1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/ksm.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/backing-dev.h> 33 #include <linux/compaction.h> 34 #include <linux/syscalls.h> 35 #include <linux/compat.h> 36 #include <linux/hugetlb.h> 37 #include <linux/gfp.h> 38 #include <linux/page_idle.h> 39 #include <linux/page_owner.h> 40 #include <linux/sched/mm.h> 41 #include <linux/ptrace.h> 42 #include <linux/memory.h> 43 #include <linux/sched/sysctl.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/pagewalk.h> 46 47 #include <asm/tlbflush.h> 48 49 #include <trace/events/migrate.h> 50 51 #include "internal.h" 52 #include "swap.h" 53 54 static const struct movable_operations *offline_movable_ops; 55 static const struct movable_operations *zsmalloc_movable_ops; 56 57 int set_movable_ops(const struct movable_operations *ops, enum pagetype type) 58 { 59 /* 60 * We only allow for selected types and don't handle concurrent 61 * registration attempts yet. 62 */ 63 switch (type) { 64 case PGTY_offline: 65 if (offline_movable_ops && ops) 66 return -EBUSY; 67 offline_movable_ops = ops; 68 break; 69 case PGTY_zsmalloc: 70 if (zsmalloc_movable_ops && ops) 71 return -EBUSY; 72 zsmalloc_movable_ops = ops; 73 break; 74 default: 75 return -EINVAL; 76 } 77 return 0; 78 } 79 EXPORT_SYMBOL_GPL(set_movable_ops); 80 81 static const struct movable_operations *page_movable_ops(struct page *page) 82 { 83 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 84 85 /* 86 * If we enable page migration for a page of a certain type by marking 87 * it as movable, the page type must be sticky until the page gets freed 88 * back to the buddy. 89 */ 90 if (PageOffline(page)) 91 /* Only balloon compaction sets PageOffline pages movable. */ 92 return offline_movable_ops; 93 if (PageZsmalloc(page)) 94 return zsmalloc_movable_ops; 95 96 return NULL; 97 } 98 99 /** 100 * isolate_movable_ops_page - isolate a movable_ops page for migration 101 * @page: The page. 102 * @mode: The isolation mode. 103 * 104 * Try to isolate a movable_ops page for migration. Will fail if the page is 105 * not a movable_ops page, if the page is already isolated for migration 106 * or if the page was just was released by its owner. 107 * 108 * Once isolated, the page cannot get freed until it is either putback 109 * or migrated. 110 * 111 * Returns true if isolation succeeded, otherwise false. 112 */ 113 bool isolate_movable_ops_page(struct page *page, isolate_mode_t mode) 114 { 115 /* 116 * TODO: these pages will not be folios in the future. All 117 * folio dependencies will have to be removed. 118 */ 119 struct folio *folio = folio_get_nontail_page(page); 120 const struct movable_operations *mops; 121 122 /* 123 * Avoid burning cycles with pages that are yet under __free_pages(), 124 * or just got freed under us. 125 * 126 * In case we 'win' a race for a movable page being freed under us and 127 * raise its refcount preventing __free_pages() from doing its job 128 * the put_page() at the end of this block will take care of 129 * release this page, thus avoiding a nasty leakage. 130 */ 131 if (!folio) 132 goto out; 133 134 /* 135 * Check for movable_ops pages before taking the page lock because 136 * we use non-atomic bitops on newly allocated page flags so 137 * unconditionally grabbing the lock ruins page's owner side. 138 * 139 * Note that once a page has movable_ops, it will stay that way 140 * until the page was freed. 141 */ 142 if (unlikely(!page_has_movable_ops(page))) 143 goto out_putfolio; 144 145 /* 146 * As movable pages are not isolated from LRU lists, concurrent 147 * compaction threads can race against page migration functions 148 * as well as race against the releasing a page. 149 * 150 * In order to avoid having an already isolated movable page 151 * being (wrongly) re-isolated while it is under migration, 152 * or to avoid attempting to isolate pages being released, 153 * lets be sure we have the page lock 154 * before proceeding with the movable page isolation steps. 155 */ 156 if (unlikely(!folio_trylock(folio))) 157 goto out_putfolio; 158 159 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 160 if (PageMovableOpsIsolated(page)) 161 goto out_no_isolated; 162 163 mops = page_movable_ops(page); 164 if (WARN_ON_ONCE(!mops)) 165 goto out_no_isolated; 166 167 if (!mops->isolate_page(page, mode)) 168 goto out_no_isolated; 169 170 /* Driver shouldn't use the isolated flag */ 171 VM_WARN_ON_ONCE_PAGE(PageMovableOpsIsolated(page), page); 172 SetPageMovableOpsIsolated(page); 173 folio_unlock(folio); 174 175 return true; 176 177 out_no_isolated: 178 folio_unlock(folio); 179 out_putfolio: 180 folio_put(folio); 181 out: 182 return false; 183 } 184 185 /** 186 * putback_movable_ops_page - putback an isolated movable_ops page 187 * @page: The isolated page. 188 * 189 * Putback an isolated movable_ops page. 190 * 191 * After the page was putback, it might get freed instantly. 192 */ 193 static void putback_movable_ops_page(struct page *page) 194 { 195 /* 196 * TODO: these pages will not be folios in the future. All 197 * folio dependencies will have to be removed. 198 */ 199 struct folio *folio = page_folio(page); 200 201 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(page), page); 202 VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(page), page); 203 folio_lock(folio); 204 page_movable_ops(page)->putback_page(page); 205 ClearPageMovableOpsIsolated(page); 206 folio_unlock(folio); 207 folio_put(folio); 208 } 209 210 /** 211 * migrate_movable_ops_page - migrate an isolated movable_ops page 212 * @dst: The destination page. 213 * @src: The source page. 214 * @mode: The migration mode. 215 * 216 * Migrate an isolated movable_ops page. 217 * 218 * If the src page was already released by its owner, the src page is 219 * un-isolated (putback) and migration succeeds; the migration core will be the 220 * owner of both pages. 221 * 222 * If the src page was not released by its owner and the migration was 223 * successful, the owner of the src page and the dst page are swapped and 224 * the src page is un-isolated. 225 * 226 * If migration fails, the ownership stays unmodified and the src page 227 * remains isolated: migration may be retried later or the page can be putback. 228 * 229 * TODO: migration core will treat both pages as folios and lock them before 230 * this call to unlock them after this call. Further, the folio refcounts on 231 * src and dst are also released by migration core. These pages will not be 232 * folios in the future, so that must be reworked. 233 * 234 * Returns 0 on success, otherwise a negative error code. 235 */ 236 static int migrate_movable_ops_page(struct page *dst, struct page *src, 237 enum migrate_mode mode) 238 { 239 int rc; 240 241 VM_WARN_ON_ONCE_PAGE(!page_has_movable_ops(src), src); 242 VM_WARN_ON_ONCE_PAGE(!PageMovableOpsIsolated(src), src); 243 rc = page_movable_ops(src)->migrate_page(dst, src, mode); 244 if (!rc) 245 ClearPageMovableOpsIsolated(src); 246 return rc; 247 } 248 249 /* 250 * Put previously isolated pages back onto the appropriate lists 251 * from where they were once taken off for compaction/migration. 252 * 253 * This function shall be used whenever the isolated pageset has been 254 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 255 * and folio_isolate_hugetlb(). 256 */ 257 void putback_movable_pages(struct list_head *l) 258 { 259 struct folio *folio; 260 struct folio *folio2; 261 262 list_for_each_entry_safe(folio, folio2, l, lru) { 263 if (unlikely(folio_test_hugetlb(folio))) { 264 folio_putback_hugetlb(folio); 265 continue; 266 } 267 list_del(&folio->lru); 268 if (unlikely(page_has_movable_ops(&folio->page))) { 269 putback_movable_ops_page(&folio->page); 270 } else { 271 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 272 folio_is_file_lru(folio), -folio_nr_pages(folio)); 273 folio_putback_lru(folio); 274 } 275 } 276 } 277 278 /* Must be called with an elevated refcount on the non-hugetlb folio */ 279 bool isolate_folio_to_list(struct folio *folio, struct list_head *list) 280 { 281 if (folio_test_hugetlb(folio)) 282 return folio_isolate_hugetlb(folio, list); 283 284 if (page_has_movable_ops(&folio->page)) { 285 if (!isolate_movable_ops_page(&folio->page, 286 ISOLATE_UNEVICTABLE)) 287 return false; 288 } else { 289 if (!folio_isolate_lru(folio)) 290 return false; 291 node_stat_add_folio(folio, NR_ISOLATED_ANON + 292 folio_is_file_lru(folio)); 293 } 294 list_add(&folio->lru, list); 295 return true; 296 } 297 298 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw, 299 struct folio *folio, pte_t old_pte, unsigned long idx) 300 { 301 struct page *page = folio_page(folio, idx); 302 pte_t newpte; 303 304 if (PageCompound(page)) 305 return false; 306 VM_BUG_ON_PAGE(!PageAnon(page), page); 307 VM_BUG_ON_PAGE(!PageLocked(page), page); 308 VM_BUG_ON_PAGE(pte_present(old_pte), page); 309 310 if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) || 311 mm_forbids_zeropage(pvmw->vma->vm_mm)) 312 return false; 313 314 /* 315 * The pmd entry mapping the old thp was flushed and the pte mapping 316 * this subpage has been non present. If the subpage is only zero-filled 317 * then map it to the shared zeropage. 318 */ 319 if (!pages_identical(page, ZERO_PAGE(0))) 320 return false; 321 322 newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address), 323 pvmw->vma->vm_page_prot)); 324 325 if (pte_swp_soft_dirty(old_pte)) 326 newpte = pte_mksoft_dirty(newpte); 327 if (pte_swp_uffd_wp(old_pte)) 328 newpte = pte_mkuffd_wp(newpte); 329 330 set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte); 331 332 dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio)); 333 return true; 334 } 335 336 struct rmap_walk_arg { 337 struct folio *folio; 338 bool map_unused_to_zeropage; 339 }; 340 341 /* 342 * Restore a potential migration pte to a working pte entry 343 */ 344 static bool remove_migration_pte(struct folio *folio, 345 struct vm_area_struct *vma, unsigned long addr, void *arg) 346 { 347 struct rmap_walk_arg *rmap_walk_arg = arg; 348 DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 349 350 while (page_vma_mapped_walk(&pvmw)) { 351 rmap_t rmap_flags = RMAP_NONE; 352 pte_t old_pte; 353 pte_t pte; 354 swp_entry_t entry; 355 struct page *new; 356 unsigned long idx = 0; 357 358 /* pgoff is invalid for ksm pages, but they are never large */ 359 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 360 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 361 new = folio_page(folio, idx); 362 363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 364 /* PMD-mapped THP migration entry */ 365 if (!pvmw.pte) { 366 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 367 !folio_test_pmd_mappable(folio), folio); 368 remove_migration_pmd(&pvmw, new); 369 continue; 370 } 371 #endif 372 old_pte = ptep_get(pvmw.pte); 373 if (rmap_walk_arg->map_unused_to_zeropage && 374 try_to_map_unused_to_zeropage(&pvmw, folio, old_pte, idx)) 375 continue; 376 377 folio_get(folio); 378 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 379 380 entry = pte_to_swp_entry(old_pte); 381 if (!is_migration_entry_young(entry)) 382 pte = pte_mkold(pte); 383 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 384 pte = pte_mkdirty(pte); 385 if (pte_swp_soft_dirty(old_pte)) 386 pte = pte_mksoft_dirty(pte); 387 else 388 pte = pte_clear_soft_dirty(pte); 389 390 if (is_writable_migration_entry(entry)) 391 pte = pte_mkwrite(pte, vma); 392 else if (pte_swp_uffd_wp(old_pte)) 393 pte = pte_mkuffd_wp(pte); 394 395 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 396 rmap_flags |= RMAP_EXCLUSIVE; 397 398 if (unlikely(is_device_private_page(new))) { 399 if (pte_write(pte)) 400 entry = make_writable_device_private_entry( 401 page_to_pfn(new)); 402 else 403 entry = make_readable_device_private_entry( 404 page_to_pfn(new)); 405 pte = swp_entry_to_pte(entry); 406 if (pte_swp_soft_dirty(old_pte)) 407 pte = pte_swp_mksoft_dirty(pte); 408 if (pte_swp_uffd_wp(old_pte)) 409 pte = pte_swp_mkuffd_wp(pte); 410 } 411 412 #ifdef CONFIG_HUGETLB_PAGE 413 if (folio_test_hugetlb(folio)) { 414 struct hstate *h = hstate_vma(vma); 415 unsigned int shift = huge_page_shift(h); 416 unsigned long psize = huge_page_size(h); 417 418 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 419 if (folio_test_anon(folio)) 420 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 421 rmap_flags); 422 else 423 hugetlb_add_file_rmap(folio); 424 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 425 psize); 426 } else 427 #endif 428 { 429 if (folio_test_anon(folio)) 430 folio_add_anon_rmap_pte(folio, new, vma, 431 pvmw.address, rmap_flags); 432 else 433 folio_add_file_rmap_pte(folio, new, vma); 434 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 435 } 436 if (READ_ONCE(vma->vm_flags) & VM_LOCKED) 437 mlock_drain_local(); 438 439 trace_remove_migration_pte(pvmw.address, pte_val(pte), 440 compound_order(new)); 441 442 /* No need to invalidate - it was non-present before */ 443 update_mmu_cache(vma, pvmw.address, pvmw.pte); 444 } 445 446 return true; 447 } 448 449 /* 450 * Get rid of all migration entries and replace them by 451 * references to the indicated page. 452 */ 453 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags) 454 { 455 struct rmap_walk_arg rmap_walk_arg = { 456 .folio = src, 457 .map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE, 458 }; 459 460 struct rmap_walk_control rwc = { 461 .rmap_one = remove_migration_pte, 462 .arg = &rmap_walk_arg, 463 }; 464 465 VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src); 466 467 if (flags & RMP_LOCKED) 468 rmap_walk_locked(dst, &rwc); 469 else 470 rmap_walk(dst, &rwc); 471 } 472 473 /* 474 * Something used the pte of a page under migration. We need to 475 * get to the page and wait until migration is finished. 476 * When we return from this function the fault will be retried. 477 */ 478 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 479 unsigned long address) 480 { 481 spinlock_t *ptl; 482 pte_t *ptep; 483 pte_t pte; 484 swp_entry_t entry; 485 486 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 487 if (!ptep) 488 return; 489 490 pte = ptep_get(ptep); 491 pte_unmap(ptep); 492 493 if (!is_swap_pte(pte)) 494 goto out; 495 496 entry = pte_to_swp_entry(pte); 497 if (!is_migration_entry(entry)) 498 goto out; 499 500 migration_entry_wait_on_locked(entry, ptl); 501 return; 502 out: 503 spin_unlock(ptl); 504 } 505 506 #ifdef CONFIG_HUGETLB_PAGE 507 /* 508 * The vma read lock must be held upon entry. Holding that lock prevents either 509 * the pte or the ptl from being freed. 510 * 511 * This function will release the vma lock before returning. 512 */ 513 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 514 { 515 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 516 pte_t pte; 517 518 hugetlb_vma_assert_locked(vma); 519 spin_lock(ptl); 520 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 521 522 if (unlikely(!is_hugetlb_entry_migration(pte))) { 523 spin_unlock(ptl); 524 hugetlb_vma_unlock_read(vma); 525 } else { 526 /* 527 * If migration entry existed, safe to release vma lock 528 * here because the pgtable page won't be freed without the 529 * pgtable lock released. See comment right above pgtable 530 * lock release in migration_entry_wait_on_locked(). 531 */ 532 hugetlb_vma_unlock_read(vma); 533 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 534 } 535 } 536 #endif 537 538 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 539 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 540 { 541 spinlock_t *ptl; 542 543 ptl = pmd_lock(mm, pmd); 544 if (!is_pmd_migration_entry(*pmd)) 545 goto unlock; 546 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 547 return; 548 unlock: 549 spin_unlock(ptl); 550 } 551 #endif 552 553 /* 554 * Replace the folio in the mapping. 555 * 556 * The number of remaining references must be: 557 * 1 for anonymous folios without a mapping 558 * 2 for folios with a mapping 559 * 3 for folios with a mapping and the private flag set. 560 */ 561 static int __folio_migrate_mapping(struct address_space *mapping, 562 struct folio *newfolio, struct folio *folio, int expected_count) 563 { 564 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 565 struct swap_cluster_info *ci = NULL; 566 struct zone *oldzone, *newzone; 567 int dirty; 568 long nr = folio_nr_pages(folio); 569 570 if (!mapping) { 571 /* Take off deferred split queue while frozen and memcg set */ 572 if (folio_test_large(folio) && 573 folio_test_large_rmappable(folio)) { 574 if (!folio_ref_freeze(folio, expected_count)) 575 return -EAGAIN; 576 folio_unqueue_deferred_split(folio); 577 folio_ref_unfreeze(folio, expected_count); 578 } 579 580 /* No turning back from here */ 581 newfolio->index = folio->index; 582 newfolio->mapping = folio->mapping; 583 if (folio_test_anon(folio) && folio_test_large(folio)) 584 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 585 if (folio_test_swapbacked(folio)) 586 __folio_set_swapbacked(newfolio); 587 588 return 0; 589 } 590 591 oldzone = folio_zone(folio); 592 newzone = folio_zone(newfolio); 593 594 if (folio_test_swapcache(folio)) 595 ci = swap_cluster_get_and_lock_irq(folio); 596 else 597 xas_lock_irq(&xas); 598 599 if (!folio_ref_freeze(folio, expected_count)) { 600 if (ci) 601 swap_cluster_unlock_irq(ci); 602 else 603 xas_unlock_irq(&xas); 604 return -EAGAIN; 605 } 606 607 /* Take off deferred split queue while frozen and memcg set */ 608 folio_unqueue_deferred_split(folio); 609 610 /* 611 * Now we know that no one else is looking at the folio: 612 * no turning back from here. 613 */ 614 newfolio->index = folio->index; 615 newfolio->mapping = folio->mapping; 616 if (folio_test_anon(folio) && folio_test_large(folio)) 617 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 618 folio_ref_add(newfolio, nr); /* add cache reference */ 619 if (folio_test_swapbacked(folio)) 620 __folio_set_swapbacked(newfolio); 621 if (folio_test_swapcache(folio)) { 622 folio_set_swapcache(newfolio); 623 newfolio->private = folio_get_private(folio); 624 } 625 626 /* Move dirty while folio refs frozen and newfolio not yet exposed */ 627 dirty = folio_test_dirty(folio); 628 if (dirty) { 629 folio_clear_dirty(folio); 630 folio_set_dirty(newfolio); 631 } 632 633 if (folio_test_swapcache(folio)) 634 __swap_cache_replace_folio(ci, folio, newfolio); 635 else 636 xas_store(&xas, newfolio); 637 638 /* 639 * Drop cache reference from old folio by unfreezing 640 * to one less reference. 641 * We know this isn't the last reference. 642 */ 643 folio_ref_unfreeze(folio, expected_count - nr); 644 645 /* Leave irq disabled to prevent preemption while updating stats */ 646 if (ci) 647 swap_cluster_unlock(ci); 648 else 649 xas_unlock(&xas); 650 651 /* 652 * If moved to a different zone then also account 653 * the folio for that zone. Other VM counters will be 654 * taken care of when we establish references to the 655 * new folio and drop references to the old folio. 656 * 657 * Note that anonymous folios are accounted for 658 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 659 * are mapped to swap space. 660 */ 661 if (newzone != oldzone) { 662 struct lruvec *old_lruvec, *new_lruvec; 663 struct mem_cgroup *memcg; 664 665 memcg = folio_memcg(folio); 666 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 667 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 668 669 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 670 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 671 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 672 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 673 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 674 675 if (folio_test_pmd_mappable(folio)) { 676 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 677 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 678 } 679 } 680 #ifdef CONFIG_SWAP 681 if (folio_test_swapcache(folio)) { 682 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 683 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 684 } 685 #endif 686 if (dirty && mapping_can_writeback(mapping)) { 687 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 688 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 689 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 690 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 691 } 692 } 693 local_irq_enable(); 694 695 return 0; 696 } 697 698 int folio_migrate_mapping(struct address_space *mapping, 699 struct folio *newfolio, struct folio *folio, int extra_count) 700 { 701 int expected_count = folio_expected_ref_count(folio) + extra_count + 1; 702 703 if (folio_ref_count(folio) != expected_count) 704 return -EAGAIN; 705 706 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count); 707 } 708 EXPORT_SYMBOL(folio_migrate_mapping); 709 710 /* 711 * The expected number of remaining references is the same as that 712 * of folio_migrate_mapping(). 713 */ 714 int migrate_huge_page_move_mapping(struct address_space *mapping, 715 struct folio *dst, struct folio *src) 716 { 717 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 718 int rc, expected_count = folio_expected_ref_count(src) + 1; 719 720 if (folio_ref_count(src) != expected_count) 721 return -EAGAIN; 722 723 rc = folio_mc_copy(dst, src); 724 if (unlikely(rc)) 725 return rc; 726 727 xas_lock_irq(&xas); 728 if (!folio_ref_freeze(src, expected_count)) { 729 xas_unlock_irq(&xas); 730 return -EAGAIN; 731 } 732 733 dst->index = src->index; 734 dst->mapping = src->mapping; 735 736 folio_ref_add(dst, folio_nr_pages(dst)); 737 738 xas_store(&xas, dst); 739 740 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 741 742 xas_unlock_irq(&xas); 743 744 return 0; 745 } 746 747 /* 748 * Copy the flags and some other ancillary information 749 */ 750 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 751 { 752 int cpupid; 753 754 if (folio_test_referenced(folio)) 755 folio_set_referenced(newfolio); 756 if (folio_test_uptodate(folio)) 757 folio_mark_uptodate(newfolio); 758 if (folio_test_clear_active(folio)) { 759 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 760 folio_set_active(newfolio); 761 } else if (folio_test_clear_unevictable(folio)) 762 folio_set_unevictable(newfolio); 763 if (folio_test_workingset(folio)) 764 folio_set_workingset(newfolio); 765 if (folio_test_checked(folio)) 766 folio_set_checked(newfolio); 767 /* 768 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 769 * migration entries. We can still have PG_anon_exclusive set on an 770 * effectively unmapped and unreferenced first sub-pages of an 771 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 772 */ 773 if (folio_test_mappedtodisk(folio)) 774 folio_set_mappedtodisk(newfolio); 775 776 /* Move dirty on pages not done by folio_migrate_mapping() */ 777 if (folio_test_dirty(folio)) 778 folio_set_dirty(newfolio); 779 780 if (folio_test_young(folio)) 781 folio_set_young(newfolio); 782 if (folio_test_idle(folio)) 783 folio_set_idle(newfolio); 784 785 folio_migrate_refs(newfolio, folio); 786 /* 787 * Copy NUMA information to the new page, to prevent over-eager 788 * future migrations of this same page. 789 */ 790 cpupid = folio_xchg_last_cpupid(folio, -1); 791 /* 792 * For memory tiering mode, when migrate between slow and fast 793 * memory node, reset cpupid, because that is used to record 794 * page access time in slow memory node. 795 */ 796 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 797 bool f_toptier = node_is_toptier(folio_nid(folio)); 798 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 799 800 if (f_toptier != t_toptier) 801 cpupid = -1; 802 } 803 folio_xchg_last_cpupid(newfolio, cpupid); 804 805 folio_migrate_ksm(newfolio, folio); 806 /* 807 * Please do not reorder this without considering how mm/ksm.c's 808 * ksm_get_folio() depends upon ksm_migrate_page() and the 809 * swapcache flag. 810 */ 811 if (folio_test_swapcache(folio)) 812 folio_clear_swapcache(folio); 813 folio_clear_private(folio); 814 815 /* page->private contains hugetlb specific flags */ 816 if (!folio_test_hugetlb(folio)) 817 folio->private = NULL; 818 819 /* 820 * If any waiters have accumulated on the new page then 821 * wake them up. 822 */ 823 if (folio_test_writeback(newfolio)) 824 folio_end_writeback(newfolio); 825 826 /* 827 * PG_readahead shares the same bit with PG_reclaim. The above 828 * end_page_writeback() may clear PG_readahead mistakenly, so set the 829 * bit after that. 830 */ 831 if (folio_test_readahead(folio)) 832 folio_set_readahead(newfolio); 833 834 folio_copy_owner(newfolio, folio); 835 pgalloc_tag_swap(newfolio, folio); 836 837 mem_cgroup_migrate(folio, newfolio); 838 } 839 EXPORT_SYMBOL(folio_migrate_flags); 840 841 /************************************************************ 842 * Migration functions 843 ***********************************************************/ 844 845 static int __migrate_folio(struct address_space *mapping, struct folio *dst, 846 struct folio *src, void *src_private, 847 enum migrate_mode mode) 848 { 849 int rc, expected_count = folio_expected_ref_count(src) + 1; 850 851 /* Check whether src does not have extra refs before we do more work */ 852 if (folio_ref_count(src) != expected_count) 853 return -EAGAIN; 854 855 rc = folio_mc_copy(dst, src); 856 if (unlikely(rc)) 857 return rc; 858 859 rc = __folio_migrate_mapping(mapping, dst, src, expected_count); 860 if (rc) 861 return rc; 862 863 if (src_private) 864 folio_attach_private(dst, folio_detach_private(src)); 865 866 folio_migrate_flags(dst, src); 867 return 0; 868 } 869 870 /** 871 * migrate_folio() - Simple folio migration. 872 * @mapping: The address_space containing the folio. 873 * @dst: The folio to migrate the data to. 874 * @src: The folio containing the current data. 875 * @mode: How to migrate the page. 876 * 877 * Common logic to directly migrate a single LRU folio suitable for 878 * folios that do not have private data. 879 * 880 * Folios are locked upon entry and exit. 881 */ 882 int migrate_folio(struct address_space *mapping, struct folio *dst, 883 struct folio *src, enum migrate_mode mode) 884 { 885 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 886 return __migrate_folio(mapping, dst, src, NULL, mode); 887 } 888 EXPORT_SYMBOL(migrate_folio); 889 890 #ifdef CONFIG_BUFFER_HEAD 891 /* Returns true if all buffers are successfully locked */ 892 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 893 enum migrate_mode mode) 894 { 895 struct buffer_head *bh = head; 896 struct buffer_head *failed_bh; 897 898 do { 899 if (!trylock_buffer(bh)) { 900 if (mode == MIGRATE_ASYNC) 901 goto unlock; 902 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 903 goto unlock; 904 lock_buffer(bh); 905 } 906 907 bh = bh->b_this_page; 908 } while (bh != head); 909 910 return true; 911 912 unlock: 913 /* We failed to lock the buffer and cannot stall. */ 914 failed_bh = bh; 915 bh = head; 916 while (bh != failed_bh) { 917 unlock_buffer(bh); 918 bh = bh->b_this_page; 919 } 920 921 return false; 922 } 923 924 static int __buffer_migrate_folio(struct address_space *mapping, 925 struct folio *dst, struct folio *src, enum migrate_mode mode, 926 bool check_refs) 927 { 928 struct buffer_head *bh, *head; 929 int rc; 930 int expected_count; 931 932 head = folio_buffers(src); 933 if (!head) 934 return migrate_folio(mapping, dst, src, mode); 935 936 /* Check whether page does not have extra refs before we do more work */ 937 expected_count = folio_expected_ref_count(src) + 1; 938 if (folio_ref_count(src) != expected_count) 939 return -EAGAIN; 940 941 if (!buffer_migrate_lock_buffers(head, mode)) 942 return -EAGAIN; 943 944 if (check_refs) { 945 bool busy, migrating; 946 bool invalidated = false; 947 948 migrating = test_and_set_bit_lock(BH_Migrate, &head->b_state); 949 VM_WARN_ON_ONCE(migrating); 950 recheck_buffers: 951 busy = false; 952 spin_lock(&mapping->i_private_lock); 953 bh = head; 954 do { 955 if (atomic_read(&bh->b_count)) { 956 busy = true; 957 break; 958 } 959 bh = bh->b_this_page; 960 } while (bh != head); 961 spin_unlock(&mapping->i_private_lock); 962 if (busy) { 963 if (invalidated) { 964 rc = -EAGAIN; 965 goto unlock_buffers; 966 } 967 invalidate_bh_lrus(); 968 invalidated = true; 969 goto recheck_buffers; 970 } 971 } 972 973 rc = filemap_migrate_folio(mapping, dst, src, mode); 974 if (rc) 975 goto unlock_buffers; 976 977 bh = head; 978 do { 979 folio_set_bh(bh, dst, bh_offset(bh)); 980 bh = bh->b_this_page; 981 } while (bh != head); 982 983 unlock_buffers: 984 if (check_refs) 985 clear_bit_unlock(BH_Migrate, &head->b_state); 986 bh = head; 987 do { 988 unlock_buffer(bh); 989 bh = bh->b_this_page; 990 } while (bh != head); 991 992 return rc; 993 } 994 995 /** 996 * buffer_migrate_folio() - Migration function for folios with buffers. 997 * @mapping: The address space containing @src. 998 * @dst: The folio to migrate to. 999 * @src: The folio to migrate from. 1000 * @mode: How to migrate the folio. 1001 * 1002 * This function can only be used if the underlying filesystem guarantees 1003 * that no other references to @src exist. For example attached buffer 1004 * heads are accessed only under the folio lock. If your filesystem cannot 1005 * provide this guarantee, buffer_migrate_folio_norefs() may be more 1006 * appropriate. 1007 * 1008 * Return: 0 on success or a negative errno on failure. 1009 */ 1010 int buffer_migrate_folio(struct address_space *mapping, 1011 struct folio *dst, struct folio *src, enum migrate_mode mode) 1012 { 1013 return __buffer_migrate_folio(mapping, dst, src, mode, false); 1014 } 1015 EXPORT_SYMBOL(buffer_migrate_folio); 1016 1017 /** 1018 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 1019 * @mapping: The address space containing @src. 1020 * @dst: The folio to migrate to. 1021 * @src: The folio to migrate from. 1022 * @mode: How to migrate the folio. 1023 * 1024 * Like buffer_migrate_folio() except that this variant is more careful 1025 * and checks that there are also no buffer head references. This function 1026 * is the right one for mappings where buffer heads are directly looked 1027 * up and referenced (such as block device mappings). 1028 * 1029 * Return: 0 on success or a negative errno on failure. 1030 */ 1031 int buffer_migrate_folio_norefs(struct address_space *mapping, 1032 struct folio *dst, struct folio *src, enum migrate_mode mode) 1033 { 1034 return __buffer_migrate_folio(mapping, dst, src, mode, true); 1035 } 1036 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 1037 #endif /* CONFIG_BUFFER_HEAD */ 1038 1039 int filemap_migrate_folio(struct address_space *mapping, 1040 struct folio *dst, struct folio *src, enum migrate_mode mode) 1041 { 1042 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode); 1043 } 1044 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 1045 1046 /* 1047 * Default handling if a filesystem does not provide a migration function. 1048 */ 1049 static int fallback_migrate_folio(struct address_space *mapping, 1050 struct folio *dst, struct folio *src, enum migrate_mode mode) 1051 { 1052 WARN_ONCE(mapping->a_ops->writepages, 1053 "%ps does not implement migrate_folio\n", 1054 mapping->a_ops); 1055 if (folio_test_dirty(src)) 1056 return -EBUSY; 1057 1058 /* 1059 * Filesystem may have private data at folio->private that we 1060 * can't migrate automatically. 1061 */ 1062 if (!filemap_release_folio(src, GFP_KERNEL)) 1063 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 1064 1065 return migrate_folio(mapping, dst, src, mode); 1066 } 1067 1068 /* 1069 * Move a src folio to a newly allocated dst folio. 1070 * 1071 * The src and dst folios are locked and the src folios was unmapped from 1072 * the page tables. 1073 * 1074 * On success, the src folio was replaced by the dst folio. 1075 * 1076 * Return value: 1077 * < 0 - error code 1078 * 0 - success 1079 */ 1080 static int move_to_new_folio(struct folio *dst, struct folio *src, 1081 enum migrate_mode mode) 1082 { 1083 struct address_space *mapping = folio_mapping(src); 1084 int rc = -EAGAIN; 1085 1086 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 1087 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 1088 1089 if (!mapping) 1090 rc = migrate_folio(mapping, dst, src, mode); 1091 else if (mapping_inaccessible(mapping)) 1092 rc = -EOPNOTSUPP; 1093 else if (mapping->a_ops->migrate_folio) 1094 /* 1095 * Most folios have a mapping and most filesystems 1096 * provide a migrate_folio callback. Anonymous folios 1097 * are part of swap space which also has its own 1098 * migrate_folio callback. This is the most common path 1099 * for page migration. 1100 */ 1101 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 1102 mode); 1103 else 1104 rc = fallback_migrate_folio(mapping, dst, src, mode); 1105 1106 if (!rc) { 1107 /* 1108 * For pagecache folios, src->mapping must be cleared before src 1109 * is freed. Anonymous folios must stay anonymous until freed. 1110 */ 1111 if (!folio_test_anon(src)) 1112 src->mapping = NULL; 1113 1114 if (likely(!folio_is_zone_device(dst))) 1115 flush_dcache_folio(dst); 1116 } 1117 return rc; 1118 } 1119 1120 /* 1121 * To record some information during migration, we use unused private 1122 * field of struct folio of the newly allocated destination folio. 1123 * This is safe because nobody is using it except us. 1124 */ 1125 enum { 1126 PAGE_WAS_MAPPED = BIT(0), 1127 PAGE_WAS_MLOCKED = BIT(1), 1128 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1129 }; 1130 1131 static void __migrate_folio_record(struct folio *dst, 1132 int old_page_state, 1133 struct anon_vma *anon_vma) 1134 { 1135 dst->private = (void *)anon_vma + old_page_state; 1136 } 1137 1138 static void __migrate_folio_extract(struct folio *dst, 1139 int *old_page_state, 1140 struct anon_vma **anon_vmap) 1141 { 1142 unsigned long private = (unsigned long)dst->private; 1143 1144 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1145 *old_page_state = private & PAGE_OLD_STATES; 1146 dst->private = NULL; 1147 } 1148 1149 /* Restore the source folio to the original state upon failure */ 1150 static void migrate_folio_undo_src(struct folio *src, 1151 int page_was_mapped, 1152 struct anon_vma *anon_vma, 1153 bool locked, 1154 struct list_head *ret) 1155 { 1156 if (page_was_mapped) 1157 remove_migration_ptes(src, src, 0); 1158 /* Drop an anon_vma reference if we took one */ 1159 if (anon_vma) 1160 put_anon_vma(anon_vma); 1161 if (locked) 1162 folio_unlock(src); 1163 if (ret) 1164 list_move_tail(&src->lru, ret); 1165 } 1166 1167 /* Restore the destination folio to the original state upon failure */ 1168 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1169 free_folio_t put_new_folio, unsigned long private) 1170 { 1171 if (locked) 1172 folio_unlock(dst); 1173 if (put_new_folio) 1174 put_new_folio(dst, private); 1175 else 1176 folio_put(dst); 1177 } 1178 1179 /* Cleanup src folio upon migration success */ 1180 static void migrate_folio_done(struct folio *src, 1181 enum migrate_reason reason) 1182 { 1183 if (likely(!page_has_movable_ops(&src->page)) && reason != MR_DEMOTION) 1184 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1185 folio_is_file_lru(src), -folio_nr_pages(src)); 1186 1187 if (reason != MR_MEMORY_FAILURE) 1188 /* We release the page in page_handle_poison. */ 1189 folio_put(src); 1190 } 1191 1192 /* Obtain the lock on page, remove all ptes. */ 1193 static int migrate_folio_unmap(new_folio_t get_new_folio, 1194 free_folio_t put_new_folio, unsigned long private, 1195 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1196 struct list_head *ret) 1197 { 1198 struct folio *dst; 1199 int rc = -EAGAIN; 1200 int old_page_state = 0; 1201 struct anon_vma *anon_vma = NULL; 1202 bool locked = false; 1203 bool dst_locked = false; 1204 1205 dst = get_new_folio(src, private); 1206 if (!dst) 1207 return -ENOMEM; 1208 *dstp = dst; 1209 1210 dst->private = NULL; 1211 1212 if (!folio_trylock(src)) { 1213 if (mode == MIGRATE_ASYNC) 1214 goto out; 1215 1216 /* 1217 * It's not safe for direct compaction to call lock_page. 1218 * For example, during page readahead pages are added locked 1219 * to the LRU. Later, when the IO completes the pages are 1220 * marked uptodate and unlocked. However, the queueing 1221 * could be merging multiple pages for one bio (e.g. 1222 * mpage_readahead). If an allocation happens for the 1223 * second or third page, the process can end up locking 1224 * the same page twice and deadlocking. Rather than 1225 * trying to be clever about what pages can be locked, 1226 * avoid the use of lock_page for direct compaction 1227 * altogether. 1228 */ 1229 if (current->flags & PF_MEMALLOC) 1230 goto out; 1231 1232 /* 1233 * In "light" mode, we can wait for transient locks (eg 1234 * inserting a page into the page table), but it's not 1235 * worth waiting for I/O. 1236 */ 1237 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1238 goto out; 1239 1240 folio_lock(src); 1241 } 1242 locked = true; 1243 if (folio_test_mlocked(src)) 1244 old_page_state |= PAGE_WAS_MLOCKED; 1245 1246 if (folio_test_writeback(src)) { 1247 /* 1248 * Only in the case of a full synchronous migration is it 1249 * necessary to wait for PageWriteback. In the async case, 1250 * the retry loop is too short and in the sync-light case, 1251 * the overhead of stalling is too much 1252 */ 1253 switch (mode) { 1254 case MIGRATE_SYNC: 1255 break; 1256 default: 1257 rc = -EBUSY; 1258 goto out; 1259 } 1260 folio_wait_writeback(src); 1261 } 1262 1263 /* 1264 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1265 * we cannot notice that anon_vma is freed while we migrate a page. 1266 * This get_anon_vma() delays freeing anon_vma pointer until the end 1267 * of migration. File cache pages are no problem because of page_lock() 1268 * File Caches may use write_page() or lock_page() in migration, then, 1269 * just care Anon page here. 1270 * 1271 * Only folio_get_anon_vma() understands the subtleties of 1272 * getting a hold on an anon_vma from outside one of its mms. 1273 * But if we cannot get anon_vma, then we won't need it anyway, 1274 * because that implies that the anon page is no longer mapped 1275 * (and cannot be remapped so long as we hold the page lock). 1276 */ 1277 if (folio_test_anon(src) && !folio_test_ksm(src)) 1278 anon_vma = folio_get_anon_vma(src); 1279 1280 /* 1281 * Block others from accessing the new page when we get around to 1282 * establishing additional references. We are usually the only one 1283 * holding a reference to dst at this point. We used to have a BUG 1284 * here if folio_trylock(dst) fails, but would like to allow for 1285 * cases where there might be a race with the previous use of dst. 1286 * This is much like races on refcount of oldpage: just don't BUG(). 1287 */ 1288 if (unlikely(!folio_trylock(dst))) 1289 goto out; 1290 dst_locked = true; 1291 1292 if (unlikely(page_has_movable_ops(&src->page))) { 1293 __migrate_folio_record(dst, old_page_state, anon_vma); 1294 return 0; 1295 } 1296 1297 /* 1298 * Corner case handling: 1299 * 1. When a new swap-cache page is read into, it is added to the LRU 1300 * and treated as swapcache but it has no rmap yet. 1301 * Calling try_to_unmap() against a src->mapping==NULL page will 1302 * trigger a BUG. So handle it here. 1303 * 2. An orphaned page (see truncate_cleanup_page) might have 1304 * fs-private metadata. The page can be picked up due to memory 1305 * offlining. Everywhere else except page reclaim, the page is 1306 * invisible to the vm, so the page can not be migrated. So try to 1307 * free the metadata, so the page can be freed. 1308 */ 1309 if (!src->mapping) { 1310 if (folio_test_private(src)) { 1311 try_to_free_buffers(src); 1312 goto out; 1313 } 1314 } else if (folio_mapped(src)) { 1315 /* Establish migration ptes */ 1316 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1317 !folio_test_ksm(src) && !anon_vma, src); 1318 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1319 old_page_state |= PAGE_WAS_MAPPED; 1320 } 1321 1322 if (!folio_mapped(src)) { 1323 __migrate_folio_record(dst, old_page_state, anon_vma); 1324 return 0; 1325 } 1326 1327 out: 1328 /* 1329 * A folio that has not been unmapped will be restored to 1330 * right list unless we want to retry. 1331 */ 1332 if (rc == -EAGAIN) 1333 ret = NULL; 1334 1335 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1336 anon_vma, locked, ret); 1337 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1338 1339 return rc; 1340 } 1341 1342 /* Migrate the folio to the newly allocated folio in dst. */ 1343 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1344 struct folio *src, struct folio *dst, 1345 enum migrate_mode mode, enum migrate_reason reason, 1346 struct list_head *ret) 1347 { 1348 int rc; 1349 int old_page_state = 0; 1350 struct anon_vma *anon_vma = NULL; 1351 struct list_head *prev; 1352 1353 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1354 prev = dst->lru.prev; 1355 list_del(&dst->lru); 1356 1357 if (unlikely(page_has_movable_ops(&src->page))) { 1358 rc = migrate_movable_ops_page(&dst->page, &src->page, mode); 1359 if (rc) 1360 goto out; 1361 goto out_unlock_both; 1362 } 1363 1364 rc = move_to_new_folio(dst, src, mode); 1365 if (rc) 1366 goto out; 1367 1368 /* 1369 * When successful, push dst to LRU immediately: so that if it 1370 * turns out to be an mlocked page, remove_migration_ptes() will 1371 * automatically build up the correct dst->mlock_count for it. 1372 * 1373 * We would like to do something similar for the old page, when 1374 * unsuccessful, and other cases when a page has been temporarily 1375 * isolated from the unevictable LRU: but this case is the easiest. 1376 */ 1377 folio_add_lru(dst); 1378 if (old_page_state & PAGE_WAS_MLOCKED) 1379 lru_add_drain(); 1380 1381 if (old_page_state & PAGE_WAS_MAPPED) 1382 remove_migration_ptes(src, dst, 0); 1383 1384 out_unlock_both: 1385 folio_unlock(dst); 1386 folio_set_owner_migrate_reason(dst, reason); 1387 /* 1388 * If migration is successful, decrease refcount of dst, 1389 * which will not free the page because new page owner increased 1390 * refcounter. 1391 */ 1392 folio_put(dst); 1393 1394 /* 1395 * A folio that has been migrated has all references removed 1396 * and will be freed. 1397 */ 1398 list_del(&src->lru); 1399 /* Drop an anon_vma reference if we took one */ 1400 if (anon_vma) 1401 put_anon_vma(anon_vma); 1402 folio_unlock(src); 1403 migrate_folio_done(src, reason); 1404 1405 return rc; 1406 out: 1407 /* 1408 * A folio that has not been migrated will be restored to 1409 * right list unless we want to retry. 1410 */ 1411 if (rc == -EAGAIN) { 1412 list_add(&dst->lru, prev); 1413 __migrate_folio_record(dst, old_page_state, anon_vma); 1414 return rc; 1415 } 1416 1417 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1418 anon_vma, true, ret); 1419 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1420 1421 return rc; 1422 } 1423 1424 /* 1425 * Counterpart of unmap_and_move_page() for hugepage migration. 1426 * 1427 * This function doesn't wait the completion of hugepage I/O 1428 * because there is no race between I/O and migration for hugepage. 1429 * Note that currently hugepage I/O occurs only in direct I/O 1430 * where no lock is held and PG_writeback is irrelevant, 1431 * and writeback status of all subpages are counted in the reference 1432 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1433 * under direct I/O, the reference of the head page is 512 and a bit more.) 1434 * This means that when we try to migrate hugepage whose subpages are 1435 * doing direct I/O, some references remain after try_to_unmap() and 1436 * hugepage migration fails without data corruption. 1437 * 1438 * There is also no race when direct I/O is issued on the page under migration, 1439 * because then pte is replaced with migration swap entry and direct I/O code 1440 * will wait in the page fault for migration to complete. 1441 */ 1442 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1443 free_folio_t put_new_folio, unsigned long private, 1444 struct folio *src, int force, enum migrate_mode mode, 1445 int reason, struct list_head *ret) 1446 { 1447 struct folio *dst; 1448 int rc = -EAGAIN; 1449 int page_was_mapped = 0; 1450 struct anon_vma *anon_vma = NULL; 1451 struct address_space *mapping = NULL; 1452 1453 if (folio_ref_count(src) == 1) { 1454 /* page was freed from under us. So we are done. */ 1455 folio_putback_hugetlb(src); 1456 return 0; 1457 } 1458 1459 dst = get_new_folio(src, private); 1460 if (!dst) 1461 return -ENOMEM; 1462 1463 if (!folio_trylock(src)) { 1464 if (!force) 1465 goto out; 1466 switch (mode) { 1467 case MIGRATE_SYNC: 1468 break; 1469 default: 1470 goto out; 1471 } 1472 folio_lock(src); 1473 } 1474 1475 /* 1476 * Check for pages which are in the process of being freed. Without 1477 * folio_mapping() set, hugetlbfs specific move page routine will not 1478 * be called and we could leak usage counts for subpools. 1479 */ 1480 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1481 rc = -EBUSY; 1482 goto out_unlock; 1483 } 1484 1485 if (folio_test_anon(src)) 1486 anon_vma = folio_get_anon_vma(src); 1487 1488 if (unlikely(!folio_trylock(dst))) 1489 goto put_anon; 1490 1491 if (folio_mapped(src)) { 1492 enum ttu_flags ttu = 0; 1493 1494 if (!folio_test_anon(src)) { 1495 /* 1496 * In shared mappings, try_to_unmap could potentially 1497 * call huge_pmd_unshare. Because of this, take 1498 * semaphore in write mode here and set TTU_RMAP_LOCKED 1499 * to let lower levels know we have taken the lock. 1500 */ 1501 mapping = hugetlb_folio_mapping_lock_write(src); 1502 if (unlikely(!mapping)) 1503 goto unlock_put_anon; 1504 1505 ttu = TTU_RMAP_LOCKED; 1506 } 1507 1508 try_to_migrate(src, ttu); 1509 page_was_mapped = 1; 1510 1511 if (ttu & TTU_RMAP_LOCKED) 1512 i_mmap_unlock_write(mapping); 1513 } 1514 1515 if (!folio_mapped(src)) 1516 rc = move_to_new_folio(dst, src, mode); 1517 1518 if (page_was_mapped) 1519 remove_migration_ptes(src, !rc ? dst : src, 0); 1520 1521 unlock_put_anon: 1522 folio_unlock(dst); 1523 1524 put_anon: 1525 if (anon_vma) 1526 put_anon_vma(anon_vma); 1527 1528 if (!rc) { 1529 move_hugetlb_state(src, dst, reason); 1530 put_new_folio = NULL; 1531 } 1532 1533 out_unlock: 1534 folio_unlock(src); 1535 out: 1536 if (!rc) 1537 folio_putback_hugetlb(src); 1538 else if (rc != -EAGAIN) 1539 list_move_tail(&src->lru, ret); 1540 1541 /* 1542 * If migration was not successful and there's a freeing callback, 1543 * return the folio to that special allocator. Otherwise, simply drop 1544 * our additional reference. 1545 */ 1546 if (put_new_folio) 1547 put_new_folio(dst, private); 1548 else 1549 folio_put(dst); 1550 1551 return rc; 1552 } 1553 1554 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios, 1555 enum migrate_mode mode) 1556 { 1557 int rc; 1558 1559 if (mode == MIGRATE_ASYNC) { 1560 if (!folio_trylock(folio)) 1561 return -EAGAIN; 1562 } else { 1563 folio_lock(folio); 1564 } 1565 rc = split_folio_to_list(folio, split_folios); 1566 folio_unlock(folio); 1567 if (!rc) 1568 list_move_tail(&folio->lru, split_folios); 1569 1570 return rc; 1571 } 1572 1573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1574 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1575 #else 1576 #define NR_MAX_BATCHED_MIGRATION 512 1577 #endif 1578 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1579 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1580 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1581 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1582 1583 struct migrate_pages_stats { 1584 int nr_succeeded; /* Normal and large folios migrated successfully, in 1585 units of base pages */ 1586 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1587 units of base pages. Untried folios aren't counted */ 1588 int nr_thp_succeeded; /* THP migrated successfully */ 1589 int nr_thp_failed; /* THP failed to be migrated */ 1590 int nr_thp_split; /* THP split before migrating */ 1591 int nr_split; /* Large folio (include THP) split before migrating */ 1592 }; 1593 1594 /* 1595 * Returns the number of hugetlb folios that were not migrated, or an error code 1596 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1597 * any more because the list has become empty or no retryable hugetlb folios 1598 * exist any more. It is caller's responsibility to call putback_movable_pages() 1599 * only if ret != 0. 1600 */ 1601 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1602 free_folio_t put_new_folio, unsigned long private, 1603 enum migrate_mode mode, int reason, 1604 struct migrate_pages_stats *stats, 1605 struct list_head *ret_folios) 1606 { 1607 int retry = 1; 1608 int nr_failed = 0; 1609 int nr_retry_pages = 0; 1610 int pass = 0; 1611 struct folio *folio, *folio2; 1612 int rc, nr_pages; 1613 1614 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1615 retry = 0; 1616 nr_retry_pages = 0; 1617 1618 list_for_each_entry_safe(folio, folio2, from, lru) { 1619 if (!folio_test_hugetlb(folio)) 1620 continue; 1621 1622 nr_pages = folio_nr_pages(folio); 1623 1624 cond_resched(); 1625 1626 /* 1627 * Migratability of hugepages depends on architectures and 1628 * their size. This check is necessary because some callers 1629 * of hugepage migration like soft offline and memory 1630 * hotremove don't walk through page tables or check whether 1631 * the hugepage is pmd-based or not before kicking migration. 1632 */ 1633 if (!hugepage_migration_supported(folio_hstate(folio))) { 1634 nr_failed++; 1635 stats->nr_failed_pages += nr_pages; 1636 list_move_tail(&folio->lru, ret_folios); 1637 continue; 1638 } 1639 1640 rc = unmap_and_move_huge_page(get_new_folio, 1641 put_new_folio, private, 1642 folio, pass > 2, mode, 1643 reason, ret_folios); 1644 /* 1645 * The rules are: 1646 * 0: hugetlb folio will be put back 1647 * -EAGAIN: stay on the from list 1648 * -ENOMEM: stay on the from list 1649 * Other errno: put on ret_folios list 1650 */ 1651 switch(rc) { 1652 case -ENOMEM: 1653 /* 1654 * When memory is low, don't bother to try to migrate 1655 * other folios, just exit. 1656 */ 1657 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1658 return -ENOMEM; 1659 case -EAGAIN: 1660 retry++; 1661 nr_retry_pages += nr_pages; 1662 break; 1663 case 0: 1664 stats->nr_succeeded += nr_pages; 1665 break; 1666 default: 1667 /* 1668 * Permanent failure (-EBUSY, etc.): 1669 * unlike -EAGAIN case, the failed folio is 1670 * removed from migration folio list and not 1671 * retried in the next outer loop. 1672 */ 1673 nr_failed++; 1674 stats->nr_failed_pages += nr_pages; 1675 break; 1676 } 1677 } 1678 } 1679 /* 1680 * nr_failed is number of hugetlb folios failed to be migrated. After 1681 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1682 * folios as failed. 1683 */ 1684 nr_failed += retry; 1685 stats->nr_failed_pages += nr_retry_pages; 1686 1687 return nr_failed; 1688 } 1689 1690 static void migrate_folios_move(struct list_head *src_folios, 1691 struct list_head *dst_folios, 1692 free_folio_t put_new_folio, unsigned long private, 1693 enum migrate_mode mode, int reason, 1694 struct list_head *ret_folios, 1695 struct migrate_pages_stats *stats, 1696 int *retry, int *thp_retry, int *nr_failed, 1697 int *nr_retry_pages) 1698 { 1699 struct folio *folio, *folio2, *dst, *dst2; 1700 bool is_thp; 1701 int nr_pages; 1702 int rc; 1703 1704 dst = list_first_entry(dst_folios, struct folio, lru); 1705 dst2 = list_next_entry(dst, lru); 1706 list_for_each_entry_safe(folio, folio2, src_folios, lru) { 1707 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1708 nr_pages = folio_nr_pages(folio); 1709 1710 cond_resched(); 1711 1712 rc = migrate_folio_move(put_new_folio, private, 1713 folio, dst, mode, 1714 reason, ret_folios); 1715 /* 1716 * The rules are: 1717 * 0: folio will be freed 1718 * -EAGAIN: stay on the unmap_folios list 1719 * Other errno: put on ret_folios list 1720 */ 1721 switch (rc) { 1722 case -EAGAIN: 1723 *retry += 1; 1724 *thp_retry += is_thp; 1725 *nr_retry_pages += nr_pages; 1726 break; 1727 case 0: 1728 stats->nr_succeeded += nr_pages; 1729 stats->nr_thp_succeeded += is_thp; 1730 break; 1731 default: 1732 *nr_failed += 1; 1733 stats->nr_thp_failed += is_thp; 1734 stats->nr_failed_pages += nr_pages; 1735 break; 1736 } 1737 dst = dst2; 1738 dst2 = list_next_entry(dst, lru); 1739 } 1740 } 1741 1742 static void migrate_folios_undo(struct list_head *src_folios, 1743 struct list_head *dst_folios, 1744 free_folio_t put_new_folio, unsigned long private, 1745 struct list_head *ret_folios) 1746 { 1747 struct folio *folio, *folio2, *dst, *dst2; 1748 1749 dst = list_first_entry(dst_folios, struct folio, lru); 1750 dst2 = list_next_entry(dst, lru); 1751 list_for_each_entry_safe(folio, folio2, src_folios, lru) { 1752 int old_page_state = 0; 1753 struct anon_vma *anon_vma = NULL; 1754 1755 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1756 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1757 anon_vma, true, ret_folios); 1758 list_del(&dst->lru); 1759 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1760 dst = dst2; 1761 dst2 = list_next_entry(dst, lru); 1762 } 1763 } 1764 1765 /* 1766 * migrate_pages_batch() first unmaps folios in the from list as many as 1767 * possible, then move the unmapped folios. 1768 * 1769 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1770 * lock or bit when we have locked more than one folio. Which may cause 1771 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1772 * length of the from list must be <= 1. 1773 */ 1774 static int migrate_pages_batch(struct list_head *from, 1775 new_folio_t get_new_folio, free_folio_t put_new_folio, 1776 unsigned long private, enum migrate_mode mode, int reason, 1777 struct list_head *ret_folios, struct list_head *split_folios, 1778 struct migrate_pages_stats *stats, int nr_pass) 1779 { 1780 int retry = 1; 1781 int thp_retry = 1; 1782 int nr_failed = 0; 1783 int nr_retry_pages = 0; 1784 int pass = 0; 1785 bool is_thp = false; 1786 bool is_large = false; 1787 struct folio *folio, *folio2, *dst = NULL; 1788 int rc, rc_saved = 0, nr_pages; 1789 LIST_HEAD(unmap_folios); 1790 LIST_HEAD(dst_folios); 1791 bool nosplit = (reason == MR_NUMA_MISPLACED); 1792 1793 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1794 !list_empty(from) && !list_is_singular(from)); 1795 1796 for (pass = 0; pass < nr_pass && retry; pass++) { 1797 retry = 0; 1798 thp_retry = 0; 1799 nr_retry_pages = 0; 1800 1801 list_for_each_entry_safe(folio, folio2, from, lru) { 1802 is_large = folio_test_large(folio); 1803 is_thp = folio_test_pmd_mappable(folio); 1804 nr_pages = folio_nr_pages(folio); 1805 1806 cond_resched(); 1807 1808 /* 1809 * The rare folio on the deferred split list should 1810 * be split now. It should not count as a failure: 1811 * but increment nr_failed because, without doing so, 1812 * migrate_pages() may report success with (split but 1813 * unmigrated) pages still on its fromlist; whereas it 1814 * always reports success when its fromlist is empty. 1815 * stats->nr_thp_failed should be increased too, 1816 * otherwise stats inconsistency will happen when 1817 * migrate_pages_batch is called via migrate_pages() 1818 * with MIGRATE_SYNC and MIGRATE_ASYNC. 1819 * 1820 * Only check it without removing it from the list. 1821 * Since the folio can be on deferred_split_scan() 1822 * local list and removing it can cause the local list 1823 * corruption. Folio split process below can handle it 1824 * with the help of folio_ref_freeze(). 1825 * 1826 * nr_pages > 2 is needed to avoid checking order-1 1827 * page cache folios. They exist, in contrast to 1828 * non-existent order-1 anonymous folios, and do not 1829 * use _deferred_list. 1830 */ 1831 if (nr_pages > 2 && 1832 !list_empty(&folio->_deferred_list) && 1833 folio_test_partially_mapped(folio)) { 1834 if (!try_split_folio(folio, split_folios, mode)) { 1835 nr_failed++; 1836 stats->nr_thp_failed += is_thp; 1837 stats->nr_thp_split += is_thp; 1838 stats->nr_split++; 1839 continue; 1840 } 1841 } 1842 1843 /* 1844 * Large folio migration might be unsupported or 1845 * the allocation might be failed so we should retry 1846 * on the same folio with the large folio split 1847 * to normal folios. 1848 * 1849 * Split folios are put in split_folios, and 1850 * we will migrate them after the rest of the 1851 * list is processed. 1852 */ 1853 if (!thp_migration_supported() && is_thp) { 1854 nr_failed++; 1855 stats->nr_thp_failed++; 1856 if (!try_split_folio(folio, split_folios, mode)) { 1857 stats->nr_thp_split++; 1858 stats->nr_split++; 1859 continue; 1860 } 1861 stats->nr_failed_pages += nr_pages; 1862 list_move_tail(&folio->lru, ret_folios); 1863 continue; 1864 } 1865 1866 /* 1867 * If we are holding the last folio reference, the folio 1868 * was freed from under us, so just drop our reference. 1869 */ 1870 if (likely(!page_has_movable_ops(&folio->page)) && 1871 folio_ref_count(folio) == 1) { 1872 folio_clear_active(folio); 1873 folio_clear_unevictable(folio); 1874 list_del(&folio->lru); 1875 migrate_folio_done(folio, reason); 1876 stats->nr_succeeded += nr_pages; 1877 stats->nr_thp_succeeded += is_thp; 1878 continue; 1879 } 1880 1881 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1882 private, folio, &dst, mode, ret_folios); 1883 /* 1884 * The rules are: 1885 * 0: folio will be put on unmap_folios list, 1886 * dst folio put on dst_folios list 1887 * -EAGAIN: stay on the from list 1888 * -ENOMEM: stay on the from list 1889 * Other errno: put on ret_folios list 1890 */ 1891 switch(rc) { 1892 case -ENOMEM: 1893 /* 1894 * When memory is low, don't bother to try to migrate 1895 * other folios, move unmapped folios, then exit. 1896 */ 1897 nr_failed++; 1898 stats->nr_thp_failed += is_thp; 1899 /* Large folio NUMA faulting doesn't split to retry. */ 1900 if (is_large && !nosplit) { 1901 int ret = try_split_folio(folio, split_folios, mode); 1902 1903 if (!ret) { 1904 stats->nr_thp_split += is_thp; 1905 stats->nr_split++; 1906 break; 1907 } else if (reason == MR_LONGTERM_PIN && 1908 ret == -EAGAIN) { 1909 /* 1910 * Try again to split large folio to 1911 * mitigate the failure of longterm pinning. 1912 */ 1913 retry++; 1914 thp_retry += is_thp; 1915 nr_retry_pages += nr_pages; 1916 /* Undo duplicated failure counting. */ 1917 nr_failed--; 1918 stats->nr_thp_failed -= is_thp; 1919 break; 1920 } 1921 } 1922 1923 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1924 /* nr_failed isn't updated for not used */ 1925 stats->nr_thp_failed += thp_retry; 1926 rc_saved = rc; 1927 if (list_empty(&unmap_folios)) 1928 goto out; 1929 else 1930 goto move; 1931 case -EAGAIN: 1932 retry++; 1933 thp_retry += is_thp; 1934 nr_retry_pages += nr_pages; 1935 break; 1936 case 0: 1937 list_move_tail(&folio->lru, &unmap_folios); 1938 list_add_tail(&dst->lru, &dst_folios); 1939 break; 1940 default: 1941 /* 1942 * Permanent failure (-EBUSY, etc.): 1943 * unlike -EAGAIN case, the failed folio is 1944 * removed from migration folio list and not 1945 * retried in the next outer loop. 1946 */ 1947 nr_failed++; 1948 stats->nr_thp_failed += is_thp; 1949 stats->nr_failed_pages += nr_pages; 1950 break; 1951 } 1952 } 1953 } 1954 nr_failed += retry; 1955 stats->nr_thp_failed += thp_retry; 1956 stats->nr_failed_pages += nr_retry_pages; 1957 move: 1958 /* Flush TLBs for all unmapped folios */ 1959 try_to_unmap_flush(); 1960 1961 retry = 1; 1962 for (pass = 0; pass < nr_pass && retry; pass++) { 1963 retry = 0; 1964 thp_retry = 0; 1965 nr_retry_pages = 0; 1966 1967 /* Move the unmapped folios */ 1968 migrate_folios_move(&unmap_folios, &dst_folios, 1969 put_new_folio, private, mode, reason, 1970 ret_folios, stats, &retry, &thp_retry, 1971 &nr_failed, &nr_retry_pages); 1972 } 1973 nr_failed += retry; 1974 stats->nr_thp_failed += thp_retry; 1975 stats->nr_failed_pages += nr_retry_pages; 1976 1977 rc = rc_saved ? : nr_failed; 1978 out: 1979 /* Cleanup remaining folios */ 1980 migrate_folios_undo(&unmap_folios, &dst_folios, 1981 put_new_folio, private, ret_folios); 1982 1983 return rc; 1984 } 1985 1986 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1987 free_folio_t put_new_folio, unsigned long private, 1988 enum migrate_mode mode, int reason, 1989 struct list_head *ret_folios, struct list_head *split_folios, 1990 struct migrate_pages_stats *stats) 1991 { 1992 int rc, nr_failed = 0; 1993 LIST_HEAD(folios); 1994 struct migrate_pages_stats astats; 1995 1996 memset(&astats, 0, sizeof(astats)); 1997 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1998 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1999 reason, &folios, split_folios, &astats, 2000 NR_MAX_MIGRATE_ASYNC_RETRY); 2001 stats->nr_succeeded += astats.nr_succeeded; 2002 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 2003 stats->nr_thp_split += astats.nr_thp_split; 2004 stats->nr_split += astats.nr_split; 2005 if (rc < 0) { 2006 stats->nr_failed_pages += astats.nr_failed_pages; 2007 stats->nr_thp_failed += astats.nr_thp_failed; 2008 list_splice_tail(&folios, ret_folios); 2009 return rc; 2010 } 2011 stats->nr_thp_failed += astats.nr_thp_split; 2012 /* 2013 * Do not count rc, as pages will be retried below. 2014 * Count nr_split only, since it includes nr_thp_split. 2015 */ 2016 nr_failed += astats.nr_split; 2017 /* 2018 * Fall back to migrate all failed folios one by one synchronously. All 2019 * failed folios except split THPs will be retried, so their failure 2020 * isn't counted 2021 */ 2022 list_splice_tail_init(&folios, from); 2023 while (!list_empty(from)) { 2024 list_move(from->next, &folios); 2025 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2026 private, mode, reason, ret_folios, 2027 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 2028 list_splice_tail_init(&folios, ret_folios); 2029 if (rc < 0) 2030 return rc; 2031 nr_failed += rc; 2032 } 2033 2034 return nr_failed; 2035 } 2036 2037 /* 2038 * migrate_pages - migrate the folios specified in a list, to the free folios 2039 * supplied as the target for the page migration 2040 * 2041 * @from: The list of folios to be migrated. 2042 * @get_new_folio: The function used to allocate free folios to be used 2043 * as the target of the folio migration. 2044 * @put_new_folio: The function used to free target folios if migration 2045 * fails, or NULL if no special handling is necessary. 2046 * @private: Private data to be passed on to get_new_folio() 2047 * @mode: The migration mode that specifies the constraints for 2048 * folio migration, if any. 2049 * @reason: The reason for folio migration. 2050 * @ret_succeeded: Set to the number of folios migrated successfully if 2051 * the caller passes a non-NULL pointer. 2052 * 2053 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 2054 * are movable any more because the list has become empty or no retryable folios 2055 * exist any more. It is caller's responsibility to call putback_movable_pages() 2056 * only if ret != 0. 2057 * 2058 * Returns the number of {normal folio, large folio, hugetlb} that were not 2059 * migrated, or an error code. The number of large folio splits will be 2060 * considered as the number of non-migrated large folio, no matter how many 2061 * split folios of the large folio are migrated successfully. 2062 */ 2063 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 2064 free_folio_t put_new_folio, unsigned long private, 2065 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 2066 { 2067 int rc, rc_gather; 2068 int nr_pages; 2069 struct folio *folio, *folio2; 2070 LIST_HEAD(folios); 2071 LIST_HEAD(ret_folios); 2072 LIST_HEAD(split_folios); 2073 struct migrate_pages_stats stats; 2074 2075 trace_mm_migrate_pages_start(mode, reason); 2076 2077 memset(&stats, 0, sizeof(stats)); 2078 2079 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 2080 mode, reason, &stats, &ret_folios); 2081 if (rc_gather < 0) 2082 goto out; 2083 2084 again: 2085 nr_pages = 0; 2086 list_for_each_entry_safe(folio, folio2, from, lru) { 2087 /* Retried hugetlb folios will be kept in list */ 2088 if (folio_test_hugetlb(folio)) { 2089 list_move_tail(&folio->lru, &ret_folios); 2090 continue; 2091 } 2092 2093 nr_pages += folio_nr_pages(folio); 2094 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2095 break; 2096 } 2097 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2098 list_cut_before(&folios, from, &folio2->lru); 2099 else 2100 list_splice_init(from, &folios); 2101 if (mode == MIGRATE_ASYNC) 2102 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2103 private, mode, reason, &ret_folios, 2104 &split_folios, &stats, 2105 NR_MAX_MIGRATE_PAGES_RETRY); 2106 else 2107 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 2108 private, mode, reason, &ret_folios, 2109 &split_folios, &stats); 2110 list_splice_tail_init(&folios, &ret_folios); 2111 if (rc < 0) { 2112 rc_gather = rc; 2113 list_splice_tail(&split_folios, &ret_folios); 2114 goto out; 2115 } 2116 if (!list_empty(&split_folios)) { 2117 /* 2118 * Failure isn't counted since all split folios of a large folio 2119 * is counted as 1 failure already. And, we only try to migrate 2120 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 2121 */ 2122 migrate_pages_batch(&split_folios, get_new_folio, 2123 put_new_folio, private, MIGRATE_ASYNC, reason, 2124 &ret_folios, NULL, &stats, 1); 2125 list_splice_tail_init(&split_folios, &ret_folios); 2126 } 2127 rc_gather += rc; 2128 if (!list_empty(from)) 2129 goto again; 2130 out: 2131 /* 2132 * Put the permanent failure folio back to migration list, they 2133 * will be put back to the right list by the caller. 2134 */ 2135 list_splice(&ret_folios, from); 2136 2137 /* 2138 * Return 0 in case all split folios of fail-to-migrate large folios 2139 * are migrated successfully. 2140 */ 2141 if (list_empty(from)) 2142 rc_gather = 0; 2143 2144 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2145 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2146 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2147 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2148 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2149 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2150 stats.nr_thp_succeeded, stats.nr_thp_failed, 2151 stats.nr_thp_split, stats.nr_split, mode, 2152 reason); 2153 2154 if (ret_succeeded) 2155 *ret_succeeded = stats.nr_succeeded; 2156 2157 return rc_gather; 2158 } 2159 2160 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2161 { 2162 struct migration_target_control *mtc; 2163 gfp_t gfp_mask; 2164 unsigned int order = 0; 2165 int nid; 2166 int zidx; 2167 2168 mtc = (struct migration_target_control *)private; 2169 gfp_mask = mtc->gfp_mask; 2170 nid = mtc->nid; 2171 if (nid == NUMA_NO_NODE) 2172 nid = folio_nid(src); 2173 2174 if (folio_test_hugetlb(src)) { 2175 struct hstate *h = folio_hstate(src); 2176 2177 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2178 return alloc_hugetlb_folio_nodemask(h, nid, 2179 mtc->nmask, gfp_mask, 2180 htlb_allow_alloc_fallback(mtc->reason)); 2181 } 2182 2183 if (folio_test_large(src)) { 2184 /* 2185 * clear __GFP_RECLAIM to make the migration callback 2186 * consistent with regular THP allocations. 2187 */ 2188 gfp_mask &= ~__GFP_RECLAIM; 2189 gfp_mask |= GFP_TRANSHUGE; 2190 order = folio_order(src); 2191 } 2192 zidx = zone_idx(folio_zone(src)); 2193 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2194 gfp_mask |= __GFP_HIGHMEM; 2195 2196 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2197 } 2198 2199 #ifdef CONFIG_NUMA 2200 2201 static int store_status(int __user *status, int start, int value, int nr) 2202 { 2203 while (nr-- > 0) { 2204 if (put_user(value, status + start)) 2205 return -EFAULT; 2206 start++; 2207 } 2208 2209 return 0; 2210 } 2211 2212 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2213 { 2214 int err; 2215 struct migration_target_control mtc = { 2216 .nid = node, 2217 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2218 .reason = MR_SYSCALL, 2219 }; 2220 2221 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2222 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2223 if (err) 2224 putback_movable_pages(pagelist); 2225 return err; 2226 } 2227 2228 static int __add_folio_for_migration(struct folio *folio, int node, 2229 struct list_head *pagelist, bool migrate_all) 2230 { 2231 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2232 return -EFAULT; 2233 2234 if (folio_is_zone_device(folio)) 2235 return -ENOENT; 2236 2237 if (folio_nid(folio) == node) 2238 return 0; 2239 2240 if (folio_maybe_mapped_shared(folio) && !migrate_all) 2241 return -EACCES; 2242 2243 if (folio_test_hugetlb(folio)) { 2244 if (folio_isolate_hugetlb(folio, pagelist)) 2245 return 1; 2246 } else if (folio_isolate_lru(folio)) { 2247 list_add_tail(&folio->lru, pagelist); 2248 node_stat_mod_folio(folio, 2249 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2250 folio_nr_pages(folio)); 2251 return 1; 2252 } 2253 return -EBUSY; 2254 } 2255 2256 /* 2257 * Resolves the given address to a struct folio, isolates it from the LRU and 2258 * puts it to the given pagelist. 2259 * Returns: 2260 * errno - if the folio cannot be found/isolated 2261 * 0 - when it doesn't have to be migrated because it is already on the 2262 * target node 2263 * 1 - when it has been queued 2264 */ 2265 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p, 2266 int node, struct list_head *pagelist, bool migrate_all) 2267 { 2268 struct vm_area_struct *vma; 2269 struct folio_walk fw; 2270 struct folio *folio; 2271 unsigned long addr; 2272 int err = -EFAULT; 2273 2274 mmap_read_lock(mm); 2275 addr = (unsigned long)untagged_addr_remote(mm, p); 2276 2277 vma = vma_lookup(mm, addr); 2278 if (vma && vma_migratable(vma)) { 2279 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2280 if (folio) { 2281 err = __add_folio_for_migration(folio, node, pagelist, 2282 migrate_all); 2283 folio_walk_end(&fw, vma); 2284 } else { 2285 err = -ENOENT; 2286 } 2287 } 2288 mmap_read_unlock(mm); 2289 return err; 2290 } 2291 2292 static int move_pages_and_store_status(int node, 2293 struct list_head *pagelist, int __user *status, 2294 int start, int i, unsigned long nr_pages) 2295 { 2296 int err; 2297 2298 if (list_empty(pagelist)) 2299 return 0; 2300 2301 err = do_move_pages_to_node(pagelist, node); 2302 if (err) { 2303 /* 2304 * Positive err means the number of failed 2305 * pages to migrate. Since we are going to 2306 * abort and return the number of non-migrated 2307 * pages, so need to include the rest of the 2308 * nr_pages that have not been attempted as 2309 * well. 2310 */ 2311 if (err > 0) 2312 err += nr_pages - i; 2313 return err; 2314 } 2315 return store_status(status, start, node, i - start); 2316 } 2317 2318 /* 2319 * Migrate an array of page address onto an array of nodes and fill 2320 * the corresponding array of status. 2321 */ 2322 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2323 unsigned long nr_pages, 2324 const void __user * __user *pages, 2325 const int __user *nodes, 2326 int __user *status, int flags) 2327 { 2328 compat_uptr_t __user *compat_pages = (void __user *)pages; 2329 int current_node = NUMA_NO_NODE; 2330 LIST_HEAD(pagelist); 2331 int start, i; 2332 int err = 0, err1; 2333 2334 lru_cache_disable(); 2335 2336 for (i = start = 0; i < nr_pages; i++) { 2337 const void __user *p; 2338 int node; 2339 2340 err = -EFAULT; 2341 if (in_compat_syscall()) { 2342 compat_uptr_t cp; 2343 2344 if (get_user(cp, compat_pages + i)) 2345 goto out_flush; 2346 2347 p = compat_ptr(cp); 2348 } else { 2349 if (get_user(p, pages + i)) 2350 goto out_flush; 2351 } 2352 if (get_user(node, nodes + i)) 2353 goto out_flush; 2354 2355 err = -ENODEV; 2356 if (node < 0 || node >= MAX_NUMNODES) 2357 goto out_flush; 2358 if (!node_state(node, N_MEMORY)) 2359 goto out_flush; 2360 2361 err = -EACCES; 2362 if (!node_isset(node, task_nodes)) 2363 goto out_flush; 2364 2365 if (current_node == NUMA_NO_NODE) { 2366 current_node = node; 2367 start = i; 2368 } else if (node != current_node) { 2369 err = move_pages_and_store_status(current_node, 2370 &pagelist, status, start, i, nr_pages); 2371 if (err) 2372 goto out; 2373 start = i; 2374 current_node = node; 2375 } 2376 2377 /* 2378 * Errors in the page lookup or isolation are not fatal and we simply 2379 * report them via status 2380 */ 2381 err = add_folio_for_migration(mm, p, current_node, &pagelist, 2382 flags & MPOL_MF_MOVE_ALL); 2383 2384 if (err > 0) { 2385 /* The page is successfully queued for migration */ 2386 continue; 2387 } 2388 2389 /* 2390 * If the page is already on the target node (!err), store the 2391 * node, otherwise, store the err. 2392 */ 2393 err = store_status(status, i, err ? : current_node, 1); 2394 if (err) 2395 goto out_flush; 2396 2397 err = move_pages_and_store_status(current_node, &pagelist, 2398 status, start, i, nr_pages); 2399 if (err) { 2400 /* We have accounted for page i */ 2401 if (err > 0) 2402 err--; 2403 goto out; 2404 } 2405 current_node = NUMA_NO_NODE; 2406 } 2407 out_flush: 2408 /* Make sure we do not overwrite the existing error */ 2409 err1 = move_pages_and_store_status(current_node, &pagelist, 2410 status, start, i, nr_pages); 2411 if (err >= 0) 2412 err = err1; 2413 out: 2414 lru_cache_enable(); 2415 return err; 2416 } 2417 2418 /* 2419 * Determine the nodes of an array of pages and store it in an array of status. 2420 */ 2421 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2422 const void __user **pages, int *status) 2423 { 2424 unsigned long i; 2425 2426 mmap_read_lock(mm); 2427 2428 for (i = 0; i < nr_pages; i++) { 2429 unsigned long addr = (unsigned long)(*pages); 2430 struct vm_area_struct *vma; 2431 struct folio_walk fw; 2432 struct folio *folio; 2433 int err = -EFAULT; 2434 2435 vma = vma_lookup(mm, addr); 2436 if (!vma) 2437 goto set_status; 2438 2439 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2440 if (folio) { 2441 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2442 err = -EFAULT; 2443 else if (folio_is_zone_device(folio)) 2444 err = -ENOENT; 2445 else 2446 err = folio_nid(folio); 2447 folio_walk_end(&fw, vma); 2448 } else { 2449 err = -ENOENT; 2450 } 2451 set_status: 2452 *status = err; 2453 2454 pages++; 2455 status++; 2456 } 2457 2458 mmap_read_unlock(mm); 2459 } 2460 2461 static int get_compat_pages_array(const void __user *chunk_pages[], 2462 const void __user * __user *pages, 2463 unsigned long chunk_offset, 2464 unsigned long chunk_nr) 2465 { 2466 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2467 compat_uptr_t p; 2468 int i; 2469 2470 for (i = 0; i < chunk_nr; i++) { 2471 if (get_user(p, pages32 + chunk_offset + i)) 2472 return -EFAULT; 2473 chunk_pages[i] = compat_ptr(p); 2474 } 2475 2476 return 0; 2477 } 2478 2479 /* 2480 * Determine the nodes of a user array of pages and store it in 2481 * a user array of status. 2482 */ 2483 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2484 const void __user * __user *pages, 2485 int __user *status) 2486 { 2487 #define DO_PAGES_STAT_CHUNK_NR 16UL 2488 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2489 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2490 unsigned long chunk_offset = 0; 2491 2492 while (nr_pages) { 2493 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2494 2495 if (in_compat_syscall()) { 2496 if (get_compat_pages_array(chunk_pages, pages, 2497 chunk_offset, chunk_nr)) 2498 break; 2499 } else { 2500 if (copy_from_user(chunk_pages, pages + chunk_offset, 2501 chunk_nr * sizeof(*chunk_pages))) 2502 break; 2503 } 2504 2505 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2506 2507 if (copy_to_user(status + chunk_offset, chunk_status, 2508 chunk_nr * sizeof(*status))) 2509 break; 2510 2511 chunk_offset += chunk_nr; 2512 nr_pages -= chunk_nr; 2513 } 2514 return nr_pages ? -EFAULT : 0; 2515 } 2516 2517 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2518 { 2519 struct task_struct *task; 2520 struct mm_struct *mm; 2521 2522 /* 2523 * There is no need to check if current process has the right to modify 2524 * the specified process when they are same. 2525 */ 2526 if (!pid) { 2527 mmget(current->mm); 2528 *mem_nodes = cpuset_mems_allowed(current); 2529 return current->mm; 2530 } 2531 2532 task = find_get_task_by_vpid(pid); 2533 if (!task) { 2534 return ERR_PTR(-ESRCH); 2535 } 2536 2537 /* 2538 * Check if this process has the right to modify the specified 2539 * process. Use the regular "ptrace_may_access()" checks. 2540 */ 2541 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2542 mm = ERR_PTR(-EPERM); 2543 goto out; 2544 } 2545 2546 mm = ERR_PTR(security_task_movememory(task)); 2547 if (IS_ERR(mm)) 2548 goto out; 2549 *mem_nodes = cpuset_mems_allowed(task); 2550 mm = get_task_mm(task); 2551 out: 2552 put_task_struct(task); 2553 if (!mm) 2554 mm = ERR_PTR(-EINVAL); 2555 return mm; 2556 } 2557 2558 /* 2559 * Move a list of pages in the address space of the currently executing 2560 * process. 2561 */ 2562 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2563 const void __user * __user *pages, 2564 const int __user *nodes, 2565 int __user *status, int flags) 2566 { 2567 struct mm_struct *mm; 2568 int err; 2569 nodemask_t task_nodes; 2570 2571 /* Check flags */ 2572 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2573 return -EINVAL; 2574 2575 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2576 return -EPERM; 2577 2578 mm = find_mm_struct(pid, &task_nodes); 2579 if (IS_ERR(mm)) 2580 return PTR_ERR(mm); 2581 2582 if (nodes) 2583 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2584 nodes, status, flags); 2585 else 2586 err = do_pages_stat(mm, nr_pages, pages, status); 2587 2588 mmput(mm); 2589 return err; 2590 } 2591 2592 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2593 const void __user * __user *, pages, 2594 const int __user *, nodes, 2595 int __user *, status, int, flags) 2596 { 2597 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2598 } 2599 2600 #ifdef CONFIG_NUMA_BALANCING 2601 /* 2602 * Returns true if this is a safe migration target node for misplaced NUMA 2603 * pages. Currently it only checks the watermarks which is crude. 2604 */ 2605 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2606 unsigned long nr_migrate_pages) 2607 { 2608 int z; 2609 2610 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2611 struct zone *zone = pgdat->node_zones + z; 2612 2613 if (!managed_zone(zone)) 2614 continue; 2615 2616 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2617 if (!zone_watermark_ok(zone, 0, 2618 high_wmark_pages(zone) + 2619 nr_migrate_pages, 2620 ZONE_MOVABLE, ALLOC_CMA)) 2621 continue; 2622 return true; 2623 } 2624 return false; 2625 } 2626 2627 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2628 unsigned long data) 2629 { 2630 int nid = (int) data; 2631 int order = folio_order(src); 2632 gfp_t gfp = __GFP_THISNODE; 2633 2634 if (order > 0) 2635 gfp |= GFP_TRANSHUGE_LIGHT; 2636 else { 2637 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2638 __GFP_NOWARN; 2639 gfp &= ~__GFP_RECLAIM; 2640 } 2641 return __folio_alloc_node(gfp, order, nid); 2642 } 2643 2644 /* 2645 * Prepare for calling migrate_misplaced_folio() by isolating the folio if 2646 * permitted. Must be called with the PTL still held. 2647 */ 2648 int migrate_misplaced_folio_prepare(struct folio *folio, 2649 struct vm_area_struct *vma, int node) 2650 { 2651 int nr_pages = folio_nr_pages(folio); 2652 pg_data_t *pgdat = NODE_DATA(node); 2653 2654 if (folio_is_file_lru(folio)) { 2655 /* 2656 * Do not migrate file folios that are mapped in multiple 2657 * processes with execute permissions as they are probably 2658 * shared libraries. 2659 * 2660 * See folio_maybe_mapped_shared() on possible imprecision 2661 * when we cannot easily detect if a folio is shared. 2662 */ 2663 if ((vma->vm_flags & VM_EXEC) && folio_maybe_mapped_shared(folio)) 2664 return -EACCES; 2665 2666 /* 2667 * Do not migrate dirty folios as not all filesystems can move 2668 * dirty folios in MIGRATE_ASYNC mode which is a waste of 2669 * cycles. 2670 */ 2671 if (folio_test_dirty(folio)) 2672 return -EAGAIN; 2673 } 2674 2675 /* Avoid migrating to a node that is nearly full */ 2676 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2677 int z; 2678 2679 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2680 return -EAGAIN; 2681 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2682 if (managed_zone(pgdat->node_zones + z)) 2683 break; 2684 } 2685 2686 /* 2687 * If there are no managed zones, it should not proceed 2688 * further. 2689 */ 2690 if (z < 0) 2691 return -EAGAIN; 2692 2693 wakeup_kswapd(pgdat->node_zones + z, 0, 2694 folio_order(folio), ZONE_MOVABLE); 2695 return -EAGAIN; 2696 } 2697 2698 if (!folio_isolate_lru(folio)) 2699 return -EAGAIN; 2700 2701 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2702 nr_pages); 2703 return 0; 2704 } 2705 2706 /* 2707 * Attempt to migrate a misplaced folio to the specified destination 2708 * node. Caller is expected to have isolated the folio by calling 2709 * migrate_misplaced_folio_prepare(), which will result in an 2710 * elevated reference count on the folio. This function will un-isolate the 2711 * folio, dereferencing the folio before returning. 2712 */ 2713 int migrate_misplaced_folio(struct folio *folio, int node) 2714 { 2715 pg_data_t *pgdat = NODE_DATA(node); 2716 int nr_remaining; 2717 unsigned int nr_succeeded; 2718 LIST_HEAD(migratepages); 2719 struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio); 2720 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2721 2722 list_add(&folio->lru, &migratepages); 2723 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2724 NULL, node, MIGRATE_ASYNC, 2725 MR_NUMA_MISPLACED, &nr_succeeded); 2726 if (nr_remaining && !list_empty(&migratepages)) 2727 putback_movable_pages(&migratepages); 2728 if (nr_succeeded) { 2729 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2730 count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded); 2731 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 2732 && !node_is_toptier(folio_nid(folio)) 2733 && node_is_toptier(node)) 2734 mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded); 2735 } 2736 mem_cgroup_put(memcg); 2737 BUG_ON(!list_empty(&migratepages)); 2738 return nr_remaining ? -EAGAIN : 0; 2739 } 2740 #endif /* CONFIG_NUMA_BALANCING */ 2741 #endif /* CONFIG_NUMA */ 2742