xref: /linux/mm/migrate.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter <clameter@sgi.com>
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/pagevec.h>
23 #include <linux/rmap.h>
24 #include <linux/topology.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/writeback.h>
28 #include <linux/mempolicy.h>
29 #include <linux/vmalloc.h>
30 #include <linux/security.h>
31 
32 #include "internal.h"
33 
34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
35 
36 /*
37  * Isolate one page from the LRU lists. If successful put it onto
38  * the indicated list with elevated page count.
39  *
40  * Result:
41  *  -EBUSY: page not on LRU list
42  *  0: page removed from LRU list and added to the specified list.
43  */
44 int isolate_lru_page(struct page *page, struct list_head *pagelist)
45 {
46 	int ret = -EBUSY;
47 
48 	if (PageLRU(page)) {
49 		struct zone *zone = page_zone(page);
50 
51 		spin_lock_irq(&zone->lru_lock);
52 		if (PageLRU(page)) {
53 			ret = 0;
54 			get_page(page);
55 			ClearPageLRU(page);
56 			if (PageActive(page))
57 				del_page_from_active_list(zone, page);
58 			else
59 				del_page_from_inactive_list(zone, page);
60 			list_add_tail(&page->lru, pagelist);
61 		}
62 		spin_unlock_irq(&zone->lru_lock);
63 	}
64 	return ret;
65 }
66 
67 /*
68  * migrate_prep() needs to be called before we start compiling a list of pages
69  * to be migrated using isolate_lru_page().
70  */
71 int migrate_prep(void)
72 {
73 	/*
74 	 * Clear the LRU lists so pages can be isolated.
75 	 * Note that pages may be moved off the LRU after we have
76 	 * drained them. Those pages will fail to migrate like other
77 	 * pages that may be busy.
78 	 */
79 	lru_add_drain_all();
80 
81 	return 0;
82 }
83 
84 static inline void move_to_lru(struct page *page)
85 {
86 	if (PageActive(page)) {
87 		/*
88 		 * lru_cache_add_active checks that
89 		 * the PG_active bit is off.
90 		 */
91 		ClearPageActive(page);
92 		lru_cache_add_active(page);
93 	} else {
94 		lru_cache_add(page);
95 	}
96 	put_page(page);
97 }
98 
99 /*
100  * Add isolated pages on the list back to the LRU.
101  *
102  * returns the number of pages put back.
103  */
104 int putback_lru_pages(struct list_head *l)
105 {
106 	struct page *page;
107 	struct page *page2;
108 	int count = 0;
109 
110 	list_for_each_entry_safe(page, page2, l, lru) {
111 		list_del(&page->lru);
112 		move_to_lru(page);
113 		count++;
114 	}
115 	return count;
116 }
117 
118 static inline int is_swap_pte(pte_t pte)
119 {
120 	return !pte_none(pte) && !pte_present(pte) && !pte_file(pte);
121 }
122 
123 /*
124  * Restore a potential migration pte to a working pte entry
125  */
126 static void remove_migration_pte(struct vm_area_struct *vma,
127 		struct page *old, struct page *new)
128 {
129 	struct mm_struct *mm = vma->vm_mm;
130 	swp_entry_t entry;
131  	pgd_t *pgd;
132  	pud_t *pud;
133  	pmd_t *pmd;
134 	pte_t *ptep, pte;
135  	spinlock_t *ptl;
136 	unsigned long addr = page_address_in_vma(new, vma);
137 
138 	if (addr == -EFAULT)
139 		return;
140 
141  	pgd = pgd_offset(mm, addr);
142 	if (!pgd_present(*pgd))
143                 return;
144 
145 	pud = pud_offset(pgd, addr);
146 	if (!pud_present(*pud))
147                 return;
148 
149 	pmd = pmd_offset(pud, addr);
150 	if (!pmd_present(*pmd))
151 		return;
152 
153 	ptep = pte_offset_map(pmd, addr);
154 
155 	if (!is_swap_pte(*ptep)) {
156 		pte_unmap(ptep);
157  		return;
158  	}
159 
160  	ptl = pte_lockptr(mm, pmd);
161  	spin_lock(ptl);
162 	pte = *ptep;
163 	if (!is_swap_pte(pte))
164 		goto out;
165 
166 	entry = pte_to_swp_entry(pte);
167 
168 	if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
169 		goto out;
170 
171 	get_page(new);
172 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
173 	if (is_write_migration_entry(entry))
174 		pte = pte_mkwrite(pte);
175 	set_pte_at(mm, addr, ptep, pte);
176 
177 	if (PageAnon(new))
178 		page_add_anon_rmap(new, vma, addr);
179 	else
180 		page_add_file_rmap(new);
181 
182 	/* No need to invalidate - it was non-present before */
183 	update_mmu_cache(vma, addr, pte);
184 	lazy_mmu_prot_update(pte);
185 
186 out:
187 	pte_unmap_unlock(ptep, ptl);
188 }
189 
190 /*
191  * Note that remove_file_migration_ptes will only work on regular mappings,
192  * Nonlinear mappings do not use migration entries.
193  */
194 static void remove_file_migration_ptes(struct page *old, struct page *new)
195 {
196 	struct vm_area_struct *vma;
197 	struct address_space *mapping = page_mapping(new);
198 	struct prio_tree_iter iter;
199 	pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
200 
201 	if (!mapping)
202 		return;
203 
204 	spin_lock(&mapping->i_mmap_lock);
205 
206 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
207 		remove_migration_pte(vma, old, new);
208 
209 	spin_unlock(&mapping->i_mmap_lock);
210 }
211 
212 /*
213  * Must hold mmap_sem lock on at least one of the vmas containing
214  * the page so that the anon_vma cannot vanish.
215  */
216 static void remove_anon_migration_ptes(struct page *old, struct page *new)
217 {
218 	struct anon_vma *anon_vma;
219 	struct vm_area_struct *vma;
220 	unsigned long mapping;
221 
222 	mapping = (unsigned long)new->mapping;
223 
224 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
225 		return;
226 
227 	/*
228 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
229 	 */
230 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
231 	spin_lock(&anon_vma->lock);
232 
233 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
234 		remove_migration_pte(vma, old, new);
235 
236 	spin_unlock(&anon_vma->lock);
237 }
238 
239 /*
240  * Get rid of all migration entries and replace them by
241  * references to the indicated page.
242  */
243 static void remove_migration_ptes(struct page *old, struct page *new)
244 {
245 	if (PageAnon(new))
246 		remove_anon_migration_ptes(old, new);
247 	else
248 		remove_file_migration_ptes(old, new);
249 }
250 
251 /*
252  * Something used the pte of a page under migration. We need to
253  * get to the page and wait until migration is finished.
254  * When we return from this function the fault will be retried.
255  *
256  * This function is called from do_swap_page().
257  */
258 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
259 				unsigned long address)
260 {
261 	pte_t *ptep, pte;
262 	spinlock_t *ptl;
263 	swp_entry_t entry;
264 	struct page *page;
265 
266 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
267 	pte = *ptep;
268 	if (!is_swap_pte(pte))
269 		goto out;
270 
271 	entry = pte_to_swp_entry(pte);
272 	if (!is_migration_entry(entry))
273 		goto out;
274 
275 	page = migration_entry_to_page(entry);
276 
277 	get_page(page);
278 	pte_unmap_unlock(ptep, ptl);
279 	wait_on_page_locked(page);
280 	put_page(page);
281 	return;
282 out:
283 	pte_unmap_unlock(ptep, ptl);
284 }
285 
286 /*
287  * Replace the page in the mapping.
288  *
289  * The number of remaining references must be:
290  * 1 for anonymous pages without a mapping
291  * 2 for pages with a mapping
292  * 3 for pages with a mapping and PagePrivate set.
293  */
294 static int migrate_page_move_mapping(struct address_space *mapping,
295 		struct page *newpage, struct page *page)
296 {
297 	struct page **radix_pointer;
298 
299 	if (!mapping) {
300 		/* Anonymous page */
301 		if (page_count(page) != 1)
302 			return -EAGAIN;
303 		return 0;
304 	}
305 
306 	write_lock_irq(&mapping->tree_lock);
307 
308 	radix_pointer = (struct page **)radix_tree_lookup_slot(
309 						&mapping->page_tree,
310 						page_index(page));
311 
312 	if (page_count(page) != 2 + !!PagePrivate(page) ||
313 			*radix_pointer != page) {
314 		write_unlock_irq(&mapping->tree_lock);
315 		return -EAGAIN;
316 	}
317 
318 	/*
319 	 * Now we know that no one else is looking at the page.
320 	 */
321 	get_page(newpage);
322 #ifdef CONFIG_SWAP
323 	if (PageSwapCache(page)) {
324 		SetPageSwapCache(newpage);
325 		set_page_private(newpage, page_private(page));
326 	}
327 #endif
328 
329 	*radix_pointer = newpage;
330 	__put_page(page);
331 	write_unlock_irq(&mapping->tree_lock);
332 
333 	return 0;
334 }
335 
336 /*
337  * Copy the page to its new location
338  */
339 static void migrate_page_copy(struct page *newpage, struct page *page)
340 {
341 	copy_highpage(newpage, page);
342 
343 	if (PageError(page))
344 		SetPageError(newpage);
345 	if (PageReferenced(page))
346 		SetPageReferenced(newpage);
347 	if (PageUptodate(page))
348 		SetPageUptodate(newpage);
349 	if (PageActive(page))
350 		SetPageActive(newpage);
351 	if (PageChecked(page))
352 		SetPageChecked(newpage);
353 	if (PageMappedToDisk(page))
354 		SetPageMappedToDisk(newpage);
355 
356 	if (PageDirty(page)) {
357 		clear_page_dirty_for_io(page);
358 		set_page_dirty(newpage);
359  	}
360 
361 #ifdef CONFIG_SWAP
362 	ClearPageSwapCache(page);
363 #endif
364 	ClearPageActive(page);
365 	ClearPagePrivate(page);
366 	set_page_private(page, 0);
367 	page->mapping = NULL;
368 
369 	/*
370 	 * If any waiters have accumulated on the new page then
371 	 * wake them up.
372 	 */
373 	if (PageWriteback(newpage))
374 		end_page_writeback(newpage);
375 }
376 
377 /************************************************************
378  *                    Migration functions
379  ***********************************************************/
380 
381 /* Always fail migration. Used for mappings that are not movable */
382 int fail_migrate_page(struct address_space *mapping,
383 			struct page *newpage, struct page *page)
384 {
385 	return -EIO;
386 }
387 EXPORT_SYMBOL(fail_migrate_page);
388 
389 /*
390  * Common logic to directly migrate a single page suitable for
391  * pages that do not use PagePrivate.
392  *
393  * Pages are locked upon entry and exit.
394  */
395 int migrate_page(struct address_space *mapping,
396 		struct page *newpage, struct page *page)
397 {
398 	int rc;
399 
400 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
401 
402 	rc = migrate_page_move_mapping(mapping, newpage, page);
403 
404 	if (rc)
405 		return rc;
406 
407 	migrate_page_copy(newpage, page);
408 	return 0;
409 }
410 EXPORT_SYMBOL(migrate_page);
411 
412 /*
413  * Migration function for pages with buffers. This function can only be used
414  * if the underlying filesystem guarantees that no other references to "page"
415  * exist.
416  */
417 int buffer_migrate_page(struct address_space *mapping,
418 		struct page *newpage, struct page *page)
419 {
420 	struct buffer_head *bh, *head;
421 	int rc;
422 
423 	if (!page_has_buffers(page))
424 		return migrate_page(mapping, newpage, page);
425 
426 	head = page_buffers(page);
427 
428 	rc = migrate_page_move_mapping(mapping, newpage, page);
429 
430 	if (rc)
431 		return rc;
432 
433 	bh = head;
434 	do {
435 		get_bh(bh);
436 		lock_buffer(bh);
437 		bh = bh->b_this_page;
438 
439 	} while (bh != head);
440 
441 	ClearPagePrivate(page);
442 	set_page_private(newpage, page_private(page));
443 	set_page_private(page, 0);
444 	put_page(page);
445 	get_page(newpage);
446 
447 	bh = head;
448 	do {
449 		set_bh_page(bh, newpage, bh_offset(bh));
450 		bh = bh->b_this_page;
451 
452 	} while (bh != head);
453 
454 	SetPagePrivate(newpage);
455 
456 	migrate_page_copy(newpage, page);
457 
458 	bh = head;
459 	do {
460 		unlock_buffer(bh);
461  		put_bh(bh);
462 		bh = bh->b_this_page;
463 
464 	} while (bh != head);
465 
466 	return 0;
467 }
468 EXPORT_SYMBOL(buffer_migrate_page);
469 
470 /*
471  * Writeback a page to clean the dirty state
472  */
473 static int writeout(struct address_space *mapping, struct page *page)
474 {
475 	struct writeback_control wbc = {
476 		.sync_mode = WB_SYNC_NONE,
477 		.nr_to_write = 1,
478 		.range_start = 0,
479 		.range_end = LLONG_MAX,
480 		.nonblocking = 1,
481 		.for_reclaim = 1
482 	};
483 	int rc;
484 
485 	if (!mapping->a_ops->writepage)
486 		/* No write method for the address space */
487 		return -EINVAL;
488 
489 	if (!clear_page_dirty_for_io(page))
490 		/* Someone else already triggered a write */
491 		return -EAGAIN;
492 
493 	/*
494 	 * A dirty page may imply that the underlying filesystem has
495 	 * the page on some queue. So the page must be clean for
496 	 * migration. Writeout may mean we loose the lock and the
497 	 * page state is no longer what we checked for earlier.
498 	 * At this point we know that the migration attempt cannot
499 	 * be successful.
500 	 */
501 	remove_migration_ptes(page, page);
502 
503 	rc = mapping->a_ops->writepage(page, &wbc);
504 	if (rc < 0)
505 		/* I/O Error writing */
506 		return -EIO;
507 
508 	if (rc != AOP_WRITEPAGE_ACTIVATE)
509 		/* unlocked. Relock */
510 		lock_page(page);
511 
512 	return -EAGAIN;
513 }
514 
515 /*
516  * Default handling if a filesystem does not provide a migration function.
517  */
518 static int fallback_migrate_page(struct address_space *mapping,
519 	struct page *newpage, struct page *page)
520 {
521 	if (PageDirty(page))
522 		return writeout(mapping, page);
523 
524 	/*
525 	 * Buffers may be managed in a filesystem specific way.
526 	 * We must have no buffers or drop them.
527 	 */
528 	if (page_has_buffers(page) &&
529 	    !try_to_release_page(page, GFP_KERNEL))
530 		return -EAGAIN;
531 
532 	return migrate_page(mapping, newpage, page);
533 }
534 
535 /*
536  * Move a page to a newly allocated page
537  * The page is locked and all ptes have been successfully removed.
538  *
539  * The new page will have replaced the old page if this function
540  * is successful.
541  */
542 static int move_to_new_page(struct page *newpage, struct page *page)
543 {
544 	struct address_space *mapping;
545 	int rc;
546 
547 	/*
548 	 * Block others from accessing the page when we get around to
549 	 * establishing additional references. We are the only one
550 	 * holding a reference to the new page at this point.
551 	 */
552 	if (TestSetPageLocked(newpage))
553 		BUG();
554 
555 	/* Prepare mapping for the new page.*/
556 	newpage->index = page->index;
557 	newpage->mapping = page->mapping;
558 
559 	mapping = page_mapping(page);
560 	if (!mapping)
561 		rc = migrate_page(mapping, newpage, page);
562 	else if (mapping->a_ops->migratepage)
563 		/*
564 		 * Most pages have a mapping and most filesystems
565 		 * should provide a migration function. Anonymous
566 		 * pages are part of swap space which also has its
567 		 * own migration function. This is the most common
568 		 * path for page migration.
569 		 */
570 		rc = mapping->a_ops->migratepage(mapping,
571 						newpage, page);
572 	else
573 		rc = fallback_migrate_page(mapping, newpage, page);
574 
575 	if (!rc)
576 		remove_migration_ptes(page, newpage);
577 	else
578 		newpage->mapping = NULL;
579 
580 	unlock_page(newpage);
581 
582 	return rc;
583 }
584 
585 /*
586  * Obtain the lock on page, remove all ptes and migrate the page
587  * to the newly allocated page in newpage.
588  */
589 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
590 			struct page *page, int force)
591 {
592 	int rc = 0;
593 	int *result = NULL;
594 	struct page *newpage = get_new_page(page, private, &result);
595 
596 	if (!newpage)
597 		return -ENOMEM;
598 
599 	if (page_count(page) == 1)
600 		/* page was freed from under us. So we are done. */
601 		goto move_newpage;
602 
603 	rc = -EAGAIN;
604 	if (TestSetPageLocked(page)) {
605 		if (!force)
606 			goto move_newpage;
607 		lock_page(page);
608 	}
609 
610 	if (PageWriteback(page)) {
611 		if (!force)
612 			goto unlock;
613 		wait_on_page_writeback(page);
614 	}
615 
616 	/*
617 	 * Establish migration ptes or remove ptes
618 	 */
619 	try_to_unmap(page, 1);
620 	if (!page_mapped(page))
621 		rc = move_to_new_page(newpage, page);
622 
623 	if (rc)
624 		remove_migration_ptes(page, page);
625 
626 unlock:
627 	unlock_page(page);
628 
629 	if (rc != -EAGAIN) {
630  		/*
631  		 * A page that has been migrated has all references
632  		 * removed and will be freed. A page that has not been
633  		 * migrated will have kepts its references and be
634  		 * restored.
635  		 */
636  		list_del(&page->lru);
637  		move_to_lru(page);
638 	}
639 
640 move_newpage:
641 	/*
642 	 * Move the new page to the LRU. If migration was not successful
643 	 * then this will free the page.
644 	 */
645 	move_to_lru(newpage);
646 	if (result) {
647 		if (rc)
648 			*result = rc;
649 		else
650 			*result = page_to_nid(newpage);
651 	}
652 	return rc;
653 }
654 
655 /*
656  * migrate_pages
657  *
658  * The function takes one list of pages to migrate and a function
659  * that determines from the page to be migrated and the private data
660  * the target of the move and allocates the page.
661  *
662  * The function returns after 10 attempts or if no pages
663  * are movable anymore because to has become empty
664  * or no retryable pages exist anymore. All pages will be
665  * retruned to the LRU or freed.
666  *
667  * Return: Number of pages not migrated or error code.
668  */
669 int migrate_pages(struct list_head *from,
670 		new_page_t get_new_page, unsigned long private)
671 {
672 	int retry = 1;
673 	int nr_failed = 0;
674 	int pass = 0;
675 	struct page *page;
676 	struct page *page2;
677 	int swapwrite = current->flags & PF_SWAPWRITE;
678 	int rc;
679 
680 	if (!swapwrite)
681 		current->flags |= PF_SWAPWRITE;
682 
683 	for(pass = 0; pass < 10 && retry; pass++) {
684 		retry = 0;
685 
686 		list_for_each_entry_safe(page, page2, from, lru) {
687 			cond_resched();
688 
689 			rc = unmap_and_move(get_new_page, private,
690 						page, pass > 2);
691 
692 			switch(rc) {
693 			case -ENOMEM:
694 				goto out;
695 			case -EAGAIN:
696 				retry++;
697 				break;
698 			case 0:
699 				break;
700 			default:
701 				/* Permanent failure */
702 				nr_failed++;
703 				break;
704 			}
705 		}
706 	}
707 	rc = 0;
708 out:
709 	if (!swapwrite)
710 		current->flags &= ~PF_SWAPWRITE;
711 
712 	putback_lru_pages(from);
713 
714 	if (rc)
715 		return rc;
716 
717 	return nr_failed + retry;
718 }
719 
720 #ifdef CONFIG_NUMA
721 /*
722  * Move a list of individual pages
723  */
724 struct page_to_node {
725 	unsigned long addr;
726 	struct page *page;
727 	int node;
728 	int status;
729 };
730 
731 static struct page *new_page_node(struct page *p, unsigned long private,
732 		int **result)
733 {
734 	struct page_to_node *pm = (struct page_to_node *)private;
735 
736 	while (pm->node != MAX_NUMNODES && pm->page != p)
737 		pm++;
738 
739 	if (pm->node == MAX_NUMNODES)
740 		return NULL;
741 
742 	*result = &pm->status;
743 
744 	return alloc_pages_node(pm->node, GFP_HIGHUSER, 0);
745 }
746 
747 /*
748  * Move a set of pages as indicated in the pm array. The addr
749  * field must be set to the virtual address of the page to be moved
750  * and the node number must contain a valid target node.
751  */
752 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
753 				int migrate_all)
754 {
755 	int err;
756 	struct page_to_node *pp;
757 	LIST_HEAD(pagelist);
758 
759 	down_read(&mm->mmap_sem);
760 
761 	/*
762 	 * Build a list of pages to migrate
763 	 */
764 	migrate_prep();
765 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
766 		struct vm_area_struct *vma;
767 		struct page *page;
768 
769 		/*
770 		 * A valid page pointer that will not match any of the
771 		 * pages that will be moved.
772 		 */
773 		pp->page = ZERO_PAGE(0);
774 
775 		err = -EFAULT;
776 		vma = find_vma(mm, pp->addr);
777 		if (!vma)
778 			goto set_status;
779 
780 		page = follow_page(vma, pp->addr, FOLL_GET);
781 		err = -ENOENT;
782 		if (!page)
783 			goto set_status;
784 
785 		if (PageReserved(page))		/* Check for zero page */
786 			goto put_and_set;
787 
788 		pp->page = page;
789 		err = page_to_nid(page);
790 
791 		if (err == pp->node)
792 			/*
793 			 * Node already in the right place
794 			 */
795 			goto put_and_set;
796 
797 		err = -EACCES;
798 		if (page_mapcount(page) > 1 &&
799 				!migrate_all)
800 			goto put_and_set;
801 
802 		err = isolate_lru_page(page, &pagelist);
803 put_and_set:
804 		/*
805 		 * Either remove the duplicate refcount from
806 		 * isolate_lru_page() or drop the page ref if it was
807 		 * not isolated.
808 		 */
809 		put_page(page);
810 set_status:
811 		pp->status = err;
812 	}
813 
814 	if (!list_empty(&pagelist))
815 		err = migrate_pages(&pagelist, new_page_node,
816 				(unsigned long)pm);
817 	else
818 		err = -ENOENT;
819 
820 	up_read(&mm->mmap_sem);
821 	return err;
822 }
823 
824 /*
825  * Determine the nodes of a list of pages. The addr in the pm array
826  * must have been set to the virtual address of which we want to determine
827  * the node number.
828  */
829 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
830 {
831 	down_read(&mm->mmap_sem);
832 
833 	for ( ; pm->node != MAX_NUMNODES; pm++) {
834 		struct vm_area_struct *vma;
835 		struct page *page;
836 		int err;
837 
838 		err = -EFAULT;
839 		vma = find_vma(mm, pm->addr);
840 		if (!vma)
841 			goto set_status;
842 
843 		page = follow_page(vma, pm->addr, 0);
844 		err = -ENOENT;
845 		/* Use PageReserved to check for zero page */
846 		if (!page || PageReserved(page))
847 			goto set_status;
848 
849 		err = page_to_nid(page);
850 set_status:
851 		pm->status = err;
852 	}
853 
854 	up_read(&mm->mmap_sem);
855 	return 0;
856 }
857 
858 /*
859  * Move a list of pages in the address space of the currently executing
860  * process.
861  */
862 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
863 			const void __user * __user *pages,
864 			const int __user *nodes,
865 			int __user *status, int flags)
866 {
867 	int err = 0;
868 	int i;
869 	struct task_struct *task;
870 	nodemask_t task_nodes;
871 	struct mm_struct *mm;
872 	struct page_to_node *pm = NULL;
873 
874 	/* Check flags */
875 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
876 		return -EINVAL;
877 
878 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
879 		return -EPERM;
880 
881 	/* Find the mm_struct */
882 	read_lock(&tasklist_lock);
883 	task = pid ? find_task_by_pid(pid) : current;
884 	if (!task) {
885 		read_unlock(&tasklist_lock);
886 		return -ESRCH;
887 	}
888 	mm = get_task_mm(task);
889 	read_unlock(&tasklist_lock);
890 
891 	if (!mm)
892 		return -EINVAL;
893 
894 	/*
895 	 * Check if this process has the right to modify the specified
896 	 * process. The right exists if the process has administrative
897 	 * capabilities, superuser privileges or the same
898 	 * userid as the target process.
899 	 */
900 	if ((current->euid != task->suid) && (current->euid != task->uid) &&
901 	    (current->uid != task->suid) && (current->uid != task->uid) &&
902 	    !capable(CAP_SYS_NICE)) {
903 		err = -EPERM;
904 		goto out2;
905 	}
906 
907  	err = security_task_movememory(task);
908  	if (err)
909  		goto out2;
910 
911 
912 	task_nodes = cpuset_mems_allowed(task);
913 
914 	/* Limit nr_pages so that the multiplication may not overflow */
915 	if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
916 		err = -E2BIG;
917 		goto out2;
918 	}
919 
920 	pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
921 	if (!pm) {
922 		err = -ENOMEM;
923 		goto out2;
924 	}
925 
926 	/*
927 	 * Get parameters from user space and initialize the pm
928 	 * array. Return various errors if the user did something wrong.
929 	 */
930 	for (i = 0; i < nr_pages; i++) {
931 		const void *p;
932 
933 		err = -EFAULT;
934 		if (get_user(p, pages + i))
935 			goto out;
936 
937 		pm[i].addr = (unsigned long)p;
938 		if (nodes) {
939 			int node;
940 
941 			if (get_user(node, nodes + i))
942 				goto out;
943 
944 			err = -ENODEV;
945 			if (!node_online(node))
946 				goto out;
947 
948 			err = -EACCES;
949 			if (!node_isset(node, task_nodes))
950 				goto out;
951 
952 			pm[i].node = node;
953 		}
954 	}
955 	/* End marker */
956 	pm[nr_pages].node = MAX_NUMNODES;
957 
958 	if (nodes)
959 		err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
960 	else
961 		err = do_pages_stat(mm, pm);
962 
963 	if (err >= 0)
964 		/* Return status information */
965 		for (i = 0; i < nr_pages; i++)
966 			if (put_user(pm[i].status, status + i))
967 				err = -EFAULT;
968 
969 out:
970 	vfree(pm);
971 out2:
972 	mmput(mm);
973 	return err;
974 }
975 #endif
976 
977 /*
978  * Call migration functions in the vma_ops that may prepare
979  * memory in a vm for migration. migration functions may perform
980  * the migration for vmas that do not have an underlying page struct.
981  */
982 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
983 	const nodemask_t *from, unsigned long flags)
984 {
985  	struct vm_area_struct *vma;
986  	int err = 0;
987 
988  	for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
989  		if (vma->vm_ops && vma->vm_ops->migrate) {
990  			err = vma->vm_ops->migrate(vma, to, from, flags);
991  			if (err)
992  				break;
993  		}
994  	}
995  	return err;
996 }
997