xref: /linux/mm/migrate.c (revision 1517d90cfafe0f95fd7863d04e1596f7beb7dfa8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 
52 #include <asm/tlbflush.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/migrate.h>
56 
57 #include "internal.h"
58 
59 /*
60  * migrate_prep() needs to be called before we start compiling a list of pages
61  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
62  * undesirable, use migrate_prep_local()
63  */
64 int migrate_prep(void)
65 {
66 	/*
67 	 * Clear the LRU lists so pages can be isolated.
68 	 * Note that pages may be moved off the LRU after we have
69 	 * drained them. Those pages will fail to migrate like other
70 	 * pages that may be busy.
71 	 */
72 	lru_add_drain_all();
73 
74 	return 0;
75 }
76 
77 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
78 int migrate_prep_local(void)
79 {
80 	lru_add_drain();
81 
82 	return 0;
83 }
84 
85 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 {
87 	struct address_space *mapping;
88 
89 	/*
90 	 * Avoid burning cycles with pages that are yet under __free_pages(),
91 	 * or just got freed under us.
92 	 *
93 	 * In case we 'win' a race for a movable page being freed under us and
94 	 * raise its refcount preventing __free_pages() from doing its job
95 	 * the put_page() at the end of this block will take care of
96 	 * release this page, thus avoiding a nasty leakage.
97 	 */
98 	if (unlikely(!get_page_unless_zero(page)))
99 		goto out;
100 
101 	/*
102 	 * Check PageMovable before holding a PG_lock because page's owner
103 	 * assumes anybody doesn't touch PG_lock of newly allocated page
104 	 * so unconditionally grabbing the lock ruins page's owner side.
105 	 */
106 	if (unlikely(!__PageMovable(page)))
107 		goto out_putpage;
108 	/*
109 	 * As movable pages are not isolated from LRU lists, concurrent
110 	 * compaction threads can race against page migration functions
111 	 * as well as race against the releasing a page.
112 	 *
113 	 * In order to avoid having an already isolated movable page
114 	 * being (wrongly) re-isolated while it is under migration,
115 	 * or to avoid attempting to isolate pages being released,
116 	 * lets be sure we have the page lock
117 	 * before proceeding with the movable page isolation steps.
118 	 */
119 	if (unlikely(!trylock_page(page)))
120 		goto out_putpage;
121 
122 	if (!PageMovable(page) || PageIsolated(page))
123 		goto out_no_isolated;
124 
125 	mapping = page_mapping(page);
126 	VM_BUG_ON_PAGE(!mapping, page);
127 
128 	if (!mapping->a_ops->isolate_page(page, mode))
129 		goto out_no_isolated;
130 
131 	/* Driver shouldn't use PG_isolated bit of page->flags */
132 	WARN_ON_ONCE(PageIsolated(page));
133 	__SetPageIsolated(page);
134 	unlock_page(page);
135 
136 	return 0;
137 
138 out_no_isolated:
139 	unlock_page(page);
140 out_putpage:
141 	put_page(page);
142 out:
143 	return -EBUSY;
144 }
145 
146 /* It should be called on page which is PG_movable */
147 void putback_movable_page(struct page *page)
148 {
149 	struct address_space *mapping;
150 
151 	VM_BUG_ON_PAGE(!PageLocked(page), page);
152 	VM_BUG_ON_PAGE(!PageMovable(page), page);
153 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
154 
155 	mapping = page_mapping(page);
156 	mapping->a_ops->putback_page(page);
157 	__ClearPageIsolated(page);
158 }
159 
160 /*
161  * Put previously isolated pages back onto the appropriate lists
162  * from where they were once taken off for compaction/migration.
163  *
164  * This function shall be used whenever the isolated pageset has been
165  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
166  * and isolate_huge_page().
167  */
168 void putback_movable_pages(struct list_head *l)
169 {
170 	struct page *page;
171 	struct page *page2;
172 
173 	list_for_each_entry_safe(page, page2, l, lru) {
174 		if (unlikely(PageHuge(page))) {
175 			putback_active_hugepage(page);
176 			continue;
177 		}
178 		list_del(&page->lru);
179 		/*
180 		 * We isolated non-lru movable page so here we can use
181 		 * __PageMovable because LRU page's mapping cannot have
182 		 * PAGE_MAPPING_MOVABLE.
183 		 */
184 		if (unlikely(__PageMovable(page))) {
185 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 			lock_page(page);
187 			if (PageMovable(page))
188 				putback_movable_page(page);
189 			else
190 				__ClearPageIsolated(page);
191 			unlock_page(page);
192 			put_page(page);
193 		} else {
194 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
195 					page_is_file_cache(page), -hpage_nr_pages(page));
196 			putback_lru_page(page);
197 		}
198 	}
199 }
200 
201 /*
202  * Restore a potential migration pte to a working pte entry
203  */
204 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
205 				 unsigned long addr, void *old)
206 {
207 	struct page_vma_mapped_walk pvmw = {
208 		.page = old,
209 		.vma = vma,
210 		.address = addr,
211 		.flags = PVMW_SYNC | PVMW_MIGRATION,
212 	};
213 	struct page *new;
214 	pte_t pte;
215 	swp_entry_t entry;
216 
217 	VM_BUG_ON_PAGE(PageTail(page), page);
218 	while (page_vma_mapped_walk(&pvmw)) {
219 		if (PageKsm(page))
220 			new = page;
221 		else
222 			new = page - pvmw.page->index +
223 				linear_page_index(vma, pvmw.address);
224 
225 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
226 		/* PMD-mapped THP migration entry */
227 		if (!pvmw.pte) {
228 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
229 			remove_migration_pmd(&pvmw, new);
230 			continue;
231 		}
232 #endif
233 
234 		get_page(new);
235 		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
236 		if (pte_swp_soft_dirty(*pvmw.pte))
237 			pte = pte_mksoft_dirty(pte);
238 
239 		/*
240 		 * Recheck VMA as permissions can change since migration started
241 		 */
242 		entry = pte_to_swp_entry(*pvmw.pte);
243 		if (is_write_migration_entry(entry))
244 			pte = maybe_mkwrite(pte, vma);
245 
246 		if (unlikely(is_zone_device_page(new))) {
247 			if (is_device_private_page(new)) {
248 				entry = make_device_private_entry(new, pte_write(pte));
249 				pte = swp_entry_to_pte(entry);
250 			}
251 		}
252 
253 #ifdef CONFIG_HUGETLB_PAGE
254 		if (PageHuge(new)) {
255 			pte = pte_mkhuge(pte);
256 			pte = arch_make_huge_pte(pte, vma, new, 0);
257 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258 			if (PageAnon(new))
259 				hugepage_add_anon_rmap(new, vma, pvmw.address);
260 			else
261 				page_dup_rmap(new, true);
262 		} else
263 #endif
264 		{
265 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266 
267 			if (PageAnon(new))
268 				page_add_anon_rmap(new, vma, pvmw.address, false);
269 			else
270 				page_add_file_rmap(new, false);
271 		}
272 		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273 			mlock_vma_page(new);
274 
275 		if (PageTransHuge(page) && PageMlocked(page))
276 			clear_page_mlock(page);
277 
278 		/* No need to invalidate - it was non-present before */
279 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 	}
281 
282 	return true;
283 }
284 
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291 	struct rmap_walk_control rwc = {
292 		.rmap_one = remove_migration_pte,
293 		.arg = old,
294 	};
295 
296 	if (locked)
297 		rmap_walk_locked(new, &rwc);
298 	else
299 		rmap_walk(new, &rwc);
300 }
301 
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308 				spinlock_t *ptl)
309 {
310 	pte_t pte;
311 	swp_entry_t entry;
312 	struct page *page;
313 
314 	spin_lock(ptl);
315 	pte = *ptep;
316 	if (!is_swap_pte(pte))
317 		goto out;
318 
319 	entry = pte_to_swp_entry(pte);
320 	if (!is_migration_entry(entry))
321 		goto out;
322 
323 	page = migration_entry_to_page(entry);
324 
325 	/*
326 	 * Once page cache replacement of page migration started, page_count
327 	 * is zero; but we must not call put_and_wait_on_page_locked() without
328 	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
329 	 */
330 	if (!get_page_unless_zero(page))
331 		goto out;
332 	pte_unmap_unlock(ptep, ptl);
333 	put_and_wait_on_page_locked(page);
334 	return;
335 out:
336 	pte_unmap_unlock(ptep, ptl);
337 }
338 
339 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
340 				unsigned long address)
341 {
342 	spinlock_t *ptl = pte_lockptr(mm, pmd);
343 	pte_t *ptep = pte_offset_map(pmd, address);
344 	__migration_entry_wait(mm, ptep, ptl);
345 }
346 
347 void migration_entry_wait_huge(struct vm_area_struct *vma,
348 		struct mm_struct *mm, pte_t *pte)
349 {
350 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
351 	__migration_entry_wait(mm, pte, ptl);
352 }
353 
354 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
355 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
356 {
357 	spinlock_t *ptl;
358 	struct page *page;
359 
360 	ptl = pmd_lock(mm, pmd);
361 	if (!is_pmd_migration_entry(*pmd))
362 		goto unlock;
363 	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
364 	if (!get_page_unless_zero(page))
365 		goto unlock;
366 	spin_unlock(ptl);
367 	put_and_wait_on_page_locked(page);
368 	return;
369 unlock:
370 	spin_unlock(ptl);
371 }
372 #endif
373 
374 static int expected_page_refs(struct address_space *mapping, struct page *page)
375 {
376 	int expected_count = 1;
377 
378 	/*
379 	 * Device public or private pages have an extra refcount as they are
380 	 * ZONE_DEVICE pages.
381 	 */
382 	expected_count += is_device_private_page(page);
383 	if (mapping)
384 		expected_count += hpage_nr_pages(page) + page_has_private(page);
385 
386 	return expected_count;
387 }
388 
389 /*
390  * Replace the page in the mapping.
391  *
392  * The number of remaining references must be:
393  * 1 for anonymous pages without a mapping
394  * 2 for pages with a mapping
395  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
396  */
397 int migrate_page_move_mapping(struct address_space *mapping,
398 		struct page *newpage, struct page *page, int extra_count)
399 {
400 	XA_STATE(xas, &mapping->i_pages, page_index(page));
401 	struct zone *oldzone, *newzone;
402 	int dirty;
403 	int expected_count = expected_page_refs(mapping, page) + extra_count;
404 
405 	if (!mapping) {
406 		/* Anonymous page without mapping */
407 		if (page_count(page) != expected_count)
408 			return -EAGAIN;
409 
410 		/* No turning back from here */
411 		newpage->index = page->index;
412 		newpage->mapping = page->mapping;
413 		if (PageSwapBacked(page))
414 			__SetPageSwapBacked(newpage);
415 
416 		return MIGRATEPAGE_SUCCESS;
417 	}
418 
419 	oldzone = page_zone(page);
420 	newzone = page_zone(newpage);
421 
422 	xas_lock_irq(&xas);
423 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
424 		xas_unlock_irq(&xas);
425 		return -EAGAIN;
426 	}
427 
428 	if (!page_ref_freeze(page, expected_count)) {
429 		xas_unlock_irq(&xas);
430 		return -EAGAIN;
431 	}
432 
433 	/*
434 	 * Now we know that no one else is looking at the page:
435 	 * no turning back from here.
436 	 */
437 	newpage->index = page->index;
438 	newpage->mapping = page->mapping;
439 	page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
440 	if (PageSwapBacked(page)) {
441 		__SetPageSwapBacked(newpage);
442 		if (PageSwapCache(page)) {
443 			SetPageSwapCache(newpage);
444 			set_page_private(newpage, page_private(page));
445 		}
446 	} else {
447 		VM_BUG_ON_PAGE(PageSwapCache(page), page);
448 	}
449 
450 	/* Move dirty while page refs frozen and newpage not yet exposed */
451 	dirty = PageDirty(page);
452 	if (dirty) {
453 		ClearPageDirty(page);
454 		SetPageDirty(newpage);
455 	}
456 
457 	xas_store(&xas, newpage);
458 	if (PageTransHuge(page)) {
459 		int i;
460 
461 		for (i = 1; i < HPAGE_PMD_NR; i++) {
462 			xas_next(&xas);
463 			xas_store(&xas, newpage);
464 		}
465 	}
466 
467 	/*
468 	 * Drop cache reference from old page by unfreezing
469 	 * to one less reference.
470 	 * We know this isn't the last reference.
471 	 */
472 	page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
473 
474 	xas_unlock(&xas);
475 	/* Leave irq disabled to prevent preemption while updating stats */
476 
477 	/*
478 	 * If moved to a different zone then also account
479 	 * the page for that zone. Other VM counters will be
480 	 * taken care of when we establish references to the
481 	 * new page and drop references to the old page.
482 	 *
483 	 * Note that anonymous pages are accounted for
484 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
485 	 * are mapped to swap space.
486 	 */
487 	if (newzone != oldzone) {
488 		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
489 		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
490 		if (PageSwapBacked(page) && !PageSwapCache(page)) {
491 			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
492 			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
493 		}
494 		if (dirty && mapping_cap_account_dirty(mapping)) {
495 			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
496 			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
497 			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
498 			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
499 		}
500 	}
501 	local_irq_enable();
502 
503 	return MIGRATEPAGE_SUCCESS;
504 }
505 EXPORT_SYMBOL(migrate_page_move_mapping);
506 
507 /*
508  * The expected number of remaining references is the same as that
509  * of migrate_page_move_mapping().
510  */
511 int migrate_huge_page_move_mapping(struct address_space *mapping,
512 				   struct page *newpage, struct page *page)
513 {
514 	XA_STATE(xas, &mapping->i_pages, page_index(page));
515 	int expected_count;
516 
517 	xas_lock_irq(&xas);
518 	expected_count = 2 + page_has_private(page);
519 	if (page_count(page) != expected_count || xas_load(&xas) != page) {
520 		xas_unlock_irq(&xas);
521 		return -EAGAIN;
522 	}
523 
524 	if (!page_ref_freeze(page, expected_count)) {
525 		xas_unlock_irq(&xas);
526 		return -EAGAIN;
527 	}
528 
529 	newpage->index = page->index;
530 	newpage->mapping = page->mapping;
531 
532 	get_page(newpage);
533 
534 	xas_store(&xas, newpage);
535 
536 	page_ref_unfreeze(page, expected_count - 1);
537 
538 	xas_unlock_irq(&xas);
539 
540 	return MIGRATEPAGE_SUCCESS;
541 }
542 
543 /*
544  * Gigantic pages are so large that we do not guarantee that page++ pointer
545  * arithmetic will work across the entire page.  We need something more
546  * specialized.
547  */
548 static void __copy_gigantic_page(struct page *dst, struct page *src,
549 				int nr_pages)
550 {
551 	int i;
552 	struct page *dst_base = dst;
553 	struct page *src_base = src;
554 
555 	for (i = 0; i < nr_pages; ) {
556 		cond_resched();
557 		copy_highpage(dst, src);
558 
559 		i++;
560 		dst = mem_map_next(dst, dst_base, i);
561 		src = mem_map_next(src, src_base, i);
562 	}
563 }
564 
565 static void copy_huge_page(struct page *dst, struct page *src)
566 {
567 	int i;
568 	int nr_pages;
569 
570 	if (PageHuge(src)) {
571 		/* hugetlbfs page */
572 		struct hstate *h = page_hstate(src);
573 		nr_pages = pages_per_huge_page(h);
574 
575 		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
576 			__copy_gigantic_page(dst, src, nr_pages);
577 			return;
578 		}
579 	} else {
580 		/* thp page */
581 		BUG_ON(!PageTransHuge(src));
582 		nr_pages = hpage_nr_pages(src);
583 	}
584 
585 	for (i = 0; i < nr_pages; i++) {
586 		cond_resched();
587 		copy_highpage(dst + i, src + i);
588 	}
589 }
590 
591 /*
592  * Copy the page to its new location
593  */
594 void migrate_page_states(struct page *newpage, struct page *page)
595 {
596 	int cpupid;
597 
598 	if (PageError(page))
599 		SetPageError(newpage);
600 	if (PageReferenced(page))
601 		SetPageReferenced(newpage);
602 	if (PageUptodate(page))
603 		SetPageUptodate(newpage);
604 	if (TestClearPageActive(page)) {
605 		VM_BUG_ON_PAGE(PageUnevictable(page), page);
606 		SetPageActive(newpage);
607 	} else if (TestClearPageUnevictable(page))
608 		SetPageUnevictable(newpage);
609 	if (PageWorkingset(page))
610 		SetPageWorkingset(newpage);
611 	if (PageChecked(page))
612 		SetPageChecked(newpage);
613 	if (PageMappedToDisk(page))
614 		SetPageMappedToDisk(newpage);
615 
616 	/* Move dirty on pages not done by migrate_page_move_mapping() */
617 	if (PageDirty(page))
618 		SetPageDirty(newpage);
619 
620 	if (page_is_young(page))
621 		set_page_young(newpage);
622 	if (page_is_idle(page))
623 		set_page_idle(newpage);
624 
625 	/*
626 	 * Copy NUMA information to the new page, to prevent over-eager
627 	 * future migrations of this same page.
628 	 */
629 	cpupid = page_cpupid_xchg_last(page, -1);
630 	page_cpupid_xchg_last(newpage, cpupid);
631 
632 	ksm_migrate_page(newpage, page);
633 	/*
634 	 * Please do not reorder this without considering how mm/ksm.c's
635 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
636 	 */
637 	if (PageSwapCache(page))
638 		ClearPageSwapCache(page);
639 	ClearPagePrivate(page);
640 	set_page_private(page, 0);
641 
642 	/*
643 	 * If any waiters have accumulated on the new page then
644 	 * wake them up.
645 	 */
646 	if (PageWriteback(newpage))
647 		end_page_writeback(newpage);
648 
649 	copy_page_owner(page, newpage);
650 
651 	mem_cgroup_migrate(page, newpage);
652 }
653 EXPORT_SYMBOL(migrate_page_states);
654 
655 void migrate_page_copy(struct page *newpage, struct page *page)
656 {
657 	if (PageHuge(page) || PageTransHuge(page))
658 		copy_huge_page(newpage, page);
659 	else
660 		copy_highpage(newpage, page);
661 
662 	migrate_page_states(newpage, page);
663 }
664 EXPORT_SYMBOL(migrate_page_copy);
665 
666 /************************************************************
667  *                    Migration functions
668  ***********************************************************/
669 
670 /*
671  * Common logic to directly migrate a single LRU page suitable for
672  * pages that do not use PagePrivate/PagePrivate2.
673  *
674  * Pages are locked upon entry and exit.
675  */
676 int migrate_page(struct address_space *mapping,
677 		struct page *newpage, struct page *page,
678 		enum migrate_mode mode)
679 {
680 	int rc;
681 
682 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
683 
684 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
685 
686 	if (rc != MIGRATEPAGE_SUCCESS)
687 		return rc;
688 
689 	if (mode != MIGRATE_SYNC_NO_COPY)
690 		migrate_page_copy(newpage, page);
691 	else
692 		migrate_page_states(newpage, page);
693 	return MIGRATEPAGE_SUCCESS;
694 }
695 EXPORT_SYMBOL(migrate_page);
696 
697 #ifdef CONFIG_BLOCK
698 /* Returns true if all buffers are successfully locked */
699 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
700 							enum migrate_mode mode)
701 {
702 	struct buffer_head *bh = head;
703 
704 	/* Simple case, sync compaction */
705 	if (mode != MIGRATE_ASYNC) {
706 		do {
707 			lock_buffer(bh);
708 			bh = bh->b_this_page;
709 
710 		} while (bh != head);
711 
712 		return true;
713 	}
714 
715 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
716 	do {
717 		if (!trylock_buffer(bh)) {
718 			/*
719 			 * We failed to lock the buffer and cannot stall in
720 			 * async migration. Release the taken locks
721 			 */
722 			struct buffer_head *failed_bh = bh;
723 			bh = head;
724 			while (bh != failed_bh) {
725 				unlock_buffer(bh);
726 				bh = bh->b_this_page;
727 			}
728 			return false;
729 		}
730 
731 		bh = bh->b_this_page;
732 	} while (bh != head);
733 	return true;
734 }
735 
736 static int __buffer_migrate_page(struct address_space *mapping,
737 		struct page *newpage, struct page *page, enum migrate_mode mode,
738 		bool check_refs)
739 {
740 	struct buffer_head *bh, *head;
741 	int rc;
742 	int expected_count;
743 
744 	if (!page_has_buffers(page))
745 		return migrate_page(mapping, newpage, page, mode);
746 
747 	/* Check whether page does not have extra refs before we do more work */
748 	expected_count = expected_page_refs(mapping, page);
749 	if (page_count(page) != expected_count)
750 		return -EAGAIN;
751 
752 	head = page_buffers(page);
753 	if (!buffer_migrate_lock_buffers(head, mode))
754 		return -EAGAIN;
755 
756 	if (check_refs) {
757 		bool busy;
758 		bool invalidated = false;
759 
760 recheck_buffers:
761 		busy = false;
762 		spin_lock(&mapping->private_lock);
763 		bh = head;
764 		do {
765 			if (atomic_read(&bh->b_count)) {
766 				busy = true;
767 				break;
768 			}
769 			bh = bh->b_this_page;
770 		} while (bh != head);
771 		if (busy) {
772 			if (invalidated) {
773 				rc = -EAGAIN;
774 				goto unlock_buffers;
775 			}
776 			spin_unlock(&mapping->private_lock);
777 			invalidate_bh_lrus();
778 			invalidated = true;
779 			goto recheck_buffers;
780 		}
781 	}
782 
783 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
784 	if (rc != MIGRATEPAGE_SUCCESS)
785 		goto unlock_buffers;
786 
787 	ClearPagePrivate(page);
788 	set_page_private(newpage, page_private(page));
789 	set_page_private(page, 0);
790 	put_page(page);
791 	get_page(newpage);
792 
793 	bh = head;
794 	do {
795 		set_bh_page(bh, newpage, bh_offset(bh));
796 		bh = bh->b_this_page;
797 
798 	} while (bh != head);
799 
800 	SetPagePrivate(newpage);
801 
802 	if (mode != MIGRATE_SYNC_NO_COPY)
803 		migrate_page_copy(newpage, page);
804 	else
805 		migrate_page_states(newpage, page);
806 
807 	rc = MIGRATEPAGE_SUCCESS;
808 unlock_buffers:
809 	if (check_refs)
810 		spin_unlock(&mapping->private_lock);
811 	bh = head;
812 	do {
813 		unlock_buffer(bh);
814 		bh = bh->b_this_page;
815 
816 	} while (bh != head);
817 
818 	return rc;
819 }
820 
821 /*
822  * Migration function for pages with buffers. This function can only be used
823  * if the underlying filesystem guarantees that no other references to "page"
824  * exist. For example attached buffer heads are accessed only under page lock.
825  */
826 int buffer_migrate_page(struct address_space *mapping,
827 		struct page *newpage, struct page *page, enum migrate_mode mode)
828 {
829 	return __buffer_migrate_page(mapping, newpage, page, mode, false);
830 }
831 EXPORT_SYMBOL(buffer_migrate_page);
832 
833 /*
834  * Same as above except that this variant is more careful and checks that there
835  * are also no buffer head references. This function is the right one for
836  * mappings where buffer heads are directly looked up and referenced (such as
837  * block device mappings).
838  */
839 int buffer_migrate_page_norefs(struct address_space *mapping,
840 		struct page *newpage, struct page *page, enum migrate_mode mode)
841 {
842 	return __buffer_migrate_page(mapping, newpage, page, mode, true);
843 }
844 #endif
845 
846 /*
847  * Writeback a page to clean the dirty state
848  */
849 static int writeout(struct address_space *mapping, struct page *page)
850 {
851 	struct writeback_control wbc = {
852 		.sync_mode = WB_SYNC_NONE,
853 		.nr_to_write = 1,
854 		.range_start = 0,
855 		.range_end = LLONG_MAX,
856 		.for_reclaim = 1
857 	};
858 	int rc;
859 
860 	if (!mapping->a_ops->writepage)
861 		/* No write method for the address space */
862 		return -EINVAL;
863 
864 	if (!clear_page_dirty_for_io(page))
865 		/* Someone else already triggered a write */
866 		return -EAGAIN;
867 
868 	/*
869 	 * A dirty page may imply that the underlying filesystem has
870 	 * the page on some queue. So the page must be clean for
871 	 * migration. Writeout may mean we loose the lock and the
872 	 * page state is no longer what we checked for earlier.
873 	 * At this point we know that the migration attempt cannot
874 	 * be successful.
875 	 */
876 	remove_migration_ptes(page, page, false);
877 
878 	rc = mapping->a_ops->writepage(page, &wbc);
879 
880 	if (rc != AOP_WRITEPAGE_ACTIVATE)
881 		/* unlocked. Relock */
882 		lock_page(page);
883 
884 	return (rc < 0) ? -EIO : -EAGAIN;
885 }
886 
887 /*
888  * Default handling if a filesystem does not provide a migration function.
889  */
890 static int fallback_migrate_page(struct address_space *mapping,
891 	struct page *newpage, struct page *page, enum migrate_mode mode)
892 {
893 	if (PageDirty(page)) {
894 		/* Only writeback pages in full synchronous migration */
895 		switch (mode) {
896 		case MIGRATE_SYNC:
897 		case MIGRATE_SYNC_NO_COPY:
898 			break;
899 		default:
900 			return -EBUSY;
901 		}
902 		return writeout(mapping, page);
903 	}
904 
905 	/*
906 	 * Buffers may be managed in a filesystem specific way.
907 	 * We must have no buffers or drop them.
908 	 */
909 	if (page_has_private(page) &&
910 	    !try_to_release_page(page, GFP_KERNEL))
911 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
912 
913 	return migrate_page(mapping, newpage, page, mode);
914 }
915 
916 /*
917  * Move a page to a newly allocated page
918  * The page is locked and all ptes have been successfully removed.
919  *
920  * The new page will have replaced the old page if this function
921  * is successful.
922  *
923  * Return value:
924  *   < 0 - error code
925  *  MIGRATEPAGE_SUCCESS - success
926  */
927 static int move_to_new_page(struct page *newpage, struct page *page,
928 				enum migrate_mode mode)
929 {
930 	struct address_space *mapping;
931 	int rc = -EAGAIN;
932 	bool is_lru = !__PageMovable(page);
933 
934 	VM_BUG_ON_PAGE(!PageLocked(page), page);
935 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
936 
937 	mapping = page_mapping(page);
938 
939 	if (likely(is_lru)) {
940 		if (!mapping)
941 			rc = migrate_page(mapping, newpage, page, mode);
942 		else if (mapping->a_ops->migratepage)
943 			/*
944 			 * Most pages have a mapping and most filesystems
945 			 * provide a migratepage callback. Anonymous pages
946 			 * are part of swap space which also has its own
947 			 * migratepage callback. This is the most common path
948 			 * for page migration.
949 			 */
950 			rc = mapping->a_ops->migratepage(mapping, newpage,
951 							page, mode);
952 		else
953 			rc = fallback_migrate_page(mapping, newpage,
954 							page, mode);
955 	} else {
956 		/*
957 		 * In case of non-lru page, it could be released after
958 		 * isolation step. In that case, we shouldn't try migration.
959 		 */
960 		VM_BUG_ON_PAGE(!PageIsolated(page), page);
961 		if (!PageMovable(page)) {
962 			rc = MIGRATEPAGE_SUCCESS;
963 			__ClearPageIsolated(page);
964 			goto out;
965 		}
966 
967 		rc = mapping->a_ops->migratepage(mapping, newpage,
968 						page, mode);
969 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
970 			!PageIsolated(page));
971 	}
972 
973 	/*
974 	 * When successful, old pagecache page->mapping must be cleared before
975 	 * page is freed; but stats require that PageAnon be left as PageAnon.
976 	 */
977 	if (rc == MIGRATEPAGE_SUCCESS) {
978 		if (__PageMovable(page)) {
979 			VM_BUG_ON_PAGE(!PageIsolated(page), page);
980 
981 			/*
982 			 * We clear PG_movable under page_lock so any compactor
983 			 * cannot try to migrate this page.
984 			 */
985 			__ClearPageIsolated(page);
986 		}
987 
988 		/*
989 		 * Anonymous and movable page->mapping will be cleard by
990 		 * free_pages_prepare so don't reset it here for keeping
991 		 * the type to work PageAnon, for example.
992 		 */
993 		if (!PageMappingFlags(page))
994 			page->mapping = NULL;
995 
996 		if (likely(!is_zone_device_page(newpage)))
997 			flush_dcache_page(newpage);
998 
999 	}
1000 out:
1001 	return rc;
1002 }
1003 
1004 static int __unmap_and_move(struct page *page, struct page *newpage,
1005 				int force, enum migrate_mode mode)
1006 {
1007 	int rc = -EAGAIN;
1008 	int page_was_mapped = 0;
1009 	struct anon_vma *anon_vma = NULL;
1010 	bool is_lru = !__PageMovable(page);
1011 
1012 	if (!trylock_page(page)) {
1013 		if (!force || mode == MIGRATE_ASYNC)
1014 			goto out;
1015 
1016 		/*
1017 		 * It's not safe for direct compaction to call lock_page.
1018 		 * For example, during page readahead pages are added locked
1019 		 * to the LRU. Later, when the IO completes the pages are
1020 		 * marked uptodate and unlocked. However, the queueing
1021 		 * could be merging multiple pages for one bio (e.g.
1022 		 * mpage_readpages). If an allocation happens for the
1023 		 * second or third page, the process can end up locking
1024 		 * the same page twice and deadlocking. Rather than
1025 		 * trying to be clever about what pages can be locked,
1026 		 * avoid the use of lock_page for direct compaction
1027 		 * altogether.
1028 		 */
1029 		if (current->flags & PF_MEMALLOC)
1030 			goto out;
1031 
1032 		lock_page(page);
1033 	}
1034 
1035 	if (PageWriteback(page)) {
1036 		/*
1037 		 * Only in the case of a full synchronous migration is it
1038 		 * necessary to wait for PageWriteback. In the async case,
1039 		 * the retry loop is too short and in the sync-light case,
1040 		 * the overhead of stalling is too much
1041 		 */
1042 		switch (mode) {
1043 		case MIGRATE_SYNC:
1044 		case MIGRATE_SYNC_NO_COPY:
1045 			break;
1046 		default:
1047 			rc = -EBUSY;
1048 			goto out_unlock;
1049 		}
1050 		if (!force)
1051 			goto out_unlock;
1052 		wait_on_page_writeback(page);
1053 	}
1054 
1055 	/*
1056 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1057 	 * we cannot notice that anon_vma is freed while we migrates a page.
1058 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1059 	 * of migration. File cache pages are no problem because of page_lock()
1060 	 * File Caches may use write_page() or lock_page() in migration, then,
1061 	 * just care Anon page here.
1062 	 *
1063 	 * Only page_get_anon_vma() understands the subtleties of
1064 	 * getting a hold on an anon_vma from outside one of its mms.
1065 	 * But if we cannot get anon_vma, then we won't need it anyway,
1066 	 * because that implies that the anon page is no longer mapped
1067 	 * (and cannot be remapped so long as we hold the page lock).
1068 	 */
1069 	if (PageAnon(page) && !PageKsm(page))
1070 		anon_vma = page_get_anon_vma(page);
1071 
1072 	/*
1073 	 * Block others from accessing the new page when we get around to
1074 	 * establishing additional references. We are usually the only one
1075 	 * holding a reference to newpage at this point. We used to have a BUG
1076 	 * here if trylock_page(newpage) fails, but would like to allow for
1077 	 * cases where there might be a race with the previous use of newpage.
1078 	 * This is much like races on refcount of oldpage: just don't BUG().
1079 	 */
1080 	if (unlikely(!trylock_page(newpage)))
1081 		goto out_unlock;
1082 
1083 	if (unlikely(!is_lru)) {
1084 		rc = move_to_new_page(newpage, page, mode);
1085 		goto out_unlock_both;
1086 	}
1087 
1088 	/*
1089 	 * Corner case handling:
1090 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1091 	 * and treated as swapcache but it has no rmap yet.
1092 	 * Calling try_to_unmap() against a page->mapping==NULL page will
1093 	 * trigger a BUG.  So handle it here.
1094 	 * 2. An orphaned page (see truncate_complete_page) might have
1095 	 * fs-private metadata. The page can be picked up due to memory
1096 	 * offlining.  Everywhere else except page reclaim, the page is
1097 	 * invisible to the vm, so the page can not be migrated.  So try to
1098 	 * free the metadata, so the page can be freed.
1099 	 */
1100 	if (!page->mapping) {
1101 		VM_BUG_ON_PAGE(PageAnon(page), page);
1102 		if (page_has_private(page)) {
1103 			try_to_free_buffers(page);
1104 			goto out_unlock_both;
1105 		}
1106 	} else if (page_mapped(page)) {
1107 		/* Establish migration ptes */
1108 		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1109 				page);
1110 		try_to_unmap(page,
1111 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1112 		page_was_mapped = 1;
1113 	}
1114 
1115 	if (!page_mapped(page))
1116 		rc = move_to_new_page(newpage, page, mode);
1117 
1118 	if (page_was_mapped)
1119 		remove_migration_ptes(page,
1120 			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1121 
1122 out_unlock_both:
1123 	unlock_page(newpage);
1124 out_unlock:
1125 	/* Drop an anon_vma reference if we took one */
1126 	if (anon_vma)
1127 		put_anon_vma(anon_vma);
1128 	unlock_page(page);
1129 out:
1130 	/*
1131 	 * If migration is successful, decrease refcount of the newpage
1132 	 * which will not free the page because new page owner increased
1133 	 * refcounter. As well, if it is LRU page, add the page to LRU
1134 	 * list in here. Use the old state of the isolated source page to
1135 	 * determine if we migrated a LRU page. newpage was already unlocked
1136 	 * and possibly modified by its owner - don't rely on the page
1137 	 * state.
1138 	 */
1139 	if (rc == MIGRATEPAGE_SUCCESS) {
1140 		if (unlikely(!is_lru))
1141 			put_page(newpage);
1142 		else
1143 			putback_lru_page(newpage);
1144 	}
1145 
1146 	return rc;
1147 }
1148 
1149 /*
1150  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1151  * around it.
1152  */
1153 #if defined(CONFIG_ARM) && \
1154 	defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1155 #define ICE_noinline noinline
1156 #else
1157 #define ICE_noinline
1158 #endif
1159 
1160 /*
1161  * Obtain the lock on page, remove all ptes and migrate the page
1162  * to the newly allocated page in newpage.
1163  */
1164 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1165 				   free_page_t put_new_page,
1166 				   unsigned long private, struct page *page,
1167 				   int force, enum migrate_mode mode,
1168 				   enum migrate_reason reason)
1169 {
1170 	int rc = MIGRATEPAGE_SUCCESS;
1171 	struct page *newpage;
1172 
1173 	if (!thp_migration_supported() && PageTransHuge(page))
1174 		return -ENOMEM;
1175 
1176 	newpage = get_new_page(page, private);
1177 	if (!newpage)
1178 		return -ENOMEM;
1179 
1180 	if (page_count(page) == 1) {
1181 		/* page was freed from under us. So we are done. */
1182 		ClearPageActive(page);
1183 		ClearPageUnevictable(page);
1184 		if (unlikely(__PageMovable(page))) {
1185 			lock_page(page);
1186 			if (!PageMovable(page))
1187 				__ClearPageIsolated(page);
1188 			unlock_page(page);
1189 		}
1190 		if (put_new_page)
1191 			put_new_page(newpage, private);
1192 		else
1193 			put_page(newpage);
1194 		goto out;
1195 	}
1196 
1197 	rc = __unmap_and_move(page, newpage, force, mode);
1198 	if (rc == MIGRATEPAGE_SUCCESS)
1199 		set_page_owner_migrate_reason(newpage, reason);
1200 
1201 out:
1202 	if (rc != -EAGAIN) {
1203 		/*
1204 		 * A page that has been migrated has all references
1205 		 * removed and will be freed. A page that has not been
1206 		 * migrated will have kepts its references and be
1207 		 * restored.
1208 		 */
1209 		list_del(&page->lru);
1210 
1211 		/*
1212 		 * Compaction can migrate also non-LRU pages which are
1213 		 * not accounted to NR_ISOLATED_*. They can be recognized
1214 		 * as __PageMovable
1215 		 */
1216 		if (likely(!__PageMovable(page)))
1217 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1218 					page_is_file_cache(page), -hpage_nr_pages(page));
1219 	}
1220 
1221 	/*
1222 	 * If migration is successful, releases reference grabbed during
1223 	 * isolation. Otherwise, restore the page to right list unless
1224 	 * we want to retry.
1225 	 */
1226 	if (rc == MIGRATEPAGE_SUCCESS) {
1227 		put_page(page);
1228 		if (reason == MR_MEMORY_FAILURE) {
1229 			/*
1230 			 * Set PG_HWPoison on just freed page
1231 			 * intentionally. Although it's rather weird,
1232 			 * it's how HWPoison flag works at the moment.
1233 			 */
1234 			if (set_hwpoison_free_buddy_page(page))
1235 				num_poisoned_pages_inc();
1236 		}
1237 	} else {
1238 		if (rc != -EAGAIN) {
1239 			if (likely(!__PageMovable(page))) {
1240 				putback_lru_page(page);
1241 				goto put_new;
1242 			}
1243 
1244 			lock_page(page);
1245 			if (PageMovable(page))
1246 				putback_movable_page(page);
1247 			else
1248 				__ClearPageIsolated(page);
1249 			unlock_page(page);
1250 			put_page(page);
1251 		}
1252 put_new:
1253 		if (put_new_page)
1254 			put_new_page(newpage, private);
1255 		else
1256 			put_page(newpage);
1257 	}
1258 
1259 	return rc;
1260 }
1261 
1262 /*
1263  * Counterpart of unmap_and_move_page() for hugepage migration.
1264  *
1265  * This function doesn't wait the completion of hugepage I/O
1266  * because there is no race between I/O and migration for hugepage.
1267  * Note that currently hugepage I/O occurs only in direct I/O
1268  * where no lock is held and PG_writeback is irrelevant,
1269  * and writeback status of all subpages are counted in the reference
1270  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1271  * under direct I/O, the reference of the head page is 512 and a bit more.)
1272  * This means that when we try to migrate hugepage whose subpages are
1273  * doing direct I/O, some references remain after try_to_unmap() and
1274  * hugepage migration fails without data corruption.
1275  *
1276  * There is also no race when direct I/O is issued on the page under migration,
1277  * because then pte is replaced with migration swap entry and direct I/O code
1278  * will wait in the page fault for migration to complete.
1279  */
1280 static int unmap_and_move_huge_page(new_page_t get_new_page,
1281 				free_page_t put_new_page, unsigned long private,
1282 				struct page *hpage, int force,
1283 				enum migrate_mode mode, int reason)
1284 {
1285 	int rc = -EAGAIN;
1286 	int page_was_mapped = 0;
1287 	struct page *new_hpage;
1288 	struct anon_vma *anon_vma = NULL;
1289 
1290 	/*
1291 	 * Migratability of hugepages depends on architectures and their size.
1292 	 * This check is necessary because some callers of hugepage migration
1293 	 * like soft offline and memory hotremove don't walk through page
1294 	 * tables or check whether the hugepage is pmd-based or not before
1295 	 * kicking migration.
1296 	 */
1297 	if (!hugepage_migration_supported(page_hstate(hpage))) {
1298 		putback_active_hugepage(hpage);
1299 		return -ENOSYS;
1300 	}
1301 
1302 	new_hpage = get_new_page(hpage, private);
1303 	if (!new_hpage)
1304 		return -ENOMEM;
1305 
1306 	if (!trylock_page(hpage)) {
1307 		if (!force)
1308 			goto out;
1309 		switch (mode) {
1310 		case MIGRATE_SYNC:
1311 		case MIGRATE_SYNC_NO_COPY:
1312 			break;
1313 		default:
1314 			goto out;
1315 		}
1316 		lock_page(hpage);
1317 	}
1318 
1319 	/*
1320 	 * Check for pages which are in the process of being freed.  Without
1321 	 * page_mapping() set, hugetlbfs specific move page routine will not
1322 	 * be called and we could leak usage counts for subpools.
1323 	 */
1324 	if (page_private(hpage) && !page_mapping(hpage)) {
1325 		rc = -EBUSY;
1326 		goto out_unlock;
1327 	}
1328 
1329 	if (PageAnon(hpage))
1330 		anon_vma = page_get_anon_vma(hpage);
1331 
1332 	if (unlikely(!trylock_page(new_hpage)))
1333 		goto put_anon;
1334 
1335 	if (page_mapped(hpage)) {
1336 		try_to_unmap(hpage,
1337 			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1338 		page_was_mapped = 1;
1339 	}
1340 
1341 	if (!page_mapped(hpage))
1342 		rc = move_to_new_page(new_hpage, hpage, mode);
1343 
1344 	if (page_was_mapped)
1345 		remove_migration_ptes(hpage,
1346 			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1347 
1348 	unlock_page(new_hpage);
1349 
1350 put_anon:
1351 	if (anon_vma)
1352 		put_anon_vma(anon_vma);
1353 
1354 	if (rc == MIGRATEPAGE_SUCCESS) {
1355 		move_hugetlb_state(hpage, new_hpage, reason);
1356 		put_new_page = NULL;
1357 	}
1358 
1359 out_unlock:
1360 	unlock_page(hpage);
1361 out:
1362 	if (rc != -EAGAIN)
1363 		putback_active_hugepage(hpage);
1364 
1365 	/*
1366 	 * If migration was not successful and there's a freeing callback, use
1367 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1368 	 * isolation.
1369 	 */
1370 	if (put_new_page)
1371 		put_new_page(new_hpage, private);
1372 	else
1373 		putback_active_hugepage(new_hpage);
1374 
1375 	return rc;
1376 }
1377 
1378 /*
1379  * migrate_pages - migrate the pages specified in a list, to the free pages
1380  *		   supplied as the target for the page migration
1381  *
1382  * @from:		The list of pages to be migrated.
1383  * @get_new_page:	The function used to allocate free pages to be used
1384  *			as the target of the page migration.
1385  * @put_new_page:	The function used to free target pages if migration
1386  *			fails, or NULL if no special handling is necessary.
1387  * @private:		Private data to be passed on to get_new_page()
1388  * @mode:		The migration mode that specifies the constraints for
1389  *			page migration, if any.
1390  * @reason:		The reason for page migration.
1391  *
1392  * The function returns after 10 attempts or if no pages are movable any more
1393  * because the list has become empty or no retryable pages exist any more.
1394  * The caller should call putback_movable_pages() to return pages to the LRU
1395  * or free list only if ret != 0.
1396  *
1397  * Returns the number of pages that were not migrated, or an error code.
1398  */
1399 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1400 		free_page_t put_new_page, unsigned long private,
1401 		enum migrate_mode mode, int reason)
1402 {
1403 	int retry = 1;
1404 	int nr_failed = 0;
1405 	int nr_succeeded = 0;
1406 	int pass = 0;
1407 	struct page *page;
1408 	struct page *page2;
1409 	int swapwrite = current->flags & PF_SWAPWRITE;
1410 	int rc;
1411 
1412 	if (!swapwrite)
1413 		current->flags |= PF_SWAPWRITE;
1414 
1415 	for(pass = 0; pass < 10 && retry; pass++) {
1416 		retry = 0;
1417 
1418 		list_for_each_entry_safe(page, page2, from, lru) {
1419 retry:
1420 			cond_resched();
1421 
1422 			if (PageHuge(page))
1423 				rc = unmap_and_move_huge_page(get_new_page,
1424 						put_new_page, private, page,
1425 						pass > 2, mode, reason);
1426 			else
1427 				rc = unmap_and_move(get_new_page, put_new_page,
1428 						private, page, pass > 2, mode,
1429 						reason);
1430 
1431 			switch(rc) {
1432 			case -ENOMEM:
1433 				/*
1434 				 * THP migration might be unsupported or the
1435 				 * allocation could've failed so we should
1436 				 * retry on the same page with the THP split
1437 				 * to base pages.
1438 				 *
1439 				 * Head page is retried immediately and tail
1440 				 * pages are added to the tail of the list so
1441 				 * we encounter them after the rest of the list
1442 				 * is processed.
1443 				 */
1444 				if (PageTransHuge(page) && !PageHuge(page)) {
1445 					lock_page(page);
1446 					rc = split_huge_page_to_list(page, from);
1447 					unlock_page(page);
1448 					if (!rc) {
1449 						list_safe_reset_next(page, page2, lru);
1450 						goto retry;
1451 					}
1452 				}
1453 				nr_failed++;
1454 				goto out;
1455 			case -EAGAIN:
1456 				retry++;
1457 				break;
1458 			case MIGRATEPAGE_SUCCESS:
1459 				nr_succeeded++;
1460 				break;
1461 			default:
1462 				/*
1463 				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1464 				 * unlike -EAGAIN case, the failed page is
1465 				 * removed from migration page list and not
1466 				 * retried in the next outer loop.
1467 				 */
1468 				nr_failed++;
1469 				break;
1470 			}
1471 		}
1472 	}
1473 	nr_failed += retry;
1474 	rc = nr_failed;
1475 out:
1476 	if (nr_succeeded)
1477 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1478 	if (nr_failed)
1479 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1480 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1481 
1482 	if (!swapwrite)
1483 		current->flags &= ~PF_SWAPWRITE;
1484 
1485 	return rc;
1486 }
1487 
1488 #ifdef CONFIG_NUMA
1489 
1490 static int store_status(int __user *status, int start, int value, int nr)
1491 {
1492 	while (nr-- > 0) {
1493 		if (put_user(value, status + start))
1494 			return -EFAULT;
1495 		start++;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static int do_move_pages_to_node(struct mm_struct *mm,
1502 		struct list_head *pagelist, int node)
1503 {
1504 	int err;
1505 
1506 	if (list_empty(pagelist))
1507 		return 0;
1508 
1509 	err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1510 			MIGRATE_SYNC, MR_SYSCALL);
1511 	if (err)
1512 		putback_movable_pages(pagelist);
1513 	return err;
1514 }
1515 
1516 /*
1517  * Resolves the given address to a struct page, isolates it from the LRU and
1518  * puts it to the given pagelist.
1519  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1520  * queued or the page doesn't need to be migrated because it is already on
1521  * the target node
1522  */
1523 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1524 		int node, struct list_head *pagelist, bool migrate_all)
1525 {
1526 	struct vm_area_struct *vma;
1527 	struct page *page;
1528 	unsigned int follflags;
1529 	int err;
1530 
1531 	down_read(&mm->mmap_sem);
1532 	err = -EFAULT;
1533 	vma = find_vma(mm, addr);
1534 	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1535 		goto out;
1536 
1537 	/* FOLL_DUMP to ignore special (like zero) pages */
1538 	follflags = FOLL_GET | FOLL_DUMP;
1539 	page = follow_page(vma, addr, follflags);
1540 
1541 	err = PTR_ERR(page);
1542 	if (IS_ERR(page))
1543 		goto out;
1544 
1545 	err = -ENOENT;
1546 	if (!page)
1547 		goto out;
1548 
1549 	err = 0;
1550 	if (page_to_nid(page) == node)
1551 		goto out_putpage;
1552 
1553 	err = -EACCES;
1554 	if (page_mapcount(page) > 1 && !migrate_all)
1555 		goto out_putpage;
1556 
1557 	if (PageHuge(page)) {
1558 		if (PageHead(page)) {
1559 			isolate_huge_page(page, pagelist);
1560 			err = 0;
1561 		}
1562 	} else {
1563 		struct page *head;
1564 
1565 		head = compound_head(page);
1566 		err = isolate_lru_page(head);
1567 		if (err)
1568 			goto out_putpage;
1569 
1570 		err = 0;
1571 		list_add_tail(&head->lru, pagelist);
1572 		mod_node_page_state(page_pgdat(head),
1573 			NR_ISOLATED_ANON + page_is_file_cache(head),
1574 			hpage_nr_pages(head));
1575 	}
1576 out_putpage:
1577 	/*
1578 	 * Either remove the duplicate refcount from
1579 	 * isolate_lru_page() or drop the page ref if it was
1580 	 * not isolated.
1581 	 */
1582 	put_page(page);
1583 out:
1584 	up_read(&mm->mmap_sem);
1585 	return err;
1586 }
1587 
1588 /*
1589  * Migrate an array of page address onto an array of nodes and fill
1590  * the corresponding array of status.
1591  */
1592 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1593 			 unsigned long nr_pages,
1594 			 const void __user * __user *pages,
1595 			 const int __user *nodes,
1596 			 int __user *status, int flags)
1597 {
1598 	int current_node = NUMA_NO_NODE;
1599 	LIST_HEAD(pagelist);
1600 	int start, i;
1601 	int err = 0, err1;
1602 
1603 	migrate_prep();
1604 
1605 	for (i = start = 0; i < nr_pages; i++) {
1606 		const void __user *p;
1607 		unsigned long addr;
1608 		int node;
1609 
1610 		err = -EFAULT;
1611 		if (get_user(p, pages + i))
1612 			goto out_flush;
1613 		if (get_user(node, nodes + i))
1614 			goto out_flush;
1615 		addr = (unsigned long)untagged_addr(p);
1616 
1617 		err = -ENODEV;
1618 		if (node < 0 || node >= MAX_NUMNODES)
1619 			goto out_flush;
1620 		if (!node_state(node, N_MEMORY))
1621 			goto out_flush;
1622 
1623 		err = -EACCES;
1624 		if (!node_isset(node, task_nodes))
1625 			goto out_flush;
1626 
1627 		if (current_node == NUMA_NO_NODE) {
1628 			current_node = node;
1629 			start = i;
1630 		} else if (node != current_node) {
1631 			err = do_move_pages_to_node(mm, &pagelist, current_node);
1632 			if (err)
1633 				goto out;
1634 			err = store_status(status, start, current_node, i - start);
1635 			if (err)
1636 				goto out;
1637 			start = i;
1638 			current_node = node;
1639 		}
1640 
1641 		/*
1642 		 * Errors in the page lookup or isolation are not fatal and we simply
1643 		 * report them via status
1644 		 */
1645 		err = add_page_for_migration(mm, addr, current_node,
1646 				&pagelist, flags & MPOL_MF_MOVE_ALL);
1647 		if (!err)
1648 			continue;
1649 
1650 		err = store_status(status, i, err, 1);
1651 		if (err)
1652 			goto out_flush;
1653 
1654 		err = do_move_pages_to_node(mm, &pagelist, current_node);
1655 		if (err)
1656 			goto out;
1657 		if (i > start) {
1658 			err = store_status(status, start, current_node, i - start);
1659 			if (err)
1660 				goto out;
1661 		}
1662 		current_node = NUMA_NO_NODE;
1663 	}
1664 out_flush:
1665 	if (list_empty(&pagelist))
1666 		return err;
1667 
1668 	/* Make sure we do not overwrite the existing error */
1669 	err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1670 	if (!err1)
1671 		err1 = store_status(status, start, current_node, i - start);
1672 	if (!err)
1673 		err = err1;
1674 out:
1675 	return err;
1676 }
1677 
1678 /*
1679  * Determine the nodes of an array of pages and store it in an array of status.
1680  */
1681 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1682 				const void __user **pages, int *status)
1683 {
1684 	unsigned long i;
1685 
1686 	down_read(&mm->mmap_sem);
1687 
1688 	for (i = 0; i < nr_pages; i++) {
1689 		unsigned long addr = (unsigned long)(*pages);
1690 		struct vm_area_struct *vma;
1691 		struct page *page;
1692 		int err = -EFAULT;
1693 
1694 		vma = find_vma(mm, addr);
1695 		if (!vma || addr < vma->vm_start)
1696 			goto set_status;
1697 
1698 		/* FOLL_DUMP to ignore special (like zero) pages */
1699 		page = follow_page(vma, addr, FOLL_DUMP);
1700 
1701 		err = PTR_ERR(page);
1702 		if (IS_ERR(page))
1703 			goto set_status;
1704 
1705 		err = page ? page_to_nid(page) : -ENOENT;
1706 set_status:
1707 		*status = err;
1708 
1709 		pages++;
1710 		status++;
1711 	}
1712 
1713 	up_read(&mm->mmap_sem);
1714 }
1715 
1716 /*
1717  * Determine the nodes of a user array of pages and store it in
1718  * a user array of status.
1719  */
1720 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1721 			 const void __user * __user *pages,
1722 			 int __user *status)
1723 {
1724 #define DO_PAGES_STAT_CHUNK_NR 16
1725 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1726 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1727 
1728 	while (nr_pages) {
1729 		unsigned long chunk_nr;
1730 
1731 		chunk_nr = nr_pages;
1732 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1733 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1734 
1735 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1736 			break;
1737 
1738 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1739 
1740 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1741 			break;
1742 
1743 		pages += chunk_nr;
1744 		status += chunk_nr;
1745 		nr_pages -= chunk_nr;
1746 	}
1747 	return nr_pages ? -EFAULT : 0;
1748 }
1749 
1750 /*
1751  * Move a list of pages in the address space of the currently executing
1752  * process.
1753  */
1754 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1755 			     const void __user * __user *pages,
1756 			     const int __user *nodes,
1757 			     int __user *status, int flags)
1758 {
1759 	struct task_struct *task;
1760 	struct mm_struct *mm;
1761 	int err;
1762 	nodemask_t task_nodes;
1763 
1764 	/* Check flags */
1765 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1766 		return -EINVAL;
1767 
1768 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1769 		return -EPERM;
1770 
1771 	/* Find the mm_struct */
1772 	rcu_read_lock();
1773 	task = pid ? find_task_by_vpid(pid) : current;
1774 	if (!task) {
1775 		rcu_read_unlock();
1776 		return -ESRCH;
1777 	}
1778 	get_task_struct(task);
1779 
1780 	/*
1781 	 * Check if this process has the right to modify the specified
1782 	 * process. Use the regular "ptrace_may_access()" checks.
1783 	 */
1784 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1785 		rcu_read_unlock();
1786 		err = -EPERM;
1787 		goto out;
1788 	}
1789 	rcu_read_unlock();
1790 
1791  	err = security_task_movememory(task);
1792  	if (err)
1793 		goto out;
1794 
1795 	task_nodes = cpuset_mems_allowed(task);
1796 	mm = get_task_mm(task);
1797 	put_task_struct(task);
1798 
1799 	if (!mm)
1800 		return -EINVAL;
1801 
1802 	if (nodes)
1803 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1804 				    nodes, status, flags);
1805 	else
1806 		err = do_pages_stat(mm, nr_pages, pages, status);
1807 
1808 	mmput(mm);
1809 	return err;
1810 
1811 out:
1812 	put_task_struct(task);
1813 	return err;
1814 }
1815 
1816 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1817 		const void __user * __user *, pages,
1818 		const int __user *, nodes,
1819 		int __user *, status, int, flags)
1820 {
1821 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1822 }
1823 
1824 #ifdef CONFIG_COMPAT
1825 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1826 		       compat_uptr_t __user *, pages32,
1827 		       const int __user *, nodes,
1828 		       int __user *, status,
1829 		       int, flags)
1830 {
1831 	const void __user * __user *pages;
1832 	int i;
1833 
1834 	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1835 	for (i = 0; i < nr_pages; i++) {
1836 		compat_uptr_t p;
1837 
1838 		if (get_user(p, pages32 + i) ||
1839 			put_user(compat_ptr(p), pages + i))
1840 			return -EFAULT;
1841 	}
1842 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1843 }
1844 #endif /* CONFIG_COMPAT */
1845 
1846 #ifdef CONFIG_NUMA_BALANCING
1847 /*
1848  * Returns true if this is a safe migration target node for misplaced NUMA
1849  * pages. Currently it only checks the watermarks which crude
1850  */
1851 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1852 				   unsigned long nr_migrate_pages)
1853 {
1854 	int z;
1855 
1856 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1857 		struct zone *zone = pgdat->node_zones + z;
1858 
1859 		if (!populated_zone(zone))
1860 			continue;
1861 
1862 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1863 		if (!zone_watermark_ok(zone, 0,
1864 				       high_wmark_pages(zone) +
1865 				       nr_migrate_pages,
1866 				       0, 0))
1867 			continue;
1868 		return true;
1869 	}
1870 	return false;
1871 }
1872 
1873 static struct page *alloc_misplaced_dst_page(struct page *page,
1874 					   unsigned long data)
1875 {
1876 	int nid = (int) data;
1877 	struct page *newpage;
1878 
1879 	newpage = __alloc_pages_node(nid,
1880 					 (GFP_HIGHUSER_MOVABLE |
1881 					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1882 					  __GFP_NORETRY | __GFP_NOWARN) &
1883 					 ~__GFP_RECLAIM, 0);
1884 
1885 	return newpage;
1886 }
1887 
1888 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1889 {
1890 	int page_lru;
1891 
1892 	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1893 
1894 	/* Avoid migrating to a node that is nearly full */
1895 	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1896 		return 0;
1897 
1898 	if (isolate_lru_page(page))
1899 		return 0;
1900 
1901 	/*
1902 	 * migrate_misplaced_transhuge_page() skips page migration's usual
1903 	 * check on page_count(), so we must do it here, now that the page
1904 	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1905 	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1906 	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1907 	 */
1908 	if (PageTransHuge(page) && page_count(page) != 3) {
1909 		putback_lru_page(page);
1910 		return 0;
1911 	}
1912 
1913 	page_lru = page_is_file_cache(page);
1914 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1915 				hpage_nr_pages(page));
1916 
1917 	/*
1918 	 * Isolating the page has taken another reference, so the
1919 	 * caller's reference can be safely dropped without the page
1920 	 * disappearing underneath us during migration.
1921 	 */
1922 	put_page(page);
1923 	return 1;
1924 }
1925 
1926 bool pmd_trans_migrating(pmd_t pmd)
1927 {
1928 	struct page *page = pmd_page(pmd);
1929 	return PageLocked(page);
1930 }
1931 
1932 /*
1933  * Attempt to migrate a misplaced page to the specified destination
1934  * node. Caller is expected to have an elevated reference count on
1935  * the page that will be dropped by this function before returning.
1936  */
1937 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1938 			   int node)
1939 {
1940 	pg_data_t *pgdat = NODE_DATA(node);
1941 	int isolated;
1942 	int nr_remaining;
1943 	LIST_HEAD(migratepages);
1944 
1945 	/*
1946 	 * Don't migrate file pages that are mapped in multiple processes
1947 	 * with execute permissions as they are probably shared libraries.
1948 	 */
1949 	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1950 	    (vma->vm_flags & VM_EXEC))
1951 		goto out;
1952 
1953 	/*
1954 	 * Also do not migrate dirty pages as not all filesystems can move
1955 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1956 	 */
1957 	if (page_is_file_cache(page) && PageDirty(page))
1958 		goto out;
1959 
1960 	isolated = numamigrate_isolate_page(pgdat, page);
1961 	if (!isolated)
1962 		goto out;
1963 
1964 	list_add(&page->lru, &migratepages);
1965 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1966 				     NULL, node, MIGRATE_ASYNC,
1967 				     MR_NUMA_MISPLACED);
1968 	if (nr_remaining) {
1969 		if (!list_empty(&migratepages)) {
1970 			list_del(&page->lru);
1971 			dec_node_page_state(page, NR_ISOLATED_ANON +
1972 					page_is_file_cache(page));
1973 			putback_lru_page(page);
1974 		}
1975 		isolated = 0;
1976 	} else
1977 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1978 	BUG_ON(!list_empty(&migratepages));
1979 	return isolated;
1980 
1981 out:
1982 	put_page(page);
1983 	return 0;
1984 }
1985 #endif /* CONFIG_NUMA_BALANCING */
1986 
1987 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1988 /*
1989  * Migrates a THP to a given target node. page must be locked and is unlocked
1990  * before returning.
1991  */
1992 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1993 				struct vm_area_struct *vma,
1994 				pmd_t *pmd, pmd_t entry,
1995 				unsigned long address,
1996 				struct page *page, int node)
1997 {
1998 	spinlock_t *ptl;
1999 	pg_data_t *pgdat = NODE_DATA(node);
2000 	int isolated = 0;
2001 	struct page *new_page = NULL;
2002 	int page_lru = page_is_file_cache(page);
2003 	unsigned long start = address & HPAGE_PMD_MASK;
2004 
2005 	new_page = alloc_pages_node(node,
2006 		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2007 		HPAGE_PMD_ORDER);
2008 	if (!new_page)
2009 		goto out_fail;
2010 	prep_transhuge_page(new_page);
2011 
2012 	isolated = numamigrate_isolate_page(pgdat, page);
2013 	if (!isolated) {
2014 		put_page(new_page);
2015 		goto out_fail;
2016 	}
2017 
2018 	/* Prepare a page as a migration target */
2019 	__SetPageLocked(new_page);
2020 	if (PageSwapBacked(page))
2021 		__SetPageSwapBacked(new_page);
2022 
2023 	/* anon mapping, we can simply copy page->mapping to the new page: */
2024 	new_page->mapping = page->mapping;
2025 	new_page->index = page->index;
2026 	/* flush the cache before copying using the kernel virtual address */
2027 	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2028 	migrate_page_copy(new_page, page);
2029 	WARN_ON(PageLRU(new_page));
2030 
2031 	/* Recheck the target PMD */
2032 	ptl = pmd_lock(mm, pmd);
2033 	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2034 		spin_unlock(ptl);
2035 
2036 		/* Reverse changes made by migrate_page_copy() */
2037 		if (TestClearPageActive(new_page))
2038 			SetPageActive(page);
2039 		if (TestClearPageUnevictable(new_page))
2040 			SetPageUnevictable(page);
2041 
2042 		unlock_page(new_page);
2043 		put_page(new_page);		/* Free it */
2044 
2045 		/* Retake the callers reference and putback on LRU */
2046 		get_page(page);
2047 		putback_lru_page(page);
2048 		mod_node_page_state(page_pgdat(page),
2049 			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2050 
2051 		goto out_unlock;
2052 	}
2053 
2054 	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2055 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2056 
2057 	/*
2058 	 * Overwrite the old entry under pagetable lock and establish
2059 	 * the new PTE. Any parallel GUP will either observe the old
2060 	 * page blocking on the page lock, block on the page table
2061 	 * lock or observe the new page. The SetPageUptodate on the
2062 	 * new page and page_add_new_anon_rmap guarantee the copy is
2063 	 * visible before the pagetable update.
2064 	 */
2065 	page_add_anon_rmap(new_page, vma, start, true);
2066 	/*
2067 	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2068 	 * has already been flushed globally.  So no TLB can be currently
2069 	 * caching this non present pmd mapping.  There's no need to clear the
2070 	 * pmd before doing set_pmd_at(), nor to flush the TLB after
2071 	 * set_pmd_at().  Clearing the pmd here would introduce a race
2072 	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2073 	 * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2074 	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2075 	 * pmd.
2076 	 */
2077 	set_pmd_at(mm, start, pmd, entry);
2078 	update_mmu_cache_pmd(vma, address, &entry);
2079 
2080 	page_ref_unfreeze(page, 2);
2081 	mlock_migrate_page(new_page, page);
2082 	page_remove_rmap(page, true);
2083 	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2084 
2085 	spin_unlock(ptl);
2086 
2087 	/* Take an "isolate" reference and put new page on the LRU. */
2088 	get_page(new_page);
2089 	putback_lru_page(new_page);
2090 
2091 	unlock_page(new_page);
2092 	unlock_page(page);
2093 	put_page(page);			/* Drop the rmap reference */
2094 	put_page(page);			/* Drop the LRU isolation reference */
2095 
2096 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2097 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2098 
2099 	mod_node_page_state(page_pgdat(page),
2100 			NR_ISOLATED_ANON + page_lru,
2101 			-HPAGE_PMD_NR);
2102 	return isolated;
2103 
2104 out_fail:
2105 	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2106 	ptl = pmd_lock(mm, pmd);
2107 	if (pmd_same(*pmd, entry)) {
2108 		entry = pmd_modify(entry, vma->vm_page_prot);
2109 		set_pmd_at(mm, start, pmd, entry);
2110 		update_mmu_cache_pmd(vma, address, &entry);
2111 	}
2112 	spin_unlock(ptl);
2113 
2114 out_unlock:
2115 	unlock_page(page);
2116 	put_page(page);
2117 	return 0;
2118 }
2119 #endif /* CONFIG_NUMA_BALANCING */
2120 
2121 #endif /* CONFIG_NUMA */
2122 
2123 #ifdef CONFIG_DEVICE_PRIVATE
2124 static int migrate_vma_collect_hole(unsigned long start,
2125 				    unsigned long end,
2126 				    struct mm_walk *walk)
2127 {
2128 	struct migrate_vma *migrate = walk->private;
2129 	unsigned long addr;
2130 
2131 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2132 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2133 		migrate->dst[migrate->npages] = 0;
2134 		migrate->npages++;
2135 		migrate->cpages++;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static int migrate_vma_collect_skip(unsigned long start,
2142 				    unsigned long end,
2143 				    struct mm_walk *walk)
2144 {
2145 	struct migrate_vma *migrate = walk->private;
2146 	unsigned long addr;
2147 
2148 	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2149 		migrate->dst[migrate->npages] = 0;
2150 		migrate->src[migrate->npages++] = 0;
2151 	}
2152 
2153 	return 0;
2154 }
2155 
2156 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2157 				   unsigned long start,
2158 				   unsigned long end,
2159 				   struct mm_walk *walk)
2160 {
2161 	struct migrate_vma *migrate = walk->private;
2162 	struct vm_area_struct *vma = walk->vma;
2163 	struct mm_struct *mm = vma->vm_mm;
2164 	unsigned long addr = start, unmapped = 0;
2165 	spinlock_t *ptl;
2166 	pte_t *ptep;
2167 
2168 again:
2169 	if (pmd_none(*pmdp))
2170 		return migrate_vma_collect_hole(start, end, walk);
2171 
2172 	if (pmd_trans_huge(*pmdp)) {
2173 		struct page *page;
2174 
2175 		ptl = pmd_lock(mm, pmdp);
2176 		if (unlikely(!pmd_trans_huge(*pmdp))) {
2177 			spin_unlock(ptl);
2178 			goto again;
2179 		}
2180 
2181 		page = pmd_page(*pmdp);
2182 		if (is_huge_zero_page(page)) {
2183 			spin_unlock(ptl);
2184 			split_huge_pmd(vma, pmdp, addr);
2185 			if (pmd_trans_unstable(pmdp))
2186 				return migrate_vma_collect_skip(start, end,
2187 								walk);
2188 		} else {
2189 			int ret;
2190 
2191 			get_page(page);
2192 			spin_unlock(ptl);
2193 			if (unlikely(!trylock_page(page)))
2194 				return migrate_vma_collect_skip(start, end,
2195 								walk);
2196 			ret = split_huge_page(page);
2197 			unlock_page(page);
2198 			put_page(page);
2199 			if (ret)
2200 				return migrate_vma_collect_skip(start, end,
2201 								walk);
2202 			if (pmd_none(*pmdp))
2203 				return migrate_vma_collect_hole(start, end,
2204 								walk);
2205 		}
2206 	}
2207 
2208 	if (unlikely(pmd_bad(*pmdp)))
2209 		return migrate_vma_collect_skip(start, end, walk);
2210 
2211 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2212 	arch_enter_lazy_mmu_mode();
2213 
2214 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
2215 		unsigned long mpfn, pfn;
2216 		struct page *page;
2217 		swp_entry_t entry;
2218 		pte_t pte;
2219 
2220 		pte = *ptep;
2221 
2222 		if (pte_none(pte)) {
2223 			mpfn = MIGRATE_PFN_MIGRATE;
2224 			migrate->cpages++;
2225 			goto next;
2226 		}
2227 
2228 		if (!pte_present(pte)) {
2229 			mpfn = 0;
2230 
2231 			/*
2232 			 * Only care about unaddressable device page special
2233 			 * page table entry. Other special swap entries are not
2234 			 * migratable, and we ignore regular swapped page.
2235 			 */
2236 			entry = pte_to_swp_entry(pte);
2237 			if (!is_device_private_entry(entry))
2238 				goto next;
2239 
2240 			page = device_private_entry_to_page(entry);
2241 			mpfn = migrate_pfn(page_to_pfn(page)) |
2242 					MIGRATE_PFN_MIGRATE;
2243 			if (is_write_device_private_entry(entry))
2244 				mpfn |= MIGRATE_PFN_WRITE;
2245 		} else {
2246 			pfn = pte_pfn(pte);
2247 			if (is_zero_pfn(pfn)) {
2248 				mpfn = MIGRATE_PFN_MIGRATE;
2249 				migrate->cpages++;
2250 				goto next;
2251 			}
2252 			page = vm_normal_page(migrate->vma, addr, pte);
2253 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2254 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2255 		}
2256 
2257 		/* FIXME support THP */
2258 		if (!page || !page->mapping || PageTransCompound(page)) {
2259 			mpfn = 0;
2260 			goto next;
2261 		}
2262 
2263 		/*
2264 		 * By getting a reference on the page we pin it and that blocks
2265 		 * any kind of migration. Side effect is that it "freezes" the
2266 		 * pte.
2267 		 *
2268 		 * We drop this reference after isolating the page from the lru
2269 		 * for non device page (device page are not on the lru and thus
2270 		 * can't be dropped from it).
2271 		 */
2272 		get_page(page);
2273 		migrate->cpages++;
2274 
2275 		/*
2276 		 * Optimize for the common case where page is only mapped once
2277 		 * in one process. If we can lock the page, then we can safely
2278 		 * set up a special migration page table entry now.
2279 		 */
2280 		if (trylock_page(page)) {
2281 			pte_t swp_pte;
2282 
2283 			mpfn |= MIGRATE_PFN_LOCKED;
2284 			ptep_get_and_clear(mm, addr, ptep);
2285 
2286 			/* Setup special migration page table entry */
2287 			entry = make_migration_entry(page, mpfn &
2288 						     MIGRATE_PFN_WRITE);
2289 			swp_pte = swp_entry_to_pte(entry);
2290 			if (pte_soft_dirty(pte))
2291 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2292 			set_pte_at(mm, addr, ptep, swp_pte);
2293 
2294 			/*
2295 			 * This is like regular unmap: we remove the rmap and
2296 			 * drop page refcount. Page won't be freed, as we took
2297 			 * a reference just above.
2298 			 */
2299 			page_remove_rmap(page, false);
2300 			put_page(page);
2301 
2302 			if (pte_present(pte))
2303 				unmapped++;
2304 		}
2305 
2306 next:
2307 		migrate->dst[migrate->npages] = 0;
2308 		migrate->src[migrate->npages++] = mpfn;
2309 	}
2310 	arch_leave_lazy_mmu_mode();
2311 	pte_unmap_unlock(ptep - 1, ptl);
2312 
2313 	/* Only flush the TLB if we actually modified any entries */
2314 	if (unmapped)
2315 		flush_tlb_range(walk->vma, start, end);
2316 
2317 	return 0;
2318 }
2319 
2320 static const struct mm_walk_ops migrate_vma_walk_ops = {
2321 	.pmd_entry		= migrate_vma_collect_pmd,
2322 	.pte_hole		= migrate_vma_collect_hole,
2323 };
2324 
2325 /*
2326  * migrate_vma_collect() - collect pages over a range of virtual addresses
2327  * @migrate: migrate struct containing all migration information
2328  *
2329  * This will walk the CPU page table. For each virtual address backed by a
2330  * valid page, it updates the src array and takes a reference on the page, in
2331  * order to pin the page until we lock it and unmap it.
2332  */
2333 static void migrate_vma_collect(struct migrate_vma *migrate)
2334 {
2335 	struct mmu_notifier_range range;
2336 
2337 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2338 			migrate->vma->vm_mm, migrate->start, migrate->end);
2339 	mmu_notifier_invalidate_range_start(&range);
2340 
2341 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2342 			&migrate_vma_walk_ops, migrate);
2343 
2344 	mmu_notifier_invalidate_range_end(&range);
2345 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2346 }
2347 
2348 /*
2349  * migrate_vma_check_page() - check if page is pinned or not
2350  * @page: struct page to check
2351  *
2352  * Pinned pages cannot be migrated. This is the same test as in
2353  * migrate_page_move_mapping(), except that here we allow migration of a
2354  * ZONE_DEVICE page.
2355  */
2356 static bool migrate_vma_check_page(struct page *page)
2357 {
2358 	/*
2359 	 * One extra ref because caller holds an extra reference, either from
2360 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2361 	 * a device page.
2362 	 */
2363 	int extra = 1;
2364 
2365 	/*
2366 	 * FIXME support THP (transparent huge page), it is bit more complex to
2367 	 * check them than regular pages, because they can be mapped with a pmd
2368 	 * or with a pte (split pte mapping).
2369 	 */
2370 	if (PageCompound(page))
2371 		return false;
2372 
2373 	/* Page from ZONE_DEVICE have one extra reference */
2374 	if (is_zone_device_page(page)) {
2375 		/*
2376 		 * Private page can never be pin as they have no valid pte and
2377 		 * GUP will fail for those. Yet if there is a pending migration
2378 		 * a thread might try to wait on the pte migration entry and
2379 		 * will bump the page reference count. Sadly there is no way to
2380 		 * differentiate a regular pin from migration wait. Hence to
2381 		 * avoid 2 racing thread trying to migrate back to CPU to enter
2382 		 * infinite loop (one stoping migration because the other is
2383 		 * waiting on pte migration entry). We always return true here.
2384 		 *
2385 		 * FIXME proper solution is to rework migration_entry_wait() so
2386 		 * it does not need to take a reference on page.
2387 		 */
2388 		return is_device_private_page(page);
2389 	}
2390 
2391 	/* For file back page */
2392 	if (page_mapping(page))
2393 		extra += 1 + page_has_private(page);
2394 
2395 	if ((page_count(page) - extra) > page_mapcount(page))
2396 		return false;
2397 
2398 	return true;
2399 }
2400 
2401 /*
2402  * migrate_vma_prepare() - lock pages and isolate them from the lru
2403  * @migrate: migrate struct containing all migration information
2404  *
2405  * This locks pages that have been collected by migrate_vma_collect(). Once each
2406  * page is locked it is isolated from the lru (for non-device pages). Finally,
2407  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2408  * migrated by concurrent kernel threads.
2409  */
2410 static void migrate_vma_prepare(struct migrate_vma *migrate)
2411 {
2412 	const unsigned long npages = migrate->npages;
2413 	const unsigned long start = migrate->start;
2414 	unsigned long addr, i, restore = 0;
2415 	bool allow_drain = true;
2416 
2417 	lru_add_drain();
2418 
2419 	for (i = 0; (i < npages) && migrate->cpages; i++) {
2420 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2421 		bool remap = true;
2422 
2423 		if (!page)
2424 			continue;
2425 
2426 		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2427 			/*
2428 			 * Because we are migrating several pages there can be
2429 			 * a deadlock between 2 concurrent migration where each
2430 			 * are waiting on each other page lock.
2431 			 *
2432 			 * Make migrate_vma() a best effort thing and backoff
2433 			 * for any page we can not lock right away.
2434 			 */
2435 			if (!trylock_page(page)) {
2436 				migrate->src[i] = 0;
2437 				migrate->cpages--;
2438 				put_page(page);
2439 				continue;
2440 			}
2441 			remap = false;
2442 			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2443 		}
2444 
2445 		/* ZONE_DEVICE pages are not on LRU */
2446 		if (!is_zone_device_page(page)) {
2447 			if (!PageLRU(page) && allow_drain) {
2448 				/* Drain CPU's pagevec */
2449 				lru_add_drain_all();
2450 				allow_drain = false;
2451 			}
2452 
2453 			if (isolate_lru_page(page)) {
2454 				if (remap) {
2455 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2456 					migrate->cpages--;
2457 					restore++;
2458 				} else {
2459 					migrate->src[i] = 0;
2460 					unlock_page(page);
2461 					migrate->cpages--;
2462 					put_page(page);
2463 				}
2464 				continue;
2465 			}
2466 
2467 			/* Drop the reference we took in collect */
2468 			put_page(page);
2469 		}
2470 
2471 		if (!migrate_vma_check_page(page)) {
2472 			if (remap) {
2473 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2474 				migrate->cpages--;
2475 				restore++;
2476 
2477 				if (!is_zone_device_page(page)) {
2478 					get_page(page);
2479 					putback_lru_page(page);
2480 				}
2481 			} else {
2482 				migrate->src[i] = 0;
2483 				unlock_page(page);
2484 				migrate->cpages--;
2485 
2486 				if (!is_zone_device_page(page))
2487 					putback_lru_page(page);
2488 				else
2489 					put_page(page);
2490 			}
2491 		}
2492 	}
2493 
2494 	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2495 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2496 
2497 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2498 			continue;
2499 
2500 		remove_migration_pte(page, migrate->vma, addr, page);
2501 
2502 		migrate->src[i] = 0;
2503 		unlock_page(page);
2504 		put_page(page);
2505 		restore--;
2506 	}
2507 }
2508 
2509 /*
2510  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2511  * @migrate: migrate struct containing all migration information
2512  *
2513  * Replace page mapping (CPU page table pte) with a special migration pte entry
2514  * and check again if it has been pinned. Pinned pages are restored because we
2515  * cannot migrate them.
2516  *
2517  * This is the last step before we call the device driver callback to allocate
2518  * destination memory and copy contents of original page over to new page.
2519  */
2520 static void migrate_vma_unmap(struct migrate_vma *migrate)
2521 {
2522 	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2523 	const unsigned long npages = migrate->npages;
2524 	const unsigned long start = migrate->start;
2525 	unsigned long addr, i, restore = 0;
2526 
2527 	for (i = 0; i < npages; i++) {
2528 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2529 
2530 		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2531 			continue;
2532 
2533 		if (page_mapped(page)) {
2534 			try_to_unmap(page, flags);
2535 			if (page_mapped(page))
2536 				goto restore;
2537 		}
2538 
2539 		if (migrate_vma_check_page(page))
2540 			continue;
2541 
2542 restore:
2543 		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2544 		migrate->cpages--;
2545 		restore++;
2546 	}
2547 
2548 	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2549 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2550 
2551 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2552 			continue;
2553 
2554 		remove_migration_ptes(page, page, false);
2555 
2556 		migrate->src[i] = 0;
2557 		unlock_page(page);
2558 		restore--;
2559 
2560 		if (is_zone_device_page(page))
2561 			put_page(page);
2562 		else
2563 			putback_lru_page(page);
2564 	}
2565 }
2566 
2567 /**
2568  * migrate_vma_setup() - prepare to migrate a range of memory
2569  * @args: contains the vma, start, and and pfns arrays for the migration
2570  *
2571  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2572  * without an error.
2573  *
2574  * Prepare to migrate a range of memory virtual address range by collecting all
2575  * the pages backing each virtual address in the range, saving them inside the
2576  * src array.  Then lock those pages and unmap them. Once the pages are locked
2577  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2578  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2579  * corresponding src array entry.  Then restores any pages that are pinned, by
2580  * remapping and unlocking those pages.
2581  *
2582  * The caller should then allocate destination memory and copy source memory to
2583  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2584  * flag set).  Once these are allocated and copied, the caller must update each
2585  * corresponding entry in the dst array with the pfn value of the destination
2586  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2587  * (destination pages must have their struct pages locked, via lock_page()).
2588  *
2589  * Note that the caller does not have to migrate all the pages that are marked
2590  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2591  * device memory to system memory.  If the caller cannot migrate a device page
2592  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2593  * consequences for the userspace process, so it must be avoided if at all
2594  * possible.
2595  *
2596  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2597  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2598  * allowing the caller to allocate device memory for those unback virtual
2599  * address.  For this the caller simply has to allocate device memory and
2600  * properly set the destination entry like for regular migration.  Note that
2601  * this can still fails and thus inside the device driver must check if the
2602  * migration was successful for those entries after calling migrate_vma_pages()
2603  * just like for regular migration.
2604  *
2605  * After that, the callers must call migrate_vma_pages() to go over each entry
2606  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2607  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2608  * then migrate_vma_pages() to migrate struct page information from the source
2609  * struct page to the destination struct page.  If it fails to migrate the
2610  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2611  * src array.
2612  *
2613  * At this point all successfully migrated pages have an entry in the src
2614  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2615  * array entry with MIGRATE_PFN_VALID flag set.
2616  *
2617  * Once migrate_vma_pages() returns the caller may inspect which pages were
2618  * successfully migrated, and which were not.  Successfully migrated pages will
2619  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2620  *
2621  * It is safe to update device page table after migrate_vma_pages() because
2622  * both destination and source page are still locked, and the mmap_sem is held
2623  * in read mode (hence no one can unmap the range being migrated).
2624  *
2625  * Once the caller is done cleaning up things and updating its page table (if it
2626  * chose to do so, this is not an obligation) it finally calls
2627  * migrate_vma_finalize() to update the CPU page table to point to new pages
2628  * for successfully migrated pages or otherwise restore the CPU page table to
2629  * point to the original source pages.
2630  */
2631 int migrate_vma_setup(struct migrate_vma *args)
2632 {
2633 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2634 
2635 	args->start &= PAGE_MASK;
2636 	args->end &= PAGE_MASK;
2637 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2638 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2639 		return -EINVAL;
2640 	if (nr_pages <= 0)
2641 		return -EINVAL;
2642 	if (args->start < args->vma->vm_start ||
2643 	    args->start >= args->vma->vm_end)
2644 		return -EINVAL;
2645 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2646 		return -EINVAL;
2647 	if (!args->src || !args->dst)
2648 		return -EINVAL;
2649 
2650 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
2651 	args->cpages = 0;
2652 	args->npages = 0;
2653 
2654 	migrate_vma_collect(args);
2655 
2656 	if (args->cpages)
2657 		migrate_vma_prepare(args);
2658 	if (args->cpages)
2659 		migrate_vma_unmap(args);
2660 
2661 	/*
2662 	 * At this point pages are locked and unmapped, and thus they have
2663 	 * stable content and can safely be copied to destination memory that
2664 	 * is allocated by the drivers.
2665 	 */
2666 	return 0;
2667 
2668 }
2669 EXPORT_SYMBOL(migrate_vma_setup);
2670 
2671 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2672 				    unsigned long addr,
2673 				    struct page *page,
2674 				    unsigned long *src,
2675 				    unsigned long *dst)
2676 {
2677 	struct vm_area_struct *vma = migrate->vma;
2678 	struct mm_struct *mm = vma->vm_mm;
2679 	struct mem_cgroup *memcg;
2680 	bool flush = false;
2681 	spinlock_t *ptl;
2682 	pte_t entry;
2683 	pgd_t *pgdp;
2684 	p4d_t *p4dp;
2685 	pud_t *pudp;
2686 	pmd_t *pmdp;
2687 	pte_t *ptep;
2688 
2689 	/* Only allow populating anonymous memory */
2690 	if (!vma_is_anonymous(vma))
2691 		goto abort;
2692 
2693 	pgdp = pgd_offset(mm, addr);
2694 	p4dp = p4d_alloc(mm, pgdp, addr);
2695 	if (!p4dp)
2696 		goto abort;
2697 	pudp = pud_alloc(mm, p4dp, addr);
2698 	if (!pudp)
2699 		goto abort;
2700 	pmdp = pmd_alloc(mm, pudp, addr);
2701 	if (!pmdp)
2702 		goto abort;
2703 
2704 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2705 		goto abort;
2706 
2707 	/*
2708 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2709 	 * pte_offset_map() on pmds where a huge pmd might be created
2710 	 * from a different thread.
2711 	 *
2712 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2713 	 * parallel threads are excluded by other means.
2714 	 *
2715 	 * Here we only have down_read(mmap_sem).
2716 	 */
2717 	if (pte_alloc(mm, pmdp))
2718 		goto abort;
2719 
2720 	/* See the comment in pte_alloc_one_map() */
2721 	if (unlikely(pmd_trans_unstable(pmdp)))
2722 		goto abort;
2723 
2724 	if (unlikely(anon_vma_prepare(vma)))
2725 		goto abort;
2726 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2727 		goto abort;
2728 
2729 	/*
2730 	 * The memory barrier inside __SetPageUptodate makes sure that
2731 	 * preceding stores to the page contents become visible before
2732 	 * the set_pte_at() write.
2733 	 */
2734 	__SetPageUptodate(page);
2735 
2736 	if (is_zone_device_page(page)) {
2737 		if (is_device_private_page(page)) {
2738 			swp_entry_t swp_entry;
2739 
2740 			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2741 			entry = swp_entry_to_pte(swp_entry);
2742 		}
2743 	} else {
2744 		entry = mk_pte(page, vma->vm_page_prot);
2745 		if (vma->vm_flags & VM_WRITE)
2746 			entry = pte_mkwrite(pte_mkdirty(entry));
2747 	}
2748 
2749 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2750 
2751 	if (pte_present(*ptep)) {
2752 		unsigned long pfn = pte_pfn(*ptep);
2753 
2754 		if (!is_zero_pfn(pfn)) {
2755 			pte_unmap_unlock(ptep, ptl);
2756 			mem_cgroup_cancel_charge(page, memcg, false);
2757 			goto abort;
2758 		}
2759 		flush = true;
2760 	} else if (!pte_none(*ptep)) {
2761 		pte_unmap_unlock(ptep, ptl);
2762 		mem_cgroup_cancel_charge(page, memcg, false);
2763 		goto abort;
2764 	}
2765 
2766 	/*
2767 	 * Check for usefaultfd but do not deliver the fault. Instead,
2768 	 * just back off.
2769 	 */
2770 	if (userfaultfd_missing(vma)) {
2771 		pte_unmap_unlock(ptep, ptl);
2772 		mem_cgroup_cancel_charge(page, memcg, false);
2773 		goto abort;
2774 	}
2775 
2776 	inc_mm_counter(mm, MM_ANONPAGES);
2777 	page_add_new_anon_rmap(page, vma, addr, false);
2778 	mem_cgroup_commit_charge(page, memcg, false, false);
2779 	if (!is_zone_device_page(page))
2780 		lru_cache_add_active_or_unevictable(page, vma);
2781 	get_page(page);
2782 
2783 	if (flush) {
2784 		flush_cache_page(vma, addr, pte_pfn(*ptep));
2785 		ptep_clear_flush_notify(vma, addr, ptep);
2786 		set_pte_at_notify(mm, addr, ptep, entry);
2787 		update_mmu_cache(vma, addr, ptep);
2788 	} else {
2789 		/* No need to invalidate - it was non-present before */
2790 		set_pte_at(mm, addr, ptep, entry);
2791 		update_mmu_cache(vma, addr, ptep);
2792 	}
2793 
2794 	pte_unmap_unlock(ptep, ptl);
2795 	*src = MIGRATE_PFN_MIGRATE;
2796 	return;
2797 
2798 abort:
2799 	*src &= ~MIGRATE_PFN_MIGRATE;
2800 }
2801 
2802 /**
2803  * migrate_vma_pages() - migrate meta-data from src page to dst page
2804  * @migrate: migrate struct containing all migration information
2805  *
2806  * This migrates struct page meta-data from source struct page to destination
2807  * struct page. This effectively finishes the migration from source page to the
2808  * destination page.
2809  */
2810 void migrate_vma_pages(struct migrate_vma *migrate)
2811 {
2812 	const unsigned long npages = migrate->npages;
2813 	const unsigned long start = migrate->start;
2814 	struct mmu_notifier_range range;
2815 	unsigned long addr, i;
2816 	bool notified = false;
2817 
2818 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2819 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2820 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2821 		struct address_space *mapping;
2822 		int r;
2823 
2824 		if (!newpage) {
2825 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2826 			continue;
2827 		}
2828 
2829 		if (!page) {
2830 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2831 				continue;
2832 			}
2833 			if (!notified) {
2834 				notified = true;
2835 
2836 				mmu_notifier_range_init(&range,
2837 							MMU_NOTIFY_CLEAR, 0,
2838 							NULL,
2839 							migrate->vma->vm_mm,
2840 							addr, migrate->end);
2841 				mmu_notifier_invalidate_range_start(&range);
2842 			}
2843 			migrate_vma_insert_page(migrate, addr, newpage,
2844 						&migrate->src[i],
2845 						&migrate->dst[i]);
2846 			continue;
2847 		}
2848 
2849 		mapping = page_mapping(page);
2850 
2851 		if (is_zone_device_page(newpage)) {
2852 			if (is_device_private_page(newpage)) {
2853 				/*
2854 				 * For now only support private anonymous when
2855 				 * migrating to un-addressable device memory.
2856 				 */
2857 				if (mapping) {
2858 					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2859 					continue;
2860 				}
2861 			} else {
2862 				/*
2863 				 * Other types of ZONE_DEVICE page are not
2864 				 * supported.
2865 				 */
2866 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2867 				continue;
2868 			}
2869 		}
2870 
2871 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2872 		if (r != MIGRATEPAGE_SUCCESS)
2873 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2874 	}
2875 
2876 	/*
2877 	 * No need to double call mmu_notifier->invalidate_range() callback as
2878 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2879 	 * did already call it.
2880 	 */
2881 	if (notified)
2882 		mmu_notifier_invalidate_range_only_end(&range);
2883 }
2884 EXPORT_SYMBOL(migrate_vma_pages);
2885 
2886 /**
2887  * migrate_vma_finalize() - restore CPU page table entry
2888  * @migrate: migrate struct containing all migration information
2889  *
2890  * This replaces the special migration pte entry with either a mapping to the
2891  * new page if migration was successful for that page, or to the original page
2892  * otherwise.
2893  *
2894  * This also unlocks the pages and puts them back on the lru, or drops the extra
2895  * refcount, for device pages.
2896  */
2897 void migrate_vma_finalize(struct migrate_vma *migrate)
2898 {
2899 	const unsigned long npages = migrate->npages;
2900 	unsigned long i;
2901 
2902 	for (i = 0; i < npages; i++) {
2903 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2904 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2905 
2906 		if (!page) {
2907 			if (newpage) {
2908 				unlock_page(newpage);
2909 				put_page(newpage);
2910 			}
2911 			continue;
2912 		}
2913 
2914 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2915 			if (newpage) {
2916 				unlock_page(newpage);
2917 				put_page(newpage);
2918 			}
2919 			newpage = page;
2920 		}
2921 
2922 		remove_migration_ptes(page, newpage, false);
2923 		unlock_page(page);
2924 		migrate->cpages--;
2925 
2926 		if (is_zone_device_page(page))
2927 			put_page(page);
2928 		else
2929 			putback_lru_page(page);
2930 
2931 		if (newpage != page) {
2932 			unlock_page(newpage);
2933 			if (is_zone_device_page(newpage))
2934 				put_page(newpage);
2935 			else
2936 				putback_lru_page(newpage);
2937 		}
2938 	}
2939 }
2940 EXPORT_SYMBOL(migrate_vma_finalize);
2941 #endif /* CONFIG_DEVICE_PRIVATE */
2942