xref: /linux/mm/migrate.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * Memory Migration functionality - linux/mm/migration.c
3  *
4  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5  *
6  * Page migration was first developed in the context of the memory hotplug
7  * project. The main authors of the migration code are:
8  *
9  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10  * Hirokazu Takahashi <taka@valinux.co.jp>
11  * Dave Hansen <haveblue@us.ibm.com>
12  * Christoph Lameter
13  */
14 
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
44 
45 #include "internal.h"
46 
47 /*
48  * migrate_prep() needs to be called before we start compiling a list of pages
49  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50  * undesirable, use migrate_prep_local()
51  */
52 int migrate_prep(void)
53 {
54 	/*
55 	 * Clear the LRU lists so pages can be isolated.
56 	 * Note that pages may be moved off the LRU after we have
57 	 * drained them. Those pages will fail to migrate like other
58 	 * pages that may be busy.
59 	 */
60 	lru_add_drain_all();
61 
62 	return 0;
63 }
64 
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
67 {
68 	lru_add_drain();
69 
70 	return 0;
71 }
72 
73 /*
74  * Add isolated pages on the list back to the LRU under page lock
75  * to avoid leaking evictable pages back onto unevictable list.
76  */
77 void putback_lru_pages(struct list_head *l)
78 {
79 	struct page *page;
80 	struct page *page2;
81 
82 	list_for_each_entry_safe(page, page2, l, lru) {
83 		list_del(&page->lru);
84 		dec_zone_page_state(page, NR_ISOLATED_ANON +
85 				page_is_file_cache(page));
86 			putback_lru_page(page);
87 	}
88 }
89 
90 /*
91  * Put previously isolated pages back onto the appropriate lists
92  * from where they were once taken off for compaction/migration.
93  *
94  * This function shall be used instead of putback_lru_pages(),
95  * whenever the isolated pageset has been built by isolate_migratepages_range()
96  */
97 void putback_movable_pages(struct list_head *l)
98 {
99 	struct page *page;
100 	struct page *page2;
101 
102 	list_for_each_entry_safe(page, page2, l, lru) {
103 		list_del(&page->lru);
104 		dec_zone_page_state(page, NR_ISOLATED_ANON +
105 				page_is_file_cache(page));
106 		if (unlikely(balloon_page_movable(page)))
107 			balloon_page_putback(page);
108 		else
109 			putback_lru_page(page);
110 	}
111 }
112 
113 /*
114  * Restore a potential migration pte to a working pte entry
115  */
116 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
117 				 unsigned long addr, void *old)
118 {
119 	struct mm_struct *mm = vma->vm_mm;
120 	swp_entry_t entry;
121  	pmd_t *pmd;
122 	pte_t *ptep, pte;
123  	spinlock_t *ptl;
124 
125 	if (unlikely(PageHuge(new))) {
126 		ptep = huge_pte_offset(mm, addr);
127 		if (!ptep)
128 			goto out;
129 		ptl = &mm->page_table_lock;
130 	} else {
131 		pmd = mm_find_pmd(mm, addr);
132 		if (!pmd)
133 			goto out;
134 		if (pmd_trans_huge(*pmd))
135 			goto out;
136 
137 		ptep = pte_offset_map(pmd, addr);
138 
139 		/*
140 		 * Peek to check is_swap_pte() before taking ptlock?  No, we
141 		 * can race mremap's move_ptes(), which skips anon_vma lock.
142 		 */
143 
144 		ptl = pte_lockptr(mm, pmd);
145 	}
146 
147  	spin_lock(ptl);
148 	pte = *ptep;
149 	if (!is_swap_pte(pte))
150 		goto unlock;
151 
152 	entry = pte_to_swp_entry(pte);
153 
154 	if (!is_migration_entry(entry) ||
155 	    migration_entry_to_page(entry) != old)
156 		goto unlock;
157 
158 	get_page(new);
159 	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
160 	if (is_write_migration_entry(entry))
161 		pte = pte_mkwrite(pte);
162 #ifdef CONFIG_HUGETLB_PAGE
163 	if (PageHuge(new))
164 		pte = pte_mkhuge(pte);
165 #endif
166 	flush_cache_page(vma, addr, pte_pfn(pte));
167 	set_pte_at(mm, addr, ptep, pte);
168 
169 	if (PageHuge(new)) {
170 		if (PageAnon(new))
171 			hugepage_add_anon_rmap(new, vma, addr);
172 		else
173 			page_dup_rmap(new);
174 	} else if (PageAnon(new))
175 		page_add_anon_rmap(new, vma, addr);
176 	else
177 		page_add_file_rmap(new);
178 
179 	/* No need to invalidate - it was non-present before */
180 	update_mmu_cache(vma, addr, ptep);
181 unlock:
182 	pte_unmap_unlock(ptep, ptl);
183 out:
184 	return SWAP_AGAIN;
185 }
186 
187 /*
188  * Get rid of all migration entries and replace them by
189  * references to the indicated page.
190  */
191 static void remove_migration_ptes(struct page *old, struct page *new)
192 {
193 	rmap_walk(new, remove_migration_pte, old);
194 }
195 
196 /*
197  * Something used the pte of a page under migration. We need to
198  * get to the page and wait until migration is finished.
199  * When we return from this function the fault will be retried.
200  */
201 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
202 				unsigned long address)
203 {
204 	pte_t *ptep, pte;
205 	spinlock_t *ptl;
206 	swp_entry_t entry;
207 	struct page *page;
208 
209 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
210 	pte = *ptep;
211 	if (!is_swap_pte(pte))
212 		goto out;
213 
214 	entry = pte_to_swp_entry(pte);
215 	if (!is_migration_entry(entry))
216 		goto out;
217 
218 	page = migration_entry_to_page(entry);
219 
220 	/*
221 	 * Once radix-tree replacement of page migration started, page_count
222 	 * *must* be zero. And, we don't want to call wait_on_page_locked()
223 	 * against a page without get_page().
224 	 * So, we use get_page_unless_zero(), here. Even failed, page fault
225 	 * will occur again.
226 	 */
227 	if (!get_page_unless_zero(page))
228 		goto out;
229 	pte_unmap_unlock(ptep, ptl);
230 	wait_on_page_locked(page);
231 	put_page(page);
232 	return;
233 out:
234 	pte_unmap_unlock(ptep, ptl);
235 }
236 
237 #ifdef CONFIG_BLOCK
238 /* Returns true if all buffers are successfully locked */
239 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
240 							enum migrate_mode mode)
241 {
242 	struct buffer_head *bh = head;
243 
244 	/* Simple case, sync compaction */
245 	if (mode != MIGRATE_ASYNC) {
246 		do {
247 			get_bh(bh);
248 			lock_buffer(bh);
249 			bh = bh->b_this_page;
250 
251 		} while (bh != head);
252 
253 		return true;
254 	}
255 
256 	/* async case, we cannot block on lock_buffer so use trylock_buffer */
257 	do {
258 		get_bh(bh);
259 		if (!trylock_buffer(bh)) {
260 			/*
261 			 * We failed to lock the buffer and cannot stall in
262 			 * async migration. Release the taken locks
263 			 */
264 			struct buffer_head *failed_bh = bh;
265 			put_bh(failed_bh);
266 			bh = head;
267 			while (bh != failed_bh) {
268 				unlock_buffer(bh);
269 				put_bh(bh);
270 				bh = bh->b_this_page;
271 			}
272 			return false;
273 		}
274 
275 		bh = bh->b_this_page;
276 	} while (bh != head);
277 	return true;
278 }
279 #else
280 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
281 							enum migrate_mode mode)
282 {
283 	return true;
284 }
285 #endif /* CONFIG_BLOCK */
286 
287 /*
288  * Replace the page in the mapping.
289  *
290  * The number of remaining references must be:
291  * 1 for anonymous pages without a mapping
292  * 2 for pages with a mapping
293  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
294  */
295 static int migrate_page_move_mapping(struct address_space *mapping,
296 		struct page *newpage, struct page *page,
297 		struct buffer_head *head, enum migrate_mode mode)
298 {
299 	int expected_count = 0;
300 	void **pslot;
301 
302 	if (!mapping) {
303 		/* Anonymous page without mapping */
304 		if (page_count(page) != 1)
305 			return -EAGAIN;
306 		return MIGRATEPAGE_SUCCESS;
307 	}
308 
309 	spin_lock_irq(&mapping->tree_lock);
310 
311 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
312  					page_index(page));
313 
314 	expected_count = 2 + page_has_private(page);
315 	if (page_count(page) != expected_count ||
316 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
317 		spin_unlock_irq(&mapping->tree_lock);
318 		return -EAGAIN;
319 	}
320 
321 	if (!page_freeze_refs(page, expected_count)) {
322 		spin_unlock_irq(&mapping->tree_lock);
323 		return -EAGAIN;
324 	}
325 
326 	/*
327 	 * In the async migration case of moving a page with buffers, lock the
328 	 * buffers using trylock before the mapping is moved. If the mapping
329 	 * was moved, we later failed to lock the buffers and could not move
330 	 * the mapping back due to an elevated page count, we would have to
331 	 * block waiting on other references to be dropped.
332 	 */
333 	if (mode == MIGRATE_ASYNC && head &&
334 			!buffer_migrate_lock_buffers(head, mode)) {
335 		page_unfreeze_refs(page, expected_count);
336 		spin_unlock_irq(&mapping->tree_lock);
337 		return -EAGAIN;
338 	}
339 
340 	/*
341 	 * Now we know that no one else is looking at the page.
342 	 */
343 	get_page(newpage);	/* add cache reference */
344 	if (PageSwapCache(page)) {
345 		SetPageSwapCache(newpage);
346 		set_page_private(newpage, page_private(page));
347 	}
348 
349 	radix_tree_replace_slot(pslot, newpage);
350 
351 	/*
352 	 * Drop cache reference from old page by unfreezing
353 	 * to one less reference.
354 	 * We know this isn't the last reference.
355 	 */
356 	page_unfreeze_refs(page, expected_count - 1);
357 
358 	/*
359 	 * If moved to a different zone then also account
360 	 * the page for that zone. Other VM counters will be
361 	 * taken care of when we establish references to the
362 	 * new page and drop references to the old page.
363 	 *
364 	 * Note that anonymous pages are accounted for
365 	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
366 	 * are mapped to swap space.
367 	 */
368 	__dec_zone_page_state(page, NR_FILE_PAGES);
369 	__inc_zone_page_state(newpage, NR_FILE_PAGES);
370 	if (!PageSwapCache(page) && PageSwapBacked(page)) {
371 		__dec_zone_page_state(page, NR_SHMEM);
372 		__inc_zone_page_state(newpage, NR_SHMEM);
373 	}
374 	spin_unlock_irq(&mapping->tree_lock);
375 
376 	return MIGRATEPAGE_SUCCESS;
377 }
378 
379 /*
380  * The expected number of remaining references is the same as that
381  * of migrate_page_move_mapping().
382  */
383 int migrate_huge_page_move_mapping(struct address_space *mapping,
384 				   struct page *newpage, struct page *page)
385 {
386 	int expected_count;
387 	void **pslot;
388 
389 	if (!mapping) {
390 		if (page_count(page) != 1)
391 			return -EAGAIN;
392 		return MIGRATEPAGE_SUCCESS;
393 	}
394 
395 	spin_lock_irq(&mapping->tree_lock);
396 
397 	pslot = radix_tree_lookup_slot(&mapping->page_tree,
398 					page_index(page));
399 
400 	expected_count = 2 + page_has_private(page);
401 	if (page_count(page) != expected_count ||
402 		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
403 		spin_unlock_irq(&mapping->tree_lock);
404 		return -EAGAIN;
405 	}
406 
407 	if (!page_freeze_refs(page, expected_count)) {
408 		spin_unlock_irq(&mapping->tree_lock);
409 		return -EAGAIN;
410 	}
411 
412 	get_page(newpage);
413 
414 	radix_tree_replace_slot(pslot, newpage);
415 
416 	page_unfreeze_refs(page, expected_count - 1);
417 
418 	spin_unlock_irq(&mapping->tree_lock);
419 	return MIGRATEPAGE_SUCCESS;
420 }
421 
422 /*
423  * Copy the page to its new location
424  */
425 void migrate_page_copy(struct page *newpage, struct page *page)
426 {
427 	if (PageHuge(page) || PageTransHuge(page))
428 		copy_huge_page(newpage, page);
429 	else
430 		copy_highpage(newpage, page);
431 
432 	if (PageError(page))
433 		SetPageError(newpage);
434 	if (PageReferenced(page))
435 		SetPageReferenced(newpage);
436 	if (PageUptodate(page))
437 		SetPageUptodate(newpage);
438 	if (TestClearPageActive(page)) {
439 		VM_BUG_ON(PageUnevictable(page));
440 		SetPageActive(newpage);
441 	} else if (TestClearPageUnevictable(page))
442 		SetPageUnevictable(newpage);
443 	if (PageChecked(page))
444 		SetPageChecked(newpage);
445 	if (PageMappedToDisk(page))
446 		SetPageMappedToDisk(newpage);
447 
448 	if (PageDirty(page)) {
449 		clear_page_dirty_for_io(page);
450 		/*
451 		 * Want to mark the page and the radix tree as dirty, and
452 		 * redo the accounting that clear_page_dirty_for_io undid,
453 		 * but we can't use set_page_dirty because that function
454 		 * is actually a signal that all of the page has become dirty.
455 		 * Whereas only part of our page may be dirty.
456 		 */
457 		if (PageSwapBacked(page))
458 			SetPageDirty(newpage);
459 		else
460 			__set_page_dirty_nobuffers(newpage);
461  	}
462 
463 	mlock_migrate_page(newpage, page);
464 	ksm_migrate_page(newpage, page);
465 
466 	ClearPageSwapCache(page);
467 	ClearPagePrivate(page);
468 	set_page_private(page, 0);
469 
470 	/*
471 	 * If any waiters have accumulated on the new page then
472 	 * wake them up.
473 	 */
474 	if (PageWriteback(newpage))
475 		end_page_writeback(newpage);
476 }
477 
478 /************************************************************
479  *                    Migration functions
480  ***********************************************************/
481 
482 /* Always fail migration. Used for mappings that are not movable */
483 int fail_migrate_page(struct address_space *mapping,
484 			struct page *newpage, struct page *page)
485 {
486 	return -EIO;
487 }
488 EXPORT_SYMBOL(fail_migrate_page);
489 
490 /*
491  * Common logic to directly migrate a single page suitable for
492  * pages that do not use PagePrivate/PagePrivate2.
493  *
494  * Pages are locked upon entry and exit.
495  */
496 int migrate_page(struct address_space *mapping,
497 		struct page *newpage, struct page *page,
498 		enum migrate_mode mode)
499 {
500 	int rc;
501 
502 	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
503 
504 	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
505 
506 	if (rc != MIGRATEPAGE_SUCCESS)
507 		return rc;
508 
509 	migrate_page_copy(newpage, page);
510 	return MIGRATEPAGE_SUCCESS;
511 }
512 EXPORT_SYMBOL(migrate_page);
513 
514 #ifdef CONFIG_BLOCK
515 /*
516  * Migration function for pages with buffers. This function can only be used
517  * if the underlying filesystem guarantees that no other references to "page"
518  * exist.
519  */
520 int buffer_migrate_page(struct address_space *mapping,
521 		struct page *newpage, struct page *page, enum migrate_mode mode)
522 {
523 	struct buffer_head *bh, *head;
524 	int rc;
525 
526 	if (!page_has_buffers(page))
527 		return migrate_page(mapping, newpage, page, mode);
528 
529 	head = page_buffers(page);
530 
531 	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
532 
533 	if (rc != MIGRATEPAGE_SUCCESS)
534 		return rc;
535 
536 	/*
537 	 * In the async case, migrate_page_move_mapping locked the buffers
538 	 * with an IRQ-safe spinlock held. In the sync case, the buffers
539 	 * need to be locked now
540 	 */
541 	if (mode != MIGRATE_ASYNC)
542 		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
543 
544 	ClearPagePrivate(page);
545 	set_page_private(newpage, page_private(page));
546 	set_page_private(page, 0);
547 	put_page(page);
548 	get_page(newpage);
549 
550 	bh = head;
551 	do {
552 		set_bh_page(bh, newpage, bh_offset(bh));
553 		bh = bh->b_this_page;
554 
555 	} while (bh != head);
556 
557 	SetPagePrivate(newpage);
558 
559 	migrate_page_copy(newpage, page);
560 
561 	bh = head;
562 	do {
563 		unlock_buffer(bh);
564  		put_bh(bh);
565 		bh = bh->b_this_page;
566 
567 	} while (bh != head);
568 
569 	return MIGRATEPAGE_SUCCESS;
570 }
571 EXPORT_SYMBOL(buffer_migrate_page);
572 #endif
573 
574 /*
575  * Writeback a page to clean the dirty state
576  */
577 static int writeout(struct address_space *mapping, struct page *page)
578 {
579 	struct writeback_control wbc = {
580 		.sync_mode = WB_SYNC_NONE,
581 		.nr_to_write = 1,
582 		.range_start = 0,
583 		.range_end = LLONG_MAX,
584 		.for_reclaim = 1
585 	};
586 	int rc;
587 
588 	if (!mapping->a_ops->writepage)
589 		/* No write method for the address space */
590 		return -EINVAL;
591 
592 	if (!clear_page_dirty_for_io(page))
593 		/* Someone else already triggered a write */
594 		return -EAGAIN;
595 
596 	/*
597 	 * A dirty page may imply that the underlying filesystem has
598 	 * the page on some queue. So the page must be clean for
599 	 * migration. Writeout may mean we loose the lock and the
600 	 * page state is no longer what we checked for earlier.
601 	 * At this point we know that the migration attempt cannot
602 	 * be successful.
603 	 */
604 	remove_migration_ptes(page, page);
605 
606 	rc = mapping->a_ops->writepage(page, &wbc);
607 
608 	if (rc != AOP_WRITEPAGE_ACTIVATE)
609 		/* unlocked. Relock */
610 		lock_page(page);
611 
612 	return (rc < 0) ? -EIO : -EAGAIN;
613 }
614 
615 /*
616  * Default handling if a filesystem does not provide a migration function.
617  */
618 static int fallback_migrate_page(struct address_space *mapping,
619 	struct page *newpage, struct page *page, enum migrate_mode mode)
620 {
621 	if (PageDirty(page)) {
622 		/* Only writeback pages in full synchronous migration */
623 		if (mode != MIGRATE_SYNC)
624 			return -EBUSY;
625 		return writeout(mapping, page);
626 	}
627 
628 	/*
629 	 * Buffers may be managed in a filesystem specific way.
630 	 * We must have no buffers or drop them.
631 	 */
632 	if (page_has_private(page) &&
633 	    !try_to_release_page(page, GFP_KERNEL))
634 		return -EAGAIN;
635 
636 	return migrate_page(mapping, newpage, page, mode);
637 }
638 
639 /*
640  * Move a page to a newly allocated page
641  * The page is locked and all ptes have been successfully removed.
642  *
643  * The new page will have replaced the old page if this function
644  * is successful.
645  *
646  * Return value:
647  *   < 0 - error code
648  *  MIGRATEPAGE_SUCCESS - success
649  */
650 static int move_to_new_page(struct page *newpage, struct page *page,
651 				int remap_swapcache, enum migrate_mode mode)
652 {
653 	struct address_space *mapping;
654 	int rc;
655 
656 	/*
657 	 * Block others from accessing the page when we get around to
658 	 * establishing additional references. We are the only one
659 	 * holding a reference to the new page at this point.
660 	 */
661 	if (!trylock_page(newpage))
662 		BUG();
663 
664 	/* Prepare mapping for the new page.*/
665 	newpage->index = page->index;
666 	newpage->mapping = page->mapping;
667 	if (PageSwapBacked(page))
668 		SetPageSwapBacked(newpage);
669 
670 	mapping = page_mapping(page);
671 	if (!mapping)
672 		rc = migrate_page(mapping, newpage, page, mode);
673 	else if (mapping->a_ops->migratepage)
674 		/*
675 		 * Most pages have a mapping and most filesystems provide a
676 		 * migratepage callback. Anonymous pages are part of swap
677 		 * space which also has its own migratepage callback. This
678 		 * is the most common path for page migration.
679 		 */
680 		rc = mapping->a_ops->migratepage(mapping,
681 						newpage, page, mode);
682 	else
683 		rc = fallback_migrate_page(mapping, newpage, page, mode);
684 
685 	if (rc != MIGRATEPAGE_SUCCESS) {
686 		newpage->mapping = NULL;
687 	} else {
688 		if (remap_swapcache)
689 			remove_migration_ptes(page, newpage);
690 		page->mapping = NULL;
691 	}
692 
693 	unlock_page(newpage);
694 
695 	return rc;
696 }
697 
698 static int __unmap_and_move(struct page *page, struct page *newpage,
699 			int force, bool offlining, enum migrate_mode mode)
700 {
701 	int rc = -EAGAIN;
702 	int remap_swapcache = 1;
703 	struct mem_cgroup *mem;
704 	struct anon_vma *anon_vma = NULL;
705 
706 	if (!trylock_page(page)) {
707 		if (!force || mode == MIGRATE_ASYNC)
708 			goto out;
709 
710 		/*
711 		 * It's not safe for direct compaction to call lock_page.
712 		 * For example, during page readahead pages are added locked
713 		 * to the LRU. Later, when the IO completes the pages are
714 		 * marked uptodate and unlocked. However, the queueing
715 		 * could be merging multiple pages for one bio (e.g.
716 		 * mpage_readpages). If an allocation happens for the
717 		 * second or third page, the process can end up locking
718 		 * the same page twice and deadlocking. Rather than
719 		 * trying to be clever about what pages can be locked,
720 		 * avoid the use of lock_page for direct compaction
721 		 * altogether.
722 		 */
723 		if (current->flags & PF_MEMALLOC)
724 			goto out;
725 
726 		lock_page(page);
727 	}
728 
729 	/*
730 	 * Only memory hotplug's offline_pages() caller has locked out KSM,
731 	 * and can safely migrate a KSM page.  The other cases have skipped
732 	 * PageKsm along with PageReserved - but it is only now when we have
733 	 * the page lock that we can be certain it will not go KSM beneath us
734 	 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
735 	 * its pagecount raised, but only here do we take the page lock which
736 	 * serializes that).
737 	 */
738 	if (PageKsm(page) && !offlining) {
739 		rc = -EBUSY;
740 		goto unlock;
741 	}
742 
743 	/* charge against new page */
744 	mem_cgroup_prepare_migration(page, newpage, &mem);
745 
746 	if (PageWriteback(page)) {
747 		/*
748 		 * Only in the case of a full syncronous migration is it
749 		 * necessary to wait for PageWriteback. In the async case,
750 		 * the retry loop is too short and in the sync-light case,
751 		 * the overhead of stalling is too much
752 		 */
753 		if (mode != MIGRATE_SYNC) {
754 			rc = -EBUSY;
755 			goto uncharge;
756 		}
757 		if (!force)
758 			goto uncharge;
759 		wait_on_page_writeback(page);
760 	}
761 	/*
762 	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
763 	 * we cannot notice that anon_vma is freed while we migrates a page.
764 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
765 	 * of migration. File cache pages are no problem because of page_lock()
766 	 * File Caches may use write_page() or lock_page() in migration, then,
767 	 * just care Anon page here.
768 	 */
769 	if (PageAnon(page)) {
770 		/*
771 		 * Only page_lock_anon_vma_read() understands the subtleties of
772 		 * getting a hold on an anon_vma from outside one of its mms.
773 		 */
774 		anon_vma = page_get_anon_vma(page);
775 		if (anon_vma) {
776 			/*
777 			 * Anon page
778 			 */
779 		} else if (PageSwapCache(page)) {
780 			/*
781 			 * We cannot be sure that the anon_vma of an unmapped
782 			 * swapcache page is safe to use because we don't
783 			 * know in advance if the VMA that this page belonged
784 			 * to still exists. If the VMA and others sharing the
785 			 * data have been freed, then the anon_vma could
786 			 * already be invalid.
787 			 *
788 			 * To avoid this possibility, swapcache pages get
789 			 * migrated but are not remapped when migration
790 			 * completes
791 			 */
792 			remap_swapcache = 0;
793 		} else {
794 			goto uncharge;
795 		}
796 	}
797 
798 	if (unlikely(balloon_page_movable(page))) {
799 		/*
800 		 * A ballooned page does not need any special attention from
801 		 * physical to virtual reverse mapping procedures.
802 		 * Skip any attempt to unmap PTEs or to remap swap cache,
803 		 * in order to avoid burning cycles at rmap level, and perform
804 		 * the page migration right away (proteced by page lock).
805 		 */
806 		rc = balloon_page_migrate(newpage, page, mode);
807 		goto uncharge;
808 	}
809 
810 	/*
811 	 * Corner case handling:
812 	 * 1. When a new swap-cache page is read into, it is added to the LRU
813 	 * and treated as swapcache but it has no rmap yet.
814 	 * Calling try_to_unmap() against a page->mapping==NULL page will
815 	 * trigger a BUG.  So handle it here.
816 	 * 2. An orphaned page (see truncate_complete_page) might have
817 	 * fs-private metadata. The page can be picked up due to memory
818 	 * offlining.  Everywhere else except page reclaim, the page is
819 	 * invisible to the vm, so the page can not be migrated.  So try to
820 	 * free the metadata, so the page can be freed.
821 	 */
822 	if (!page->mapping) {
823 		VM_BUG_ON(PageAnon(page));
824 		if (page_has_private(page)) {
825 			try_to_free_buffers(page);
826 			goto uncharge;
827 		}
828 		goto skip_unmap;
829 	}
830 
831 	/* Establish migration ptes or remove ptes */
832 	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
833 
834 skip_unmap:
835 	if (!page_mapped(page))
836 		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
837 
838 	if (rc && remap_swapcache)
839 		remove_migration_ptes(page, page);
840 
841 	/* Drop an anon_vma reference if we took one */
842 	if (anon_vma)
843 		put_anon_vma(anon_vma);
844 
845 uncharge:
846 	mem_cgroup_end_migration(mem, page, newpage,
847 				 (rc == MIGRATEPAGE_SUCCESS ||
848 				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
849 unlock:
850 	unlock_page(page);
851 out:
852 	return rc;
853 }
854 
855 /*
856  * Obtain the lock on page, remove all ptes and migrate the page
857  * to the newly allocated page in newpage.
858  */
859 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
860 			struct page *page, int force, bool offlining,
861 			enum migrate_mode mode)
862 {
863 	int rc = 0;
864 	int *result = NULL;
865 	struct page *newpage = get_new_page(page, private, &result);
866 
867 	if (!newpage)
868 		return -ENOMEM;
869 
870 	if (page_count(page) == 1) {
871 		/* page was freed from under us. So we are done. */
872 		goto out;
873 	}
874 
875 	if (unlikely(PageTransHuge(page)))
876 		if (unlikely(split_huge_page(page)))
877 			goto out;
878 
879 	rc = __unmap_and_move(page, newpage, force, offlining, mode);
880 
881 	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
882 		/*
883 		 * A ballooned page has been migrated already.
884 		 * Now, it's the time to wrap-up counters,
885 		 * handle the page back to Buddy and return.
886 		 */
887 		dec_zone_page_state(page, NR_ISOLATED_ANON +
888 				    page_is_file_cache(page));
889 		balloon_page_free(page);
890 		return MIGRATEPAGE_SUCCESS;
891 	}
892 out:
893 	if (rc != -EAGAIN) {
894 		/*
895 		 * A page that has been migrated has all references
896 		 * removed and will be freed. A page that has not been
897 		 * migrated will have kepts its references and be
898 		 * restored.
899 		 */
900 		list_del(&page->lru);
901 		dec_zone_page_state(page, NR_ISOLATED_ANON +
902 				page_is_file_cache(page));
903 		putback_lru_page(page);
904 	}
905 	/*
906 	 * Move the new page to the LRU. If migration was not successful
907 	 * then this will free the page.
908 	 */
909 	putback_lru_page(newpage);
910 	if (result) {
911 		if (rc)
912 			*result = rc;
913 		else
914 			*result = page_to_nid(newpage);
915 	}
916 	return rc;
917 }
918 
919 /*
920  * Counterpart of unmap_and_move_page() for hugepage migration.
921  *
922  * This function doesn't wait the completion of hugepage I/O
923  * because there is no race between I/O and migration for hugepage.
924  * Note that currently hugepage I/O occurs only in direct I/O
925  * where no lock is held and PG_writeback is irrelevant,
926  * and writeback status of all subpages are counted in the reference
927  * count of the head page (i.e. if all subpages of a 2MB hugepage are
928  * under direct I/O, the reference of the head page is 512 and a bit more.)
929  * This means that when we try to migrate hugepage whose subpages are
930  * doing direct I/O, some references remain after try_to_unmap() and
931  * hugepage migration fails without data corruption.
932  *
933  * There is also no race when direct I/O is issued on the page under migration,
934  * because then pte is replaced with migration swap entry and direct I/O code
935  * will wait in the page fault for migration to complete.
936  */
937 static int unmap_and_move_huge_page(new_page_t get_new_page,
938 				unsigned long private, struct page *hpage,
939 				int force, bool offlining,
940 				enum migrate_mode mode)
941 {
942 	int rc = 0;
943 	int *result = NULL;
944 	struct page *new_hpage = get_new_page(hpage, private, &result);
945 	struct anon_vma *anon_vma = NULL;
946 
947 	if (!new_hpage)
948 		return -ENOMEM;
949 
950 	rc = -EAGAIN;
951 
952 	if (!trylock_page(hpage)) {
953 		if (!force || mode != MIGRATE_SYNC)
954 			goto out;
955 		lock_page(hpage);
956 	}
957 
958 	if (PageAnon(hpage))
959 		anon_vma = page_get_anon_vma(hpage);
960 
961 	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
962 
963 	if (!page_mapped(hpage))
964 		rc = move_to_new_page(new_hpage, hpage, 1, mode);
965 
966 	if (rc)
967 		remove_migration_ptes(hpage, hpage);
968 
969 	if (anon_vma)
970 		put_anon_vma(anon_vma);
971 
972 	if (!rc)
973 		hugetlb_cgroup_migrate(hpage, new_hpage);
974 
975 	unlock_page(hpage);
976 out:
977 	put_page(new_hpage);
978 	if (result) {
979 		if (rc)
980 			*result = rc;
981 		else
982 			*result = page_to_nid(new_hpage);
983 	}
984 	return rc;
985 }
986 
987 /*
988  * migrate_pages
989  *
990  * The function takes one list of pages to migrate and a function
991  * that determines from the page to be migrated and the private data
992  * the target of the move and allocates the page.
993  *
994  * The function returns after 10 attempts or if no pages
995  * are movable anymore because to has become empty
996  * or no retryable pages exist anymore.
997  * Caller should call putback_lru_pages to return pages to the LRU
998  * or free list only if ret != 0.
999  *
1000  * Return: Number of pages not migrated or error code.
1001  */
1002 int migrate_pages(struct list_head *from,
1003 		new_page_t get_new_page, unsigned long private, bool offlining,
1004 		enum migrate_mode mode, int reason)
1005 {
1006 	int retry = 1;
1007 	int nr_failed = 0;
1008 	int nr_succeeded = 0;
1009 	int pass = 0;
1010 	struct page *page;
1011 	struct page *page2;
1012 	int swapwrite = current->flags & PF_SWAPWRITE;
1013 	int rc;
1014 
1015 	if (!swapwrite)
1016 		current->flags |= PF_SWAPWRITE;
1017 
1018 	for(pass = 0; pass < 10 && retry; pass++) {
1019 		retry = 0;
1020 
1021 		list_for_each_entry_safe(page, page2, from, lru) {
1022 			cond_resched();
1023 
1024 			rc = unmap_and_move(get_new_page, private,
1025 						page, pass > 2, offlining,
1026 						mode);
1027 
1028 			switch(rc) {
1029 			case -ENOMEM:
1030 				goto out;
1031 			case -EAGAIN:
1032 				retry++;
1033 				break;
1034 			case MIGRATEPAGE_SUCCESS:
1035 				nr_succeeded++;
1036 				break;
1037 			default:
1038 				/* Permanent failure */
1039 				nr_failed++;
1040 				break;
1041 			}
1042 		}
1043 	}
1044 	rc = nr_failed + retry;
1045 out:
1046 	if (nr_succeeded)
1047 		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1048 	if (nr_failed)
1049 		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1050 	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1051 
1052 	if (!swapwrite)
1053 		current->flags &= ~PF_SWAPWRITE;
1054 
1055 	return rc;
1056 }
1057 
1058 int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1059 		      unsigned long private, bool offlining,
1060 		      enum migrate_mode mode)
1061 {
1062 	int pass, rc;
1063 
1064 	for (pass = 0; pass < 10; pass++) {
1065 		rc = unmap_and_move_huge_page(get_new_page,
1066 					      private, hpage, pass > 2, offlining,
1067 					      mode);
1068 		switch (rc) {
1069 		case -ENOMEM:
1070 			goto out;
1071 		case -EAGAIN:
1072 			/* try again */
1073 			cond_resched();
1074 			break;
1075 		case MIGRATEPAGE_SUCCESS:
1076 			goto out;
1077 		default:
1078 			rc = -EIO;
1079 			goto out;
1080 		}
1081 	}
1082 out:
1083 	return rc;
1084 }
1085 
1086 #ifdef CONFIG_NUMA
1087 /*
1088  * Move a list of individual pages
1089  */
1090 struct page_to_node {
1091 	unsigned long addr;
1092 	struct page *page;
1093 	int node;
1094 	int status;
1095 };
1096 
1097 static struct page *new_page_node(struct page *p, unsigned long private,
1098 		int **result)
1099 {
1100 	struct page_to_node *pm = (struct page_to_node *)private;
1101 
1102 	while (pm->node != MAX_NUMNODES && pm->page != p)
1103 		pm++;
1104 
1105 	if (pm->node == MAX_NUMNODES)
1106 		return NULL;
1107 
1108 	*result = &pm->status;
1109 
1110 	return alloc_pages_exact_node(pm->node,
1111 				GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1112 }
1113 
1114 /*
1115  * Move a set of pages as indicated in the pm array. The addr
1116  * field must be set to the virtual address of the page to be moved
1117  * and the node number must contain a valid target node.
1118  * The pm array ends with node = MAX_NUMNODES.
1119  */
1120 static int do_move_page_to_node_array(struct mm_struct *mm,
1121 				      struct page_to_node *pm,
1122 				      int migrate_all)
1123 {
1124 	int err;
1125 	struct page_to_node *pp;
1126 	LIST_HEAD(pagelist);
1127 
1128 	down_read(&mm->mmap_sem);
1129 
1130 	/*
1131 	 * Build a list of pages to migrate
1132 	 */
1133 	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1134 		struct vm_area_struct *vma;
1135 		struct page *page;
1136 
1137 		err = -EFAULT;
1138 		vma = find_vma(mm, pp->addr);
1139 		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1140 			goto set_status;
1141 
1142 		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1143 
1144 		err = PTR_ERR(page);
1145 		if (IS_ERR(page))
1146 			goto set_status;
1147 
1148 		err = -ENOENT;
1149 		if (!page)
1150 			goto set_status;
1151 
1152 		/* Use PageReserved to check for zero page */
1153 		if (PageReserved(page) || PageKsm(page))
1154 			goto put_and_set;
1155 
1156 		pp->page = page;
1157 		err = page_to_nid(page);
1158 
1159 		if (err == pp->node)
1160 			/*
1161 			 * Node already in the right place
1162 			 */
1163 			goto put_and_set;
1164 
1165 		err = -EACCES;
1166 		if (page_mapcount(page) > 1 &&
1167 				!migrate_all)
1168 			goto put_and_set;
1169 
1170 		err = isolate_lru_page(page);
1171 		if (!err) {
1172 			list_add_tail(&page->lru, &pagelist);
1173 			inc_zone_page_state(page, NR_ISOLATED_ANON +
1174 					    page_is_file_cache(page));
1175 		}
1176 put_and_set:
1177 		/*
1178 		 * Either remove the duplicate refcount from
1179 		 * isolate_lru_page() or drop the page ref if it was
1180 		 * not isolated.
1181 		 */
1182 		put_page(page);
1183 set_status:
1184 		pp->status = err;
1185 	}
1186 
1187 	err = 0;
1188 	if (!list_empty(&pagelist)) {
1189 		err = migrate_pages(&pagelist, new_page_node,
1190 				(unsigned long)pm, 0, MIGRATE_SYNC,
1191 				MR_SYSCALL);
1192 		if (err)
1193 			putback_lru_pages(&pagelist);
1194 	}
1195 
1196 	up_read(&mm->mmap_sem);
1197 	return err;
1198 }
1199 
1200 /*
1201  * Migrate an array of page address onto an array of nodes and fill
1202  * the corresponding array of status.
1203  */
1204 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1205 			 unsigned long nr_pages,
1206 			 const void __user * __user *pages,
1207 			 const int __user *nodes,
1208 			 int __user *status, int flags)
1209 {
1210 	struct page_to_node *pm;
1211 	unsigned long chunk_nr_pages;
1212 	unsigned long chunk_start;
1213 	int err;
1214 
1215 	err = -ENOMEM;
1216 	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1217 	if (!pm)
1218 		goto out;
1219 
1220 	migrate_prep();
1221 
1222 	/*
1223 	 * Store a chunk of page_to_node array in a page,
1224 	 * but keep the last one as a marker
1225 	 */
1226 	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1227 
1228 	for (chunk_start = 0;
1229 	     chunk_start < nr_pages;
1230 	     chunk_start += chunk_nr_pages) {
1231 		int j;
1232 
1233 		if (chunk_start + chunk_nr_pages > nr_pages)
1234 			chunk_nr_pages = nr_pages - chunk_start;
1235 
1236 		/* fill the chunk pm with addrs and nodes from user-space */
1237 		for (j = 0; j < chunk_nr_pages; j++) {
1238 			const void __user *p;
1239 			int node;
1240 
1241 			err = -EFAULT;
1242 			if (get_user(p, pages + j + chunk_start))
1243 				goto out_pm;
1244 			pm[j].addr = (unsigned long) p;
1245 
1246 			if (get_user(node, nodes + j + chunk_start))
1247 				goto out_pm;
1248 
1249 			err = -ENODEV;
1250 			if (node < 0 || node >= MAX_NUMNODES)
1251 				goto out_pm;
1252 
1253 			if (!node_state(node, N_MEMORY))
1254 				goto out_pm;
1255 
1256 			err = -EACCES;
1257 			if (!node_isset(node, task_nodes))
1258 				goto out_pm;
1259 
1260 			pm[j].node = node;
1261 		}
1262 
1263 		/* End marker for this chunk */
1264 		pm[chunk_nr_pages].node = MAX_NUMNODES;
1265 
1266 		/* Migrate this chunk */
1267 		err = do_move_page_to_node_array(mm, pm,
1268 						 flags & MPOL_MF_MOVE_ALL);
1269 		if (err < 0)
1270 			goto out_pm;
1271 
1272 		/* Return status information */
1273 		for (j = 0; j < chunk_nr_pages; j++)
1274 			if (put_user(pm[j].status, status + j + chunk_start)) {
1275 				err = -EFAULT;
1276 				goto out_pm;
1277 			}
1278 	}
1279 	err = 0;
1280 
1281 out_pm:
1282 	free_page((unsigned long)pm);
1283 out:
1284 	return err;
1285 }
1286 
1287 /*
1288  * Determine the nodes of an array of pages and store it in an array of status.
1289  */
1290 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1291 				const void __user **pages, int *status)
1292 {
1293 	unsigned long i;
1294 
1295 	down_read(&mm->mmap_sem);
1296 
1297 	for (i = 0; i < nr_pages; i++) {
1298 		unsigned long addr = (unsigned long)(*pages);
1299 		struct vm_area_struct *vma;
1300 		struct page *page;
1301 		int err = -EFAULT;
1302 
1303 		vma = find_vma(mm, addr);
1304 		if (!vma || addr < vma->vm_start)
1305 			goto set_status;
1306 
1307 		page = follow_page(vma, addr, 0);
1308 
1309 		err = PTR_ERR(page);
1310 		if (IS_ERR(page))
1311 			goto set_status;
1312 
1313 		err = -ENOENT;
1314 		/* Use PageReserved to check for zero page */
1315 		if (!page || PageReserved(page) || PageKsm(page))
1316 			goto set_status;
1317 
1318 		err = page_to_nid(page);
1319 set_status:
1320 		*status = err;
1321 
1322 		pages++;
1323 		status++;
1324 	}
1325 
1326 	up_read(&mm->mmap_sem);
1327 }
1328 
1329 /*
1330  * Determine the nodes of a user array of pages and store it in
1331  * a user array of status.
1332  */
1333 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1334 			 const void __user * __user *pages,
1335 			 int __user *status)
1336 {
1337 #define DO_PAGES_STAT_CHUNK_NR 16
1338 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1339 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1340 
1341 	while (nr_pages) {
1342 		unsigned long chunk_nr;
1343 
1344 		chunk_nr = nr_pages;
1345 		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1346 			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1347 
1348 		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1349 			break;
1350 
1351 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1352 
1353 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1354 			break;
1355 
1356 		pages += chunk_nr;
1357 		status += chunk_nr;
1358 		nr_pages -= chunk_nr;
1359 	}
1360 	return nr_pages ? -EFAULT : 0;
1361 }
1362 
1363 /*
1364  * Move a list of pages in the address space of the currently executing
1365  * process.
1366  */
1367 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1368 		const void __user * __user *, pages,
1369 		const int __user *, nodes,
1370 		int __user *, status, int, flags)
1371 {
1372 	const struct cred *cred = current_cred(), *tcred;
1373 	struct task_struct *task;
1374 	struct mm_struct *mm;
1375 	int err;
1376 	nodemask_t task_nodes;
1377 
1378 	/* Check flags */
1379 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1380 		return -EINVAL;
1381 
1382 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1383 		return -EPERM;
1384 
1385 	/* Find the mm_struct */
1386 	rcu_read_lock();
1387 	task = pid ? find_task_by_vpid(pid) : current;
1388 	if (!task) {
1389 		rcu_read_unlock();
1390 		return -ESRCH;
1391 	}
1392 	get_task_struct(task);
1393 
1394 	/*
1395 	 * Check if this process has the right to modify the specified
1396 	 * process. The right exists if the process has administrative
1397 	 * capabilities, superuser privileges or the same
1398 	 * userid as the target process.
1399 	 */
1400 	tcred = __task_cred(task);
1401 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1402 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1403 	    !capable(CAP_SYS_NICE)) {
1404 		rcu_read_unlock();
1405 		err = -EPERM;
1406 		goto out;
1407 	}
1408 	rcu_read_unlock();
1409 
1410  	err = security_task_movememory(task);
1411  	if (err)
1412 		goto out;
1413 
1414 	task_nodes = cpuset_mems_allowed(task);
1415 	mm = get_task_mm(task);
1416 	put_task_struct(task);
1417 
1418 	if (!mm)
1419 		return -EINVAL;
1420 
1421 	if (nodes)
1422 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1423 				    nodes, status, flags);
1424 	else
1425 		err = do_pages_stat(mm, nr_pages, pages, status);
1426 
1427 	mmput(mm);
1428 	return err;
1429 
1430 out:
1431 	put_task_struct(task);
1432 	return err;
1433 }
1434 
1435 /*
1436  * Call migration functions in the vma_ops that may prepare
1437  * memory in a vm for migration. migration functions may perform
1438  * the migration for vmas that do not have an underlying page struct.
1439  */
1440 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1441 	const nodemask_t *from, unsigned long flags)
1442 {
1443  	struct vm_area_struct *vma;
1444  	int err = 0;
1445 
1446 	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1447  		if (vma->vm_ops && vma->vm_ops->migrate) {
1448  			err = vma->vm_ops->migrate(vma, to, from, flags);
1449  			if (err)
1450  				break;
1451  		}
1452  	}
1453  	return err;
1454 }
1455 
1456 #ifdef CONFIG_NUMA_BALANCING
1457 /*
1458  * Returns true if this is a safe migration target node for misplaced NUMA
1459  * pages. Currently it only checks the watermarks which crude
1460  */
1461 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1462 				   int nr_migrate_pages)
1463 {
1464 	int z;
1465 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1466 		struct zone *zone = pgdat->node_zones + z;
1467 
1468 		if (!populated_zone(zone))
1469 			continue;
1470 
1471 		if (zone->all_unreclaimable)
1472 			continue;
1473 
1474 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1475 		if (!zone_watermark_ok(zone, 0,
1476 				       high_wmark_pages(zone) +
1477 				       nr_migrate_pages,
1478 				       0, 0))
1479 			continue;
1480 		return true;
1481 	}
1482 	return false;
1483 }
1484 
1485 static struct page *alloc_misplaced_dst_page(struct page *page,
1486 					   unsigned long data,
1487 					   int **result)
1488 {
1489 	int nid = (int) data;
1490 	struct page *newpage;
1491 
1492 	newpage = alloc_pages_exact_node(nid,
1493 					 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1494 					  __GFP_NOMEMALLOC | __GFP_NORETRY |
1495 					  __GFP_NOWARN) &
1496 					 ~GFP_IOFS, 0);
1497 	if (newpage)
1498 		page_xchg_last_nid(newpage, page_last_nid(page));
1499 
1500 	return newpage;
1501 }
1502 
1503 /*
1504  * page migration rate limiting control.
1505  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1506  * window of time. Default here says do not migrate more than 1280M per second.
1507  * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1508  * as it is faults that reset the window, pte updates will happen unconditionally
1509  * if there has not been a fault since @pteupdate_interval_millisecs after the
1510  * throttle window closed.
1511  */
1512 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1513 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1514 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1515 
1516 /* Returns true if NUMA migration is currently rate limited */
1517 bool migrate_ratelimited(int node)
1518 {
1519 	pg_data_t *pgdat = NODE_DATA(node);
1520 
1521 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1522 				msecs_to_jiffies(pteupdate_interval_millisecs)))
1523 		return false;
1524 
1525 	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1526 		return false;
1527 
1528 	return true;
1529 }
1530 
1531 /* Returns true if the node is migrate rate-limited after the update */
1532 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1533 {
1534 	bool rate_limited = false;
1535 
1536 	/*
1537 	 * Rate-limit the amount of data that is being migrated to a node.
1538 	 * Optimal placement is no good if the memory bus is saturated and
1539 	 * all the time is being spent migrating!
1540 	 */
1541 	spin_lock(&pgdat->numabalancing_migrate_lock);
1542 	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1543 		pgdat->numabalancing_migrate_nr_pages = 0;
1544 		pgdat->numabalancing_migrate_next_window = jiffies +
1545 			msecs_to_jiffies(migrate_interval_millisecs);
1546 	}
1547 	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1548 		rate_limited = true;
1549 	else
1550 		pgdat->numabalancing_migrate_nr_pages += nr_pages;
1551 	spin_unlock(&pgdat->numabalancing_migrate_lock);
1552 
1553 	return rate_limited;
1554 }
1555 
1556 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1557 {
1558 	int ret = 0;
1559 
1560 	/* Avoid migrating to a node that is nearly full */
1561 	if (migrate_balanced_pgdat(pgdat, 1)) {
1562 		int page_lru;
1563 
1564 		if (isolate_lru_page(page)) {
1565 			put_page(page);
1566 			return 0;
1567 		}
1568 
1569 		/* Page is isolated */
1570 		ret = 1;
1571 		page_lru = page_is_file_cache(page);
1572 		if (!PageTransHuge(page))
1573 			inc_zone_page_state(page, NR_ISOLATED_ANON + page_lru);
1574 		else
1575 			mod_zone_page_state(page_zone(page),
1576 					NR_ISOLATED_ANON + page_lru,
1577 					HPAGE_PMD_NR);
1578 	}
1579 
1580 	/*
1581 	 * Page is either isolated or there is not enough space on the target
1582 	 * node. If isolated, then it has taken a reference count and the
1583 	 * callers reference can be safely dropped without the page
1584 	 * disappearing underneath us during migration. Otherwise the page is
1585 	 * not to be migrated but the callers reference should still be
1586 	 * dropped so it does not leak.
1587 	 */
1588 	put_page(page);
1589 
1590 	return ret;
1591 }
1592 
1593 /*
1594  * Attempt to migrate a misplaced page to the specified destination
1595  * node. Caller is expected to have an elevated reference count on
1596  * the page that will be dropped by this function before returning.
1597  */
1598 int migrate_misplaced_page(struct page *page, int node)
1599 {
1600 	pg_data_t *pgdat = NODE_DATA(node);
1601 	int isolated = 0;
1602 	int nr_remaining;
1603 	LIST_HEAD(migratepages);
1604 
1605 	/*
1606 	 * Don't migrate pages that are mapped in multiple processes.
1607 	 * TODO: Handle false sharing detection instead of this hammer
1608 	 */
1609 	if (page_mapcount(page) != 1) {
1610 		put_page(page);
1611 		goto out;
1612 	}
1613 
1614 	/*
1615 	 * Rate-limit the amount of data that is being migrated to a node.
1616 	 * Optimal placement is no good if the memory bus is saturated and
1617 	 * all the time is being spent migrating!
1618 	 */
1619 	if (numamigrate_update_ratelimit(pgdat, 1)) {
1620 		put_page(page);
1621 		goto out;
1622 	}
1623 
1624 	isolated = numamigrate_isolate_page(pgdat, page);
1625 	if (!isolated)
1626 		goto out;
1627 
1628 	list_add(&page->lru, &migratepages);
1629 	nr_remaining = migrate_pages(&migratepages,
1630 			alloc_misplaced_dst_page,
1631 			node, false, MIGRATE_ASYNC,
1632 			MR_NUMA_MISPLACED);
1633 	if (nr_remaining) {
1634 		putback_lru_pages(&migratepages);
1635 		isolated = 0;
1636 	} else
1637 		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1638 	BUG_ON(!list_empty(&migratepages));
1639 out:
1640 	return isolated;
1641 }
1642 #endif /* CONFIG_NUMA_BALANCING */
1643 
1644 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1645 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1646 				struct vm_area_struct *vma,
1647 				pmd_t *pmd, pmd_t entry,
1648 				unsigned long address,
1649 				struct page *page, int node)
1650 {
1651 	unsigned long haddr = address & HPAGE_PMD_MASK;
1652 	pg_data_t *pgdat = NODE_DATA(node);
1653 	int isolated = 0;
1654 	struct page *new_page = NULL;
1655 	struct mem_cgroup *memcg = NULL;
1656 	int page_lru = page_is_file_cache(page);
1657 
1658 	/*
1659 	 * Don't migrate pages that are mapped in multiple processes.
1660 	 * TODO: Handle false sharing detection instead of this hammer
1661 	 */
1662 	if (page_mapcount(page) != 1)
1663 		goto out_dropref;
1664 
1665 	/*
1666 	 * Rate-limit the amount of data that is being migrated to a node.
1667 	 * Optimal placement is no good if the memory bus is saturated and
1668 	 * all the time is being spent migrating!
1669 	 */
1670 	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1671 		goto out_dropref;
1672 
1673 	new_page = alloc_pages_node(node,
1674 		(GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1675 	if (!new_page) {
1676 		count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1677 		goto out_dropref;
1678 	}
1679 	page_xchg_last_nid(new_page, page_last_nid(page));
1680 
1681 	isolated = numamigrate_isolate_page(pgdat, page);
1682 	if (!isolated) {
1683 		count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1684 		put_page(new_page);
1685 		goto out_keep_locked;
1686 	}
1687 
1688 	/* Prepare a page as a migration target */
1689 	__set_page_locked(new_page);
1690 	SetPageSwapBacked(new_page);
1691 
1692 	/* anon mapping, we can simply copy page->mapping to the new page: */
1693 	new_page->mapping = page->mapping;
1694 	new_page->index = page->index;
1695 	migrate_page_copy(new_page, page);
1696 	WARN_ON(PageLRU(new_page));
1697 
1698 	/* Recheck the target PMD */
1699 	spin_lock(&mm->page_table_lock);
1700 	if (unlikely(!pmd_same(*pmd, entry))) {
1701 		spin_unlock(&mm->page_table_lock);
1702 
1703 		/* Reverse changes made by migrate_page_copy() */
1704 		if (TestClearPageActive(new_page))
1705 			SetPageActive(page);
1706 		if (TestClearPageUnevictable(new_page))
1707 			SetPageUnevictable(page);
1708 		mlock_migrate_page(page, new_page);
1709 
1710 		unlock_page(new_page);
1711 		put_page(new_page);		/* Free it */
1712 
1713 		unlock_page(page);
1714 		putback_lru_page(page);
1715 
1716 		count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1717 		goto out;
1718 	}
1719 
1720 	/*
1721 	 * Traditional migration needs to prepare the memcg charge
1722 	 * transaction early to prevent the old page from being
1723 	 * uncharged when installing migration entries.  Here we can
1724 	 * save the potential rollback and start the charge transfer
1725 	 * only when migration is already known to end successfully.
1726 	 */
1727 	mem_cgroup_prepare_migration(page, new_page, &memcg);
1728 
1729 	entry = mk_pmd(new_page, vma->vm_page_prot);
1730 	entry = pmd_mknonnuma(entry);
1731 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1732 	entry = pmd_mkhuge(entry);
1733 
1734 	page_add_new_anon_rmap(new_page, vma, haddr);
1735 
1736 	set_pmd_at(mm, haddr, pmd, entry);
1737 	update_mmu_cache_pmd(vma, address, &entry);
1738 	page_remove_rmap(page);
1739 	/*
1740 	 * Finish the charge transaction under the page table lock to
1741 	 * prevent split_huge_page() from dividing up the charge
1742 	 * before it's fully transferred to the new page.
1743 	 */
1744 	mem_cgroup_end_migration(memcg, page, new_page, true);
1745 	spin_unlock(&mm->page_table_lock);
1746 
1747 	unlock_page(new_page);
1748 	unlock_page(page);
1749 	put_page(page);			/* Drop the rmap reference */
1750 	put_page(page);			/* Drop the LRU isolation reference */
1751 
1752 	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1753 	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1754 
1755 out:
1756 	mod_zone_page_state(page_zone(page),
1757 			NR_ISOLATED_ANON + page_lru,
1758 			-HPAGE_PMD_NR);
1759 	return isolated;
1760 
1761 out_dropref:
1762 	put_page(page);
1763 out_keep_locked:
1764 	return 0;
1765 }
1766 #endif /* CONFIG_NUMA_BALANCING */
1767 
1768 #endif /* CONFIG_NUMA */
1769