xref: /linux/mm/migrate.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
37 
38 #include <asm/tlbflush.h>
39 
40 #include "internal.h"
41 
42 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
43 
44 /*
45  * migrate_prep() needs to be called before we start compiling a list of pages
46  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47  * undesirable, use migrate_prep_local()
48  */
49 int migrate_prep(void)
50 {
51 	/*
52 	 * Clear the LRU lists so pages can be isolated.
53 	 * Note that pages may be moved off the LRU after we have
54 	 * drained them. Those pages will fail to migrate like other
55 	 * pages that may be busy.
56 	 */
57 	lru_add_drain_all();
58 
59 	return 0;
60 }
61 
62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
63 int migrate_prep_local(void)
64 {
65 	lru_add_drain();
66 
67 	return 0;
68 }
69 
70 /*
71  * Add isolated pages on the list back to the LRU under page lock
72  * to avoid leaking evictable pages back onto unevictable list.
73  */
74 void putback_lru_pages(struct list_head *l)
75 {
76 	struct page *page;
77 	struct page *page2;
78 
79 	list_for_each_entry_safe(page, page2, l, lru) {
80 		list_del(&page->lru);
81 		dec_zone_page_state(page, NR_ISOLATED_ANON +
82 				page_is_file_cache(page));
83 		putback_lru_page(page);
84 	}
85 }
86 
87 /*
88  * Restore a potential migration pte to a working pte entry
89  */
90 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91 				 unsigned long addr, void *old)
92 {
93 	struct mm_struct *mm = vma->vm_mm;
94 	swp_entry_t entry;
95  	pgd_t *pgd;
96  	pud_t *pud;
97  	pmd_t *pmd;
98 	pte_t *ptep, pte;
99  	spinlock_t *ptl;
100 
101 	if (unlikely(PageHuge(new))) {
102 		ptep = huge_pte_offset(mm, addr);
103 		if (!ptep)
104 			goto out;
105 		ptl = &mm->page_table_lock;
106 	} else {
107 		pgd = pgd_offset(mm, addr);
108 		if (!pgd_present(*pgd))
109 			goto out;
110 
111 		pud = pud_offset(pgd, addr);
112 		if (!pud_present(*pud))
113 			goto out;
114 
115 		pmd = pmd_offset(pud, addr);
116 		if (pmd_trans_huge(*pmd))
117 			goto out;
118 		if (!pmd_present(*pmd))
119 			goto out;
120 
121 		ptep = pte_offset_map(pmd, addr);
122 
123 		if (!is_swap_pte(*ptep)) {
124 			pte_unmap(ptep);
125 			goto out;
126 		}
127 
128 		ptl = pte_lockptr(mm, pmd);
129 	}
130 
131  	spin_lock(ptl);
132 	pte = *ptep;
133 	if (!is_swap_pte(pte))
134 		goto unlock;
135 
136 	entry = pte_to_swp_entry(pte);
137 
138 	if (!is_migration_entry(entry) ||
139 	    migration_entry_to_page(entry) != old)
140 		goto unlock;
141 
142 	get_page(new);
143 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
144 	if (is_write_migration_entry(entry))
145 		pte = pte_mkwrite(pte);
146 #ifdef CONFIG_HUGETLB_PAGE
147 	if (PageHuge(new))
148 		pte = pte_mkhuge(pte);
149 #endif
150 	flush_cache_page(vma, addr, pte_pfn(pte));
151 	set_pte_at(mm, addr, ptep, pte);
152 
153 	if (PageHuge(new)) {
154 		if (PageAnon(new))
155 			hugepage_add_anon_rmap(new, vma, addr);
156 		else
157 			page_dup_rmap(new);
158 	} else if (PageAnon(new))
159 		page_add_anon_rmap(new, vma, addr);
160 	else
161 		page_add_file_rmap(new);
162 
163 	/* No need to invalidate - it was non-present before */
164 	update_mmu_cache(vma, addr, ptep);
165 unlock:
166 	pte_unmap_unlock(ptep, ptl);
167 out:
168 	return SWAP_AGAIN;
169 }
170 
171 /*
172  * Get rid of all migration entries and replace them by
173  * references to the indicated page.
174  */
175 static void remove_migration_ptes(struct page *old, struct page *new)
176 {
177 	rmap_walk(new, remove_migration_pte, old);
178 }
179 
180 /*
181  * Something used the pte of a page under migration. We need to
182  * get to the page and wait until migration is finished.
183  * When we return from this function the fault will be retried.
184  *
185  * This function is called from do_swap_page().
186  */
187 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
188 				unsigned long address)
189 {
190 	pte_t *ptep, pte;
191 	spinlock_t *ptl;
192 	swp_entry_t entry;
193 	struct page *page;
194 
195 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
196 	pte = *ptep;
197 	if (!is_swap_pte(pte))
198 		goto out;
199 
200 	entry = pte_to_swp_entry(pte);
201 	if (!is_migration_entry(entry))
202 		goto out;
203 
204 	page = migration_entry_to_page(entry);
205 
206 	/*
207 	 * Once radix-tree replacement of page migration started, page_count
208 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
209 	 * against a page without get_page().
210 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
211 	 * will occur again.
212 	 */
213 	if (!get_page_unless_zero(page))
214 		goto out;
215 	pte_unmap_unlock(ptep, ptl);
216 	wait_on_page_locked(page);
217 	put_page(page);
218 	return;
219 out:
220 	pte_unmap_unlock(ptep, ptl);
221 }
222 
223 /*
224  * Replace the page in the mapping.
225  *
226  * The number of remaining references must be:
227  * 1 for anonymous pages without a mapping
228  * 2 for pages with a mapping
229  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
230  */
231 static int migrate_page_move_mapping(struct address_space *mapping,
232 		struct page *newpage, struct page *page)
233 {
234 	int expected_count;
235 	void **pslot;
236 
237 	if (!mapping) {
238 		/* Anonymous page without mapping */
239 		if (page_count(page) != 1)
240 			return -EAGAIN;
241 		return 0;
242 	}
243 
244 	spin_lock_irq(&mapping->tree_lock);
245 
246 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
247  					page_index(page));
248 
249 	expected_count = 2 + page_has_private(page);
250 	if (page_count(page) != expected_count ||
251 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
252 		spin_unlock_irq(&mapping->tree_lock);
253 		return -EAGAIN;
254 	}
255 
256 	if (!page_freeze_refs(page, expected_count)) {
257 		spin_unlock_irq(&mapping->tree_lock);
258 		return -EAGAIN;
259 	}
260 
261 	/*
262 	 * Now we know that no one else is looking at the page.
263 	 */
264 	get_page(newpage);	/* add cache reference */
265 	if (PageSwapCache(page)) {
266 		SetPageSwapCache(newpage);
267 		set_page_private(newpage, page_private(page));
268 	}
269 
270 	radix_tree_replace_slot(pslot, newpage);
271 
272 	page_unfreeze_refs(page, expected_count);
273 	/*
274 	 * Drop cache reference from old page.
275 	 * We know this isn't the last reference.
276 	 */
277 	__put_page(page);
278 
279 	/*
280 	 * If moved to a different zone then also account
281 	 * the page for that zone. Other VM counters will be
282 	 * taken care of when we establish references to the
283 	 * new page and drop references to the old page.
284 	 *
285 	 * Note that anonymous pages are accounted for
286 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
287 	 * are mapped to swap space.
288 	 */
289 	__dec_zone_page_state(page, NR_FILE_PAGES);
290 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
291 	if (PageSwapBacked(page)) {
292 		__dec_zone_page_state(page, NR_SHMEM);
293 		__inc_zone_page_state(newpage, NR_SHMEM);
294 	}
295 	spin_unlock_irq(&mapping->tree_lock);
296 
297 	return 0;
298 }
299 
300 /*
301  * The expected number of remaining references is the same as that
302  * of migrate_page_move_mapping().
303  */
304 int migrate_huge_page_move_mapping(struct address_space *mapping,
305 				   struct page *newpage, struct page *page)
306 {
307 	int expected_count;
308 	void **pslot;
309 
310 	if (!mapping) {
311 		if (page_count(page) != 1)
312 			return -EAGAIN;
313 		return 0;
314 	}
315 
316 	spin_lock_irq(&mapping->tree_lock);
317 
318 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
319 					page_index(page));
320 
321 	expected_count = 2 + page_has_private(page);
322 	if (page_count(page) != expected_count ||
323 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
324 		spin_unlock_irq(&mapping->tree_lock);
325 		return -EAGAIN;
326 	}
327 
328 	if (!page_freeze_refs(page, expected_count)) {
329 		spin_unlock_irq(&mapping->tree_lock);
330 		return -EAGAIN;
331 	}
332 
333 	get_page(newpage);
334 
335 	radix_tree_replace_slot(pslot, newpage);
336 
337 	page_unfreeze_refs(page, expected_count);
338 
339 	__put_page(page);
340 
341 	spin_unlock_irq(&mapping->tree_lock);
342 	return 0;
343 }
344 
345 /*
346  * Copy the page to its new location
347  */
348 void migrate_page_copy(struct page *newpage, struct page *page)
349 {
350 	if (PageHuge(page))
351 		copy_huge_page(newpage, page);
352 	else
353 		copy_highpage(newpage, page);
354 
355 	if (PageError(page))
356 		SetPageError(newpage);
357 	if (PageReferenced(page))
358 		SetPageReferenced(newpage);
359 	if (PageUptodate(page))
360 		SetPageUptodate(newpage);
361 	if (TestClearPageActive(page)) {
362 		VM_BUG_ON(PageUnevictable(page));
363 		SetPageActive(newpage);
364 	} else if (TestClearPageUnevictable(page))
365 		SetPageUnevictable(newpage);
366 	if (PageChecked(page))
367 		SetPageChecked(newpage);
368 	if (PageMappedToDisk(page))
369 		SetPageMappedToDisk(newpage);
370 
371 	if (PageDirty(page)) {
372 		clear_page_dirty_for_io(page);
373 		/*
374 		 * Want to mark the page and the radix tree as dirty, and
375 		 * redo the accounting that clear_page_dirty_for_io undid,
376 		 * but we can't use set_page_dirty because that function
377 		 * is actually a signal that all of the page has become dirty.
378 		 * Whereas only part of our page may be dirty.
379 		 */
380 		__set_page_dirty_nobuffers(newpage);
381  	}
382 
383 	mlock_migrate_page(newpage, page);
384 	ksm_migrate_page(newpage, page);
385 
386 	ClearPageSwapCache(page);
387 	ClearPagePrivate(page);
388 	set_page_private(page, 0);
389 	page->mapping = NULL;
390 
391 	/*
392 	 * If any waiters have accumulated on the new page then
393 	 * wake them up.
394 	 */
395 	if (PageWriteback(newpage))
396 		end_page_writeback(newpage);
397 }
398 
399 /************************************************************
400  *                    Migration functions
401  ***********************************************************/
402 
403 /* Always fail migration. Used for mappings that are not movable */
404 int fail_migrate_page(struct address_space *mapping,
405 			struct page *newpage, struct page *page)
406 {
407 	return -EIO;
408 }
409 EXPORT_SYMBOL(fail_migrate_page);
410 
411 /*
412  * Common logic to directly migrate a single page suitable for
413  * pages that do not use PagePrivate/PagePrivate2.
414  *
415  * Pages are locked upon entry and exit.
416  */
417 int migrate_page(struct address_space *mapping,
418 		struct page *newpage, struct page *page)
419 {
420 	int rc;
421 
422 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
423 
424 	rc = migrate_page_move_mapping(mapping, newpage, page);
425 
426 	if (rc)
427 		return rc;
428 
429 	migrate_page_copy(newpage, page);
430 	return 0;
431 }
432 EXPORT_SYMBOL(migrate_page);
433 
434 #ifdef CONFIG_BLOCK
435 /*
436  * Migration function for pages with buffers. This function can only be used
437  * if the underlying filesystem guarantees that no other references to "page"
438  * exist.
439  */
440 int buffer_migrate_page(struct address_space *mapping,
441 		struct page *newpage, struct page *page)
442 {
443 	struct buffer_head *bh, *head;
444 	int rc;
445 
446 	if (!page_has_buffers(page))
447 		return migrate_page(mapping, newpage, page);
448 
449 	head = page_buffers(page);
450 
451 	rc = migrate_page_move_mapping(mapping, newpage, page);
452 
453 	if (rc)
454 		return rc;
455 
456 	bh = head;
457 	do {
458 		get_bh(bh);
459 		lock_buffer(bh);
460 		bh = bh->b_this_page;
461 
462 	} while (bh != head);
463 
464 	ClearPagePrivate(page);
465 	set_page_private(newpage, page_private(page));
466 	set_page_private(page, 0);
467 	put_page(page);
468 	get_page(newpage);
469 
470 	bh = head;
471 	do {
472 		set_bh_page(bh, newpage, bh_offset(bh));
473 		bh = bh->b_this_page;
474 
475 	} while (bh != head);
476 
477 	SetPagePrivate(newpage);
478 
479 	migrate_page_copy(newpage, page);
480 
481 	bh = head;
482 	do {
483 		unlock_buffer(bh);
484  		put_bh(bh);
485 		bh = bh->b_this_page;
486 
487 	} while (bh != head);
488 
489 	return 0;
490 }
491 EXPORT_SYMBOL(buffer_migrate_page);
492 #endif
493 
494 /*
495  * Writeback a page to clean the dirty state
496  */
497 static int writeout(struct address_space *mapping, struct page *page)
498 {
499 	struct writeback_control wbc = {
500 		.sync_mode = WB_SYNC_NONE,
501 		.nr_to_write = 1,
502 		.range_start = 0,
503 		.range_end = LLONG_MAX,
504 		.for_reclaim = 1
505 	};
506 	int rc;
507 
508 	if (!mapping->a_ops->writepage)
509 		/* No write method for the address space */
510 		return -EINVAL;
511 
512 	if (!clear_page_dirty_for_io(page))
513 		/* Someone else already triggered a write */
514 		return -EAGAIN;
515 
516 	/*
517 	 * A dirty page may imply that the underlying filesystem has
518 	 * the page on some queue. So the page must be clean for
519 	 * migration. Writeout may mean we loose the lock and the
520 	 * page state is no longer what we checked for earlier.
521 	 * At this point we know that the migration attempt cannot
522 	 * be successful.
523 	 */
524 	remove_migration_ptes(page, page);
525 
526 	rc = mapping->a_ops->writepage(page, &wbc);
527 
528 	if (rc != AOP_WRITEPAGE_ACTIVATE)
529 		/* unlocked. Relock */
530 		lock_page(page);
531 
532 	return (rc < 0) ? -EIO : -EAGAIN;
533 }
534 
535 /*
536  * Default handling if a filesystem does not provide a migration function.
537  */
538 static int fallback_migrate_page(struct address_space *mapping,
539 	struct page *newpage, struct page *page)
540 {
541 	if (PageDirty(page))
542 		return writeout(mapping, page);
543 
544 	/*
545 	 * Buffers may be managed in a filesystem specific way.
546 	 * We must have no buffers or drop them.
547 	 */
548 	if (page_has_private(page) &&
549 	    !try_to_release_page(page, GFP_KERNEL))
550 		return -EAGAIN;
551 
552 	return migrate_page(mapping, newpage, page);
553 }
554 
555 /*
556  * Move a page to a newly allocated page
557  * The page is locked and all ptes have been successfully removed.
558  *
559  * The new page will have replaced the old page if this function
560  * is successful.
561  *
562  * Return value:
563  *   < 0 - error code
564  *  == 0 - success
565  */
566 static int move_to_new_page(struct page *newpage, struct page *page,
567 					int remap_swapcache, bool sync)
568 {
569 	struct address_space *mapping;
570 	int rc;
571 
572 	/*
573 	 * Block others from accessing the page when we get around to
574 	 * establishing additional references. We are the only one
575 	 * holding a reference to the new page at this point.
576 	 */
577 	if (!trylock_page(newpage))
578 		BUG();
579 
580 	/* Prepare mapping for the new page.*/
581 	newpage->index = page->index;
582 	newpage->mapping = page->mapping;
583 	if (PageSwapBacked(page))
584 		SetPageSwapBacked(newpage);
585 
586 	mapping = page_mapping(page);
587 	if (!mapping)
588 		rc = migrate_page(mapping, newpage, page);
589 	else {
590 		/*
591 		 * Do not writeback pages if !sync and migratepage is
592 		 * not pointing to migrate_page() which is nonblocking
593 		 * (swapcache/tmpfs uses migratepage = migrate_page).
594 		 */
595 		if (PageDirty(page) && !sync &&
596 		    mapping->a_ops->migratepage != migrate_page)
597 			rc = -EBUSY;
598 		else if (mapping->a_ops->migratepage)
599 			/*
600 			 * Most pages have a mapping and most filesystems
601 			 * should provide a migration function. Anonymous
602 			 * pages are part of swap space which also has its
603 			 * own migration function. This is the most common
604 			 * path for page migration.
605 			 */
606 			rc = mapping->a_ops->migratepage(mapping,
607 							newpage, page);
608 		else
609 			rc = fallback_migrate_page(mapping, newpage, page);
610 	}
611 
612 	if (rc) {
613 		newpage->mapping = NULL;
614 	} else {
615 		if (remap_swapcache)
616 			remove_migration_ptes(page, newpage);
617 	}
618 
619 	unlock_page(newpage);
620 
621 	return rc;
622 }
623 
624 /*
625  * Obtain the lock on page, remove all ptes and migrate the page
626  * to the newly allocated page in newpage.
627  */
628 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
629 			struct page *page, int force, bool offlining, bool sync)
630 {
631 	int rc = 0;
632 	int *result = NULL;
633 	struct page *newpage = get_new_page(page, private, &result);
634 	int remap_swapcache = 1;
635 	int charge = 0;
636 	struct mem_cgroup *mem;
637 	struct anon_vma *anon_vma = NULL;
638 
639 	if (!newpage)
640 		return -ENOMEM;
641 
642 	if (page_count(page) == 1) {
643 		/* page was freed from under us. So we are done. */
644 		goto move_newpage;
645 	}
646 	if (unlikely(PageTransHuge(page)))
647 		if (unlikely(split_huge_page(page)))
648 			goto move_newpage;
649 
650 	/* prepare cgroup just returns 0 or -ENOMEM */
651 	rc = -EAGAIN;
652 
653 	if (!trylock_page(page)) {
654 		if (!force || !sync)
655 			goto move_newpage;
656 
657 		/*
658 		 * It's not safe for direct compaction to call lock_page.
659 		 * For example, during page readahead pages are added locked
660 		 * to the LRU. Later, when the IO completes the pages are
661 		 * marked uptodate and unlocked. However, the queueing
662 		 * could be merging multiple pages for one bio (e.g.
663 		 * mpage_readpages). If an allocation happens for the
664 		 * second or third page, the process can end up locking
665 		 * the same page twice and deadlocking. Rather than
666 		 * trying to be clever about what pages can be locked,
667 		 * avoid the use of lock_page for direct compaction
668 		 * altogether.
669 		 */
670 		if (current->flags & PF_MEMALLOC)
671 			goto move_newpage;
672 
673 		lock_page(page);
674 	}
675 
676 	/*
677 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
678 	 * and can safely migrate a KSM page.  The other cases have skipped
679 	 * PageKsm along with PageReserved - but it is only now when we have
680 	 * the page lock that we can be certain it will not go KSM beneath us
681 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
682 	 * its pagecount raised, but only here do we take the page lock which
683 	 * serializes that).
684 	 */
685 	if (PageKsm(page) && !offlining) {
686 		rc = -EBUSY;
687 		goto unlock;
688 	}
689 
690 	/* charge against new page */
691 	charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
692 	if (charge == -ENOMEM) {
693 		rc = -ENOMEM;
694 		goto unlock;
695 	}
696 	BUG_ON(charge);
697 
698 	if (PageWriteback(page)) {
699 		/*
700 		 * For !sync, there is no point retrying as the retry loop
701 		 * is expected to be too short for PageWriteback to be cleared
702 		 */
703 		if (!sync) {
704 			rc = -EBUSY;
705 			goto uncharge;
706 		}
707 		if (!force)
708 			goto uncharge;
709 		wait_on_page_writeback(page);
710 	}
711 	/*
712 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
713 	 * we cannot notice that anon_vma is freed while we migrates a page.
714 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
715 	 * of migration. File cache pages are no problem because of page_lock()
716 	 * File Caches may use write_page() or lock_page() in migration, then,
717 	 * just care Anon page here.
718 	 */
719 	if (PageAnon(page)) {
720 		/*
721 		 * Only page_lock_anon_vma() understands the subtleties of
722 		 * getting a hold on an anon_vma from outside one of its mms.
723 		 */
724 		anon_vma = page_get_anon_vma(page);
725 		if (anon_vma) {
726 			/*
727 			 * Anon page
728 			 */
729 		} else if (PageSwapCache(page)) {
730 			/*
731 			 * We cannot be sure that the anon_vma of an unmapped
732 			 * swapcache page is safe to use because we don't
733 			 * know in advance if the VMA that this page belonged
734 			 * to still exists. If the VMA and others sharing the
735 			 * data have been freed, then the anon_vma could
736 			 * already be invalid.
737 			 *
738 			 * To avoid this possibility, swapcache pages get
739 			 * migrated but are not remapped when migration
740 			 * completes
741 			 */
742 			remap_swapcache = 0;
743 		} else {
744 			goto uncharge;
745 		}
746 	}
747 
748 	/*
749 	 * Corner case handling:
750 	 * 1. When a new swap-cache page is read into, it is added to the LRU
751 	 * and treated as swapcache but it has no rmap yet.
752 	 * Calling try_to_unmap() against a page->mapping==NULL page will
753 	 * trigger a BUG.  So handle it here.
754 	 * 2. An orphaned page (see truncate_complete_page) might have
755 	 * fs-private metadata. The page can be picked up due to memory
756 	 * offlining.  Everywhere else except page reclaim, the page is
757 	 * invisible to the vm, so the page can not be migrated.  So try to
758 	 * free the metadata, so the page can be freed.
759 	 */
760 	if (!page->mapping) {
761 		VM_BUG_ON(PageAnon(page));
762 		if (page_has_private(page)) {
763 			try_to_free_buffers(page);
764 			goto uncharge;
765 		}
766 		goto skip_unmap;
767 	}
768 
769 	/* Establish migration ptes or remove ptes */
770 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
771 
772 skip_unmap:
773 	if (!page_mapped(page))
774 		rc = move_to_new_page(newpage, page, remap_swapcache, sync);
775 
776 	if (rc && remap_swapcache)
777 		remove_migration_ptes(page, page);
778 
779 	/* Drop an anon_vma reference if we took one */
780 	if (anon_vma)
781 		put_anon_vma(anon_vma);
782 
783 uncharge:
784 	if (!charge)
785 		mem_cgroup_end_migration(mem, page, newpage, rc == 0);
786 unlock:
787 	unlock_page(page);
788 
789 move_newpage:
790 	if (rc != -EAGAIN) {
791  		/*
792  		 * A page that has been migrated has all references
793  		 * removed and will be freed. A page that has not been
794  		 * migrated will have kepts its references and be
795  		 * restored.
796  		 */
797  		list_del(&page->lru);
798 		dec_zone_page_state(page, NR_ISOLATED_ANON +
799 				page_is_file_cache(page));
800 		putback_lru_page(page);
801 	}
802 
803 	/*
804 	 * Move the new page to the LRU. If migration was not successful
805 	 * then this will free the page.
806 	 */
807 	putback_lru_page(newpage);
808 
809 	if (result) {
810 		if (rc)
811 			*result = rc;
812 		else
813 			*result = page_to_nid(newpage);
814 	}
815 	return rc;
816 }
817 
818 /*
819  * Counterpart of unmap_and_move_page() for hugepage migration.
820  *
821  * This function doesn't wait the completion of hugepage I/O
822  * because there is no race between I/O and migration for hugepage.
823  * Note that currently hugepage I/O occurs only in direct I/O
824  * where no lock is held and PG_writeback is irrelevant,
825  * and writeback status of all subpages are counted in the reference
826  * count of the head page (i.e. if all subpages of a 2MB hugepage are
827  * under direct I/O, the reference of the head page is 512 and a bit more.)
828  * This means that when we try to migrate hugepage whose subpages are
829  * doing direct I/O, some references remain after try_to_unmap() and
830  * hugepage migration fails without data corruption.
831  *
832  * There is also no race when direct I/O is issued on the page under migration,
833  * because then pte is replaced with migration swap entry and direct I/O code
834  * will wait in the page fault for migration to complete.
835  */
836 static int unmap_and_move_huge_page(new_page_t get_new_page,
837 				unsigned long private, struct page *hpage,
838 				int force, bool offlining, bool sync)
839 {
840 	int rc = 0;
841 	int *result = NULL;
842 	struct page *new_hpage = get_new_page(hpage, private, &result);
843 	struct anon_vma *anon_vma = NULL;
844 
845 	if (!new_hpage)
846 		return -ENOMEM;
847 
848 	rc = -EAGAIN;
849 
850 	if (!trylock_page(hpage)) {
851 		if (!force || !sync)
852 			goto out;
853 		lock_page(hpage);
854 	}
855 
856 	if (PageAnon(hpage))
857 		anon_vma = page_get_anon_vma(hpage);
858 
859 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
860 
861 	if (!page_mapped(hpage))
862 		rc = move_to_new_page(new_hpage, hpage, 1, sync);
863 
864 	if (rc)
865 		remove_migration_ptes(hpage, hpage);
866 
867 	if (anon_vma)
868 		put_anon_vma(anon_vma);
869 out:
870 	unlock_page(hpage);
871 
872 	if (rc != -EAGAIN) {
873 		list_del(&hpage->lru);
874 		put_page(hpage);
875 	}
876 
877 	put_page(new_hpage);
878 
879 	if (result) {
880 		if (rc)
881 			*result = rc;
882 		else
883 			*result = page_to_nid(new_hpage);
884 	}
885 	return rc;
886 }
887 
888 /*
889  * migrate_pages
890  *
891  * The function takes one list of pages to migrate and a function
892  * that determines from the page to be migrated and the private data
893  * the target of the move and allocates the page.
894  *
895  * The function returns after 10 attempts or if no pages
896  * are movable anymore because to has become empty
897  * or no retryable pages exist anymore.
898  * Caller should call putback_lru_pages to return pages to the LRU
899  * or free list only if ret != 0.
900  *
901  * Return: Number of pages not migrated or error code.
902  */
903 int migrate_pages(struct list_head *from,
904 		new_page_t get_new_page, unsigned long private, bool offlining,
905 		bool sync)
906 {
907 	int retry = 1;
908 	int nr_failed = 0;
909 	int pass = 0;
910 	struct page *page;
911 	struct page *page2;
912 	int swapwrite = current->flags & PF_SWAPWRITE;
913 	int rc;
914 
915 	if (!swapwrite)
916 		current->flags |= PF_SWAPWRITE;
917 
918 	for(pass = 0; pass < 10 && retry; pass++) {
919 		retry = 0;
920 
921 		list_for_each_entry_safe(page, page2, from, lru) {
922 			cond_resched();
923 
924 			rc = unmap_and_move(get_new_page, private,
925 						page, pass > 2, offlining,
926 						sync);
927 
928 			switch(rc) {
929 			case -ENOMEM:
930 				goto out;
931 			case -EAGAIN:
932 				retry++;
933 				break;
934 			case 0:
935 				break;
936 			default:
937 				/* Permanent failure */
938 				nr_failed++;
939 				break;
940 			}
941 		}
942 	}
943 	rc = 0;
944 out:
945 	if (!swapwrite)
946 		current->flags &= ~PF_SWAPWRITE;
947 
948 	if (rc)
949 		return rc;
950 
951 	return nr_failed + retry;
952 }
953 
954 int migrate_huge_pages(struct list_head *from,
955 		new_page_t get_new_page, unsigned long private, bool offlining,
956 		bool sync)
957 {
958 	int retry = 1;
959 	int nr_failed = 0;
960 	int pass = 0;
961 	struct page *page;
962 	struct page *page2;
963 	int rc;
964 
965 	for (pass = 0; pass < 10 && retry; pass++) {
966 		retry = 0;
967 
968 		list_for_each_entry_safe(page, page2, from, lru) {
969 			cond_resched();
970 
971 			rc = unmap_and_move_huge_page(get_new_page,
972 					private, page, pass > 2, offlining,
973 					sync);
974 
975 			switch(rc) {
976 			case -ENOMEM:
977 				goto out;
978 			case -EAGAIN:
979 				retry++;
980 				break;
981 			case 0:
982 				break;
983 			default:
984 				/* Permanent failure */
985 				nr_failed++;
986 				break;
987 			}
988 		}
989 	}
990 	rc = 0;
991 out:
992 	if (rc)
993 		return rc;
994 
995 	return nr_failed + retry;
996 }
997 
998 #ifdef CONFIG_NUMA
999 /*
1000  * Move a list of individual pages
1001  */
1002 struct page_to_node {
1003 	unsigned long addr;
1004 	struct page *page;
1005 	int node;
1006 	int status;
1007 };
1008 
1009 static struct page *new_page_node(struct page *p, unsigned long private,
1010 		int **result)
1011 {
1012 	struct page_to_node *pm = (struct page_to_node *)private;
1013 
1014 	while (pm->node != MAX_NUMNODES && pm->page != p)
1015 		pm++;
1016 
1017 	if (pm->node == MAX_NUMNODES)
1018 		return NULL;
1019 
1020 	*result = &pm->status;
1021 
1022 	return alloc_pages_exact_node(pm->node,
1023 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1024 }
1025 
1026 /*
1027  * Move a set of pages as indicated in the pm array. The addr
1028  * field must be set to the virtual address of the page to be moved
1029  * and the node number must contain a valid target node.
1030  * The pm array ends with node = MAX_NUMNODES.
1031  */
1032 static int do_move_page_to_node_array(struct mm_struct *mm,
1033 				      struct page_to_node *pm,
1034 				      int migrate_all)
1035 {
1036 	int err;
1037 	struct page_to_node *pp;
1038 	LIST_HEAD(pagelist);
1039 
1040 	down_read(&mm->mmap_sem);
1041 
1042 	/*
1043 	 * Build a list of pages to migrate
1044 	 */
1045 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1046 		struct vm_area_struct *vma;
1047 		struct page *page;
1048 
1049 		err = -EFAULT;
1050 		vma = find_vma(mm, pp->addr);
1051 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1052 			goto set_status;
1053 
1054 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1055 
1056 		err = PTR_ERR(page);
1057 		if (IS_ERR(page))
1058 			goto set_status;
1059 
1060 		err = -ENOENT;
1061 		if (!page)
1062 			goto set_status;
1063 
1064 		/* Use PageReserved to check for zero page */
1065 		if (PageReserved(page) || PageKsm(page))
1066 			goto put_and_set;
1067 
1068 		pp->page = page;
1069 		err = page_to_nid(page);
1070 
1071 		if (err == pp->node)
1072 			/*
1073 			 * Node already in the right place
1074 			 */
1075 			goto put_and_set;
1076 
1077 		err = -EACCES;
1078 		if (page_mapcount(page) > 1 &&
1079 				!migrate_all)
1080 			goto put_and_set;
1081 
1082 		err = isolate_lru_page(page);
1083 		if (!err) {
1084 			list_add_tail(&page->lru, &pagelist);
1085 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1086 					    page_is_file_cache(page));
1087 		}
1088 put_and_set:
1089 		/*
1090 		 * Either remove the duplicate refcount from
1091 		 * isolate_lru_page() or drop the page ref if it was
1092 		 * not isolated.
1093 		 */
1094 		put_page(page);
1095 set_status:
1096 		pp->status = err;
1097 	}
1098 
1099 	err = 0;
1100 	if (!list_empty(&pagelist)) {
1101 		err = migrate_pages(&pagelist, new_page_node,
1102 				(unsigned long)pm, 0, true);
1103 		if (err)
1104 			putback_lru_pages(&pagelist);
1105 	}
1106 
1107 	up_read(&mm->mmap_sem);
1108 	return err;
1109 }
1110 
1111 /*
1112  * Migrate an array of page address onto an array of nodes and fill
1113  * the corresponding array of status.
1114  */
1115 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1116 			 unsigned long nr_pages,
1117 			 const void __user * __user *pages,
1118 			 const int __user *nodes,
1119 			 int __user *status, int flags)
1120 {
1121 	struct page_to_node *pm;
1122 	nodemask_t task_nodes;
1123 	unsigned long chunk_nr_pages;
1124 	unsigned long chunk_start;
1125 	int err;
1126 
1127 	task_nodes = cpuset_mems_allowed(task);
1128 
1129 	err = -ENOMEM;
1130 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1131 	if (!pm)
1132 		goto out;
1133 
1134 	migrate_prep();
1135 
1136 	/*
1137 	 * Store a chunk of page_to_node array in a page,
1138 	 * but keep the last one as a marker
1139 	 */
1140 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1141 
1142 	for (chunk_start = 0;
1143 	     chunk_start < nr_pages;
1144 	     chunk_start += chunk_nr_pages) {
1145 		int j;
1146 
1147 		if (chunk_start + chunk_nr_pages > nr_pages)
1148 			chunk_nr_pages = nr_pages - chunk_start;
1149 
1150 		/* fill the chunk pm with addrs and nodes from user-space */
1151 		for (j = 0; j < chunk_nr_pages; j++) {
1152 			const void __user *p;
1153 			int node;
1154 
1155 			err = -EFAULT;
1156 			if (get_user(p, pages + j + chunk_start))
1157 				goto out_pm;
1158 			pm[j].addr = (unsigned long) p;
1159 
1160 			if (get_user(node, nodes + j + chunk_start))
1161 				goto out_pm;
1162 
1163 			err = -ENODEV;
1164 			if (node < 0 || node >= MAX_NUMNODES)
1165 				goto out_pm;
1166 
1167 			if (!node_state(node, N_HIGH_MEMORY))
1168 				goto out_pm;
1169 
1170 			err = -EACCES;
1171 			if (!node_isset(node, task_nodes))
1172 				goto out_pm;
1173 
1174 			pm[j].node = node;
1175 		}
1176 
1177 		/* End marker for this chunk */
1178 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1179 
1180 		/* Migrate this chunk */
1181 		err = do_move_page_to_node_array(mm, pm,
1182 						 flags & MPOL_MF_MOVE_ALL);
1183 		if (err < 0)
1184 			goto out_pm;
1185 
1186 		/* Return status information */
1187 		for (j = 0; j < chunk_nr_pages; j++)
1188 			if (put_user(pm[j].status, status + j + chunk_start)) {
1189 				err = -EFAULT;
1190 				goto out_pm;
1191 			}
1192 	}
1193 	err = 0;
1194 
1195 out_pm:
1196 	free_page((unsigned long)pm);
1197 out:
1198 	return err;
1199 }
1200 
1201 /*
1202  * Determine the nodes of an array of pages and store it in an array of status.
1203  */
1204 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1205 				const void __user **pages, int *status)
1206 {
1207 	unsigned long i;
1208 
1209 	down_read(&mm->mmap_sem);
1210 
1211 	for (i = 0; i < nr_pages; i++) {
1212 		unsigned long addr = (unsigned long)(*pages);
1213 		struct vm_area_struct *vma;
1214 		struct page *page;
1215 		int err = -EFAULT;
1216 
1217 		vma = find_vma(mm, addr);
1218 		if (!vma || addr < vma->vm_start)
1219 			goto set_status;
1220 
1221 		page = follow_page(vma, addr, 0);
1222 
1223 		err = PTR_ERR(page);
1224 		if (IS_ERR(page))
1225 			goto set_status;
1226 
1227 		err = -ENOENT;
1228 		/* Use PageReserved to check for zero page */
1229 		if (!page || PageReserved(page) || PageKsm(page))
1230 			goto set_status;
1231 
1232 		err = page_to_nid(page);
1233 set_status:
1234 		*status = err;
1235 
1236 		pages++;
1237 		status++;
1238 	}
1239 
1240 	up_read(&mm->mmap_sem);
1241 }
1242 
1243 /*
1244  * Determine the nodes of a user array of pages and store it in
1245  * a user array of status.
1246  */
1247 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1248 			 const void __user * __user *pages,
1249 			 int __user *status)
1250 {
1251 #define DO_PAGES_STAT_CHUNK_NR 16
1252 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1253 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1254 
1255 	while (nr_pages) {
1256 		unsigned long chunk_nr;
1257 
1258 		chunk_nr = nr_pages;
1259 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1260 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1261 
1262 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1263 			break;
1264 
1265 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1266 
1267 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1268 			break;
1269 
1270 		pages += chunk_nr;
1271 		status += chunk_nr;
1272 		nr_pages -= chunk_nr;
1273 	}
1274 	return nr_pages ? -EFAULT : 0;
1275 }
1276 
1277 /*
1278  * Move a list of pages in the address space of the currently executing
1279  * process.
1280  */
1281 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1282 		const void __user * __user *, pages,
1283 		const int __user *, nodes,
1284 		int __user *, status, int, flags)
1285 {
1286 	const struct cred *cred = current_cred(), *tcred;
1287 	struct task_struct *task;
1288 	struct mm_struct *mm;
1289 	int err;
1290 
1291 	/* Check flags */
1292 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1293 		return -EINVAL;
1294 
1295 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1296 		return -EPERM;
1297 
1298 	/* Find the mm_struct */
1299 	rcu_read_lock();
1300 	task = pid ? find_task_by_vpid(pid) : current;
1301 	if (!task) {
1302 		rcu_read_unlock();
1303 		return -ESRCH;
1304 	}
1305 	mm = get_task_mm(task);
1306 	rcu_read_unlock();
1307 
1308 	if (!mm)
1309 		return -EINVAL;
1310 
1311 	/*
1312 	 * Check if this process has the right to modify the specified
1313 	 * process. The right exists if the process has administrative
1314 	 * capabilities, superuser privileges or the same
1315 	 * userid as the target process.
1316 	 */
1317 	rcu_read_lock();
1318 	tcred = __task_cred(task);
1319 	if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1320 	    cred->uid  != tcred->suid && cred->uid  != tcred->uid &&
1321 	    !capable(CAP_SYS_NICE)) {
1322 		rcu_read_unlock();
1323 		err = -EPERM;
1324 		goto out;
1325 	}
1326 	rcu_read_unlock();
1327 
1328  	err = security_task_movememory(task);
1329  	if (err)
1330 		goto out;
1331 
1332 	if (nodes) {
1333 		err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1334 				    flags);
1335 	} else {
1336 		err = do_pages_stat(mm, nr_pages, pages, status);
1337 	}
1338 
1339 out:
1340 	mmput(mm);
1341 	return err;
1342 }
1343 
1344 /*
1345  * Call migration functions in the vma_ops that may prepare
1346  * memory in a vm for migration. migration functions may perform
1347  * the migration for vmas that do not have an underlying page struct.
1348  */
1349 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1350 	const nodemask_t *from, unsigned long flags)
1351 {
1352  	struct vm_area_struct *vma;
1353  	int err = 0;
1354 
1355 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1356  		if (vma->vm_ops && vma->vm_ops->migrate) {
1357  			err = vma->vm_ops->migrate(vma, to, from, flags);
1358  			if (err)
1359  				break;
1360  		}
1361  	}
1362  	return err;
1363 }
1364 #endif
1365