1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Memory Migration functionality - linux/mm/migrate.c 4 * 5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter 6 * 7 * Page migration was first developed in the context of the memory hotplug 8 * project. The main authors of the migration code are: 9 * 10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> 11 * Hirokazu Takahashi <taka@valinux.co.jp> 12 * Dave Hansen <haveblue@us.ibm.com> 13 * Christoph Lameter 14 */ 15 16 #include <linux/migrate.h> 17 #include <linux/export.h> 18 #include <linux/swap.h> 19 #include <linux/swapops.h> 20 #include <linux/pagemap.h> 21 #include <linux/buffer_head.h> 22 #include <linux/mm_inline.h> 23 #include <linux/ksm.h> 24 #include <linux/rmap.h> 25 #include <linux/topology.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/writeback.h> 29 #include <linux/mempolicy.h> 30 #include <linux/vmalloc.h> 31 #include <linux/security.h> 32 #include <linux/backing-dev.h> 33 #include <linux/compaction.h> 34 #include <linux/syscalls.h> 35 #include <linux/compat.h> 36 #include <linux/hugetlb.h> 37 #include <linux/gfp.h> 38 #include <linux/pfn_t.h> 39 #include <linux/page_idle.h> 40 #include <linux/page_owner.h> 41 #include <linux/sched/mm.h> 42 #include <linux/ptrace.h> 43 #include <linux/memory.h> 44 #include <linux/sched/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/pagewalk.h> 47 48 #include <asm/tlbflush.h> 49 50 #include <trace/events/migrate.h> 51 52 #include "internal.h" 53 54 bool isolate_movable_page(struct page *page, isolate_mode_t mode) 55 { 56 struct folio *folio = folio_get_nontail_page(page); 57 const struct movable_operations *mops; 58 59 /* 60 * Avoid burning cycles with pages that are yet under __free_pages(), 61 * or just got freed under us. 62 * 63 * In case we 'win' a race for a movable page being freed under us and 64 * raise its refcount preventing __free_pages() from doing its job 65 * the put_page() at the end of this block will take care of 66 * release this page, thus avoiding a nasty leakage. 67 */ 68 if (!folio) 69 goto out; 70 71 if (unlikely(folio_test_slab(folio))) 72 goto out_putfolio; 73 /* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */ 74 smp_rmb(); 75 /* 76 * Check movable flag before taking the page lock because 77 * we use non-atomic bitops on newly allocated page flags so 78 * unconditionally grabbing the lock ruins page's owner side. 79 */ 80 if (unlikely(!__folio_test_movable(folio))) 81 goto out_putfolio; 82 /* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */ 83 smp_rmb(); 84 if (unlikely(folio_test_slab(folio))) 85 goto out_putfolio; 86 87 /* 88 * As movable pages are not isolated from LRU lists, concurrent 89 * compaction threads can race against page migration functions 90 * as well as race against the releasing a page. 91 * 92 * In order to avoid having an already isolated movable page 93 * being (wrongly) re-isolated while it is under migration, 94 * or to avoid attempting to isolate pages being released, 95 * lets be sure we have the page lock 96 * before proceeding with the movable page isolation steps. 97 */ 98 if (unlikely(!folio_trylock(folio))) 99 goto out_putfolio; 100 101 if (!folio_test_movable(folio) || folio_test_isolated(folio)) 102 goto out_no_isolated; 103 104 mops = folio_movable_ops(folio); 105 VM_BUG_ON_FOLIO(!mops, folio); 106 107 if (!mops->isolate_page(&folio->page, mode)) 108 goto out_no_isolated; 109 110 /* Driver shouldn't use the isolated flag */ 111 WARN_ON_ONCE(folio_test_isolated(folio)); 112 folio_set_isolated(folio); 113 folio_unlock(folio); 114 115 return true; 116 117 out_no_isolated: 118 folio_unlock(folio); 119 out_putfolio: 120 folio_put(folio); 121 out: 122 return false; 123 } 124 125 static void putback_movable_folio(struct folio *folio) 126 { 127 const struct movable_operations *mops = folio_movable_ops(folio); 128 129 mops->putback_page(&folio->page); 130 folio_clear_isolated(folio); 131 } 132 133 /* 134 * Put previously isolated pages back onto the appropriate lists 135 * from where they were once taken off for compaction/migration. 136 * 137 * This function shall be used whenever the isolated pageset has been 138 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() 139 * and isolate_hugetlb(). 140 */ 141 void putback_movable_pages(struct list_head *l) 142 { 143 struct folio *folio; 144 struct folio *folio2; 145 146 list_for_each_entry_safe(folio, folio2, l, lru) { 147 if (unlikely(folio_test_hugetlb(folio))) { 148 folio_putback_active_hugetlb(folio); 149 continue; 150 } 151 list_del(&folio->lru); 152 /* 153 * We isolated non-lru movable folio so here we can use 154 * __folio_test_movable because LRU folio's mapping cannot 155 * have PAGE_MAPPING_MOVABLE. 156 */ 157 if (unlikely(__folio_test_movable(folio))) { 158 VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio); 159 folio_lock(folio); 160 if (folio_test_movable(folio)) 161 putback_movable_folio(folio); 162 else 163 folio_clear_isolated(folio); 164 folio_unlock(folio); 165 folio_put(folio); 166 } else { 167 node_stat_mod_folio(folio, NR_ISOLATED_ANON + 168 folio_is_file_lru(folio), -folio_nr_pages(folio)); 169 folio_putback_lru(folio); 170 } 171 } 172 } 173 174 /* Must be called with an elevated refcount on the non-hugetlb folio */ 175 bool isolate_folio_to_list(struct folio *folio, struct list_head *list) 176 { 177 bool isolated, lru; 178 179 if (folio_test_hugetlb(folio)) 180 return isolate_hugetlb(folio, list); 181 182 lru = !__folio_test_movable(folio); 183 if (lru) 184 isolated = folio_isolate_lru(folio); 185 else 186 isolated = isolate_movable_page(&folio->page, 187 ISOLATE_UNEVICTABLE); 188 189 if (!isolated) 190 return false; 191 192 list_add(&folio->lru, list); 193 if (lru) 194 node_stat_add_folio(folio, NR_ISOLATED_ANON + 195 folio_is_file_lru(folio)); 196 197 return true; 198 } 199 200 static bool try_to_map_unused_to_zeropage(struct page_vma_mapped_walk *pvmw, 201 struct folio *folio, 202 unsigned long idx) 203 { 204 struct page *page = folio_page(folio, idx); 205 bool contains_data; 206 pte_t newpte; 207 void *addr; 208 209 VM_BUG_ON_PAGE(PageCompound(page), page); 210 VM_BUG_ON_PAGE(!PageAnon(page), page); 211 VM_BUG_ON_PAGE(!PageLocked(page), page); 212 VM_BUG_ON_PAGE(pte_present(*pvmw->pte), page); 213 214 if (folio_test_mlocked(folio) || (pvmw->vma->vm_flags & VM_LOCKED) || 215 mm_forbids_zeropage(pvmw->vma->vm_mm)) 216 return false; 217 218 /* 219 * The pmd entry mapping the old thp was flushed and the pte mapping 220 * this subpage has been non present. If the subpage is only zero-filled 221 * then map it to the shared zeropage. 222 */ 223 addr = kmap_local_page(page); 224 contains_data = memchr_inv(addr, 0, PAGE_SIZE); 225 kunmap_local(addr); 226 227 if (contains_data) 228 return false; 229 230 newpte = pte_mkspecial(pfn_pte(my_zero_pfn(pvmw->address), 231 pvmw->vma->vm_page_prot)); 232 set_pte_at(pvmw->vma->vm_mm, pvmw->address, pvmw->pte, newpte); 233 234 dec_mm_counter(pvmw->vma->vm_mm, mm_counter(folio)); 235 return true; 236 } 237 238 struct rmap_walk_arg { 239 struct folio *folio; 240 bool map_unused_to_zeropage; 241 }; 242 243 /* 244 * Restore a potential migration pte to a working pte entry 245 */ 246 static bool remove_migration_pte(struct folio *folio, 247 struct vm_area_struct *vma, unsigned long addr, void *arg) 248 { 249 struct rmap_walk_arg *rmap_walk_arg = arg; 250 DEFINE_FOLIO_VMA_WALK(pvmw, rmap_walk_arg->folio, vma, addr, PVMW_SYNC | PVMW_MIGRATION); 251 252 while (page_vma_mapped_walk(&pvmw)) { 253 rmap_t rmap_flags = RMAP_NONE; 254 pte_t old_pte; 255 pte_t pte; 256 swp_entry_t entry; 257 struct page *new; 258 unsigned long idx = 0; 259 260 /* pgoff is invalid for ksm pages, but they are never large */ 261 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 262 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff; 263 new = folio_page(folio, idx); 264 265 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 266 /* PMD-mapped THP migration entry */ 267 if (!pvmw.pte) { 268 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 269 !folio_test_pmd_mappable(folio), folio); 270 remove_migration_pmd(&pvmw, new); 271 continue; 272 } 273 #endif 274 if (rmap_walk_arg->map_unused_to_zeropage && 275 try_to_map_unused_to_zeropage(&pvmw, folio, idx)) 276 continue; 277 278 folio_get(folio); 279 pte = mk_pte(new, READ_ONCE(vma->vm_page_prot)); 280 old_pte = ptep_get(pvmw.pte); 281 282 entry = pte_to_swp_entry(old_pte); 283 if (!is_migration_entry_young(entry)) 284 pte = pte_mkold(pte); 285 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 286 pte = pte_mkdirty(pte); 287 if (pte_swp_soft_dirty(old_pte)) 288 pte = pte_mksoft_dirty(pte); 289 else 290 pte = pte_clear_soft_dirty(pte); 291 292 if (is_writable_migration_entry(entry)) 293 pte = pte_mkwrite(pte, vma); 294 else if (pte_swp_uffd_wp(old_pte)) 295 pte = pte_mkuffd_wp(pte); 296 297 if (folio_test_anon(folio) && !is_readable_migration_entry(entry)) 298 rmap_flags |= RMAP_EXCLUSIVE; 299 300 if (unlikely(is_device_private_page(new))) { 301 if (pte_write(pte)) 302 entry = make_writable_device_private_entry( 303 page_to_pfn(new)); 304 else 305 entry = make_readable_device_private_entry( 306 page_to_pfn(new)); 307 pte = swp_entry_to_pte(entry); 308 if (pte_swp_soft_dirty(old_pte)) 309 pte = pte_swp_mksoft_dirty(pte); 310 if (pte_swp_uffd_wp(old_pte)) 311 pte = pte_swp_mkuffd_wp(pte); 312 } 313 314 #ifdef CONFIG_HUGETLB_PAGE 315 if (folio_test_hugetlb(folio)) { 316 struct hstate *h = hstate_vma(vma); 317 unsigned int shift = huge_page_shift(h); 318 unsigned long psize = huge_page_size(h); 319 320 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 321 if (folio_test_anon(folio)) 322 hugetlb_add_anon_rmap(folio, vma, pvmw.address, 323 rmap_flags); 324 else 325 hugetlb_add_file_rmap(folio); 326 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte, 327 psize); 328 } else 329 #endif 330 { 331 if (folio_test_anon(folio)) 332 folio_add_anon_rmap_pte(folio, new, vma, 333 pvmw.address, rmap_flags); 334 else 335 folio_add_file_rmap_pte(folio, new, vma); 336 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte); 337 } 338 if (vma->vm_flags & VM_LOCKED) 339 mlock_drain_local(); 340 341 trace_remove_migration_pte(pvmw.address, pte_val(pte), 342 compound_order(new)); 343 344 /* No need to invalidate - it was non-present before */ 345 update_mmu_cache(vma, pvmw.address, pvmw.pte); 346 } 347 348 return true; 349 } 350 351 /* 352 * Get rid of all migration entries and replace them by 353 * references to the indicated page. 354 */ 355 void remove_migration_ptes(struct folio *src, struct folio *dst, int flags) 356 { 357 struct rmap_walk_arg rmap_walk_arg = { 358 .folio = src, 359 .map_unused_to_zeropage = flags & RMP_USE_SHARED_ZEROPAGE, 360 }; 361 362 struct rmap_walk_control rwc = { 363 .rmap_one = remove_migration_pte, 364 .arg = &rmap_walk_arg, 365 }; 366 367 VM_BUG_ON_FOLIO((flags & RMP_USE_SHARED_ZEROPAGE) && (src != dst), src); 368 369 if (flags & RMP_LOCKED) 370 rmap_walk_locked(dst, &rwc); 371 else 372 rmap_walk(dst, &rwc); 373 } 374 375 /* 376 * Something used the pte of a page under migration. We need to 377 * get to the page and wait until migration is finished. 378 * When we return from this function the fault will be retried. 379 */ 380 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, 381 unsigned long address) 382 { 383 spinlock_t *ptl; 384 pte_t *ptep; 385 pte_t pte; 386 swp_entry_t entry; 387 388 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 389 if (!ptep) 390 return; 391 392 pte = ptep_get(ptep); 393 pte_unmap(ptep); 394 395 if (!is_swap_pte(pte)) 396 goto out; 397 398 entry = pte_to_swp_entry(pte); 399 if (!is_migration_entry(entry)) 400 goto out; 401 402 migration_entry_wait_on_locked(entry, ptl); 403 return; 404 out: 405 spin_unlock(ptl); 406 } 407 408 #ifdef CONFIG_HUGETLB_PAGE 409 /* 410 * The vma read lock must be held upon entry. Holding that lock prevents either 411 * the pte or the ptl from being freed. 412 * 413 * This function will release the vma lock before returning. 414 */ 415 void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 416 { 417 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep); 418 pte_t pte; 419 420 hugetlb_vma_assert_locked(vma); 421 spin_lock(ptl); 422 pte = huge_ptep_get(vma->vm_mm, addr, ptep); 423 424 if (unlikely(!is_hugetlb_entry_migration(pte))) { 425 spin_unlock(ptl); 426 hugetlb_vma_unlock_read(vma); 427 } else { 428 /* 429 * If migration entry existed, safe to release vma lock 430 * here because the pgtable page won't be freed without the 431 * pgtable lock released. See comment right above pgtable 432 * lock release in migration_entry_wait_on_locked(). 433 */ 434 hugetlb_vma_unlock_read(vma); 435 migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl); 436 } 437 } 438 #endif 439 440 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 441 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) 442 { 443 spinlock_t *ptl; 444 445 ptl = pmd_lock(mm, pmd); 446 if (!is_pmd_migration_entry(*pmd)) 447 goto unlock; 448 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl); 449 return; 450 unlock: 451 spin_unlock(ptl); 452 } 453 #endif 454 455 static int folio_expected_refs(struct address_space *mapping, 456 struct folio *folio) 457 { 458 int refs = 1; 459 if (!mapping) 460 return refs; 461 462 refs += folio_nr_pages(folio); 463 if (folio_test_private(folio)) 464 refs++; 465 466 return refs; 467 } 468 469 /* 470 * Replace the folio in the mapping. 471 * 472 * The number of remaining references must be: 473 * 1 for anonymous folios without a mapping 474 * 2 for folios with a mapping 475 * 3 for folios with a mapping and PagePrivate/PagePrivate2 set. 476 */ 477 static int __folio_migrate_mapping(struct address_space *mapping, 478 struct folio *newfolio, struct folio *folio, int expected_count) 479 { 480 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 481 struct zone *oldzone, *newzone; 482 int dirty; 483 long nr = folio_nr_pages(folio); 484 long entries, i; 485 486 if (!mapping) { 487 /* Take off deferred split queue while frozen and memcg set */ 488 if (folio_test_large(folio) && 489 folio_test_large_rmappable(folio)) { 490 if (!folio_ref_freeze(folio, expected_count)) 491 return -EAGAIN; 492 folio_undo_large_rmappable(folio); 493 folio_ref_unfreeze(folio, expected_count); 494 } 495 496 /* No turning back from here */ 497 newfolio->index = folio->index; 498 newfolio->mapping = folio->mapping; 499 if (folio_test_anon(folio) && folio_test_large(folio)) 500 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 501 if (folio_test_swapbacked(folio)) 502 __folio_set_swapbacked(newfolio); 503 504 return MIGRATEPAGE_SUCCESS; 505 } 506 507 oldzone = folio_zone(folio); 508 newzone = folio_zone(newfolio); 509 510 xas_lock_irq(&xas); 511 if (!folio_ref_freeze(folio, expected_count)) { 512 xas_unlock_irq(&xas); 513 return -EAGAIN; 514 } 515 516 /* Take off deferred split queue while frozen and memcg set */ 517 folio_undo_large_rmappable(folio); 518 519 /* 520 * Now we know that no one else is looking at the folio: 521 * no turning back from here. 522 */ 523 newfolio->index = folio->index; 524 newfolio->mapping = folio->mapping; 525 if (folio_test_anon(folio) && folio_test_large(folio)) 526 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 527 folio_ref_add(newfolio, nr); /* add cache reference */ 528 if (folio_test_swapbacked(folio)) { 529 __folio_set_swapbacked(newfolio); 530 if (folio_test_swapcache(folio)) { 531 folio_set_swapcache(newfolio); 532 newfolio->private = folio_get_private(folio); 533 } 534 entries = nr; 535 } else { 536 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 537 entries = 1; 538 } 539 540 /* Move dirty while folio refs frozen and newfolio not yet exposed */ 541 dirty = folio_test_dirty(folio); 542 if (dirty) { 543 folio_clear_dirty(folio); 544 folio_set_dirty(newfolio); 545 } 546 547 /* Swap cache still stores N entries instead of a high-order entry */ 548 for (i = 0; i < entries; i++) { 549 xas_store(&xas, newfolio); 550 xas_next(&xas); 551 } 552 553 /* 554 * Drop cache reference from old folio by unfreezing 555 * to one less reference. 556 * We know this isn't the last reference. 557 */ 558 folio_ref_unfreeze(folio, expected_count - nr); 559 560 xas_unlock(&xas); 561 /* Leave irq disabled to prevent preemption while updating stats */ 562 563 /* 564 * If moved to a different zone then also account 565 * the folio for that zone. Other VM counters will be 566 * taken care of when we establish references to the 567 * new folio and drop references to the old folio. 568 * 569 * Note that anonymous folios are accounted for 570 * via NR_FILE_PAGES and NR_ANON_MAPPED if they 571 * are mapped to swap space. 572 */ 573 if (newzone != oldzone) { 574 struct lruvec *old_lruvec, *new_lruvec; 575 struct mem_cgroup *memcg; 576 577 memcg = folio_memcg(folio); 578 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat); 579 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat); 580 581 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr); 582 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr); 583 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) { 584 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); 585 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); 586 587 if (folio_test_pmd_mappable(folio)) { 588 __mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr); 589 __mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr); 590 } 591 } 592 #ifdef CONFIG_SWAP 593 if (folio_test_swapcache(folio)) { 594 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); 595 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); 596 } 597 #endif 598 if (dirty && mapping_can_writeback(mapping)) { 599 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); 600 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); 601 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr); 602 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr); 603 } 604 } 605 local_irq_enable(); 606 607 return MIGRATEPAGE_SUCCESS; 608 } 609 610 int folio_migrate_mapping(struct address_space *mapping, 611 struct folio *newfolio, struct folio *folio, int extra_count) 612 { 613 int expected_count = folio_expected_refs(mapping, folio) + extra_count; 614 615 if (folio_ref_count(folio) != expected_count) 616 return -EAGAIN; 617 618 return __folio_migrate_mapping(mapping, newfolio, folio, expected_count); 619 } 620 EXPORT_SYMBOL(folio_migrate_mapping); 621 622 /* 623 * The expected number of remaining references is the same as that 624 * of folio_migrate_mapping(). 625 */ 626 int migrate_huge_page_move_mapping(struct address_space *mapping, 627 struct folio *dst, struct folio *src) 628 { 629 XA_STATE(xas, &mapping->i_pages, folio_index(src)); 630 int rc, expected_count = folio_expected_refs(mapping, src); 631 632 if (folio_ref_count(src) != expected_count) 633 return -EAGAIN; 634 635 rc = folio_mc_copy(dst, src); 636 if (unlikely(rc)) 637 return rc; 638 639 xas_lock_irq(&xas); 640 if (!folio_ref_freeze(src, expected_count)) { 641 xas_unlock_irq(&xas); 642 return -EAGAIN; 643 } 644 645 dst->index = src->index; 646 dst->mapping = src->mapping; 647 648 folio_ref_add(dst, folio_nr_pages(dst)); 649 650 xas_store(&xas, dst); 651 652 folio_ref_unfreeze(src, expected_count - folio_nr_pages(src)); 653 654 xas_unlock_irq(&xas); 655 656 return MIGRATEPAGE_SUCCESS; 657 } 658 659 /* 660 * Copy the flags and some other ancillary information 661 */ 662 void folio_migrate_flags(struct folio *newfolio, struct folio *folio) 663 { 664 int cpupid; 665 666 if (folio_test_referenced(folio)) 667 folio_set_referenced(newfolio); 668 if (folio_test_uptodate(folio)) 669 folio_mark_uptodate(newfolio); 670 if (folio_test_clear_active(folio)) { 671 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio); 672 folio_set_active(newfolio); 673 } else if (folio_test_clear_unevictable(folio)) 674 folio_set_unevictable(newfolio); 675 if (folio_test_workingset(folio)) 676 folio_set_workingset(newfolio); 677 if (folio_test_checked(folio)) 678 folio_set_checked(newfolio); 679 /* 680 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via 681 * migration entries. We can still have PG_anon_exclusive set on an 682 * effectively unmapped and unreferenced first sub-pages of an 683 * anonymous THP: we can simply copy it here via PG_mappedtodisk. 684 */ 685 if (folio_test_mappedtodisk(folio)) 686 folio_set_mappedtodisk(newfolio); 687 688 /* Move dirty on pages not done by folio_migrate_mapping() */ 689 if (folio_test_dirty(folio)) 690 folio_set_dirty(newfolio); 691 692 if (folio_test_young(folio)) 693 folio_set_young(newfolio); 694 if (folio_test_idle(folio)) 695 folio_set_idle(newfolio); 696 697 /* 698 * Copy NUMA information to the new page, to prevent over-eager 699 * future migrations of this same page. 700 */ 701 cpupid = folio_xchg_last_cpupid(folio, -1); 702 /* 703 * For memory tiering mode, when migrate between slow and fast 704 * memory node, reset cpupid, because that is used to record 705 * page access time in slow memory node. 706 */ 707 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) { 708 bool f_toptier = node_is_toptier(folio_nid(folio)); 709 bool t_toptier = node_is_toptier(folio_nid(newfolio)); 710 711 if (f_toptier != t_toptier) 712 cpupid = -1; 713 } 714 folio_xchg_last_cpupid(newfolio, cpupid); 715 716 folio_migrate_ksm(newfolio, folio); 717 /* 718 * Please do not reorder this without considering how mm/ksm.c's 719 * ksm_get_folio() depends upon ksm_migrate_page() and the 720 * swapcache flag. 721 */ 722 if (folio_test_swapcache(folio)) 723 folio_clear_swapcache(folio); 724 folio_clear_private(folio); 725 726 /* page->private contains hugetlb specific flags */ 727 if (!folio_test_hugetlb(folio)) 728 folio->private = NULL; 729 730 /* 731 * If any waiters have accumulated on the new page then 732 * wake them up. 733 */ 734 if (folio_test_writeback(newfolio)) 735 folio_end_writeback(newfolio); 736 737 /* 738 * PG_readahead shares the same bit with PG_reclaim. The above 739 * end_page_writeback() may clear PG_readahead mistakenly, so set the 740 * bit after that. 741 */ 742 if (folio_test_readahead(folio)) 743 folio_set_readahead(newfolio); 744 745 folio_copy_owner(newfolio, folio); 746 pgalloc_tag_copy(newfolio, folio); 747 748 mem_cgroup_migrate(folio, newfolio); 749 } 750 EXPORT_SYMBOL(folio_migrate_flags); 751 752 /************************************************************ 753 * Migration functions 754 ***********************************************************/ 755 756 static int __migrate_folio(struct address_space *mapping, struct folio *dst, 757 struct folio *src, void *src_private, 758 enum migrate_mode mode) 759 { 760 int rc, expected_count = folio_expected_refs(mapping, src); 761 762 /* Check whether src does not have extra refs before we do more work */ 763 if (folio_ref_count(src) != expected_count) 764 return -EAGAIN; 765 766 rc = folio_mc_copy(dst, src); 767 if (unlikely(rc)) 768 return rc; 769 770 rc = __folio_migrate_mapping(mapping, dst, src, expected_count); 771 if (rc != MIGRATEPAGE_SUCCESS) 772 return rc; 773 774 if (src_private) 775 folio_attach_private(dst, folio_detach_private(src)); 776 777 folio_migrate_flags(dst, src); 778 return MIGRATEPAGE_SUCCESS; 779 } 780 781 /** 782 * migrate_folio() - Simple folio migration. 783 * @mapping: The address_space containing the folio. 784 * @dst: The folio to migrate the data to. 785 * @src: The folio containing the current data. 786 * @mode: How to migrate the page. 787 * 788 * Common logic to directly migrate a single LRU folio suitable for 789 * folios that do not use PagePrivate/PagePrivate2. 790 * 791 * Folios are locked upon entry and exit. 792 */ 793 int migrate_folio(struct address_space *mapping, struct folio *dst, 794 struct folio *src, enum migrate_mode mode) 795 { 796 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */ 797 return __migrate_folio(mapping, dst, src, NULL, mode); 798 } 799 EXPORT_SYMBOL(migrate_folio); 800 801 #ifdef CONFIG_BUFFER_HEAD 802 /* Returns true if all buffers are successfully locked */ 803 static bool buffer_migrate_lock_buffers(struct buffer_head *head, 804 enum migrate_mode mode) 805 { 806 struct buffer_head *bh = head; 807 struct buffer_head *failed_bh; 808 809 do { 810 if (!trylock_buffer(bh)) { 811 if (mode == MIGRATE_ASYNC) 812 goto unlock; 813 if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh)) 814 goto unlock; 815 lock_buffer(bh); 816 } 817 818 bh = bh->b_this_page; 819 } while (bh != head); 820 821 return true; 822 823 unlock: 824 /* We failed to lock the buffer and cannot stall. */ 825 failed_bh = bh; 826 bh = head; 827 while (bh != failed_bh) { 828 unlock_buffer(bh); 829 bh = bh->b_this_page; 830 } 831 832 return false; 833 } 834 835 static int __buffer_migrate_folio(struct address_space *mapping, 836 struct folio *dst, struct folio *src, enum migrate_mode mode, 837 bool check_refs) 838 { 839 struct buffer_head *bh, *head; 840 int rc; 841 int expected_count; 842 843 head = folio_buffers(src); 844 if (!head) 845 return migrate_folio(mapping, dst, src, mode); 846 847 /* Check whether page does not have extra refs before we do more work */ 848 expected_count = folio_expected_refs(mapping, src); 849 if (folio_ref_count(src) != expected_count) 850 return -EAGAIN; 851 852 if (!buffer_migrate_lock_buffers(head, mode)) 853 return -EAGAIN; 854 855 if (check_refs) { 856 bool busy; 857 bool invalidated = false; 858 859 recheck_buffers: 860 busy = false; 861 spin_lock(&mapping->i_private_lock); 862 bh = head; 863 do { 864 if (atomic_read(&bh->b_count)) { 865 busy = true; 866 break; 867 } 868 bh = bh->b_this_page; 869 } while (bh != head); 870 if (busy) { 871 if (invalidated) { 872 rc = -EAGAIN; 873 goto unlock_buffers; 874 } 875 spin_unlock(&mapping->i_private_lock); 876 invalidate_bh_lrus(); 877 invalidated = true; 878 goto recheck_buffers; 879 } 880 } 881 882 rc = filemap_migrate_folio(mapping, dst, src, mode); 883 if (rc != MIGRATEPAGE_SUCCESS) 884 goto unlock_buffers; 885 886 bh = head; 887 do { 888 folio_set_bh(bh, dst, bh_offset(bh)); 889 bh = bh->b_this_page; 890 } while (bh != head); 891 892 unlock_buffers: 893 if (check_refs) 894 spin_unlock(&mapping->i_private_lock); 895 bh = head; 896 do { 897 unlock_buffer(bh); 898 bh = bh->b_this_page; 899 } while (bh != head); 900 901 return rc; 902 } 903 904 /** 905 * buffer_migrate_folio() - Migration function for folios with buffers. 906 * @mapping: The address space containing @src. 907 * @dst: The folio to migrate to. 908 * @src: The folio to migrate from. 909 * @mode: How to migrate the folio. 910 * 911 * This function can only be used if the underlying filesystem guarantees 912 * that no other references to @src exist. For example attached buffer 913 * heads are accessed only under the folio lock. If your filesystem cannot 914 * provide this guarantee, buffer_migrate_folio_norefs() may be more 915 * appropriate. 916 * 917 * Return: 0 on success or a negative errno on failure. 918 */ 919 int buffer_migrate_folio(struct address_space *mapping, 920 struct folio *dst, struct folio *src, enum migrate_mode mode) 921 { 922 return __buffer_migrate_folio(mapping, dst, src, mode, false); 923 } 924 EXPORT_SYMBOL(buffer_migrate_folio); 925 926 /** 927 * buffer_migrate_folio_norefs() - Migration function for folios with buffers. 928 * @mapping: The address space containing @src. 929 * @dst: The folio to migrate to. 930 * @src: The folio to migrate from. 931 * @mode: How to migrate the folio. 932 * 933 * Like buffer_migrate_folio() except that this variant is more careful 934 * and checks that there are also no buffer head references. This function 935 * is the right one for mappings where buffer heads are directly looked 936 * up and referenced (such as block device mappings). 937 * 938 * Return: 0 on success or a negative errno on failure. 939 */ 940 int buffer_migrate_folio_norefs(struct address_space *mapping, 941 struct folio *dst, struct folio *src, enum migrate_mode mode) 942 { 943 return __buffer_migrate_folio(mapping, dst, src, mode, true); 944 } 945 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs); 946 #endif /* CONFIG_BUFFER_HEAD */ 947 948 int filemap_migrate_folio(struct address_space *mapping, 949 struct folio *dst, struct folio *src, enum migrate_mode mode) 950 { 951 return __migrate_folio(mapping, dst, src, folio_get_private(src), mode); 952 } 953 EXPORT_SYMBOL_GPL(filemap_migrate_folio); 954 955 /* 956 * Writeback a folio to clean the dirty state 957 */ 958 static int writeout(struct address_space *mapping, struct folio *folio) 959 { 960 struct writeback_control wbc = { 961 .sync_mode = WB_SYNC_NONE, 962 .nr_to_write = 1, 963 .range_start = 0, 964 .range_end = LLONG_MAX, 965 .for_reclaim = 1 966 }; 967 int rc; 968 969 if (!mapping->a_ops->writepage) 970 /* No write method for the address space */ 971 return -EINVAL; 972 973 if (!folio_clear_dirty_for_io(folio)) 974 /* Someone else already triggered a write */ 975 return -EAGAIN; 976 977 /* 978 * A dirty folio may imply that the underlying filesystem has 979 * the folio on some queue. So the folio must be clean for 980 * migration. Writeout may mean we lose the lock and the 981 * folio state is no longer what we checked for earlier. 982 * At this point we know that the migration attempt cannot 983 * be successful. 984 */ 985 remove_migration_ptes(folio, folio, 0); 986 987 rc = mapping->a_ops->writepage(&folio->page, &wbc); 988 989 if (rc != AOP_WRITEPAGE_ACTIVATE) 990 /* unlocked. Relock */ 991 folio_lock(folio); 992 993 return (rc < 0) ? -EIO : -EAGAIN; 994 } 995 996 /* 997 * Default handling if a filesystem does not provide a migration function. 998 */ 999 static int fallback_migrate_folio(struct address_space *mapping, 1000 struct folio *dst, struct folio *src, enum migrate_mode mode) 1001 { 1002 if (folio_test_dirty(src)) { 1003 /* Only writeback folios in full synchronous migration */ 1004 switch (mode) { 1005 case MIGRATE_SYNC: 1006 break; 1007 default: 1008 return -EBUSY; 1009 } 1010 return writeout(mapping, src); 1011 } 1012 1013 /* 1014 * Buffers may be managed in a filesystem specific way. 1015 * We must have no buffers or drop them. 1016 */ 1017 if (!filemap_release_folio(src, GFP_KERNEL)) 1018 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY; 1019 1020 return migrate_folio(mapping, dst, src, mode); 1021 } 1022 1023 /* 1024 * Move a page to a newly allocated page 1025 * The page is locked and all ptes have been successfully removed. 1026 * 1027 * The new page will have replaced the old page if this function 1028 * is successful. 1029 * 1030 * Return value: 1031 * < 0 - error code 1032 * MIGRATEPAGE_SUCCESS - success 1033 */ 1034 static int move_to_new_folio(struct folio *dst, struct folio *src, 1035 enum migrate_mode mode) 1036 { 1037 int rc = -EAGAIN; 1038 bool is_lru = !__folio_test_movable(src); 1039 1040 VM_BUG_ON_FOLIO(!folio_test_locked(src), src); 1041 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst); 1042 1043 if (likely(is_lru)) { 1044 struct address_space *mapping = folio_mapping(src); 1045 1046 if (!mapping) 1047 rc = migrate_folio(mapping, dst, src, mode); 1048 else if (mapping_inaccessible(mapping)) 1049 rc = -EOPNOTSUPP; 1050 else if (mapping->a_ops->migrate_folio) 1051 /* 1052 * Most folios have a mapping and most filesystems 1053 * provide a migrate_folio callback. Anonymous folios 1054 * are part of swap space which also has its own 1055 * migrate_folio callback. This is the most common path 1056 * for page migration. 1057 */ 1058 rc = mapping->a_ops->migrate_folio(mapping, dst, src, 1059 mode); 1060 else 1061 rc = fallback_migrate_folio(mapping, dst, src, mode); 1062 } else { 1063 const struct movable_operations *mops; 1064 1065 /* 1066 * In case of non-lru page, it could be released after 1067 * isolation step. In that case, we shouldn't try migration. 1068 */ 1069 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1070 if (!folio_test_movable(src)) { 1071 rc = MIGRATEPAGE_SUCCESS; 1072 folio_clear_isolated(src); 1073 goto out; 1074 } 1075 1076 mops = folio_movable_ops(src); 1077 rc = mops->migrate_page(&dst->page, &src->page, mode); 1078 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS && 1079 !folio_test_isolated(src)); 1080 } 1081 1082 /* 1083 * When successful, old pagecache src->mapping must be cleared before 1084 * src is freed; but stats require that PageAnon be left as PageAnon. 1085 */ 1086 if (rc == MIGRATEPAGE_SUCCESS) { 1087 if (__folio_test_movable(src)) { 1088 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src); 1089 1090 /* 1091 * We clear PG_movable under page_lock so any compactor 1092 * cannot try to migrate this page. 1093 */ 1094 folio_clear_isolated(src); 1095 } 1096 1097 /* 1098 * Anonymous and movable src->mapping will be cleared by 1099 * free_pages_prepare so don't reset it here for keeping 1100 * the type to work PageAnon, for example. 1101 */ 1102 if (!folio_mapping_flags(src)) 1103 src->mapping = NULL; 1104 1105 if (likely(!folio_is_zone_device(dst))) 1106 flush_dcache_folio(dst); 1107 } 1108 out: 1109 return rc; 1110 } 1111 1112 /* 1113 * To record some information during migration, we use unused private 1114 * field of struct folio of the newly allocated destination folio. 1115 * This is safe because nobody is using it except us. 1116 */ 1117 enum { 1118 PAGE_WAS_MAPPED = BIT(0), 1119 PAGE_WAS_MLOCKED = BIT(1), 1120 PAGE_OLD_STATES = PAGE_WAS_MAPPED | PAGE_WAS_MLOCKED, 1121 }; 1122 1123 static void __migrate_folio_record(struct folio *dst, 1124 int old_page_state, 1125 struct anon_vma *anon_vma) 1126 { 1127 dst->private = (void *)anon_vma + old_page_state; 1128 } 1129 1130 static void __migrate_folio_extract(struct folio *dst, 1131 int *old_page_state, 1132 struct anon_vma **anon_vmap) 1133 { 1134 unsigned long private = (unsigned long)dst->private; 1135 1136 *anon_vmap = (struct anon_vma *)(private & ~PAGE_OLD_STATES); 1137 *old_page_state = private & PAGE_OLD_STATES; 1138 dst->private = NULL; 1139 } 1140 1141 /* Restore the source folio to the original state upon failure */ 1142 static void migrate_folio_undo_src(struct folio *src, 1143 int page_was_mapped, 1144 struct anon_vma *anon_vma, 1145 bool locked, 1146 struct list_head *ret) 1147 { 1148 if (page_was_mapped) 1149 remove_migration_ptes(src, src, 0); 1150 /* Drop an anon_vma reference if we took one */ 1151 if (anon_vma) 1152 put_anon_vma(anon_vma); 1153 if (locked) 1154 folio_unlock(src); 1155 if (ret) 1156 list_move_tail(&src->lru, ret); 1157 } 1158 1159 /* Restore the destination folio to the original state upon failure */ 1160 static void migrate_folio_undo_dst(struct folio *dst, bool locked, 1161 free_folio_t put_new_folio, unsigned long private) 1162 { 1163 if (locked) 1164 folio_unlock(dst); 1165 if (put_new_folio) 1166 put_new_folio(dst, private); 1167 else 1168 folio_put(dst); 1169 } 1170 1171 /* Cleanup src folio upon migration success */ 1172 static void migrate_folio_done(struct folio *src, 1173 enum migrate_reason reason) 1174 { 1175 /* 1176 * Compaction can migrate also non-LRU pages which are 1177 * not accounted to NR_ISOLATED_*. They can be recognized 1178 * as __folio_test_movable 1179 */ 1180 if (likely(!__folio_test_movable(src))) 1181 mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON + 1182 folio_is_file_lru(src), -folio_nr_pages(src)); 1183 1184 if (reason != MR_MEMORY_FAILURE) 1185 /* We release the page in page_handle_poison. */ 1186 folio_put(src); 1187 } 1188 1189 /* Obtain the lock on page, remove all ptes. */ 1190 static int migrate_folio_unmap(new_folio_t get_new_folio, 1191 free_folio_t put_new_folio, unsigned long private, 1192 struct folio *src, struct folio **dstp, enum migrate_mode mode, 1193 enum migrate_reason reason, struct list_head *ret) 1194 { 1195 struct folio *dst; 1196 int rc = -EAGAIN; 1197 int old_page_state = 0; 1198 struct anon_vma *anon_vma = NULL; 1199 bool is_lru = data_race(!__folio_test_movable(src)); 1200 bool locked = false; 1201 bool dst_locked = false; 1202 1203 if (folio_ref_count(src) == 1) { 1204 /* Folio was freed from under us. So we are done. */ 1205 folio_clear_active(src); 1206 folio_clear_unevictable(src); 1207 /* free_pages_prepare() will clear PG_isolated. */ 1208 list_del(&src->lru); 1209 migrate_folio_done(src, reason); 1210 return MIGRATEPAGE_SUCCESS; 1211 } 1212 1213 dst = get_new_folio(src, private); 1214 if (!dst) 1215 return -ENOMEM; 1216 *dstp = dst; 1217 1218 dst->private = NULL; 1219 1220 if (!folio_trylock(src)) { 1221 if (mode == MIGRATE_ASYNC) 1222 goto out; 1223 1224 /* 1225 * It's not safe for direct compaction to call lock_page. 1226 * For example, during page readahead pages are added locked 1227 * to the LRU. Later, when the IO completes the pages are 1228 * marked uptodate and unlocked. However, the queueing 1229 * could be merging multiple pages for one bio (e.g. 1230 * mpage_readahead). If an allocation happens for the 1231 * second or third page, the process can end up locking 1232 * the same page twice and deadlocking. Rather than 1233 * trying to be clever about what pages can be locked, 1234 * avoid the use of lock_page for direct compaction 1235 * altogether. 1236 */ 1237 if (current->flags & PF_MEMALLOC) 1238 goto out; 1239 1240 /* 1241 * In "light" mode, we can wait for transient locks (eg 1242 * inserting a page into the page table), but it's not 1243 * worth waiting for I/O. 1244 */ 1245 if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src)) 1246 goto out; 1247 1248 folio_lock(src); 1249 } 1250 locked = true; 1251 if (folio_test_mlocked(src)) 1252 old_page_state |= PAGE_WAS_MLOCKED; 1253 1254 if (folio_test_writeback(src)) { 1255 /* 1256 * Only in the case of a full synchronous migration is it 1257 * necessary to wait for PageWriteback. In the async case, 1258 * the retry loop is too short and in the sync-light case, 1259 * the overhead of stalling is too much 1260 */ 1261 switch (mode) { 1262 case MIGRATE_SYNC: 1263 break; 1264 default: 1265 rc = -EBUSY; 1266 goto out; 1267 } 1268 folio_wait_writeback(src); 1269 } 1270 1271 /* 1272 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case, 1273 * we cannot notice that anon_vma is freed while we migrate a page. 1274 * This get_anon_vma() delays freeing anon_vma pointer until the end 1275 * of migration. File cache pages are no problem because of page_lock() 1276 * File Caches may use write_page() or lock_page() in migration, then, 1277 * just care Anon page here. 1278 * 1279 * Only folio_get_anon_vma() understands the subtleties of 1280 * getting a hold on an anon_vma from outside one of its mms. 1281 * But if we cannot get anon_vma, then we won't need it anyway, 1282 * because that implies that the anon page is no longer mapped 1283 * (and cannot be remapped so long as we hold the page lock). 1284 */ 1285 if (folio_test_anon(src) && !folio_test_ksm(src)) 1286 anon_vma = folio_get_anon_vma(src); 1287 1288 /* 1289 * Block others from accessing the new page when we get around to 1290 * establishing additional references. We are usually the only one 1291 * holding a reference to dst at this point. We used to have a BUG 1292 * here if folio_trylock(dst) fails, but would like to allow for 1293 * cases where there might be a race with the previous use of dst. 1294 * This is much like races on refcount of oldpage: just don't BUG(). 1295 */ 1296 if (unlikely(!folio_trylock(dst))) 1297 goto out; 1298 dst_locked = true; 1299 1300 if (unlikely(!is_lru)) { 1301 __migrate_folio_record(dst, old_page_state, anon_vma); 1302 return MIGRATEPAGE_UNMAP; 1303 } 1304 1305 /* 1306 * Corner case handling: 1307 * 1. When a new swap-cache page is read into, it is added to the LRU 1308 * and treated as swapcache but it has no rmap yet. 1309 * Calling try_to_unmap() against a src->mapping==NULL page will 1310 * trigger a BUG. So handle it here. 1311 * 2. An orphaned page (see truncate_cleanup_page) might have 1312 * fs-private metadata. The page can be picked up due to memory 1313 * offlining. Everywhere else except page reclaim, the page is 1314 * invisible to the vm, so the page can not be migrated. So try to 1315 * free the metadata, so the page can be freed. 1316 */ 1317 if (!src->mapping) { 1318 if (folio_test_private(src)) { 1319 try_to_free_buffers(src); 1320 goto out; 1321 } 1322 } else if (folio_mapped(src)) { 1323 /* Establish migration ptes */ 1324 VM_BUG_ON_FOLIO(folio_test_anon(src) && 1325 !folio_test_ksm(src) && !anon_vma, src); 1326 try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0); 1327 old_page_state |= PAGE_WAS_MAPPED; 1328 } 1329 1330 if (!folio_mapped(src)) { 1331 __migrate_folio_record(dst, old_page_state, anon_vma); 1332 return MIGRATEPAGE_UNMAP; 1333 } 1334 1335 out: 1336 /* 1337 * A folio that has not been unmapped will be restored to 1338 * right list unless we want to retry. 1339 */ 1340 if (rc == -EAGAIN) 1341 ret = NULL; 1342 1343 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1344 anon_vma, locked, ret); 1345 migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private); 1346 1347 return rc; 1348 } 1349 1350 /* Migrate the folio to the newly allocated folio in dst. */ 1351 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private, 1352 struct folio *src, struct folio *dst, 1353 enum migrate_mode mode, enum migrate_reason reason, 1354 struct list_head *ret) 1355 { 1356 int rc; 1357 int old_page_state = 0; 1358 struct anon_vma *anon_vma = NULL; 1359 bool is_lru = !__folio_test_movable(src); 1360 struct list_head *prev; 1361 1362 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1363 prev = dst->lru.prev; 1364 list_del(&dst->lru); 1365 1366 rc = move_to_new_folio(dst, src, mode); 1367 if (rc) 1368 goto out; 1369 1370 if (unlikely(!is_lru)) 1371 goto out_unlock_both; 1372 1373 /* 1374 * When successful, push dst to LRU immediately: so that if it 1375 * turns out to be an mlocked page, remove_migration_ptes() will 1376 * automatically build up the correct dst->mlock_count for it. 1377 * 1378 * We would like to do something similar for the old page, when 1379 * unsuccessful, and other cases when a page has been temporarily 1380 * isolated from the unevictable LRU: but this case is the easiest. 1381 */ 1382 folio_add_lru(dst); 1383 if (old_page_state & PAGE_WAS_MLOCKED) 1384 lru_add_drain(); 1385 1386 if (old_page_state & PAGE_WAS_MAPPED) 1387 remove_migration_ptes(src, dst, 0); 1388 1389 out_unlock_both: 1390 folio_unlock(dst); 1391 set_page_owner_migrate_reason(&dst->page, reason); 1392 /* 1393 * If migration is successful, decrease refcount of dst, 1394 * which will not free the page because new page owner increased 1395 * refcounter. 1396 */ 1397 folio_put(dst); 1398 1399 /* 1400 * A folio that has been migrated has all references removed 1401 * and will be freed. 1402 */ 1403 list_del(&src->lru); 1404 /* Drop an anon_vma reference if we took one */ 1405 if (anon_vma) 1406 put_anon_vma(anon_vma); 1407 folio_unlock(src); 1408 migrate_folio_done(src, reason); 1409 1410 return rc; 1411 out: 1412 /* 1413 * A folio that has not been migrated will be restored to 1414 * right list unless we want to retry. 1415 */ 1416 if (rc == -EAGAIN) { 1417 list_add(&dst->lru, prev); 1418 __migrate_folio_record(dst, old_page_state, anon_vma); 1419 return rc; 1420 } 1421 1422 migrate_folio_undo_src(src, old_page_state & PAGE_WAS_MAPPED, 1423 anon_vma, true, ret); 1424 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1425 1426 return rc; 1427 } 1428 1429 /* 1430 * Counterpart of unmap_and_move_page() for hugepage migration. 1431 * 1432 * This function doesn't wait the completion of hugepage I/O 1433 * because there is no race between I/O and migration for hugepage. 1434 * Note that currently hugepage I/O occurs only in direct I/O 1435 * where no lock is held and PG_writeback is irrelevant, 1436 * and writeback status of all subpages are counted in the reference 1437 * count of the head page (i.e. if all subpages of a 2MB hugepage are 1438 * under direct I/O, the reference of the head page is 512 and a bit more.) 1439 * This means that when we try to migrate hugepage whose subpages are 1440 * doing direct I/O, some references remain after try_to_unmap() and 1441 * hugepage migration fails without data corruption. 1442 * 1443 * There is also no race when direct I/O is issued on the page under migration, 1444 * because then pte is replaced with migration swap entry and direct I/O code 1445 * will wait in the page fault for migration to complete. 1446 */ 1447 static int unmap_and_move_huge_page(new_folio_t get_new_folio, 1448 free_folio_t put_new_folio, unsigned long private, 1449 struct folio *src, int force, enum migrate_mode mode, 1450 int reason, struct list_head *ret) 1451 { 1452 struct folio *dst; 1453 int rc = -EAGAIN; 1454 int page_was_mapped = 0; 1455 struct anon_vma *anon_vma = NULL; 1456 struct address_space *mapping = NULL; 1457 1458 if (folio_ref_count(src) == 1) { 1459 /* page was freed from under us. So we are done. */ 1460 folio_putback_active_hugetlb(src); 1461 return MIGRATEPAGE_SUCCESS; 1462 } 1463 1464 dst = get_new_folio(src, private); 1465 if (!dst) 1466 return -ENOMEM; 1467 1468 if (!folio_trylock(src)) { 1469 if (!force) 1470 goto out; 1471 switch (mode) { 1472 case MIGRATE_SYNC: 1473 break; 1474 default: 1475 goto out; 1476 } 1477 folio_lock(src); 1478 } 1479 1480 /* 1481 * Check for pages which are in the process of being freed. Without 1482 * folio_mapping() set, hugetlbfs specific move page routine will not 1483 * be called and we could leak usage counts for subpools. 1484 */ 1485 if (hugetlb_folio_subpool(src) && !folio_mapping(src)) { 1486 rc = -EBUSY; 1487 goto out_unlock; 1488 } 1489 1490 if (folio_test_anon(src)) 1491 anon_vma = folio_get_anon_vma(src); 1492 1493 if (unlikely(!folio_trylock(dst))) 1494 goto put_anon; 1495 1496 if (folio_mapped(src)) { 1497 enum ttu_flags ttu = 0; 1498 1499 if (!folio_test_anon(src)) { 1500 /* 1501 * In shared mappings, try_to_unmap could potentially 1502 * call huge_pmd_unshare. Because of this, take 1503 * semaphore in write mode here and set TTU_RMAP_LOCKED 1504 * to let lower levels know we have taken the lock. 1505 */ 1506 mapping = hugetlb_folio_mapping_lock_write(src); 1507 if (unlikely(!mapping)) 1508 goto unlock_put_anon; 1509 1510 ttu = TTU_RMAP_LOCKED; 1511 } 1512 1513 try_to_migrate(src, ttu); 1514 page_was_mapped = 1; 1515 1516 if (ttu & TTU_RMAP_LOCKED) 1517 i_mmap_unlock_write(mapping); 1518 } 1519 1520 if (!folio_mapped(src)) 1521 rc = move_to_new_folio(dst, src, mode); 1522 1523 if (page_was_mapped) 1524 remove_migration_ptes(src, 1525 rc == MIGRATEPAGE_SUCCESS ? dst : src, 0); 1526 1527 unlock_put_anon: 1528 folio_unlock(dst); 1529 1530 put_anon: 1531 if (anon_vma) 1532 put_anon_vma(anon_vma); 1533 1534 if (rc == MIGRATEPAGE_SUCCESS) { 1535 move_hugetlb_state(src, dst, reason); 1536 put_new_folio = NULL; 1537 } 1538 1539 out_unlock: 1540 folio_unlock(src); 1541 out: 1542 if (rc == MIGRATEPAGE_SUCCESS) 1543 folio_putback_active_hugetlb(src); 1544 else if (rc != -EAGAIN) 1545 list_move_tail(&src->lru, ret); 1546 1547 /* 1548 * If migration was not successful and there's a freeing callback, use 1549 * it. Otherwise, put_page() will drop the reference grabbed during 1550 * isolation. 1551 */ 1552 if (put_new_folio) 1553 put_new_folio(dst, private); 1554 else 1555 folio_putback_active_hugetlb(dst); 1556 1557 return rc; 1558 } 1559 1560 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios, 1561 enum migrate_mode mode) 1562 { 1563 int rc; 1564 1565 if (mode == MIGRATE_ASYNC) { 1566 if (!folio_trylock(folio)) 1567 return -EAGAIN; 1568 } else { 1569 folio_lock(folio); 1570 } 1571 rc = split_folio_to_list(folio, split_folios); 1572 folio_unlock(folio); 1573 if (!rc) 1574 list_move_tail(&folio->lru, split_folios); 1575 1576 return rc; 1577 } 1578 1579 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1580 #define NR_MAX_BATCHED_MIGRATION HPAGE_PMD_NR 1581 #else 1582 #define NR_MAX_BATCHED_MIGRATION 512 1583 #endif 1584 #define NR_MAX_MIGRATE_PAGES_RETRY 10 1585 #define NR_MAX_MIGRATE_ASYNC_RETRY 3 1586 #define NR_MAX_MIGRATE_SYNC_RETRY \ 1587 (NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY) 1588 1589 struct migrate_pages_stats { 1590 int nr_succeeded; /* Normal and large folios migrated successfully, in 1591 units of base pages */ 1592 int nr_failed_pages; /* Normal and large folios failed to be migrated, in 1593 units of base pages. Untried folios aren't counted */ 1594 int nr_thp_succeeded; /* THP migrated successfully */ 1595 int nr_thp_failed; /* THP failed to be migrated */ 1596 int nr_thp_split; /* THP split before migrating */ 1597 int nr_split; /* Large folio (include THP) split before migrating */ 1598 }; 1599 1600 /* 1601 * Returns the number of hugetlb folios that were not migrated, or an error code 1602 * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable 1603 * any more because the list has become empty or no retryable hugetlb folios 1604 * exist any more. It is caller's responsibility to call putback_movable_pages() 1605 * only if ret != 0. 1606 */ 1607 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio, 1608 free_folio_t put_new_folio, unsigned long private, 1609 enum migrate_mode mode, int reason, 1610 struct migrate_pages_stats *stats, 1611 struct list_head *ret_folios) 1612 { 1613 int retry = 1; 1614 int nr_failed = 0; 1615 int nr_retry_pages = 0; 1616 int pass = 0; 1617 struct folio *folio, *folio2; 1618 int rc, nr_pages; 1619 1620 for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) { 1621 retry = 0; 1622 nr_retry_pages = 0; 1623 1624 list_for_each_entry_safe(folio, folio2, from, lru) { 1625 if (!folio_test_hugetlb(folio)) 1626 continue; 1627 1628 nr_pages = folio_nr_pages(folio); 1629 1630 cond_resched(); 1631 1632 /* 1633 * Migratability of hugepages depends on architectures and 1634 * their size. This check is necessary because some callers 1635 * of hugepage migration like soft offline and memory 1636 * hotremove don't walk through page tables or check whether 1637 * the hugepage is pmd-based or not before kicking migration. 1638 */ 1639 if (!hugepage_migration_supported(folio_hstate(folio))) { 1640 nr_failed++; 1641 stats->nr_failed_pages += nr_pages; 1642 list_move_tail(&folio->lru, ret_folios); 1643 continue; 1644 } 1645 1646 rc = unmap_and_move_huge_page(get_new_folio, 1647 put_new_folio, private, 1648 folio, pass > 2, mode, 1649 reason, ret_folios); 1650 /* 1651 * The rules are: 1652 * Success: hugetlb folio will be put back 1653 * -EAGAIN: stay on the from list 1654 * -ENOMEM: stay on the from list 1655 * Other errno: put on ret_folios list 1656 */ 1657 switch(rc) { 1658 case -ENOMEM: 1659 /* 1660 * When memory is low, don't bother to try to migrate 1661 * other folios, just exit. 1662 */ 1663 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1664 return -ENOMEM; 1665 case -EAGAIN: 1666 retry++; 1667 nr_retry_pages += nr_pages; 1668 break; 1669 case MIGRATEPAGE_SUCCESS: 1670 stats->nr_succeeded += nr_pages; 1671 break; 1672 default: 1673 /* 1674 * Permanent failure (-EBUSY, etc.): 1675 * unlike -EAGAIN case, the failed folio is 1676 * removed from migration folio list and not 1677 * retried in the next outer loop. 1678 */ 1679 nr_failed++; 1680 stats->nr_failed_pages += nr_pages; 1681 break; 1682 } 1683 } 1684 } 1685 /* 1686 * nr_failed is number of hugetlb folios failed to be migrated. After 1687 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb 1688 * folios as failed. 1689 */ 1690 nr_failed += retry; 1691 stats->nr_failed_pages += nr_retry_pages; 1692 1693 return nr_failed; 1694 } 1695 1696 /* 1697 * migrate_pages_batch() first unmaps folios in the from list as many as 1698 * possible, then move the unmapped folios. 1699 * 1700 * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a 1701 * lock or bit when we have locked more than one folio. Which may cause 1702 * deadlock (e.g., for loop device). So, if mode != MIGRATE_ASYNC, the 1703 * length of the from list must be <= 1. 1704 */ 1705 static int migrate_pages_batch(struct list_head *from, 1706 new_folio_t get_new_folio, free_folio_t put_new_folio, 1707 unsigned long private, enum migrate_mode mode, int reason, 1708 struct list_head *ret_folios, struct list_head *split_folios, 1709 struct migrate_pages_stats *stats, int nr_pass) 1710 { 1711 int retry = 1; 1712 int thp_retry = 1; 1713 int nr_failed = 0; 1714 int nr_retry_pages = 0; 1715 int pass = 0; 1716 bool is_thp = false; 1717 bool is_large = false; 1718 struct folio *folio, *folio2, *dst = NULL, *dst2; 1719 int rc, rc_saved = 0, nr_pages; 1720 LIST_HEAD(unmap_folios); 1721 LIST_HEAD(dst_folios); 1722 bool nosplit = (reason == MR_NUMA_MISPLACED); 1723 1724 VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC && 1725 !list_empty(from) && !list_is_singular(from)); 1726 1727 for (pass = 0; pass < nr_pass && retry; pass++) { 1728 retry = 0; 1729 thp_retry = 0; 1730 nr_retry_pages = 0; 1731 1732 list_for_each_entry_safe(folio, folio2, from, lru) { 1733 is_large = folio_test_large(folio); 1734 is_thp = is_large && folio_test_pmd_mappable(folio); 1735 nr_pages = folio_nr_pages(folio); 1736 1737 cond_resched(); 1738 1739 /* 1740 * The rare folio on the deferred split list should 1741 * be split now. It should not count as a failure: 1742 * but increment nr_failed because, without doing so, 1743 * migrate_pages() may report success with (split but 1744 * unmigrated) pages still on its fromlist; whereas it 1745 * always reports success when its fromlist is empty. 1746 * stats->nr_thp_failed should be increased too, 1747 * otherwise stats inconsistency will happen when 1748 * migrate_pages_batch is called via migrate_pages() 1749 * with MIGRATE_SYNC and MIGRATE_ASYNC. 1750 * 1751 * Only check it without removing it from the list. 1752 * Since the folio can be on deferred_split_scan() 1753 * local list and removing it can cause the local list 1754 * corruption. Folio split process below can handle it 1755 * with the help of folio_ref_freeze(). 1756 * 1757 * nr_pages > 2 is needed to avoid checking order-1 1758 * page cache folios. They exist, in contrast to 1759 * non-existent order-1 anonymous folios, and do not 1760 * use _deferred_list. 1761 */ 1762 if (nr_pages > 2 && 1763 !list_empty(&folio->_deferred_list) && 1764 folio_test_partially_mapped(folio)) { 1765 if (!try_split_folio(folio, split_folios, mode)) { 1766 nr_failed++; 1767 stats->nr_thp_failed += is_thp; 1768 stats->nr_thp_split += is_thp; 1769 stats->nr_split++; 1770 continue; 1771 } 1772 } 1773 1774 /* 1775 * Large folio migration might be unsupported or 1776 * the allocation might be failed so we should retry 1777 * on the same folio with the large folio split 1778 * to normal folios. 1779 * 1780 * Split folios are put in split_folios, and 1781 * we will migrate them after the rest of the 1782 * list is processed. 1783 */ 1784 if (!thp_migration_supported() && is_thp) { 1785 nr_failed++; 1786 stats->nr_thp_failed++; 1787 if (!try_split_folio(folio, split_folios, mode)) { 1788 stats->nr_thp_split++; 1789 stats->nr_split++; 1790 continue; 1791 } 1792 stats->nr_failed_pages += nr_pages; 1793 list_move_tail(&folio->lru, ret_folios); 1794 continue; 1795 } 1796 1797 rc = migrate_folio_unmap(get_new_folio, put_new_folio, 1798 private, folio, &dst, mode, reason, 1799 ret_folios); 1800 /* 1801 * The rules are: 1802 * Success: folio will be freed 1803 * Unmap: folio will be put on unmap_folios list, 1804 * dst folio put on dst_folios list 1805 * -EAGAIN: stay on the from list 1806 * -ENOMEM: stay on the from list 1807 * Other errno: put on ret_folios list 1808 */ 1809 switch(rc) { 1810 case -ENOMEM: 1811 /* 1812 * When memory is low, don't bother to try to migrate 1813 * other folios, move unmapped folios, then exit. 1814 */ 1815 nr_failed++; 1816 stats->nr_thp_failed += is_thp; 1817 /* Large folio NUMA faulting doesn't split to retry. */ 1818 if (is_large && !nosplit) { 1819 int ret = try_split_folio(folio, split_folios, mode); 1820 1821 if (!ret) { 1822 stats->nr_thp_split += is_thp; 1823 stats->nr_split++; 1824 break; 1825 } else if (reason == MR_LONGTERM_PIN && 1826 ret == -EAGAIN) { 1827 /* 1828 * Try again to split large folio to 1829 * mitigate the failure of longterm pinning. 1830 */ 1831 retry++; 1832 thp_retry += is_thp; 1833 nr_retry_pages += nr_pages; 1834 /* Undo duplicated failure counting. */ 1835 nr_failed--; 1836 stats->nr_thp_failed -= is_thp; 1837 break; 1838 } 1839 } 1840 1841 stats->nr_failed_pages += nr_pages + nr_retry_pages; 1842 /* nr_failed isn't updated for not used */ 1843 stats->nr_thp_failed += thp_retry; 1844 rc_saved = rc; 1845 if (list_empty(&unmap_folios)) 1846 goto out; 1847 else 1848 goto move; 1849 case -EAGAIN: 1850 retry++; 1851 thp_retry += is_thp; 1852 nr_retry_pages += nr_pages; 1853 break; 1854 case MIGRATEPAGE_SUCCESS: 1855 stats->nr_succeeded += nr_pages; 1856 stats->nr_thp_succeeded += is_thp; 1857 break; 1858 case MIGRATEPAGE_UNMAP: 1859 list_move_tail(&folio->lru, &unmap_folios); 1860 list_add_tail(&dst->lru, &dst_folios); 1861 break; 1862 default: 1863 /* 1864 * Permanent failure (-EBUSY, etc.): 1865 * unlike -EAGAIN case, the failed folio is 1866 * removed from migration folio list and not 1867 * retried in the next outer loop. 1868 */ 1869 nr_failed++; 1870 stats->nr_thp_failed += is_thp; 1871 stats->nr_failed_pages += nr_pages; 1872 break; 1873 } 1874 } 1875 } 1876 nr_failed += retry; 1877 stats->nr_thp_failed += thp_retry; 1878 stats->nr_failed_pages += nr_retry_pages; 1879 move: 1880 /* Flush TLBs for all unmapped folios */ 1881 try_to_unmap_flush(); 1882 1883 retry = 1; 1884 for (pass = 0; pass < nr_pass && retry; pass++) { 1885 retry = 0; 1886 thp_retry = 0; 1887 nr_retry_pages = 0; 1888 1889 dst = list_first_entry(&dst_folios, struct folio, lru); 1890 dst2 = list_next_entry(dst, lru); 1891 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1892 is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio); 1893 nr_pages = folio_nr_pages(folio); 1894 1895 cond_resched(); 1896 1897 rc = migrate_folio_move(put_new_folio, private, 1898 folio, dst, mode, 1899 reason, ret_folios); 1900 /* 1901 * The rules are: 1902 * Success: folio will be freed 1903 * -EAGAIN: stay on the unmap_folios list 1904 * Other errno: put on ret_folios list 1905 */ 1906 switch(rc) { 1907 case -EAGAIN: 1908 retry++; 1909 thp_retry += is_thp; 1910 nr_retry_pages += nr_pages; 1911 break; 1912 case MIGRATEPAGE_SUCCESS: 1913 stats->nr_succeeded += nr_pages; 1914 stats->nr_thp_succeeded += is_thp; 1915 break; 1916 default: 1917 nr_failed++; 1918 stats->nr_thp_failed += is_thp; 1919 stats->nr_failed_pages += nr_pages; 1920 break; 1921 } 1922 dst = dst2; 1923 dst2 = list_next_entry(dst, lru); 1924 } 1925 } 1926 nr_failed += retry; 1927 stats->nr_thp_failed += thp_retry; 1928 stats->nr_failed_pages += nr_retry_pages; 1929 1930 rc = rc_saved ? : nr_failed; 1931 out: 1932 /* Cleanup remaining folios */ 1933 dst = list_first_entry(&dst_folios, struct folio, lru); 1934 dst2 = list_next_entry(dst, lru); 1935 list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) { 1936 int old_page_state = 0; 1937 struct anon_vma *anon_vma = NULL; 1938 1939 __migrate_folio_extract(dst, &old_page_state, &anon_vma); 1940 migrate_folio_undo_src(folio, old_page_state & PAGE_WAS_MAPPED, 1941 anon_vma, true, ret_folios); 1942 list_del(&dst->lru); 1943 migrate_folio_undo_dst(dst, true, put_new_folio, private); 1944 dst = dst2; 1945 dst2 = list_next_entry(dst, lru); 1946 } 1947 1948 return rc; 1949 } 1950 1951 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio, 1952 free_folio_t put_new_folio, unsigned long private, 1953 enum migrate_mode mode, int reason, 1954 struct list_head *ret_folios, struct list_head *split_folios, 1955 struct migrate_pages_stats *stats) 1956 { 1957 int rc, nr_failed = 0; 1958 LIST_HEAD(folios); 1959 struct migrate_pages_stats astats; 1960 1961 memset(&astats, 0, sizeof(astats)); 1962 /* Try to migrate in batch with MIGRATE_ASYNC mode firstly */ 1963 rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC, 1964 reason, &folios, split_folios, &astats, 1965 NR_MAX_MIGRATE_ASYNC_RETRY); 1966 stats->nr_succeeded += astats.nr_succeeded; 1967 stats->nr_thp_succeeded += astats.nr_thp_succeeded; 1968 stats->nr_thp_split += astats.nr_thp_split; 1969 stats->nr_split += astats.nr_split; 1970 if (rc < 0) { 1971 stats->nr_failed_pages += astats.nr_failed_pages; 1972 stats->nr_thp_failed += astats.nr_thp_failed; 1973 list_splice_tail(&folios, ret_folios); 1974 return rc; 1975 } 1976 stats->nr_thp_failed += astats.nr_thp_split; 1977 /* 1978 * Do not count rc, as pages will be retried below. 1979 * Count nr_split only, since it includes nr_thp_split. 1980 */ 1981 nr_failed += astats.nr_split; 1982 /* 1983 * Fall back to migrate all failed folios one by one synchronously. All 1984 * failed folios except split THPs will be retried, so their failure 1985 * isn't counted 1986 */ 1987 list_splice_tail_init(&folios, from); 1988 while (!list_empty(from)) { 1989 list_move(from->next, &folios); 1990 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 1991 private, mode, reason, ret_folios, 1992 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY); 1993 list_splice_tail_init(&folios, ret_folios); 1994 if (rc < 0) 1995 return rc; 1996 nr_failed += rc; 1997 } 1998 1999 return nr_failed; 2000 } 2001 2002 /* 2003 * migrate_pages - migrate the folios specified in a list, to the free folios 2004 * supplied as the target for the page migration 2005 * 2006 * @from: The list of folios to be migrated. 2007 * @get_new_folio: The function used to allocate free folios to be used 2008 * as the target of the folio migration. 2009 * @put_new_folio: The function used to free target folios if migration 2010 * fails, or NULL if no special handling is necessary. 2011 * @private: Private data to be passed on to get_new_folio() 2012 * @mode: The migration mode that specifies the constraints for 2013 * folio migration, if any. 2014 * @reason: The reason for folio migration. 2015 * @ret_succeeded: Set to the number of folios migrated successfully if 2016 * the caller passes a non-NULL pointer. 2017 * 2018 * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios 2019 * are movable any more because the list has become empty or no retryable folios 2020 * exist any more. It is caller's responsibility to call putback_movable_pages() 2021 * only if ret != 0. 2022 * 2023 * Returns the number of {normal folio, large folio, hugetlb} that were not 2024 * migrated, or an error code. The number of large folio splits will be 2025 * considered as the number of non-migrated large folio, no matter how many 2026 * split folios of the large folio are migrated successfully. 2027 */ 2028 int migrate_pages(struct list_head *from, new_folio_t get_new_folio, 2029 free_folio_t put_new_folio, unsigned long private, 2030 enum migrate_mode mode, int reason, unsigned int *ret_succeeded) 2031 { 2032 int rc, rc_gather; 2033 int nr_pages; 2034 struct folio *folio, *folio2; 2035 LIST_HEAD(folios); 2036 LIST_HEAD(ret_folios); 2037 LIST_HEAD(split_folios); 2038 struct migrate_pages_stats stats; 2039 2040 trace_mm_migrate_pages_start(mode, reason); 2041 2042 memset(&stats, 0, sizeof(stats)); 2043 2044 rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private, 2045 mode, reason, &stats, &ret_folios); 2046 if (rc_gather < 0) 2047 goto out; 2048 2049 again: 2050 nr_pages = 0; 2051 list_for_each_entry_safe(folio, folio2, from, lru) { 2052 /* Retried hugetlb folios will be kept in list */ 2053 if (folio_test_hugetlb(folio)) { 2054 list_move_tail(&folio->lru, &ret_folios); 2055 continue; 2056 } 2057 2058 nr_pages += folio_nr_pages(folio); 2059 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2060 break; 2061 } 2062 if (nr_pages >= NR_MAX_BATCHED_MIGRATION) 2063 list_cut_before(&folios, from, &folio2->lru); 2064 else 2065 list_splice_init(from, &folios); 2066 if (mode == MIGRATE_ASYNC) 2067 rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio, 2068 private, mode, reason, &ret_folios, 2069 &split_folios, &stats, 2070 NR_MAX_MIGRATE_PAGES_RETRY); 2071 else 2072 rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio, 2073 private, mode, reason, &ret_folios, 2074 &split_folios, &stats); 2075 list_splice_tail_init(&folios, &ret_folios); 2076 if (rc < 0) { 2077 rc_gather = rc; 2078 list_splice_tail(&split_folios, &ret_folios); 2079 goto out; 2080 } 2081 if (!list_empty(&split_folios)) { 2082 /* 2083 * Failure isn't counted since all split folios of a large folio 2084 * is counted as 1 failure already. And, we only try to migrate 2085 * with minimal effort, force MIGRATE_ASYNC mode and retry once. 2086 */ 2087 migrate_pages_batch(&split_folios, get_new_folio, 2088 put_new_folio, private, MIGRATE_ASYNC, reason, 2089 &ret_folios, NULL, &stats, 1); 2090 list_splice_tail_init(&split_folios, &ret_folios); 2091 } 2092 rc_gather += rc; 2093 if (!list_empty(from)) 2094 goto again; 2095 out: 2096 /* 2097 * Put the permanent failure folio back to migration list, they 2098 * will be put back to the right list by the caller. 2099 */ 2100 list_splice(&ret_folios, from); 2101 2102 /* 2103 * Return 0 in case all split folios of fail-to-migrate large folios 2104 * are migrated successfully. 2105 */ 2106 if (list_empty(from)) 2107 rc_gather = 0; 2108 2109 count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded); 2110 count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages); 2111 count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded); 2112 count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed); 2113 count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split); 2114 trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages, 2115 stats.nr_thp_succeeded, stats.nr_thp_failed, 2116 stats.nr_thp_split, stats.nr_split, mode, 2117 reason); 2118 2119 if (ret_succeeded) 2120 *ret_succeeded = stats.nr_succeeded; 2121 2122 return rc_gather; 2123 } 2124 2125 struct folio *alloc_migration_target(struct folio *src, unsigned long private) 2126 { 2127 struct migration_target_control *mtc; 2128 gfp_t gfp_mask; 2129 unsigned int order = 0; 2130 int nid; 2131 int zidx; 2132 2133 mtc = (struct migration_target_control *)private; 2134 gfp_mask = mtc->gfp_mask; 2135 nid = mtc->nid; 2136 if (nid == NUMA_NO_NODE) 2137 nid = folio_nid(src); 2138 2139 if (folio_test_hugetlb(src)) { 2140 struct hstate *h = folio_hstate(src); 2141 2142 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask); 2143 return alloc_hugetlb_folio_nodemask(h, nid, 2144 mtc->nmask, gfp_mask, 2145 htlb_allow_alloc_fallback(mtc->reason)); 2146 } 2147 2148 if (folio_test_large(src)) { 2149 /* 2150 * clear __GFP_RECLAIM to make the migration callback 2151 * consistent with regular THP allocations. 2152 */ 2153 gfp_mask &= ~__GFP_RECLAIM; 2154 gfp_mask |= GFP_TRANSHUGE; 2155 order = folio_order(src); 2156 } 2157 zidx = zone_idx(folio_zone(src)); 2158 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE) 2159 gfp_mask |= __GFP_HIGHMEM; 2160 2161 return __folio_alloc(gfp_mask, order, nid, mtc->nmask); 2162 } 2163 2164 #ifdef CONFIG_NUMA 2165 2166 static int store_status(int __user *status, int start, int value, int nr) 2167 { 2168 while (nr-- > 0) { 2169 if (put_user(value, status + start)) 2170 return -EFAULT; 2171 start++; 2172 } 2173 2174 return 0; 2175 } 2176 2177 static int do_move_pages_to_node(struct list_head *pagelist, int node) 2178 { 2179 int err; 2180 struct migration_target_control mtc = { 2181 .nid = node, 2182 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 2183 .reason = MR_SYSCALL, 2184 }; 2185 2186 err = migrate_pages(pagelist, alloc_migration_target, NULL, 2187 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); 2188 if (err) 2189 putback_movable_pages(pagelist); 2190 return err; 2191 } 2192 2193 static int __add_folio_for_migration(struct folio *folio, int node, 2194 struct list_head *pagelist, bool migrate_all) 2195 { 2196 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2197 return -EFAULT; 2198 2199 if (folio_is_zone_device(folio)) 2200 return -ENOENT; 2201 2202 if (folio_nid(folio) == node) 2203 return 0; 2204 2205 if (folio_likely_mapped_shared(folio) && !migrate_all) 2206 return -EACCES; 2207 2208 if (folio_test_hugetlb(folio)) { 2209 if (isolate_hugetlb(folio, pagelist)) 2210 return 1; 2211 } else if (folio_isolate_lru(folio)) { 2212 list_add_tail(&folio->lru, pagelist); 2213 node_stat_mod_folio(folio, 2214 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2215 folio_nr_pages(folio)); 2216 return 1; 2217 } 2218 return -EBUSY; 2219 } 2220 2221 /* 2222 * Resolves the given address to a struct folio, isolates it from the LRU and 2223 * puts it to the given pagelist. 2224 * Returns: 2225 * errno - if the folio cannot be found/isolated 2226 * 0 - when it doesn't have to be migrated because it is already on the 2227 * target node 2228 * 1 - when it has been queued 2229 */ 2230 static int add_folio_for_migration(struct mm_struct *mm, const void __user *p, 2231 int node, struct list_head *pagelist, bool migrate_all) 2232 { 2233 struct vm_area_struct *vma; 2234 struct folio_walk fw; 2235 struct folio *folio; 2236 unsigned long addr; 2237 int err = -EFAULT; 2238 2239 mmap_read_lock(mm); 2240 addr = (unsigned long)untagged_addr_remote(mm, p); 2241 2242 vma = vma_lookup(mm, addr); 2243 if (vma && vma_migratable(vma)) { 2244 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2245 if (folio) { 2246 err = __add_folio_for_migration(folio, node, pagelist, 2247 migrate_all); 2248 folio_walk_end(&fw, vma); 2249 } else { 2250 err = -ENOENT; 2251 } 2252 } 2253 mmap_read_unlock(mm); 2254 return err; 2255 } 2256 2257 static int move_pages_and_store_status(int node, 2258 struct list_head *pagelist, int __user *status, 2259 int start, int i, unsigned long nr_pages) 2260 { 2261 int err; 2262 2263 if (list_empty(pagelist)) 2264 return 0; 2265 2266 err = do_move_pages_to_node(pagelist, node); 2267 if (err) { 2268 /* 2269 * Positive err means the number of failed 2270 * pages to migrate. Since we are going to 2271 * abort and return the number of non-migrated 2272 * pages, so need to include the rest of the 2273 * nr_pages that have not been attempted as 2274 * well. 2275 */ 2276 if (err > 0) 2277 err += nr_pages - i; 2278 return err; 2279 } 2280 return store_status(status, start, node, i - start); 2281 } 2282 2283 /* 2284 * Migrate an array of page address onto an array of nodes and fill 2285 * the corresponding array of status. 2286 */ 2287 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, 2288 unsigned long nr_pages, 2289 const void __user * __user *pages, 2290 const int __user *nodes, 2291 int __user *status, int flags) 2292 { 2293 compat_uptr_t __user *compat_pages = (void __user *)pages; 2294 int current_node = NUMA_NO_NODE; 2295 LIST_HEAD(pagelist); 2296 int start, i; 2297 int err = 0, err1; 2298 2299 lru_cache_disable(); 2300 2301 for (i = start = 0; i < nr_pages; i++) { 2302 const void __user *p; 2303 int node; 2304 2305 err = -EFAULT; 2306 if (in_compat_syscall()) { 2307 compat_uptr_t cp; 2308 2309 if (get_user(cp, compat_pages + i)) 2310 goto out_flush; 2311 2312 p = compat_ptr(cp); 2313 } else { 2314 if (get_user(p, pages + i)) 2315 goto out_flush; 2316 } 2317 if (get_user(node, nodes + i)) 2318 goto out_flush; 2319 2320 err = -ENODEV; 2321 if (node < 0 || node >= MAX_NUMNODES) 2322 goto out_flush; 2323 if (!node_state(node, N_MEMORY)) 2324 goto out_flush; 2325 2326 err = -EACCES; 2327 if (!node_isset(node, task_nodes)) 2328 goto out_flush; 2329 2330 if (current_node == NUMA_NO_NODE) { 2331 current_node = node; 2332 start = i; 2333 } else if (node != current_node) { 2334 err = move_pages_and_store_status(current_node, 2335 &pagelist, status, start, i, nr_pages); 2336 if (err) 2337 goto out; 2338 start = i; 2339 current_node = node; 2340 } 2341 2342 /* 2343 * Errors in the page lookup or isolation are not fatal and we simply 2344 * report them via status 2345 */ 2346 err = add_folio_for_migration(mm, p, current_node, &pagelist, 2347 flags & MPOL_MF_MOVE_ALL); 2348 2349 if (err > 0) { 2350 /* The page is successfully queued for migration */ 2351 continue; 2352 } 2353 2354 /* 2355 * The move_pages() man page does not have an -EEXIST choice, so 2356 * use -EFAULT instead. 2357 */ 2358 if (err == -EEXIST) 2359 err = -EFAULT; 2360 2361 /* 2362 * If the page is already on the target node (!err), store the 2363 * node, otherwise, store the err. 2364 */ 2365 err = store_status(status, i, err ? : current_node, 1); 2366 if (err) 2367 goto out_flush; 2368 2369 err = move_pages_and_store_status(current_node, &pagelist, 2370 status, start, i, nr_pages); 2371 if (err) { 2372 /* We have accounted for page i */ 2373 if (err > 0) 2374 err--; 2375 goto out; 2376 } 2377 current_node = NUMA_NO_NODE; 2378 } 2379 out_flush: 2380 /* Make sure we do not overwrite the existing error */ 2381 err1 = move_pages_and_store_status(current_node, &pagelist, 2382 status, start, i, nr_pages); 2383 if (err >= 0) 2384 err = err1; 2385 out: 2386 lru_cache_enable(); 2387 return err; 2388 } 2389 2390 /* 2391 * Determine the nodes of an array of pages and store it in an array of status. 2392 */ 2393 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, 2394 const void __user **pages, int *status) 2395 { 2396 unsigned long i; 2397 2398 mmap_read_lock(mm); 2399 2400 for (i = 0; i < nr_pages; i++) { 2401 unsigned long addr = (unsigned long)(*pages); 2402 struct vm_area_struct *vma; 2403 struct folio_walk fw; 2404 struct folio *folio; 2405 int err = -EFAULT; 2406 2407 vma = vma_lookup(mm, addr); 2408 if (!vma) 2409 goto set_status; 2410 2411 folio = folio_walk_start(&fw, vma, addr, FW_ZEROPAGE); 2412 if (folio) { 2413 if (is_zero_folio(folio) || is_huge_zero_folio(folio)) 2414 err = -EFAULT; 2415 else if (folio_is_zone_device(folio)) 2416 err = -ENOENT; 2417 else 2418 err = folio_nid(folio); 2419 folio_walk_end(&fw, vma); 2420 } else { 2421 err = -ENOENT; 2422 } 2423 set_status: 2424 *status = err; 2425 2426 pages++; 2427 status++; 2428 } 2429 2430 mmap_read_unlock(mm); 2431 } 2432 2433 static int get_compat_pages_array(const void __user *chunk_pages[], 2434 const void __user * __user *pages, 2435 unsigned long chunk_nr) 2436 { 2437 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages; 2438 compat_uptr_t p; 2439 int i; 2440 2441 for (i = 0; i < chunk_nr; i++) { 2442 if (get_user(p, pages32 + i)) 2443 return -EFAULT; 2444 chunk_pages[i] = compat_ptr(p); 2445 } 2446 2447 return 0; 2448 } 2449 2450 /* 2451 * Determine the nodes of a user array of pages and store it in 2452 * a user array of status. 2453 */ 2454 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, 2455 const void __user * __user *pages, 2456 int __user *status) 2457 { 2458 #define DO_PAGES_STAT_CHUNK_NR 16UL 2459 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; 2460 int chunk_status[DO_PAGES_STAT_CHUNK_NR]; 2461 2462 while (nr_pages) { 2463 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR); 2464 2465 if (in_compat_syscall()) { 2466 if (get_compat_pages_array(chunk_pages, pages, 2467 chunk_nr)) 2468 break; 2469 } else { 2470 if (copy_from_user(chunk_pages, pages, 2471 chunk_nr * sizeof(*chunk_pages))) 2472 break; 2473 } 2474 2475 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); 2476 2477 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) 2478 break; 2479 2480 pages += chunk_nr; 2481 status += chunk_nr; 2482 nr_pages -= chunk_nr; 2483 } 2484 return nr_pages ? -EFAULT : 0; 2485 } 2486 2487 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes) 2488 { 2489 struct task_struct *task; 2490 struct mm_struct *mm; 2491 2492 /* 2493 * There is no need to check if current process has the right to modify 2494 * the specified process when they are same. 2495 */ 2496 if (!pid) { 2497 mmget(current->mm); 2498 *mem_nodes = cpuset_mems_allowed(current); 2499 return current->mm; 2500 } 2501 2502 task = find_get_task_by_vpid(pid); 2503 if (!task) { 2504 return ERR_PTR(-ESRCH); 2505 } 2506 2507 /* 2508 * Check if this process has the right to modify the specified 2509 * process. Use the regular "ptrace_may_access()" checks. 2510 */ 2511 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { 2512 mm = ERR_PTR(-EPERM); 2513 goto out; 2514 } 2515 2516 mm = ERR_PTR(security_task_movememory(task)); 2517 if (IS_ERR(mm)) 2518 goto out; 2519 *mem_nodes = cpuset_mems_allowed(task); 2520 mm = get_task_mm(task); 2521 out: 2522 put_task_struct(task); 2523 if (!mm) 2524 mm = ERR_PTR(-EINVAL); 2525 return mm; 2526 } 2527 2528 /* 2529 * Move a list of pages in the address space of the currently executing 2530 * process. 2531 */ 2532 static int kernel_move_pages(pid_t pid, unsigned long nr_pages, 2533 const void __user * __user *pages, 2534 const int __user *nodes, 2535 int __user *status, int flags) 2536 { 2537 struct mm_struct *mm; 2538 int err; 2539 nodemask_t task_nodes; 2540 2541 /* Check flags */ 2542 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) 2543 return -EINVAL; 2544 2545 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) 2546 return -EPERM; 2547 2548 mm = find_mm_struct(pid, &task_nodes); 2549 if (IS_ERR(mm)) 2550 return PTR_ERR(mm); 2551 2552 if (nodes) 2553 err = do_pages_move(mm, task_nodes, nr_pages, pages, 2554 nodes, status, flags); 2555 else 2556 err = do_pages_stat(mm, nr_pages, pages, status); 2557 2558 mmput(mm); 2559 return err; 2560 } 2561 2562 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, 2563 const void __user * __user *, pages, 2564 const int __user *, nodes, 2565 int __user *, status, int, flags) 2566 { 2567 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags); 2568 } 2569 2570 #ifdef CONFIG_NUMA_BALANCING 2571 /* 2572 * Returns true if this is a safe migration target node for misplaced NUMA 2573 * pages. Currently it only checks the watermarks which is crude. 2574 */ 2575 static bool migrate_balanced_pgdat(struct pglist_data *pgdat, 2576 unsigned long nr_migrate_pages) 2577 { 2578 int z; 2579 2580 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2581 struct zone *zone = pgdat->node_zones + z; 2582 2583 if (!managed_zone(zone)) 2584 continue; 2585 2586 /* Avoid waking kswapd by allocating pages_to_migrate pages. */ 2587 if (!zone_watermark_ok(zone, 0, 2588 high_wmark_pages(zone) + 2589 nr_migrate_pages, 2590 ZONE_MOVABLE, ALLOC_CMA)) 2591 continue; 2592 return true; 2593 } 2594 return false; 2595 } 2596 2597 static struct folio *alloc_misplaced_dst_folio(struct folio *src, 2598 unsigned long data) 2599 { 2600 int nid = (int) data; 2601 int order = folio_order(src); 2602 gfp_t gfp = __GFP_THISNODE; 2603 2604 if (order > 0) 2605 gfp |= GFP_TRANSHUGE_LIGHT; 2606 else { 2607 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY | 2608 __GFP_NOWARN; 2609 gfp &= ~__GFP_RECLAIM; 2610 } 2611 return __folio_alloc_node(gfp, order, nid); 2612 } 2613 2614 /* 2615 * Prepare for calling migrate_misplaced_folio() by isolating the folio if 2616 * permitted. Must be called with the PTL still held. 2617 */ 2618 int migrate_misplaced_folio_prepare(struct folio *folio, 2619 struct vm_area_struct *vma, int node) 2620 { 2621 int nr_pages = folio_nr_pages(folio); 2622 pg_data_t *pgdat = NODE_DATA(node); 2623 2624 if (folio_is_file_lru(folio)) { 2625 /* 2626 * Do not migrate file folios that are mapped in multiple 2627 * processes with execute permissions as they are probably 2628 * shared libraries. 2629 * 2630 * See folio_likely_mapped_shared() on possible imprecision 2631 * when we cannot easily detect if a folio is shared. 2632 */ 2633 if ((vma->vm_flags & VM_EXEC) && 2634 folio_likely_mapped_shared(folio)) 2635 return -EACCES; 2636 2637 /* 2638 * Do not migrate dirty folios as not all filesystems can move 2639 * dirty folios in MIGRATE_ASYNC mode which is a waste of 2640 * cycles. 2641 */ 2642 if (folio_test_dirty(folio)) 2643 return -EAGAIN; 2644 } 2645 2646 /* Avoid migrating to a node that is nearly full */ 2647 if (!migrate_balanced_pgdat(pgdat, nr_pages)) { 2648 int z; 2649 2650 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)) 2651 return -EAGAIN; 2652 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 2653 if (managed_zone(pgdat->node_zones + z)) 2654 break; 2655 } 2656 2657 /* 2658 * If there are no managed zones, it should not proceed 2659 * further. 2660 */ 2661 if (z < 0) 2662 return -EAGAIN; 2663 2664 wakeup_kswapd(pgdat->node_zones + z, 0, 2665 folio_order(folio), ZONE_MOVABLE); 2666 return -EAGAIN; 2667 } 2668 2669 if (!folio_isolate_lru(folio)) 2670 return -EAGAIN; 2671 2672 node_stat_mod_folio(folio, NR_ISOLATED_ANON + folio_is_file_lru(folio), 2673 nr_pages); 2674 return 0; 2675 } 2676 2677 /* 2678 * Attempt to migrate a misplaced folio to the specified destination 2679 * node. Caller is expected to have isolated the folio by calling 2680 * migrate_misplaced_folio_prepare(), which will result in an 2681 * elevated reference count on the folio. This function will un-isolate the 2682 * folio, dereferencing the folio before returning. 2683 */ 2684 int migrate_misplaced_folio(struct folio *folio, struct vm_area_struct *vma, 2685 int node) 2686 { 2687 pg_data_t *pgdat = NODE_DATA(node); 2688 int nr_remaining; 2689 unsigned int nr_succeeded; 2690 LIST_HEAD(migratepages); 2691 struct mem_cgroup *memcg = get_mem_cgroup_from_folio(folio); 2692 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2693 2694 list_add(&folio->lru, &migratepages); 2695 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio, 2696 NULL, node, MIGRATE_ASYNC, 2697 MR_NUMA_MISPLACED, &nr_succeeded); 2698 if (nr_remaining && !list_empty(&migratepages)) 2699 putback_movable_pages(&migratepages); 2700 if (nr_succeeded) { 2701 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded); 2702 count_memcg_events(memcg, NUMA_PAGE_MIGRATE, nr_succeeded); 2703 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 2704 && !node_is_toptier(folio_nid(folio)) 2705 && node_is_toptier(node)) 2706 mod_lruvec_state(lruvec, PGPROMOTE_SUCCESS, nr_succeeded); 2707 } 2708 mem_cgroup_put(memcg); 2709 BUG_ON(!list_empty(&migratepages)); 2710 return nr_remaining ? -EAGAIN : 0; 2711 } 2712 #endif /* CONFIG_NUMA_BALANCING */ 2713 #endif /* CONFIG_NUMA */ 2714