I/O
888  * where no lock is held and PG_writeback is irrelevant,
889  * and writeback status of all subpages are counted in the reference
890  * count of the head page (i.e. if all subpages of a 2MB hugepage are
891  * under direct I/O, the reference of the head page is 512 and a bit more.)
892  * This means that when we try to migrate hugepage whose subpages are
893  * doing direct I/O, some references remain after try_to_unmap() and
894  * hugepage migration fails without data corruption.
895  *
896  * There is also no race when direct I/O is issued on the page under migration,
897  * because then pte is replaced with migration swap entry and direct I/O code
898  * will wait in the page fault for migration to complete.
899  */
900 static int unmap_and_move_huge_page(new_page_t get_new_page,
901 				unsigned long private, struct page *hpage,
902 				int force, bool offlining,
903 				enum migrate_mode mode)
904 {
905 	int rc = 0;
906 	int *result = NULL;
907 	struct page *new_hpage = get_new_page(hpage, private, &result);
908 	struct anon_vma *anon_vma = NULL;
909 
910 	if (!new_hpage)
911 		return -ENOMEM;
912 
913 	rc = -EAGAIN;
914 
915 	if (!trylock_page(hpage)) {
916 		if (!force || mode != MIGRATE_SYNC)
917 			goto out;
918 		lock_page(hpage);
919 	}
920 
921 	if (PageAnon(hpage))
922 		anon_vma = page_get_anon_vma(hpage);
923 
924 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
925 
926 	if (!page_mapped(hpage))
927 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
928 
929 	if (rc)
930 		remove_migration_ptes(hpage, hpage);
931 
932 	if (anon_vma)
933 		put_anon_vma(anon_vma);
934 	unlock_page(hpage);
935 
936 out:
937 	if (rc != -EAGAIN) {
938 		list_del(&hpage->lru);
939 		put_page(hpage);
940 	}
941 
942 	put_page(new_hpage);
943 
944 	if (result) {
945 		if (rc)
946 			*result = rc;
947 		else
948 			*result = page_to_nid(new_hpage);
949 	}
950 	return rc;
951 }
952 
953 /*
954  * migrate_pages
955  *
956  * The function takes one list of pages to migrate and a function
957  * that determines from the page to be migrated and the private data
958  * the target of the move and allocates the page.
959  *
960  * The function returns after 10 attempts or if no pages
961  * are movable anymore because to has become empty
962  * or no retryable pages exist anymore.
963  * Caller should call putback_lru_pages to return pages to the LRU
964  * or free list only if ret != 0.
965  *
966  * Return: Number of pages not migrated or error code.
967  */
968 int migrate_pages(struct list_head *from,
969 		new_page_t get_new_page, unsigned long private, bool offlining,
970 		enum migrate_mode mode)
971 {
972 	int retry = 1;
973 	int nr_failed = 0;
974 	int pass = 0;
975 	struct page *page;
976 	struct page *page2;
977 	int swapwrite = current->flags & PF_SWAPWRITE;
978 	int rc;
979 
980 	if (!swapwrite)
981 		current->flags |= PF_SWAPWRITE;
982 
983 	for(pass = 0; pass < 10 && retry; pass++) {
984 		retry = 0;
985 
986 		list_for_each_entry_safe(page, page2, from, lru) {
987 			cond_resched();
988 
989 			rc = unmap_and_move(get_new_page, private,
990 						page, pass > 2, offlining,
991 						mode);
992 
993 			switch(rc) {
994 			case -ENOMEM:
995 				goto out;
996 			case -EAGAIN:
997 				retry++;
998 				break;
999 			case 0:
1000 				break;
1001 			default:
1002 				/* Permanent failure */
1003 				nr_failed++;
1004 				break;
1005 			}
1006 		}
1007 	}
1008 	rc = 0;
1009 out:
1010 	if (!swapwrite)
1011 		current->flags &= ~PF_SWAPWRITE;
1012 
1013 	if (rc)
1014 		return rc;
1015 
1016 	return nr_failed + retry;
1017 }
1018 
1019 int migrate_huge_pages(struct list_head *from,
1020 		new_page_t get_new_page, unsigned long private, bool offlining,
1021 		enum migrate_mode mode)
1022 {
1023 	int retry = 1;
1024 	int nr_failed = 0;
1025 	int pass = 0;
1026 	struct page *page;
1027 	struct page *page2;
1028 	int rc;
1029 
1030 	for (pass = 0; pass < 10 && retry; pass++) {
1031 		retry = 0;
1032 
1033 		list_for_each_entry_safe(page, page2, from, lru) {
1034 			cond_resched();
1035 
1036 			rc = unmap_and_move_huge_page(get_new_page,
1037 					private, page, pass > 2, offlining,
1038 					mode);
1039 
1040 			switch(rc) {
1041 			case -ENOMEM:
1042 				goto out;
1043 			case -EAGAIN:
1044 				retry++;
1045 				break;
1046 			case 0:
1047 				break;
1048 			default:
1049 				/* Permanent failure */
1050 				nr_failed++;
1051 				break;
1052 			}
1053 		}
1054 	}
1055 	rc = 0;
1056 out:
1057 	if (rc)
1058 		return rc;
1059 
1060 	return nr_failed + retry;
1061 }
1062 
1063 #ifdef CONFIG_NUMA
1064 /*
1065  * Move a list of individual pages
1066  */
1067 struct page_to_node {
1068 	unsigned long addr;
1069 	struct page *page;
1070 	int node;
1071 	int status;
1072 };
1073 
1074 static struct page *new_page_node(struct page *p, unsigned long private,
1075 		int **result)
1076 {
1077 	struct page_to_node *pm = (struct page_to_node *)private;
1078 
1079 	while (pm->node != MAX_NUMNODES && pm->page != p)
1080 		pm++;
1081 
1082 	if (pm->node == MAX_NUMNODES)
1083 		return NULL;
1084 
1085 	*result = &pm->status;
1086 
1087 	return alloc_pages_exact_node(pm->node,
1088 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1089 }
1090 
1091 /*
1092  * Move a set of pages as indicated in the pm array. The addr
1093  * field must be set to the virtual address of the page to be moved
1094  * and the node number must contain a valid target node.
1095  * The pm array ends with node = MAX_NUMNODES.
1096  */
1097 static int do_move_page_to_node_array(struct mm_struct *mm,
1098 				      struct page_to_node *pm,
1099 				      int migrate_all)
1100 {
1101 	int err;
1102 	struct page_to_node *pp;
1103 	LIST_HEAD(pagelist);
1104 
1105 	down_read(&mm->mmap_sem);
1106 
1107 	/*
1108 	 * Build a list of pages to migrate
1109 	 */
1110 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1111 		struct vm_area_struct *vma;
1112 		struct page *page;
1113 
1114 		err = -EFAULT;
1115 		vma = find_vma(mm, pp->addr);
1116 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1117 			goto set_status;
1118 
1119 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1120 
1121 		err = PTR_ERR(page);
1122 		if (IS_ERR(page))
1123 			goto set_status;
1124 
1125 		err = -ENOENT;
1126 		if (!page)
1127 			goto set_status;
1128 
1129 		/* Use PageReserved to check for zero page */
1130 		if (PageReserved(page) || PageKsm(page))
1131 			goto put_and_set;
1132 
1133 		pp->page = page;
1134 		err = page_to_nid(page);
1135 
1136 		if (err == pp->node)
1137 			/*
1138 			 * Node already in the right place
1139 			 */
1140 			goto put_and_set;
1141 
1142 		err = -EACCES;
1143 		if (page_mapcount(page) > 1 &&
1144 				!migrate_all)
1145 			goto put_and_set;
1146 
1147 		err = isolate_lru_page(page);
1148 		if (!err) {
1149 			list_add_tail(&page->lru, &pagelist);
1150 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1151 					    page_is_file_cache(page));
1152 		}
1153 put_and_set:
1154 		/*
1155 		 * Either remove the duplicate refcount from
1156 		 * isolate_lru_page() or drop the page ref if it was
1157 		 * not isolated.
1158 		 */
1159 		put_page(page);
1160 set_status:
1161 		pp->status = err;
1162 	}
1163 
1164 	err = 0;
1165 	if (!list_empty(&pagelist)) {
1166 		err = migrate_pages(&pagelist, new_page_node,
1167 				(unsigned long)pm, 0, MIGRATE_SYNC);
1168 		if (err)
1169 			putback_lru_pages(&pagelist);
1170 	}
1171 
1172 	up_read(&mm->mmap_sem);
1173 	return err;
1174 }
1175 
1176 /*
1177  * Migrate an array of page address onto an array of nodes and fill
1178  * the corresponding array of status.
1179  */
1180 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1181 			 unsigned long nr_pages,
1182 			 const void __user * __user *pages,
1183 			 const int __user *nodes,
1184 			 int __user *status, int flags)
1185 {
1186 	struct page_to_node *pm;
1187 	unsigned long chunk_nr_pages;
1188 	unsigned long chunk_start;
1189 	int err;
1190 
1191 	err = -ENOMEM;
1192 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1193 	if (!pm)
1194 		goto out;
1195 
1196 	migrate_prep();
1197 
1198 	/*
1199 	 * Store a chunk of page_to_node array in a page,
1200 	 * but keep the last one as a marker
1201 	 */
1202 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1203 
1204 	for (chunk_start = 0;
1205 	     chunk_start < nr_pages;
1206 	     chunk_start += chunk_nr_pages) {
1207 		int j;
1208 
1209 		if (chunk_start + chunk_nr_pages > nr_pages)
1210 			chunk_nr_pages = nr_pages - chunk_start;
1211 
1212 		/* fill the chunk pm with addrs and nodes from user-space */
1213 		for (j = 0; j < chunk_nr_pages; j++) {
1214 			const void __user *p;
1215 			int node;
1216 
1217 			err = -EFAULT;
1218 			if (get_user(p, pages + j + chunk_start))
1219 				goto out_pm;
1220 			pm[j].addr = (unsigned long) p;
1221 
1222 			if (get_user(node, nodes + j + chunk_start))
1223 				goto out_pm;
1224 
1225 			err = -ENODEV;
1226 			if (node < 0 || node >= MAX_NUMNODES)
1227 				goto out_pm;
1228 
1229 			if (!node_state(node, N_HIGH_MEMORY))
1230 				goto out_pm;
1231 
1232 			err = -EACCES;
1233 			if (!node_isset(node, task_nodes))
1234 				goto out_pm;
1235 
1236 			pm[j].node = node;
1237 		}
1238 
1239 		/* End marker for this chunk */
1240 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1241 
1242 		/* Migrate this chunk */
1243 		err = do_move_page_to_node_array(mm, pm,
1244 						 flags & MPOL_MF_MOVE_ALL);
1245 		if (err < 0)
1246 			goto out_pm;
1247 
1248 		/* Return status information */
1249 		for (j = 0; j < chunk_nr_pages; j++)
1250 			if (put_user(pm[j].status, status + j + chunk_start)) {
1251 				err = -EFAULT;
1252 				goto out_pm;
1253 			}
1254 	}
1255 	err = 0;
1256 
1257 out_pm:
1258 	free_page((unsigned long)pm);
1259 out:
1260 	return err;
1261 }
1262 
1263 /*
1264  * Determine the nodes of an array of pages and store it in an array of status.
1265  */
1266 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1267 				const void __user **pages, int *status)
1268 {
1269 	unsigned long i;
1270 
1271 	down_read(&mm->mmap_sem);
1272 
1273 	for (i = 0; i < nr_pages; i++) {
1274 		unsigned long addr = (unsigned long)(*pages);
1275 		struct vm_area_struct *vma;
1276 		struct page *page;
1277 		int err = -EFAULT;
1278 
1279 		vma = find_vma(mm, addr);
1280 		if (!vma || addr < vma->vm_start)
1281 			goto set_status;
1282 
1283 		page = follow_page(vma, addr, 0);
1284 
1285 		err = PTR_ERR(page);
1286 		if (IS_ERR(page))
1287 			goto set_status;
1288 
1289 		err = -ENOENT;
1290 		/* Use PageReserved to check for zero page */
1291 		if (!page || PageReserved(page) || PageKsm(page))
1292 			goto set_status;
1293 
1294 		err = page_to_nid(page);
1295 set_status:
1296 		*status = err;
1297 
1298 		pages++;
1299 		status++;
1300 	}
1301 
1302 	up_read(&mm->mmap_sem);
1303 }
1304 
1305 /*
1306  * Determine the nodes of a user array of pages and store it in
1307  * a user array of status.
1308  */
1309 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1310 			 const void __user * __user *pages,
1311 			 int __user *status)
1312 {
1313 #define DO_PAGES_STAT_CHUNK_NR 16
1314 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1315 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1316 
1317 	while (nr_pages) {
1318 		unsigned long chunk_nr;
1319 
1320 		chunk_nr = nr_pages;
1321 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1322 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1323 
1324 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1325 			break;
1326 
1327 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1328 
1329 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1330 			break;
1331 
1332 		pages += chunk_nr;
1333 		status += chunk_nr;
1334 		nr_pages -= chunk_nr;
1335 	}
1336 	return nr_pages ? -EFAULT : 0;
1337 }
1338 
1339 /*
1340  * Move a list of pages in the address space of the currently executing
1341  * process.
1342  */
1343 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1344 		const void __user * __user *, pages,
1345 		const int __user *, nodes,
1346 		int __user *, status, int, flags)
1347 {
1348 	const struct cred *cred = current_cred(), *tcred;
1349 	struct task_struct *task;
1350 	struct mm_struct *mm;
1351 	int err;
1352 	nodemask_t task_nodes;
1353 
1354 	/* Check flags */
1355 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1356 		return -EINVAL;
1357 
1358 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1359 		return -EPERM;
1360 
1361 	/* Find the mm_struct */
1362 	rcu_read_lock();
1363 	task = pid ? find_task_by_vpid(pid) : current;
1364 	if (!task) {
1365 		rcu_read_unlock();
1366 		return -ESRCH;
1367 	}
1368 	get_task_struct(task);
1369 
1370 	/*
1371 	 * Check if this process has the right to modify the specified
1372 	 * process. The right exists if the process has administrative
1373 	 * capabilities, superuser privileges or the same
1374 	 * userid as the target process.
1375 	 */
1376 	tcred = __task_cred(task);
1377 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1378 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1379 	    !capable(CAP_SYS_NICE)) {
1380 		rcu_read_unlock();
1381 		err = -EPERM;
1382 		goto out;
1383 	}
1384 	rcu_read_unlock();
1385 
1386  	err = security_task_movememory(task);
1387  	if (err)
1388 		goto out;
1389 
1390 	task_nodes = cpuset_mems_allowed(task);
1391 	mm = get_task_mm(task);
1392 	put_task_struct(task);
1393 
1394 	if (!mm)
1395 		return -EINVAL;
1396 
1397 	if (nodes)
1398 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1399 				    nodes, status, flags);
1400 	else
1401 		err = do_pages_stat(mm, nr_pages, pages, status);
1402 
1403 	mmput(mm);
1404 	return err;
1405 
1406 out:
1407 	put_task_struct(task);
1408 	return err;
1409 }
1410 
1411 /*
1412  * Call migration functions in the vma_ops that may prepare
1413  * memory in a vm for migration. migration functions may perform
1414  * the migration for vmas that do not have an underlying page struct.
1415  */
1416 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1417 	const nodemask_t *from, unsigned long flags)
1418 {
1419  	struct vm_area_struct *vma;
1420  	int err = 0;
1421 
1422 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1423  		if (vma->vm_ops && vma->vm_ops->migrate) {
1424  			err = vma->vm_ops->migrate(vma, to, from, flags);
1425  			if (err)
1426  				break;
1427  		}
1428  	}
1429  	return err;
1430 }
1431 #endif
1432