1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter <clameter@sgi.com> 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/pagevec.h> 23 #include <linux/rmap.h> 24 #include <linux/topology.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/writeback.h> 28 #include <linux/mempolicy.h> 29 #include <linux/vmalloc.h> 30 #include <linux/security.h> 31 32 #include "internal.h" 33 34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 35 36 /* 37 * Isolate one page from the LRU lists. If successful put it onto 38 * the indicated list with elevated page count. 39 * 40 * Result: 41 * -EBUSY: page not on LRU list 42 * 0: page removed from LRU list and added to the specified list. 43 */ 44 int isolate_lru_page(struct page *page, struct list_head *pagelist) 45 { 46 int ret = -EBUSY; 47 48 if (PageLRU(page)) { 49 struct zone *zone = page_zone(page); 50 51 spin_lock_irq(&zone->lru_lock); 52 if (PageLRU(page)) { 53 ret = 0; 54 get_page(page); 55 ClearPageLRU(page); 56 if (PageActive(page)) 57 del_page_from_active_list(zone, page); 58 else 59 del_page_from_inactive_list(zone, page); 60 list_add_tail(&page->lru, pagelist); 61 } 62 spin_unlock_irq(&zone->lru_lock); 63 } 64 return ret; 65 } 66 67 /* 68 * migrate_prep() needs to be called before we start compiling a list of pages 69 * to be migrated using isolate_lru_page(). 70 */ 71 int migrate_prep(void) 72 { 73 /* 74 * Clear the LRU lists so pages can be isolated. 75 * Note that pages may be moved off the LRU after we have 76 * drained them. Those pages will fail to migrate like other 77 * pages that may be busy. 78 */ 79 lru_add_drain_all(); 80 81 return 0; 82 } 83 84 static inline void move_to_lru(struct page *page) 85 { 86 if (PageActive(page)) { 87 /* 88 * lru_cache_add_active checks that 89 * the PG_active bit is off. 90 */ 91 ClearPageActive(page); 92 lru_cache_add_active(page); 93 } else { 94 lru_cache_add(page); 95 } 96 put_page(page); 97 } 98 99 /* 100 * Add isolated pages on the list back to the LRU. 101 * 102 * returns the number of pages put back. 103 */ 104 int putback_lru_pages(struct list_head *l) 105 { 106 struct page *page; 107 struct page *page2; 108 int count = 0; 109 110 list_for_each_entry_safe(page, page2, l, lru) { 111 list_del(&page->lru); 112 move_to_lru(page); 113 count++; 114 } 115 return count; 116 } 117 118 static inline int is_swap_pte(pte_t pte) 119 { 120 return !pte_none(pte) && !pte_present(pte) && !pte_file(pte); 121 } 122 123 /* 124 * Restore a potential migration pte to a working pte entry 125 */ 126 static void remove_migration_pte(struct vm_area_struct *vma, 127 struct page *old, struct page *new) 128 { 129 struct mm_struct *mm = vma->vm_mm; 130 swp_entry_t entry; 131 pgd_t *pgd; 132 pud_t *pud; 133 pmd_t *pmd; 134 pte_t *ptep, pte; 135 spinlock_t *ptl; 136 unsigned long addr = page_address_in_vma(new, vma); 137 138 if (addr == -EFAULT) 139 return; 140 141 pgd = pgd_offset(mm, addr); 142 if (!pgd_present(*pgd)) 143 return; 144 145 pud = pud_offset(pgd, addr); 146 if (!pud_present(*pud)) 147 return; 148 149 pmd = pmd_offset(pud, addr); 150 if (!pmd_present(*pmd)) 151 return; 152 153 ptep = pte_offset_map(pmd, addr); 154 155 if (!is_swap_pte(*ptep)) { 156 pte_unmap(ptep); 157 return; 158 } 159 160 ptl = pte_lockptr(mm, pmd); 161 spin_lock(ptl); 162 pte = *ptep; 163 if (!is_swap_pte(pte)) 164 goto out; 165 166 entry = pte_to_swp_entry(pte); 167 168 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old) 169 goto out; 170 171 get_page(new); 172 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 173 if (is_write_migration_entry(entry)) 174 pte = pte_mkwrite(pte); 175 set_pte_at(mm, addr, ptep, pte); 176 177 if (PageAnon(new)) 178 page_add_anon_rmap(new, vma, addr); 179 else 180 page_add_file_rmap(new); 181 182 /* No need to invalidate - it was non-present before */ 183 update_mmu_cache(vma, addr, pte); 184 lazy_mmu_prot_update(pte); 185 186 out: 187 pte_unmap_unlock(ptep, ptl); 188 } 189 190 /* 191 * Note that remove_file_migration_ptes will only work on regular mappings, 192 * Nonlinear mappings do not use migration entries. 193 */ 194 static void remove_file_migration_ptes(struct page *old, struct page *new) 195 { 196 struct vm_area_struct *vma; 197 struct address_space *mapping = page_mapping(new); 198 struct prio_tree_iter iter; 199 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 200 201 if (!mapping) 202 return; 203 204 spin_lock(&mapping->i_mmap_lock); 205 206 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) 207 remove_migration_pte(vma, old, new); 208 209 spin_unlock(&mapping->i_mmap_lock); 210 } 211 212 /* 213 * Must hold mmap_sem lock on at least one of the vmas containing 214 * the page so that the anon_vma cannot vanish. 215 */ 216 static void remove_anon_migration_ptes(struct page *old, struct page *new) 217 { 218 struct anon_vma *anon_vma; 219 struct vm_area_struct *vma; 220 unsigned long mapping; 221 222 mapping = (unsigned long)new->mapping; 223 224 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) 225 return; 226 227 /* 228 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. 229 */ 230 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); 231 spin_lock(&anon_vma->lock); 232 233 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 234 remove_migration_pte(vma, old, new); 235 236 spin_unlock(&anon_vma->lock); 237 } 238 239 /* 240 * Get rid of all migration entries and replace them by 241 * references to the indicated page. 242 */ 243 static void remove_migration_ptes(struct page *old, struct page *new) 244 { 245 if (PageAnon(new)) 246 remove_anon_migration_ptes(old, new); 247 else 248 remove_file_migration_ptes(old, new); 249 } 250 251 /* 252 * Something used the pte of a page under migration. We need to 253 * get to the page and wait until migration is finished. 254 * When we return from this function the fault will be retried. 255 * 256 * This function is called from do_swap_page(). 257 */ 258 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 259 unsigned long address) 260 { 261 pte_t *ptep, pte; 262 spinlock_t *ptl; 263 swp_entry_t entry; 264 struct page *page; 265 266 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 267 pte = *ptep; 268 if (!is_swap_pte(pte)) 269 goto out; 270 271 entry = pte_to_swp_entry(pte); 272 if (!is_migration_entry(entry)) 273 goto out; 274 275 page = migration_entry_to_page(entry); 276 277 get_page(page); 278 pte_unmap_unlock(ptep, ptl); 279 wait_on_page_locked(page); 280 put_page(page); 281 return; 282 out: 283 pte_unmap_unlock(ptep, ptl); 284 } 285 286 /* 287 * Replace the page in the mapping. 288 * 289 * The number of remaining references must be: 290 * 1 for anonymous pages without a mapping 291 * 2 for pages with a mapping 292 * 3 for pages with a mapping and PagePrivate set. 293 */ 294 static int migrate_page_move_mapping(struct address_space *mapping, 295 struct page *newpage, struct page *page) 296 { 297 struct page **radix_pointer; 298 299 if (!mapping) { 300 /* Anonymous page */ 301 if (page_count(page) != 1) 302 return -EAGAIN; 303 return 0; 304 } 305 306 write_lock_irq(&mapping->tree_lock); 307 308 radix_pointer = (struct page **)radix_tree_lookup_slot( 309 &mapping->page_tree, 310 page_index(page)); 311 312 if (page_count(page) != 2 + !!PagePrivate(page) || 313 *radix_pointer != page) { 314 write_unlock_irq(&mapping->tree_lock); 315 return -EAGAIN; 316 } 317 318 /* 319 * Now we know that no one else is looking at the page. 320 */ 321 get_page(newpage); 322 #ifdef CONFIG_SWAP 323 if (PageSwapCache(page)) { 324 SetPageSwapCache(newpage); 325 set_page_private(newpage, page_private(page)); 326 } 327 #endif 328 329 *radix_pointer = newpage; 330 __put_page(page); 331 write_unlock_irq(&mapping->tree_lock); 332 333 return 0; 334 } 335 336 /* 337 * Copy the page to its new location 338 */ 339 static void migrate_page_copy(struct page *newpage, struct page *page) 340 { 341 copy_highpage(newpage, page); 342 343 if (PageError(page)) 344 SetPageError(newpage); 345 if (PageReferenced(page)) 346 SetPageReferenced(newpage); 347 if (PageUptodate(page)) 348 SetPageUptodate(newpage); 349 if (PageActive(page)) 350 SetPageActive(newpage); 351 if (PageChecked(page)) 352 SetPageChecked(newpage); 353 if (PageMappedToDisk(page)) 354 SetPageMappedToDisk(newpage); 355 356 if (PageDirty(page)) { 357 clear_page_dirty_for_io(page); 358 set_page_dirty(newpage); 359 } 360 361 #ifdef CONFIG_SWAP 362 ClearPageSwapCache(page); 363 #endif 364 ClearPageActive(page); 365 ClearPagePrivate(page); 366 set_page_private(page, 0); 367 page->mapping = NULL; 368 369 /* 370 * If any waiters have accumulated on the new page then 371 * wake them up. 372 */ 373 if (PageWriteback(newpage)) 374 end_page_writeback(newpage); 375 } 376 377 /************************************************************ 378 * Migration functions 379 ***********************************************************/ 380 381 /* Always fail migration. Used for mappings that are not movable */ 382 int fail_migrate_page(struct address_space *mapping, 383 struct page *newpage, struct page *page) 384 { 385 return -EIO; 386 } 387 EXPORT_SYMBOL(fail_migrate_page); 388 389 /* 390 * Common logic to directly migrate a single page suitable for 391 * pages that do not use PagePrivate. 392 * 393 * Pages are locked upon entry and exit. 394 */ 395 int migrate_page(struct address_space *mapping, 396 struct page *newpage, struct page *page) 397 { 398 int rc; 399 400 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 401 402 rc = migrate_page_move_mapping(mapping, newpage, page); 403 404 if (rc) 405 return rc; 406 407 migrate_page_copy(newpage, page); 408 return 0; 409 } 410 EXPORT_SYMBOL(migrate_page); 411 412 /* 413 * Migration function for pages with buffers. This function can only be used 414 * if the underlying filesystem guarantees that no other references to "page" 415 * exist. 416 */ 417 int buffer_migrate_page(struct address_space *mapping, 418 struct page *newpage, struct page *page) 419 { 420 struct buffer_head *bh, *head; 421 int rc; 422 423 if (!page_has_buffers(page)) 424 return migrate_page(mapping, newpage, page); 425 426 head = page_buffers(page); 427 428 rc = migrate_page_move_mapping(mapping, newpage, page); 429 430 if (rc) 431 return rc; 432 433 bh = head; 434 do { 435 get_bh(bh); 436 lock_buffer(bh); 437 bh = bh->b_this_page; 438 439 } while (bh != head); 440 441 ClearPagePrivate(page); 442 set_page_private(newpage, page_private(page)); 443 set_page_private(page, 0); 444 put_page(page); 445 get_page(newpage); 446 447 bh = head; 448 do { 449 set_bh_page(bh, newpage, bh_offset(bh)); 450 bh = bh->b_this_page; 451 452 } while (bh != head); 453 454 SetPagePrivate(newpage); 455 456 migrate_page_copy(newpage, page); 457 458 bh = head; 459 do { 460 unlock_buffer(bh); 461 put_bh(bh); 462 bh = bh->b_this_page; 463 464 } while (bh != head); 465 466 return 0; 467 } 468 EXPORT_SYMBOL(buffer_migrate_page); 469 470 /* 471 * Writeback a page to clean the dirty state 472 */ 473 static int writeout(struct address_space *mapping, struct page *page) 474 { 475 struct writeback_control wbc = { 476 .sync_mode = WB_SYNC_NONE, 477 .nr_to_write = 1, 478 .range_start = 0, 479 .range_end = LLONG_MAX, 480 .nonblocking = 1, 481 .for_reclaim = 1 482 }; 483 int rc; 484 485 if (!mapping->a_ops->writepage) 486 /* No write method for the address space */ 487 return -EINVAL; 488 489 if (!clear_page_dirty_for_io(page)) 490 /* Someone else already triggered a write */ 491 return -EAGAIN; 492 493 /* 494 * A dirty page may imply that the underlying filesystem has 495 * the page on some queue. So the page must be clean for 496 * migration. Writeout may mean we loose the lock and the 497 * page state is no longer what we checked for earlier. 498 * At this point we know that the migration attempt cannot 499 * be successful. 500 */ 501 remove_migration_ptes(page, page); 502 503 rc = mapping->a_ops->writepage(page, &wbc); 504 if (rc < 0) 505 /* I/O Error writing */ 506 return -EIO; 507 508 if (rc != AOP_WRITEPAGE_ACTIVATE) 509 /* unlocked. Relock */ 510 lock_page(page); 511 512 return -EAGAIN; 513 } 514 515 /* 516 * Default handling if a filesystem does not provide a migration function. 517 */ 518 static int fallback_migrate_page(struct address_space *mapping, 519 struct page *newpage, struct page *page) 520 { 521 if (PageDirty(page)) 522 return writeout(mapping, page); 523 524 /* 525 * Buffers may be managed in a filesystem specific way. 526 * We must have no buffers or drop them. 527 */ 528 if (page_has_buffers(page) && 529 !try_to_release_page(page, GFP_KERNEL)) 530 return -EAGAIN; 531 532 return migrate_page(mapping, newpage, page); 533 } 534 535 /* 536 * Move a page to a newly allocated page 537 * The page is locked and all ptes have been successfully removed. 538 * 539 * The new page will have replaced the old page if this function 540 * is successful. 541 */ 542 static int move_to_new_page(struct page *newpage, struct page *page) 543 { 544 struct address_space *mapping; 545 int rc; 546 547 /* 548 * Block others from accessing the page when we get around to 549 * establishing additional references. We are the only one 550 * holding a reference to the new page at this point. 551 */ 552 if (TestSetPageLocked(newpage)) 553 BUG(); 554 555 /* Prepare mapping for the new page.*/ 556 newpage->index = page->index; 557 newpage->mapping = page->mapping; 558 559 mapping = page_mapping(page); 560 if (!mapping) 561 rc = migrate_page(mapping, newpage, page); 562 else if (mapping->a_ops->migratepage) 563 /* 564 * Most pages have a mapping and most filesystems 565 * should provide a migration function. Anonymous 566 * pages are part of swap space which also has its 567 * own migration function. This is the most common 568 * path for page migration. 569 */ 570 rc = mapping->a_ops->migratepage(mapping, 571 newpage, page); 572 else 573 rc = fallback_migrate_page(mapping, newpage, page); 574 575 if (!rc) 576 remove_migration_ptes(page, newpage); 577 else 578 newpage->mapping = NULL; 579 580 unlock_page(newpage); 581 582 return rc; 583 } 584 585 /* 586 * Obtain the lock on page, remove all ptes and migrate the page 587 * to the newly allocated page in newpage. 588 */ 589 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 590 struct page *page, int force) 591 { 592 int rc = 0; 593 int *result = NULL; 594 struct page *newpage = get_new_page(page, private, &result); 595 596 if (!newpage) 597 return -ENOMEM; 598 599 if (page_count(page) == 1) 600 /* page was freed from under us. So we are done. */ 601 goto move_newpage; 602 603 rc = -EAGAIN; 604 if (TestSetPageLocked(page)) { 605 if (!force) 606 goto move_newpage; 607 lock_page(page); 608 } 609 610 if (PageWriteback(page)) { 611 if (!force) 612 goto unlock; 613 wait_on_page_writeback(page); 614 } 615 616 /* 617 * Establish migration ptes or remove ptes 618 */ 619 try_to_unmap(page, 1); 620 if (!page_mapped(page)) 621 rc = move_to_new_page(newpage, page); 622 623 if (rc) 624 remove_migration_ptes(page, page); 625 626 unlock: 627 unlock_page(page); 628 629 if (rc != -EAGAIN) { 630 /* 631 * A page that has been migrated has all references 632 * removed and will be freed. A page that has not been 633 * migrated will have kepts its references and be 634 * restored. 635 */ 636 list_del(&page->lru); 637 move_to_lru(page); 638 } 639 640 move_newpage: 641 /* 642 * Move the new page to the LRU. If migration was not successful 643 * then this will free the page. 644 */ 645 move_to_lru(newpage); 646 if (result) { 647 if (rc) 648 *result = rc; 649 else 650 *result = page_to_nid(newpage); 651 } 652 return rc; 653 } 654 655 /* 656 * migrate_pages 657 * 658 * The function takes one list of pages to migrate and a function 659 * that determines from the page to be migrated and the private data 660 * the target of the move and allocates the page. 661 * 662 * The function returns after 10 attempts or if no pages 663 * are movable anymore because to has become empty 664 * or no retryable pages exist anymore. All pages will be 665 * retruned to the LRU or freed. 666 * 667 * Return: Number of pages not migrated or error code. 668 */ 669 int migrate_pages(struct list_head *from, 670 new_page_t get_new_page, unsigned long private) 671 { 672 int retry = 1; 673 int nr_failed = 0; 674 int pass = 0; 675 struct page *page; 676 struct page *page2; 677 int swapwrite = current->flags & PF_SWAPWRITE; 678 int rc; 679 680 if (!swapwrite) 681 current->flags |= PF_SWAPWRITE; 682 683 for(pass = 0; pass < 10 && retry; pass++) { 684 retry = 0; 685 686 list_for_each_entry_safe(page, page2, from, lru) { 687 cond_resched(); 688 689 rc = unmap_and_move(get_new_page, private, 690 page, pass > 2); 691 692 switch(rc) { 693 case -ENOMEM: 694 goto out; 695 case -EAGAIN: 696 retry++; 697 break; 698 case 0: 699 break; 700 default: 701 /* Permanent failure */ 702 nr_failed++; 703 break; 704 } 705 } 706 } 707 rc = 0; 708 out: 709 if (!swapwrite) 710 current->flags &= ~PF_SWAPWRITE; 711 712 putback_lru_pages(from); 713 714 if (rc) 715 return rc; 716 717 return nr_failed + retry; 718 } 719 720 #ifdef CONFIG_NUMA 721 /* 722 * Move a list of individual pages 723 */ 724 struct page_to_node { 725 unsigned long addr; 726 struct page *page; 727 int node; 728 int status; 729 }; 730 731 static struct page *new_page_node(struct page *p, unsigned long private, 732 int **result) 733 { 734 struct page_to_node *pm = (struct page_to_node *)private; 735 736 while (pm->node != MAX_NUMNODES && pm->page != p) 737 pm++; 738 739 if (pm->node == MAX_NUMNODES) 740 return NULL; 741 742 *result = &pm->status; 743 744 return alloc_pages_node(pm->node, GFP_HIGHUSER, 0); 745 } 746 747 /* 748 * Move a set of pages as indicated in the pm array. The addr 749 * field must be set to the virtual address of the page to be moved 750 * and the node number must contain a valid target node. 751 */ 752 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm, 753 int migrate_all) 754 { 755 int err; 756 struct page_to_node *pp; 757 LIST_HEAD(pagelist); 758 759 down_read(&mm->mmap_sem); 760 761 /* 762 * Build a list of pages to migrate 763 */ 764 migrate_prep(); 765 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 766 struct vm_area_struct *vma; 767 struct page *page; 768 769 /* 770 * A valid page pointer that will not match any of the 771 * pages that will be moved. 772 */ 773 pp->page = ZERO_PAGE(0); 774 775 err = -EFAULT; 776 vma = find_vma(mm, pp->addr); 777 if (!vma) 778 goto set_status; 779 780 page = follow_page(vma, pp->addr, FOLL_GET); 781 err = -ENOENT; 782 if (!page) 783 goto set_status; 784 785 if (PageReserved(page)) /* Check for zero page */ 786 goto put_and_set; 787 788 pp->page = page; 789 err = page_to_nid(page); 790 791 if (err == pp->node) 792 /* 793 * Node already in the right place 794 */ 795 goto put_and_set; 796 797 err = -EACCES; 798 if (page_mapcount(page) > 1 && 799 !migrate_all) 800 goto put_and_set; 801 802 err = isolate_lru_page(page, &pagelist); 803 put_and_set: 804 /* 805 * Either remove the duplicate refcount from 806 * isolate_lru_page() or drop the page ref if it was 807 * not isolated. 808 */ 809 put_page(page); 810 set_status: 811 pp->status = err; 812 } 813 814 if (!list_empty(&pagelist)) 815 err = migrate_pages(&pagelist, new_page_node, 816 (unsigned long)pm); 817 else 818 err = -ENOENT; 819 820 up_read(&mm->mmap_sem); 821 return err; 822 } 823 824 /* 825 * Determine the nodes of a list of pages. The addr in the pm array 826 * must have been set to the virtual address of which we want to determine 827 * the node number. 828 */ 829 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm) 830 { 831 down_read(&mm->mmap_sem); 832 833 for ( ; pm->node != MAX_NUMNODES; pm++) { 834 struct vm_area_struct *vma; 835 struct page *page; 836 int err; 837 838 err = -EFAULT; 839 vma = find_vma(mm, pm->addr); 840 if (!vma) 841 goto set_status; 842 843 page = follow_page(vma, pm->addr, 0); 844 err = -ENOENT; 845 /* Use PageReserved to check for zero page */ 846 if (!page || PageReserved(page)) 847 goto set_status; 848 849 err = page_to_nid(page); 850 set_status: 851 pm->status = err; 852 } 853 854 up_read(&mm->mmap_sem); 855 return 0; 856 } 857 858 /* 859 * Move a list of pages in the address space of the currently executing 860 * process. 861 */ 862 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages, 863 const void __user * __user *pages, 864 const int __user *nodes, 865 int __user *status, int flags) 866 { 867 int err = 0; 868 int i; 869 struct task_struct *task; 870 nodemask_t task_nodes; 871 struct mm_struct *mm; 872 struct page_to_node *pm = NULL; 873 874 /* Check flags */ 875 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 876 return -EINVAL; 877 878 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 879 return -EPERM; 880 881 /* Find the mm_struct */ 882 read_lock(&tasklist_lock); 883 task = pid ? find_task_by_pid(pid) : current; 884 if (!task) { 885 read_unlock(&tasklist_lock); 886 return -ESRCH; 887 } 888 mm = get_task_mm(task); 889 read_unlock(&tasklist_lock); 890 891 if (!mm) 892 return -EINVAL; 893 894 /* 895 * Check if this process has the right to modify the specified 896 * process. The right exists if the process has administrative 897 * capabilities, superuser privileges or the same 898 * userid as the target process. 899 */ 900 if ((current->euid != task->suid) && (current->euid != task->uid) && 901 (current->uid != task->suid) && (current->uid != task->uid) && 902 !capable(CAP_SYS_NICE)) { 903 err = -EPERM; 904 goto out2; 905 } 906 907 err = security_task_movememory(task); 908 if (err) 909 goto out2; 910 911 912 task_nodes = cpuset_mems_allowed(task); 913 914 /* Limit nr_pages so that the multiplication may not overflow */ 915 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) { 916 err = -E2BIG; 917 goto out2; 918 } 919 920 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node)); 921 if (!pm) { 922 err = -ENOMEM; 923 goto out2; 924 } 925 926 /* 927 * Get parameters from user space and initialize the pm 928 * array. Return various errors if the user did something wrong. 929 */ 930 for (i = 0; i < nr_pages; i++) { 931 const void *p; 932 933 err = -EFAULT; 934 if (get_user(p, pages + i)) 935 goto out; 936 937 pm[i].addr = (unsigned long)p; 938 if (nodes) { 939 int node; 940 941 if (get_user(node, nodes + i)) 942 goto out; 943 944 err = -ENODEV; 945 if (!node_online(node)) 946 goto out; 947 948 err = -EACCES; 949 if (!node_isset(node, task_nodes)) 950 goto out; 951 952 pm[i].node = node; 953 } 954 } 955 /* End marker */ 956 pm[nr_pages].node = MAX_NUMNODES; 957 958 if (nodes) 959 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL); 960 else 961 err = do_pages_stat(mm, pm); 962 963 if (err >= 0) 964 /* Return status information */ 965 for (i = 0; i < nr_pages; i++) 966 if (put_user(pm[i].status, status + i)) 967 err = -EFAULT; 968 969 out: 970 vfree(pm); 971 out2: 972 mmput(mm); 973 return err; 974 } 975 #endif 976 977 /* 978 * Call migration functions in the vma_ops that may prepare 979 * memory in a vm for migration. migration functions may perform 980 * the migration for vmas that do not have an underlying page struct. 981 */ 982 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 983 const nodemask_t *from, unsigned long flags) 984 { 985 struct vm_area_struct *vma; 986 int err = 0; 987 988 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) { 989 if (vma->vm_ops && vma->vm_ops->migrate) { 990 err = vma->vm_ops->migrate(vma, to, from, flags); 991 if (err) 992 break; 993 } 994 } 995 return err; 996 } 997