1 /* 2 * Memory Migration functionality - linux/mm/migration.c 3 * 4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 5 * 6 * Page migration was first developed in the context of the memory hotplug 7 * project. The main authors of the migration code are: 8 * 9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 10 * Hirokazu Takahashi <taka@valinux.co.jp> 11 * Dave Hansen <haveblue@us.ibm.com> 12 * Christoph Lameter 13 */ 14 15 #include <linux/migrate.h> 16 #include <linux/export.h> 17 #include <linux/swap.h> 18 #include <linux/swapops.h> 19 #include <linux/pagemap.h> 20 #include <linux/buffer_head.h> 21 #include <linux/mm_inline.h> 22 #include <linux/nsproxy.h> 23 #include <linux/pagevec.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/topology.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/writeback.h> 30 #include <linux/mempolicy.h> 31 #include <linux/vmalloc.h> 32 #include <linux/security.h> 33 #include <linux/memcontrol.h> 34 #include <linux/syscalls.h> 35 #include <linux/hugetlb.h> 36 #include <linux/hugetlb_cgroup.h> 37 #include <linux/gfp.h> 38 #include <linux/balloon_compaction.h> 39 40 #include <asm/tlbflush.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/migrate.h> 44 45 #include "internal.h" 46 47 /* 48 * migrate_prep() needs to be called before we start compiling a list of pages 49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is 50 * undesirable, use migrate_prep_local() 51 */ 52 int migrate_prep(void) 53 { 54 /* 55 * Clear the LRU lists so pages can be isolated. 56 * Note that pages may be moved off the LRU after we have 57 * drained them. Those pages will fail to migrate like other 58 * pages that may be busy. 59 */ 60 lru_add_drain_all(); 61 62 return 0; 63 } 64 65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */ 66 int migrate_prep_local(void) 67 { 68 lru_add_drain(); 69 70 return 0; 71 } 72 73 /* 74 * Add isolated pages on the list back to the LRU under page lock 75 * to avoid leaking evictable pages back onto unevictable list. 76 */ 77 void putback_lru_pages(struct list_head *l) 78 { 79 struct page *page; 80 struct page *page2; 81 82 list_for_each_entry_safe(page, page2, l, lru) { 83 list_del(&page->lru); 84 dec_zone_page_state(page, NR_ISOLATED_ANON + 85 page_is_file_cache(page)); 86 putback_lru_page(page); 87 } 88 } 89 90 /* 91 * Put previously isolated pages back onto the appropriate lists 92 * from where they were once taken off for compaction/migration. 93 * 94 * This function shall be used instead of putback_lru_pages(), 95 * whenever the isolated pageset has been built by isolate_migratepages_range() 96 */ 97 void putback_movable_pages(struct list_head *l) 98 { 99 struct page *page; 100 struct page *page2; 101 102 list_for_each_entry_safe(page, page2, l, lru) { 103 list_del(&page->lru); 104 dec_zone_page_state(page, NR_ISOLATED_ANON + 105 page_is_file_cache(page)); 106 if (unlikely(balloon_page_movable(page))) 107 balloon_page_putback(page); 108 else 109 putback_lru_page(page); 110 } 111 } 112 113 /* 114 * Restore a potential migration pte to a working pte entry 115 */ 116 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, 117 unsigned long addr, void *old) 118 { 119 struct mm_struct *mm = vma->vm_mm; 120 swp_entry_t entry; 121 pmd_t *pmd; 122 pte_t *ptep, pte; 123 spinlock_t *ptl; 124 125 if (unlikely(PageHuge(new))) { 126 ptep = huge_pte_offset(mm, addr); 127 if (!ptep) 128 goto out; 129 ptl = &mm->page_table_lock; 130 } else { 131 pmd = mm_find_pmd(mm, addr); 132 if (!pmd) 133 goto out; 134 if (pmd_trans_huge(*pmd)) 135 goto out; 136 137 ptep = pte_offset_map(pmd, addr); 138 139 /* 140 * Peek to check is_swap_pte() before taking ptlock? No, we 141 * can race mremap's move_ptes(), which skips anon_vma lock. 142 */ 143 144 ptl = pte_lockptr(mm, pmd); 145 } 146 147 spin_lock(ptl); 148 pte = *ptep; 149 if (!is_swap_pte(pte)) 150 goto unlock; 151 152 entry = pte_to_swp_entry(pte); 153 154 if (!is_migration_entry(entry) || 155 migration_entry_to_page(entry) != old) 156 goto unlock; 157 158 get_page(new); 159 pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); 160 if (is_write_migration_entry(entry)) 161 pte = pte_mkwrite(pte); 162 #ifdef CONFIG_HUGETLB_PAGE 163 if (PageHuge(new)) 164 pte = pte_mkhuge(pte); 165 #endif 166 flush_cache_page(vma, addr, pte_pfn(pte)); 167 set_pte_at(mm, addr, ptep, pte); 168 169 if (PageHuge(new)) { 170 if (PageAnon(new)) 171 hugepage_add_anon_rmap(new, vma, addr); 172 else 173 page_dup_rmap(new); 174 } else if (PageAnon(new)) 175 page_add_anon_rmap(new, vma, addr); 176 else 177 page_add_file_rmap(new); 178 179 /* No need to invalidate - it was non-present before */ 180 update_mmu_cache(vma, addr, ptep); 181 unlock: 182 pte_unmap_unlock(ptep, ptl); 183 out: 184 return SWAP_AGAIN; 185 } 186 187 /* 188 * Get rid of all migration entries and replace them by 189 * references to the indicated page. 190 */ 191 static void remove_migration_ptes(struct page *old, struct page *new) 192 { 193 rmap_walk(new, remove_migration_pte, old); 194 } 195 196 /* 197 * Something used the pte of a page under migration. We need to 198 * get to the page and wait until migration is finished. 199 * When we return from this function the fault will be retried. 200 */ 201 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 202 unsigned long address) 203 { 204 pte_t *ptep, pte; 205 spinlock_t *ptl; 206 swp_entry_t entry; 207 struct page *page; 208 209 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 210 pte = *ptep; 211 if (!is_swap_pte(pte)) 212 goto out; 213 214 entry = pte_to_swp_entry(pte); 215 if (!is_migration_entry(entry)) 216 goto out; 217 218 page = migration_entry_to_page(entry); 219 220 /* 221 * Once radix-tree replacement of page migration started, page_count 222 * *must* be zero. And, we don't want to call wait_on_page_locked() 223 * against a page without get_page(). 224 * So, we use get_page_unless_zero(), here. Even failed, page fault 225 * will occur again. 226 */ 227 if (!get_page_unless_zero(page)) 228 goto out; 229 pte_unmap_unlock(ptep, ptl); 230 wait_on_page_locked(page); 231 put_page(page); 232 return; 233 out: 234 pte_unmap_unlock(ptep, ptl); 235 } 236 237 #ifdef CONFIG_BLOCK 238 /* Returns true if all buffers are successfully locked */ 239 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 240 enum migrate_mode mode) 241 { 242 struct buffer_head *bh = head; 243 244 /* Simple case, sync compaction */ 245 if (mode != MIGRATE_ASYNC) { 246 do { 247 get_bh(bh); 248 lock_buffer(bh); 249 bh = bh->b_this_page; 250 251 } while (bh != head); 252 253 return true; 254 } 255 256 /* async case, we cannot block on lock_buffer so use trylock_buffer */ 257 do { 258 get_bh(bh); 259 if (!trylock_buffer(bh)) { 260 /* 261 * We failed to lock the buffer and cannot stall in 262 * async migration. Release the taken locks 263 */ 264 struct buffer_head *failed_bh = bh; 265 put_bh(failed_bh); 266 bh = head; 267 while (bh != failed_bh) { 268 unlock_buffer(bh); 269 put_bh(bh); 270 bh = bh->b_this_page; 271 } 272 return false; 273 } 274 275 bh = bh->b_this_page; 276 } while (bh != head); 277 return true; 278 } 279 #else 280 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, 281 enum migrate_mode mode) 282 { 283 return true; 284 } 285 #endif /* CONFIG_BLOCK */ 286 287 /* 288 * Replace the page in the mapping. 289 * 290 * The number of remaining references must be: 291 * 1 for anonymous pages without a mapping 292 * 2 for pages with a mapping 293 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. 294 */ 295 static int migrate_page_move_mapping(struct address_space *mapping, 296 struct page *newpage, struct page *page, 297 struct buffer_head *head, enum migrate_mode mode) 298 { 299 int expected_count = 0; 300 void **pslot; 301 302 if (!mapping) { 303 /* Anonymous page without mapping */ 304 if (page_count(page) != 1) 305 return -EAGAIN; 306 return MIGRATEPAGE_SUCCESS; 307 } 308 309 spin_lock_irq(&mapping->tree_lock); 310 311 pslot = radix_tree_lookup_slot(&mapping->page_tree, 312 page_index(page)); 313 314 expected_count = 2 + page_has_private(page); 315 if (page_count(page) != expected_count || 316 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 317 spin_unlock_irq(&mapping->tree_lock); 318 return -EAGAIN; 319 } 320 321 if (!page_freeze_refs(page, expected_count)) { 322 spin_unlock_irq(&mapping->tree_lock); 323 return -EAGAIN; 324 } 325 326 /* 327 * In the async migration case of moving a page with buffers, lock the 328 * buffers using trylock before the mapping is moved. If the mapping 329 * was moved, we later failed to lock the buffers and could not move 330 * the mapping back due to an elevated page count, we would have to 331 * block waiting on other references to be dropped. 332 */ 333 if (mode == MIGRATE_ASYNC && head && 334 !buffer_migrate_lock_buffers(head, mode)) { 335 page_unfreeze_refs(page, expected_count); 336 spin_unlock_irq(&mapping->tree_lock); 337 return -EAGAIN; 338 } 339 340 /* 341 * Now we know that no one else is looking at the page. 342 */ 343 get_page(newpage); /* add cache reference */ 344 if (PageSwapCache(page)) { 345 SetPageSwapCache(newpage); 346 set_page_private(newpage, page_private(page)); 347 } 348 349 radix_tree_replace_slot(pslot, newpage); 350 351 /* 352 * Drop cache reference from old page by unfreezing 353 * to one less reference. 354 * We know this isn't the last reference. 355 */ 356 page_unfreeze_refs(page, expected_count - 1); 357 358 /* 359 * If moved to a different zone then also account 360 * the page for that zone. Other VM counters will be 361 * taken care of when we establish references to the 362 * new page and drop references to the old page. 363 * 364 * Note that anonymous pages are accounted for 365 * via NR_FILE_PAGES and NR_ANON_PAGES if they 366 * are mapped to swap space. 367 */ 368 __dec_zone_page_state(page, NR_FILE_PAGES); 369 __inc_zone_page_state(newpage, NR_FILE_PAGES); 370 if (!PageSwapCache(page) && PageSwapBacked(page)) { 371 __dec_zone_page_state(page, NR_SHMEM); 372 __inc_zone_page_state(newpage, NR_SHMEM); 373 } 374 spin_unlock_irq(&mapping->tree_lock); 375 376 return MIGRATEPAGE_SUCCESS; 377 } 378 379 /* 380 * The expected number of remaining references is the same as that 381 * of migrate_page_move_mapping(). 382 */ 383 int migrate_huge_page_move_mapping(struct address_space *mapping, 384 struct page *newpage, struct page *page) 385 { 386 int expected_count; 387 void **pslot; 388 389 if (!mapping) { 390 if (page_count(page) != 1) 391 return -EAGAIN; 392 return MIGRATEPAGE_SUCCESS; 393 } 394 395 spin_lock_irq(&mapping->tree_lock); 396 397 pslot = radix_tree_lookup_slot(&mapping->page_tree, 398 page_index(page)); 399 400 expected_count = 2 + page_has_private(page); 401 if (page_count(page) != expected_count || 402 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { 403 spin_unlock_irq(&mapping->tree_lock); 404 return -EAGAIN; 405 } 406 407 if (!page_freeze_refs(page, expected_count)) { 408 spin_unlock_irq(&mapping->tree_lock); 409 return -EAGAIN; 410 } 411 412 get_page(newpage); 413 414 radix_tree_replace_slot(pslot, newpage); 415 416 page_unfreeze_refs(page, expected_count - 1); 417 418 spin_unlock_irq(&mapping->tree_lock); 419 return MIGRATEPAGE_SUCCESS; 420 } 421 422 /* 423 * Copy the page to its new location 424 */ 425 void migrate_page_copy(struct page *newpage, struct page *page) 426 { 427 if (PageHuge(page) || PageTransHuge(page)) 428 copy_huge_page(newpage, page); 429 else 430 copy_highpage(newpage, page); 431 432 if (PageError(page)) 433 SetPageError(newpage); 434 if (PageReferenced(page)) 435 SetPageReferenced(newpage); 436 if (PageUptodate(page)) 437 SetPageUptodate(newpage); 438 if (TestClearPageActive(page)) { 439 VM_BUG_ON(PageUnevictable(page)); 440 SetPageActive(newpage); 441 } else if (TestClearPageUnevictable(page)) 442 SetPageUnevictable(newpage); 443 if (PageChecked(page)) 444 SetPageChecked(newpage); 445 if (PageMappedToDisk(page)) 446 SetPageMappedToDisk(newpage); 447 448 if (PageDirty(page)) { 449 clear_page_dirty_for_io(page); 450 /* 451 * Want to mark the page and the radix tree as dirty, and 452 * redo the accounting that clear_page_dirty_for_io undid, 453 * but we can't use set_page_dirty because that function 454 * is actually a signal that all of the page has become dirty. 455 * Whereas only part of our page may be dirty. 456 */ 457 if (PageSwapBacked(page)) 458 SetPageDirty(newpage); 459 else 460 __set_page_dirty_nobuffers(newpage); 461 } 462 463 mlock_migrate_page(newpage, page); 464 ksm_migrate_page(newpage, page); 465 466 ClearPageSwapCache(page); 467 ClearPagePrivate(page); 468 set_page_private(page, 0); 469 470 /* 471 * If any waiters have accumulated on the new page then 472 * wake them up. 473 */ 474 if (PageWriteback(newpage)) 475 end_page_writeback(newpage); 476 } 477 478 /************************************************************ 479 * Migration functions 480 ***********************************************************/ 481 482 /* Always fail migration. Used for mappings that are not movable */ 483 int fail_migrate_page(struct address_space *mapping, 484 struct page *newpage, struct page *page) 485 { 486 return -EIO; 487 } 488 EXPORT_SYMBOL(fail_migrate_page); 489 490 /* 491 * Common logic to directly migrate a single page suitable for 492 * pages that do not use PagePrivate/PagePrivate2. 493 * 494 * Pages are locked upon entry and exit. 495 */ 496 int migrate_page(struct address_space *mapping, 497 struct page *newpage, struct page *page, 498 enum migrate_mode mode) 499 { 500 int rc; 501 502 BUG_ON(PageWriteback(page)); /* Writeback must be complete */ 503 504 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode); 505 506 if (rc != MIGRATEPAGE_SUCCESS) 507 return rc; 508 509 migrate_page_copy(newpage, page); 510 return MIGRATEPAGE_SUCCESS; 511 } 512 EXPORT_SYMBOL(migrate_page); 513 514 #ifdef CONFIG_BLOCK 515 /* 516 * Migration function for pages with buffers. This function can only be used 517 * if the underlying filesystem guarantees that no other references to "page" 518 * exist. 519 */ 520 int buffer_migrate_page(struct address_space *mapping, 521 struct page *newpage, struct page *page, enum migrate_mode mode) 522 { 523 struct buffer_head *bh, *head; 524 int rc; 525 526 if (!page_has_buffers(page)) 527 return migrate_page(mapping, newpage, page, mode); 528 529 head = page_buffers(page); 530 531 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode); 532 533 if (rc != MIGRATEPAGE_SUCCESS) 534 return rc; 535 536 /* 537 * In the async case, migrate_page_move_mapping locked the buffers 538 * with an IRQ-safe spinlock held. In the sync case, the buffers 539 * need to be locked now 540 */ 541 if (mode != MIGRATE_ASYNC) 542 BUG_ON(!buffer_migrate_lock_buffers(head, mode)); 543 544 ClearPagePrivate(page); 545 set_page_private(newpage, page_private(page)); 546 set_page_private(page, 0); 547 put_page(page); 548 get_page(newpage); 549 550 bh = head; 551 do { 552 set_bh_page(bh, newpage, bh_offset(bh)); 553 bh = bh->b_this_page; 554 555 } while (bh != head); 556 557 SetPagePrivate(newpage); 558 559 migrate_page_copy(newpage, page); 560 561 bh = head; 562 do { 563 unlock_buffer(bh); 564 put_bh(bh); 565 bh = bh->b_this_page; 566 567 } while (bh != head); 568 569 return MIGRATEPAGE_SUCCESS; 570 } 571 EXPORT_SYMBOL(buffer_migrate_page); 572 #endif 573 574 /* 575 * Writeback a page to clean the dirty state 576 */ 577 static int writeout(struct address_space *mapping, struct page *page) 578 { 579 struct writeback_control wbc = { 580 .sync_mode = WB_SYNC_NONE, 581 .nr_to_write = 1, 582 .range_start = 0, 583 .range_end = LLONG_MAX, 584 .for_reclaim = 1 585 }; 586 int rc; 587 588 if (!mapping->a_ops->writepage) 589 /* No write method for the address space */ 590 return -EINVAL; 591 592 if (!clear_page_dirty_for_io(page)) 593 /* Someone else already triggered a write */ 594 return -EAGAIN; 595 596 /* 597 * A dirty page may imply that the underlying filesystem has 598 * the page on some queue. So the page must be clean for 599 * migration. Writeout may mean we loose the lock and the 600 * page state is no longer what we checked for earlier. 601 * At this point we know that the migration attempt cannot 602 * be successful. 603 */ 604 remove_migration_ptes(page, page); 605 606 rc = mapping->a_ops->writepage(page, &wbc); 607 608 if (rc != AOP_WRITEPAGE_ACTIVATE) 609 /* unlocked. Relock */ 610 lock_page(page); 611 612 return (rc < 0) ? -EIO : -EAGAIN; 613 } 614 615 /* 616 * Default handling if a filesystem does not provide a migration function. 617 */ 618 static int fallback_migrate_page(struct address_space *mapping, 619 struct page *newpage, struct page *page, enum migrate_mode mode) 620 { 621 if (PageDirty(page)) { 622 /* Only writeback pages in full synchronous migration */ 623 if (mode != MIGRATE_SYNC) 624 return -EBUSY; 625 return writeout(mapping, page); 626 } 627 628 /* 629 * Buffers may be managed in a filesystem specific way. 630 * We must have no buffers or drop them. 631 */ 632 if (page_has_private(page) && 633 !try_to_release_page(page, GFP_KERNEL)) 634 return -EAGAIN; 635 636 return migrate_page(mapping, newpage, page, mode); 637 } 638 639 /* 640 * Move a page to a newly allocated page 641 * The page is locked and all ptes have been successfully removed. 642 * 643 * The new page will have replaced the old page if this function 644 * is successful. 645 * 646 * Return value: 647 * < 0 - error code 648 * MIGRATEPAGE_SUCCESS - success 649 */ 650 static int move_to_new_page(struct page *newpage, struct page *page, 651 int remap_swapcache, enum migrate_mode mode) 652 { 653 struct address_space *mapping; 654 int rc; 655 656 /* 657 * Block others from accessing the page when we get around to 658 * establishing additional references. We are the only one 659 * holding a reference to the new page at this point. 660 */ 661 if (!trylock_page(newpage)) 662 BUG(); 663 664 /* Prepare mapping for the new page.*/ 665 newpage->index = page->index; 666 newpage->mapping = page->mapping; 667 if (PageSwapBacked(page)) 668 SetPageSwapBacked(newpage); 669 670 mapping = page_mapping(page); 671 if (!mapping) 672 rc = migrate_page(mapping, newpage, page, mode); 673 else if (mapping->a_ops->migratepage) 674 /* 675 * Most pages have a mapping and most filesystems provide a 676 * migratepage callback. Anonymous pages are part of swap 677 * space which also has its own migratepage callback. This 678 * is the most common path for page migration. 679 */ 680 rc = mapping->a_ops->migratepage(mapping, 681 newpage, page, mode); 682 else 683 rc = fallback_migrate_page(mapping, newpage, page, mode); 684 685 if (rc != MIGRATEPAGE_SUCCESS) { 686 newpage->mapping = NULL; 687 } else { 688 if (remap_swapcache) 689 remove_migration_ptes(page, newpage); 690 page->mapping = NULL; 691 } 692 693 unlock_page(newpage); 694 695 return rc; 696 } 697 698 static int __unmap_and_move(struct page *page, struct page *newpage, 699 int force, bool offlining, enum migrate_mode mode) 700 { 701 int rc = -EAGAIN; 702 int remap_swapcache = 1; 703 struct mem_cgroup *mem; 704 struct anon_vma *anon_vma = NULL; 705 706 if (!trylock_page(page)) { 707 if (!force || mode == MIGRATE_ASYNC) 708 goto out; 709 710 /* 711 * It's not safe for direct compaction to call lock_page. 712 * For example, during page readahead pages are added locked 713 * to the LRU. Later, when the IO completes the pages are 714 * marked uptodate and unlocked. However, the queueing 715 * could be merging multiple pages for one bio (e.g. 716 * mpage_readpages). If an allocation happens for the 717 * second or third page, the process can end up locking 718 * the same page twice and deadlocking. Rather than 719 * trying to be clever about what pages can be locked, 720 * avoid the use of lock_page for direct compaction 721 * altogether. 722 */ 723 if (current->flags & PF_MEMALLOC) 724 goto out; 725 726 lock_page(page); 727 } 728 729 /* 730 * Only memory hotplug's offline_pages() caller has locked out KSM, 731 * and can safely migrate a KSM page. The other cases have skipped 732 * PageKsm along with PageReserved - but it is only now when we have 733 * the page lock that we can be certain it will not go KSM beneath us 734 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees 735 * its pagecount raised, but only here do we take the page lock which 736 * serializes that). 737 */ 738 if (PageKsm(page) && !offlining) { 739 rc = -EBUSY; 740 goto unlock; 741 } 742 743 /* charge against new page */ 744 mem_cgroup_prepare_migration(page, newpage, &mem); 745 746 if (PageWriteback(page)) { 747 /* 748 * Only in the case of a full syncronous migration is it 749 * necessary to wait for PageWriteback. In the async case, 750 * the retry loop is too short and in the sync-light case, 751 * the overhead of stalling is too much 752 */ 753 if (mode != MIGRATE_SYNC) { 754 rc = -EBUSY; 755 goto uncharge; 756 } 757 if (!force) 758 goto uncharge; 759 wait_on_page_writeback(page); 760 } 761 /* 762 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, 763 * we cannot notice that anon_vma is freed while we migrates a page. 764 * This get_anon_vma() delays freeing anon_vma pointer until the end 765 * of migration. File cache pages are no problem because of page_lock() 766 * File Caches may use write_page() or lock_page() in migration, then, 767 * just care Anon page here. 768 */ 769 if (PageAnon(page)) { 770 /* 771 * Only page_lock_anon_vma_read() understands the subtleties of 772 * getting a hold on an anon_vma from outside one of its mms. 773 */ 774 anon_vma = page_get_anon_vma(page); 775 if (anon_vma) { 776 /* 777 * Anon page 778 */ 779 } else if (PageSwapCache(page)) { 780 /* 781 * We cannot be sure that the anon_vma of an unmapped 782 * swapcache page is safe to use because we don't 783 * know in advance if the VMA that this page belonged 784 * to still exists. If the VMA and others sharing the 785 * data have been freed, then the anon_vma could 786 * already be invalid. 787 * 788 * To avoid this possibility, swapcache pages get 789 * migrated but are not remapped when migration 790 * completes 791 */ 792 remap_swapcache = 0; 793 } else { 794 goto uncharge; 795 } 796 } 797 798 if (unlikely(balloon_page_movable(page))) { 799 /* 800 * A ballooned page does not need any special attention from 801 * physical to virtual reverse mapping procedures. 802 * Skip any attempt to unmap PTEs or to remap swap cache, 803 * in order to avoid burning cycles at rmap level, and perform 804 * the page migration right away (proteced by page lock). 805 */ 806 rc = balloon_page_migrate(newpage, page, mode); 807 goto uncharge; 808 } 809 810 /* 811 * Corner case handling: 812 * 1. When a new swap-cache page is read into, it is added to the LRU 813 * and treated as swapcache but it has no rmap yet. 814 * Calling try_to_unmap() against a page->mapping==NULL page will 815 * trigger a BUG. So handle it here. 816 * 2. An orphaned page (see truncate_complete_page) might have 817 * fs-private metadata. The page can be picked up due to memory 818 * offlining. Everywhere else except page reclaim, the page is 819 * invisible to the vm, so the page can not be migrated. So try to 820 * free the metadata, so the page can be freed. 821 */ 822 if (!page->mapping) { 823 VM_BUG_ON(PageAnon(page)); 824 if (page_has_private(page)) { 825 try_to_free_buffers(page); 826 goto uncharge; 827 } 828 goto skip_unmap; 829 } 830 831 /* Establish migration ptes or remove ptes */ 832 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 833 834 skip_unmap: 835 if (!page_mapped(page)) 836 rc = move_to_new_page(newpage, page, remap_swapcache, mode); 837 838 if (rc && remap_swapcache) 839 remove_migration_ptes(page, page); 840 841 /* Drop an anon_vma reference if we took one */ 842 if (anon_vma) 843 put_anon_vma(anon_vma); 844 845 uncharge: 846 mem_cgroup_end_migration(mem, page, newpage, 847 (rc == MIGRATEPAGE_SUCCESS || 848 rc == MIGRATEPAGE_BALLOON_SUCCESS)); 849 unlock: 850 unlock_page(page); 851 out: 852 return rc; 853 } 854 855 /* 856 * Obtain the lock on page, remove all ptes and migrate the page 857 * to the newly allocated page in newpage. 858 */ 859 static int unmap_and_move(new_page_t get_new_page, unsigned long private, 860 struct page *page, int force, bool offlining, 861 enum migrate_mode mode) 862 { 863 int rc = 0; 864 int *result = NULL; 865 struct page *newpage = get_new_page(page, private, &result); 866 867 if (!newpage) 868 return -ENOMEM; 869 870 if (page_count(page) == 1) { 871 /* page was freed from under us. So we are done. */ 872 goto out; 873 } 874 875 if (unlikely(PageTransHuge(page))) 876 if (unlikely(split_huge_page(page))) 877 goto out; 878 879 rc = __unmap_and_move(page, newpage, force, offlining, mode); 880 881 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) { 882 /* 883 * A ballooned page has been migrated already. 884 * Now, it's the time to wrap-up counters, 885 * handle the page back to Buddy and return. 886 */ 887 dec_zone_page_state(page, NR_ISOLATED_ANON + 888 page_is_file_cache(page)); 889 balloon_page_free(page); 890 return MIGRATEPAGE_SUCCESS; 891 } 892 out: 893 if (rc != -EAGAIN) { 894 /* 895 * A page that has been migrated has all references 896 * removed and will be freed. A page that has not been 897 * migrated will have kepts its references and be 898 * restored. 899 */ 900 list_del(&page->lru); 901 dec_zone_page_state(page, NR_ISOLATED_ANON + 902 page_is_file_cache(page)); 903 putback_lru_page(page); 904 } 905 /* 906 * Move the new page to the LRU. If migration was not successful 907 * then this will free the page. 908 */ 909 putback_lru_page(newpage); 910 if (result) { 911 if (rc) 912 *result = rc; 913 else 914 *result = page_to_nid(newpage); 915 } 916 return rc; 917 } 918 919 /* 920 * Counterpart of unmap_and_move_page() for hugepage migration. 921 * 922 * This function doesn't wait the completion of hugepage I/O 923 * because there is no race between I/O and migration for hugepage. 924 * Note that currently hugepage I/O occurs only in direct I/O 925 * where no lock is held and PG_writeback is irrelevant, 926 * and writeback status of all subpages are counted in the reference 927 * count of the head page (i.e. if all subpages of a 2MB hugepage are 928 * under direct I/O, the reference of the head page is 512 and a bit more.) 929 * This means that when we try to migrate hugepage whose subpages are 930 * doing direct I/O, some references remain after try_to_unmap() and 931 * hugepage migration fails without data corruption. 932 * 933 * There is also no race when direct I/O is issued on the page under migration, 934 * because then pte is replaced with migration swap entry and direct I/O code 935 * will wait in the page fault for migration to complete. 936 */ 937 static int unmap_and_move_huge_page(new_page_t get_new_page, 938 unsigned long private, struct page *hpage, 939 int force, bool offlining, 940 enum migrate_mode mode) 941 { 942 int rc = 0; 943 int *result = NULL; 944 struct page *new_hpage = get_new_page(hpage, private, &result); 945 struct anon_vma *anon_vma = NULL; 946 947 if (!new_hpage) 948 return -ENOMEM; 949 950 rc = -EAGAIN; 951 952 if (!trylock_page(hpage)) { 953 if (!force || mode != MIGRATE_SYNC) 954 goto out; 955 lock_page(hpage); 956 } 957 958 if (PageAnon(hpage)) 959 anon_vma = page_get_anon_vma(hpage); 960 961 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); 962 963 if (!page_mapped(hpage)) 964 rc = move_to_new_page(new_hpage, hpage, 1, mode); 965 966 if (rc) 967 remove_migration_ptes(hpage, hpage); 968 969 if (anon_vma) 970 put_anon_vma(anon_vma); 971 972 if (!rc) 973 hugetlb_cgroup_migrate(hpage, new_hpage); 974 975 unlock_page(hpage); 976 out: 977 put_page(new_hpage); 978 if (result) { 979 if (rc) 980 *result = rc; 981 else 982 *result = page_to_nid(new_hpage); 983 } 984 return rc; 985 } 986 987 /* 988 * migrate_pages 989 * 990 * The function takes one list of pages to migrate and a function 991 * that determines from the page to be migrated and the private data 992 * the target of the move and allocates the page. 993 * 994 * The function returns after 10 attempts or if no pages 995 * are movable anymore because to has become empty 996 * or no retryable pages exist anymore. 997 * Caller should call putback_lru_pages to return pages to the LRU 998 * or free list only if ret != 0. 999 * 1000 * Return: Number of pages not migrated or error code. 1001 */ 1002 int migrate_pages(struct list_head *from, 1003 new_page_t get_new_page, unsigned long private, bool offlining, 1004 enum migrate_mode mode, int reason) 1005 { 1006 int retry = 1; 1007 int nr_failed = 0; 1008 int nr_succeeded = 0; 1009 int pass = 0; 1010 struct page *page; 1011 struct page *page2; 1012 int swapwrite = current->flags & PF_SWAPWRITE; 1013 int rc; 1014 1015 if (!swapwrite) 1016 current->flags |= PF_SWAPWRITE; 1017 1018 for(pass = 0; pass < 10 && retry; pass++) { 1019 retry = 0; 1020 1021 list_for_each_entry_safe(page, page2, from, lru) { 1022 cond_resched(); 1023 1024 rc = unmap_and_move(get_new_page, private, 1025 page, pass > 2, offlining, 1026 mode); 1027 1028 switch(rc) { 1029 case -ENOMEM: 1030 goto out; 1031 case -EAGAIN: 1032 retry++; 1033 break; 1034 case MIGRATEPAGE_SUCCESS: 1035 nr_succeeded++; 1036 break; 1037 default: 1038 /* Permanent failure */ 1039 nr_failed++; 1040 break; 1041 } 1042 } 1043 } 1044 rc = nr_failed + retry; 1045 out: 1046 if (nr_succeeded) 1047 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded); 1048 if (nr_failed) 1049 count_vm_events(PGMIGRATE_FAIL, nr_failed); 1050 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason); 1051 1052 if (!swapwrite) 1053 current->flags &= ~PF_SWAPWRITE; 1054 1055 return rc; 1056 } 1057 1058 int migrate_huge_page(struct page *hpage, new_page_t get_new_page, 1059 unsigned long private, bool offlining, 1060 enum migrate_mode mode) 1061 { 1062 int pass, rc; 1063 1064 for (pass = 0; pass < 10; pass++) { 1065 rc = unmap_and_move_huge_page(get_new_page, 1066 private, hpage, pass > 2, offlining, 1067 mode); 1068 switch (rc) { 1069 case -ENOMEM: 1070 goto out; 1071 case -EAGAIN: 1072 /* try again */ 1073 cond_resched(); 1074 break; 1075 case MIGRATEPAGE_SUCCESS: 1076 goto out; 1077 default: 1078 rc = -EIO; 1079 goto out; 1080 } 1081 } 1082 out: 1083 return rc; 1084 } 1085 1086 #ifdef CONFIG_NUMA 1087 /* 1088 * Move a list of individual pages 1089 */ 1090 struct page_to_node { 1091 unsigned long addr; 1092 struct page *page; 1093 int node; 1094 int status; 1095 }; 1096 1097 static struct page *new_page_node(struct page *p, unsigned long private, 1098 int **result) 1099 { 1100 struct page_to_node *pm = (struct page_to_node *)private; 1101 1102 while (pm->node != MAX_NUMNODES && pm->page != p) 1103 pm++; 1104 1105 if (pm->node == MAX_NUMNODES) 1106 return NULL; 1107 1108 *result = &pm->status; 1109 1110 return alloc_pages_exact_node(pm->node, 1111 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); 1112 } 1113 1114 /* 1115 * Move a set of pages as indicated in the pm array. The addr 1116 * field must be set to the virtual address of the page to be moved 1117 * and the node number must contain a valid target node. 1118 * The pm array ends with node = MAX_NUMNODES. 1119 */ 1120 static int do_move_page_to_node_array(struct mm_struct *mm, 1121 struct page_to_node *pm, 1122 int migrate_all) 1123 { 1124 int err; 1125 struct page_to_node *pp; 1126 LIST_HEAD(pagelist); 1127 1128 down_read(&mm->mmap_sem); 1129 1130 /* 1131 * Build a list of pages to migrate 1132 */ 1133 for (pp = pm; pp->node != MAX_NUMNODES; pp++) { 1134 struct vm_area_struct *vma; 1135 struct page *page; 1136 1137 err = -EFAULT; 1138 vma = find_vma(mm, pp->addr); 1139 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) 1140 goto set_status; 1141 1142 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); 1143 1144 err = PTR_ERR(page); 1145 if (IS_ERR(page)) 1146 goto set_status; 1147 1148 err = -ENOENT; 1149 if (!page) 1150 goto set_status; 1151 1152 /* Use PageReserved to check for zero page */ 1153 if (PageReserved(page) || PageKsm(page)) 1154 goto put_and_set; 1155 1156 pp->page = page; 1157 err = page_to_nid(page); 1158 1159 if (err == pp->node) 1160 /* 1161 * Node already in the right place 1162 */ 1163 goto put_and_set; 1164 1165 err = -EACCES; 1166 if (page_mapcount(page) > 1 && 1167 !migrate_all) 1168 goto put_and_set; 1169 1170 err = isolate_lru_page(page); 1171 if (!err) { 1172 list_add_tail(&page->lru, &pagelist); 1173 inc_zone_page_state(page, NR_ISOLATED_ANON + 1174 page_is_file_cache(page)); 1175 } 1176 put_and_set: 1177 /* 1178 * Either remove the duplicate refcount from 1179 * isolate_lru_page() or drop the page ref if it was 1180 * not isolated. 1181 */ 1182 put_page(page); 1183 set_status: 1184 pp->status = err; 1185 } 1186 1187 err = 0; 1188 if (!list_empty(&pagelist)) { 1189 err = migrate_pages(&pagelist, new_page_node, 1190 (unsigned long)pm, 0, MIGRATE_SYNC, 1191 MR_SYSCALL); 1192 if (err) 1193 putback_lru_pages(&pagelist); 1194 } 1195 1196 up_read(&mm->mmap_sem); 1197 return err; 1198 } 1199 1200 /* 1201 * Migrate an array of page address onto an array of nodes and fill 1202 * the corresponding array of status. 1203 */ 1204 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 1205 unsigned long nr_pages, 1206 const void __user * __user *pages, 1207 const int __user *nodes, 1208 int __user *status, int flags) 1209 { 1210 struct page_to_node *pm; 1211 unsigned long chunk_nr_pages; 1212 unsigned long chunk_start; 1213 int err; 1214 1215 err = -ENOMEM; 1216 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); 1217 if (!pm) 1218 goto out; 1219 1220 migrate_prep(); 1221 1222 /* 1223 * Store a chunk of page_to_node array in a page, 1224 * but keep the last one as a marker 1225 */ 1226 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; 1227 1228 for (chunk_start = 0; 1229 chunk_start < nr_pages; 1230 chunk_start += chunk_nr_pages) { 1231 int j; 1232 1233 if (chunk_start + chunk_nr_pages > nr_pages) 1234 chunk_nr_pages = nr_pages - chunk_start; 1235 1236 /* fill the chunk pm with addrs and nodes from user-space */ 1237 for (j = 0; j < chunk_nr_pages; j++) { 1238 const void __user *p; 1239 int node; 1240 1241 err = -EFAULT; 1242 if (get_user(p, pages + j + chunk_start)) 1243 goto out_pm; 1244 pm[j].addr = (unsigned long) p; 1245 1246 if (get_user(node, nodes + j + chunk_start)) 1247 goto out_pm; 1248 1249 err = -ENODEV; 1250 if (node < 0 || node >= MAX_NUMNODES) 1251 goto out_pm; 1252 1253 if (!node_state(node, N_MEMORY)) 1254 goto out_pm; 1255 1256 err = -EACCES; 1257 if (!node_isset(node, task_nodes)) 1258 goto out_pm; 1259 1260 pm[j].node = node; 1261 } 1262 1263 /* End marker for this chunk */ 1264 pm[chunk_nr_pages].node = MAX_NUMNODES; 1265 1266 /* Migrate this chunk */ 1267 err = do_move_page_to_node_array(mm, pm, 1268 flags & MPOL_MF_MOVE_ALL); 1269 if (err < 0) 1270 goto out_pm; 1271 1272 /* Return status information */ 1273 for (j = 0; j < chunk_nr_pages; j++) 1274 if (put_user(pm[j].status, status + j + chunk_start)) { 1275 err = -EFAULT; 1276 goto out_pm; 1277 } 1278 } 1279 err = 0; 1280 1281 out_pm: 1282 free_page((unsigned long)pm); 1283 out: 1284 return err; 1285 } 1286 1287 /* 1288 * Determine the nodes of an array of pages and store it in an array of status. 1289 */ 1290 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 1291 const void __user **pages, int *status) 1292 { 1293 unsigned long i; 1294 1295 down_read(&mm->mmap_sem); 1296 1297 for (i = 0; i < nr_pages; i++) { 1298 unsigned long addr = (unsigned long)(*pages); 1299 struct vm_area_struct *vma; 1300 struct page *page; 1301 int err = -EFAULT; 1302 1303 vma = find_vma(mm, addr); 1304 if (!vma || addr < vma->vm_start) 1305 goto set_status; 1306 1307 page = follow_page(vma, addr, 0); 1308 1309 err = PTR_ERR(page); 1310 if (IS_ERR(page)) 1311 goto set_status; 1312 1313 err = -ENOENT; 1314 /* Use PageReserved to check for zero page */ 1315 if (!page || PageReserved(page) || PageKsm(page)) 1316 goto set_status; 1317 1318 err = page_to_nid(page); 1319 set_status: 1320 *status = err; 1321 1322 pages++; 1323 status++; 1324 } 1325 1326 up_read(&mm->mmap_sem); 1327 } 1328 1329 /* 1330 * Determine the nodes of a user array of pages and store it in 1331 * a user array of status. 1332 */ 1333 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 1334 const void __user * __user *pages, 1335 int __user *status) 1336 { 1337 #define DO_PAGES_STAT_CHUNK_NR 16 1338 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 1339 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 1340 1341 while (nr_pages) { 1342 unsigned long chunk_nr; 1343 1344 chunk_nr = nr_pages; 1345 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) 1346 chunk_nr = DO_PAGES_STAT_CHUNK_NR; 1347 1348 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) 1349 break; 1350 1351 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 1352 1353 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 1354 break; 1355 1356 pages += chunk_nr; 1357 status += chunk_nr; 1358 nr_pages -= chunk_nr; 1359 } 1360 return nr_pages ? -EFAULT : 0; 1361 } 1362 1363 /* 1364 * Move a list of pages in the address space of the currently executing 1365 * process. 1366 */ 1367 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 1368 const void __user * __user *, pages, 1369 const int __user *, nodes, 1370 int __user *, status, int, flags) 1371 { 1372 const struct cred *cred = current_cred(), *tcred; 1373 struct task_struct *task; 1374 struct mm_struct *mm; 1375 int err; 1376 nodemask_t task_nodes; 1377 1378 /* Check flags */ 1379 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 1380 return -EINVAL; 1381 1382 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 1383 return -EPERM; 1384 1385 /* Find the mm_struct */ 1386 rcu_read_lock(); 1387 task = pid ? find_task_by_vpid(pid) : current; 1388 if (!task) { 1389 rcu_read_unlock(); 1390 return -ESRCH; 1391 } 1392 get_task_struct(task); 1393 1394 /* 1395 * Check if this process has the right to modify the specified 1396 * process. The right exists if the process has administrative 1397 * capabilities, superuser privileges or the same 1398 * userid as the target process. 1399 */ 1400 tcred = __task_cred(task); 1401 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && 1402 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && 1403 !capable(CAP_SYS_NICE)) { 1404 rcu_read_unlock(); 1405 err = -EPERM; 1406 goto out; 1407 } 1408 rcu_read_unlock(); 1409 1410 err = security_task_movememory(task); 1411 if (err) 1412 goto out; 1413 1414 task_nodes = cpuset_mems_allowed(task); 1415 mm = get_task_mm(task); 1416 put_task_struct(task); 1417 1418 if (!mm) 1419 return -EINVAL; 1420 1421 if (nodes) 1422 err = do_pages_move(mm, task_nodes, nr_pages, pages, 1423 nodes, status, flags); 1424 else 1425 err = do_pages_stat(mm, nr_pages, pages, status); 1426 1427 mmput(mm); 1428 return err; 1429 1430 out: 1431 put_task_struct(task); 1432 return err; 1433 } 1434 1435 /* 1436 * Call migration functions in the vma_ops that may prepare 1437 * memory in a vm for migration. migration functions may perform 1438 * the migration for vmas that do not have an underlying page struct. 1439 */ 1440 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, 1441 const nodemask_t *from, unsigned long flags) 1442 { 1443 struct vm_area_struct *vma; 1444 int err = 0; 1445 1446 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { 1447 if (vma->vm_ops && vma->vm_ops->migrate) { 1448 err = vma->vm_ops->migrate(vma, to, from, flags); 1449 if (err) 1450 break; 1451 } 1452 } 1453 return err; 1454 } 1455 1456 #ifdef CONFIG_NUMA_BALANCING 1457 /* 1458 * Returns true if this is a safe migration target node for misplaced NUMA 1459 * pages. Currently it only checks the watermarks which crude 1460 */ 1461 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 1462 int nr_migrate_pages) 1463 { 1464 int z; 1465 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1466 struct zone *zone = pgdat->node_zones + z; 1467 1468 if (!populated_zone(zone)) 1469 continue; 1470 1471 if (zone->all_unreclaimable) 1472 continue; 1473 1474 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 1475 if (!zone_watermark_ok(zone, 0, 1476 high_wmark_pages(zone) + 1477 nr_migrate_pages, 1478 0, 0)) 1479 continue; 1480 return true; 1481 } 1482 return false; 1483 } 1484 1485 static struct page *alloc_misplaced_dst_page(struct page *page, 1486 unsigned long data, 1487 int **result) 1488 { 1489 int nid = (int) data; 1490 struct page *newpage; 1491 1492 newpage = alloc_pages_exact_node(nid, 1493 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE | 1494 __GFP_NOMEMALLOC | __GFP_NORETRY | 1495 __GFP_NOWARN) & 1496 ~GFP_IOFS, 0); 1497 if (newpage) 1498 page_xchg_last_nid(newpage, page_last_nid(page)); 1499 1500 return newpage; 1501 } 1502 1503 /* 1504 * page migration rate limiting control. 1505 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs 1506 * window of time. Default here says do not migrate more than 1280M per second. 1507 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However 1508 * as it is faults that reset the window, pte updates will happen unconditionally 1509 * if there has not been a fault since @pteupdate_interval_millisecs after the 1510 * throttle window closed. 1511 */ 1512 static unsigned int migrate_interval_millisecs __read_mostly = 100; 1513 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000; 1514 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT); 1515 1516 /* Returns true if NUMA migration is currently rate limited */ 1517 bool migrate_ratelimited(int node) 1518 { 1519 pg_data_t *pgdat = NODE_DATA(node); 1520 1521 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window + 1522 msecs_to_jiffies(pteupdate_interval_millisecs))) 1523 return false; 1524 1525 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages) 1526 return false; 1527 1528 return true; 1529 } 1530 1531 /* Returns true if the node is migrate rate-limited after the update */ 1532 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages) 1533 { 1534 bool rate_limited = false; 1535 1536 /* 1537 * Rate-limit the amount of data that is being migrated to a node. 1538 * Optimal placement is no good if the memory bus is saturated and 1539 * all the time is being spent migrating! 1540 */ 1541 spin_lock(&pgdat->numabalancing_migrate_lock); 1542 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { 1543 pgdat->numabalancing_migrate_nr_pages = 0; 1544 pgdat->numabalancing_migrate_next_window = jiffies + 1545 msecs_to_jiffies(migrate_interval_millisecs); 1546 } 1547 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) 1548 rate_limited = true; 1549 else 1550 pgdat->numabalancing_migrate_nr_pages += nr_pages; 1551 spin_unlock(&pgdat->numabalancing_migrate_lock); 1552 1553 return rate_limited; 1554 } 1555 1556 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) 1557 { 1558 int ret = 0; 1559 1560 /* Avoid migrating to a node that is nearly full */ 1561 if (migrate_balanced_pgdat(pgdat, 1)) { 1562 int page_lru; 1563 1564 if (isolate_lru_page(page)) { 1565 put_page(page); 1566 return 0; 1567 } 1568 1569 /* Page is isolated */ 1570 ret = 1; 1571 page_lru = page_is_file_cache(page); 1572 if (!PageTransHuge(page)) 1573 inc_zone_page_state(page, NR_ISOLATED_ANON + page_lru); 1574 else 1575 mod_zone_page_state(page_zone(page), 1576 NR_ISOLATED_ANON + page_lru, 1577 HPAGE_PMD_NR); 1578 } 1579 1580 /* 1581 * Page is either isolated or there is not enough space on the target 1582 * node. If isolated, then it has taken a reference count and the 1583 * callers reference can be safely dropped without the page 1584 * disappearing underneath us during migration. Otherwise the page is 1585 * not to be migrated but the callers reference should still be 1586 * dropped so it does not leak. 1587 */ 1588 put_page(page); 1589 1590 return ret; 1591 } 1592 1593 /* 1594 * Attempt to migrate a misplaced page to the specified destination 1595 * node. Caller is expected to have an elevated reference count on 1596 * the page that will be dropped by this function before returning. 1597 */ 1598 int migrate_misplaced_page(struct page *page, int node) 1599 { 1600 pg_data_t *pgdat = NODE_DATA(node); 1601 int isolated = 0; 1602 int nr_remaining; 1603 LIST_HEAD(migratepages); 1604 1605 /* 1606 * Don't migrate pages that are mapped in multiple processes. 1607 * TODO: Handle false sharing detection instead of this hammer 1608 */ 1609 if (page_mapcount(page) != 1) { 1610 put_page(page); 1611 goto out; 1612 } 1613 1614 /* 1615 * Rate-limit the amount of data that is being migrated to a node. 1616 * Optimal placement is no good if the memory bus is saturated and 1617 * all the time is being spent migrating! 1618 */ 1619 if (numamigrate_update_ratelimit(pgdat, 1)) { 1620 put_page(page); 1621 goto out; 1622 } 1623 1624 isolated = numamigrate_isolate_page(pgdat, page); 1625 if (!isolated) 1626 goto out; 1627 1628 list_add(&page->lru, &migratepages); 1629 nr_remaining = migrate_pages(&migratepages, 1630 alloc_misplaced_dst_page, 1631 node, false, MIGRATE_ASYNC, 1632 MR_NUMA_MISPLACED); 1633 if (nr_remaining) { 1634 putback_lru_pages(&migratepages); 1635 isolated = 0; 1636 } else 1637 count_vm_numa_event(NUMA_PAGE_MIGRATE); 1638 BUG_ON(!list_empty(&migratepages)); 1639 out: 1640 return isolated; 1641 } 1642 #endif /* CONFIG_NUMA_BALANCING */ 1643 1644 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1645 int migrate_misplaced_transhuge_page(struct mm_struct *mm, 1646 struct vm_area_struct *vma, 1647 pmd_t *pmd, pmd_t entry, 1648 unsigned long address, 1649 struct page *page, int node) 1650 { 1651 unsigned long haddr = address & HPAGE_PMD_MASK; 1652 pg_data_t *pgdat = NODE_DATA(node); 1653 int isolated = 0; 1654 struct page *new_page = NULL; 1655 struct mem_cgroup *memcg = NULL; 1656 int page_lru = page_is_file_cache(page); 1657 1658 /* 1659 * Don't migrate pages that are mapped in multiple processes. 1660 * TODO: Handle false sharing detection instead of this hammer 1661 */ 1662 if (page_mapcount(page) != 1) 1663 goto out_dropref; 1664 1665 /* 1666 * Rate-limit the amount of data that is being migrated to a node. 1667 * Optimal placement is no good if the memory bus is saturated and 1668 * all the time is being spent migrating! 1669 */ 1670 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR)) 1671 goto out_dropref; 1672 1673 new_page = alloc_pages_node(node, 1674 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER); 1675 if (!new_page) { 1676 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1677 goto out_dropref; 1678 } 1679 page_xchg_last_nid(new_page, page_last_nid(page)); 1680 1681 isolated = numamigrate_isolate_page(pgdat, page); 1682 if (!isolated) { 1683 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1684 put_page(new_page); 1685 goto out_keep_locked; 1686 } 1687 1688 /* Prepare a page as a migration target */ 1689 __set_page_locked(new_page); 1690 SetPageSwapBacked(new_page); 1691 1692 /* anon mapping, we can simply copy page->mapping to the new page: */ 1693 new_page->mapping = page->mapping; 1694 new_page->index = page->index; 1695 migrate_page_copy(new_page, page); 1696 WARN_ON(PageLRU(new_page)); 1697 1698 /* Recheck the target PMD */ 1699 spin_lock(&mm->page_table_lock); 1700 if (unlikely(!pmd_same(*pmd, entry))) { 1701 spin_unlock(&mm->page_table_lock); 1702 1703 /* Reverse changes made by migrate_page_copy() */ 1704 if (TestClearPageActive(new_page)) 1705 SetPageActive(page); 1706 if (TestClearPageUnevictable(new_page)) 1707 SetPageUnevictable(page); 1708 mlock_migrate_page(page, new_page); 1709 1710 unlock_page(new_page); 1711 put_page(new_page); /* Free it */ 1712 1713 unlock_page(page); 1714 putback_lru_page(page); 1715 1716 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR); 1717 goto out; 1718 } 1719 1720 /* 1721 * Traditional migration needs to prepare the memcg charge 1722 * transaction early to prevent the old page from being 1723 * uncharged when installing migration entries. Here we can 1724 * save the potential rollback and start the charge transfer 1725 * only when migration is already known to end successfully. 1726 */ 1727 mem_cgroup_prepare_migration(page, new_page, &memcg); 1728 1729 entry = mk_pmd(new_page, vma->vm_page_prot); 1730 entry = pmd_mknonnuma(entry); 1731 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1732 entry = pmd_mkhuge(entry); 1733 1734 page_add_new_anon_rmap(new_page, vma, haddr); 1735 1736 set_pmd_at(mm, haddr, pmd, entry); 1737 update_mmu_cache_pmd(vma, address, &entry); 1738 page_remove_rmap(page); 1739 /* 1740 * Finish the charge transaction under the page table lock to 1741 * prevent split_huge_page() from dividing up the charge 1742 * before it's fully transferred to the new page. 1743 */ 1744 mem_cgroup_end_migration(memcg, page, new_page, true); 1745 spin_unlock(&mm->page_table_lock); 1746 1747 unlock_page(new_page); 1748 unlock_page(page); 1749 put_page(page); /* Drop the rmap reference */ 1750 put_page(page); /* Drop the LRU isolation reference */ 1751 1752 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR); 1753 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR); 1754 1755 out: 1756 mod_zone_page_state(page_zone(page), 1757 NR_ISOLATED_ANON + page_lru, 1758 -HPAGE_PMD_NR); 1759 return isolated; 1760 1761 out_dropref: 1762 put_page(page); 1763 out_keep_locked: 1764 return 0; 1765 } 1766 #endif /* CONFIG_NUMA_BALANCING */ 1767 1768 #endif /* CONFIG_NUMA */ 1769