1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright(c) 2015 Intel Corporation. All rights reserved. */ 3 #include <linux/device.h> 4 #include <linux/io.h> 5 #include <linux/kasan.h> 6 #include <linux/memory_hotplug.h> 7 #include <linux/mm.h> 8 #include <linux/pfn_t.h> 9 #include <linux/swap.h> 10 #include <linux/swapops.h> 11 #include <linux/types.h> 12 #include <linux/wait_bit.h> 13 #include <linux/xarray.h> 14 15 static DEFINE_XARRAY(pgmap_array); 16 17 #ifdef CONFIG_DEV_PAGEMAP_OPS 18 DEFINE_STATIC_KEY_FALSE(devmap_managed_key); 19 EXPORT_SYMBOL(devmap_managed_key); 20 static atomic_t devmap_managed_enable; 21 22 static void devmap_managed_enable_put(void) 23 { 24 if (atomic_dec_and_test(&devmap_managed_enable)) 25 static_branch_disable(&devmap_managed_key); 26 } 27 28 static int devmap_managed_enable_get(struct dev_pagemap *pgmap) 29 { 30 if (!pgmap->ops || !pgmap->ops->page_free) { 31 WARN(1, "Missing page_free method\n"); 32 return -EINVAL; 33 } 34 35 if (atomic_inc_return(&devmap_managed_enable) == 1) 36 static_branch_enable(&devmap_managed_key); 37 return 0; 38 } 39 #else 40 static int devmap_managed_enable_get(struct dev_pagemap *pgmap) 41 { 42 return -EINVAL; 43 } 44 static void devmap_managed_enable_put(void) 45 { 46 } 47 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 48 49 static void pgmap_array_delete(struct resource *res) 50 { 51 xa_store_range(&pgmap_array, PHYS_PFN(res->start), PHYS_PFN(res->end), 52 NULL, GFP_KERNEL); 53 synchronize_rcu(); 54 } 55 56 static unsigned long pfn_first(struct dev_pagemap *pgmap) 57 { 58 return PHYS_PFN(pgmap->res.start) + 59 vmem_altmap_offset(pgmap_altmap(pgmap)); 60 } 61 62 static unsigned long pfn_end(struct dev_pagemap *pgmap) 63 { 64 const struct resource *res = &pgmap->res; 65 66 return (res->start + resource_size(res)) >> PAGE_SHIFT; 67 } 68 69 static unsigned long pfn_next(unsigned long pfn) 70 { 71 if (pfn % 1024 == 0) 72 cond_resched(); 73 return pfn + 1; 74 } 75 76 #define for_each_device_pfn(pfn, map) \ 77 for (pfn = pfn_first(map); pfn < pfn_end(map); pfn = pfn_next(pfn)) 78 79 static void dev_pagemap_kill(struct dev_pagemap *pgmap) 80 { 81 if (pgmap->ops && pgmap->ops->kill) 82 pgmap->ops->kill(pgmap); 83 else 84 percpu_ref_kill(pgmap->ref); 85 } 86 87 static void dev_pagemap_cleanup(struct dev_pagemap *pgmap) 88 { 89 if (pgmap->ops && pgmap->ops->cleanup) { 90 pgmap->ops->cleanup(pgmap); 91 } else { 92 wait_for_completion(&pgmap->done); 93 percpu_ref_exit(pgmap->ref); 94 } 95 /* 96 * Undo the pgmap ref assignment for the internal case as the 97 * caller may re-enable the same pgmap. 98 */ 99 if (pgmap->ref == &pgmap->internal_ref) 100 pgmap->ref = NULL; 101 } 102 103 void memunmap_pages(struct dev_pagemap *pgmap) 104 { 105 struct resource *res = &pgmap->res; 106 struct page *first_page; 107 unsigned long pfn; 108 int nid; 109 110 dev_pagemap_kill(pgmap); 111 for_each_device_pfn(pfn, pgmap) 112 put_page(pfn_to_page(pfn)); 113 dev_pagemap_cleanup(pgmap); 114 115 /* make sure to access a memmap that was actually initialized */ 116 first_page = pfn_to_page(pfn_first(pgmap)); 117 118 /* pages are dead and unused, undo the arch mapping */ 119 nid = page_to_nid(first_page); 120 121 mem_hotplug_begin(); 122 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 123 __remove_pages(page_zone(first_page), PHYS_PFN(res->start), 124 PHYS_PFN(resource_size(res)), NULL); 125 } else { 126 arch_remove_memory(nid, res->start, resource_size(res), 127 pgmap_altmap(pgmap)); 128 kasan_remove_zero_shadow(__va(res->start), resource_size(res)); 129 } 130 mem_hotplug_done(); 131 132 untrack_pfn(NULL, PHYS_PFN(res->start), resource_size(res)); 133 pgmap_array_delete(res); 134 WARN_ONCE(pgmap->altmap.alloc, "failed to free all reserved pages\n"); 135 devmap_managed_enable_put(); 136 } 137 EXPORT_SYMBOL_GPL(memunmap_pages); 138 139 static void devm_memremap_pages_release(void *data) 140 { 141 memunmap_pages(data); 142 } 143 144 static void dev_pagemap_percpu_release(struct percpu_ref *ref) 145 { 146 struct dev_pagemap *pgmap = 147 container_of(ref, struct dev_pagemap, internal_ref); 148 149 complete(&pgmap->done); 150 } 151 152 /* 153 * Not device managed version of dev_memremap_pages, undone by 154 * memunmap_pages(). Please use dev_memremap_pages if you have a struct 155 * device available. 156 */ 157 void *memremap_pages(struct dev_pagemap *pgmap, int nid) 158 { 159 struct resource *res = &pgmap->res; 160 struct dev_pagemap *conflict_pgmap; 161 struct mhp_restrictions restrictions = { 162 /* 163 * We do not want any optional features only our own memmap 164 */ 165 .altmap = pgmap_altmap(pgmap), 166 }; 167 pgprot_t pgprot = PAGE_KERNEL; 168 int error, is_ram; 169 bool need_devmap_managed = true; 170 171 switch (pgmap->type) { 172 case MEMORY_DEVICE_PRIVATE: 173 if (!IS_ENABLED(CONFIG_DEVICE_PRIVATE)) { 174 WARN(1, "Device private memory not supported\n"); 175 return ERR_PTR(-EINVAL); 176 } 177 if (!pgmap->ops || !pgmap->ops->migrate_to_ram) { 178 WARN(1, "Missing migrate_to_ram method\n"); 179 return ERR_PTR(-EINVAL); 180 } 181 break; 182 case MEMORY_DEVICE_FS_DAX: 183 if (!IS_ENABLED(CONFIG_ZONE_DEVICE) || 184 IS_ENABLED(CONFIG_FS_DAX_LIMITED)) { 185 WARN(1, "File system DAX not supported\n"); 186 return ERR_PTR(-EINVAL); 187 } 188 break; 189 case MEMORY_DEVICE_DEVDAX: 190 case MEMORY_DEVICE_PCI_P2PDMA: 191 need_devmap_managed = false; 192 break; 193 default: 194 WARN(1, "Invalid pgmap type %d\n", pgmap->type); 195 break; 196 } 197 198 if (!pgmap->ref) { 199 if (pgmap->ops && (pgmap->ops->kill || pgmap->ops->cleanup)) 200 return ERR_PTR(-EINVAL); 201 202 init_completion(&pgmap->done); 203 error = percpu_ref_init(&pgmap->internal_ref, 204 dev_pagemap_percpu_release, 0, GFP_KERNEL); 205 if (error) 206 return ERR_PTR(error); 207 pgmap->ref = &pgmap->internal_ref; 208 } else { 209 if (!pgmap->ops || !pgmap->ops->kill || !pgmap->ops->cleanup) { 210 WARN(1, "Missing reference count teardown definition\n"); 211 return ERR_PTR(-EINVAL); 212 } 213 } 214 215 if (need_devmap_managed) { 216 error = devmap_managed_enable_get(pgmap); 217 if (error) 218 return ERR_PTR(error); 219 } 220 221 conflict_pgmap = get_dev_pagemap(PHYS_PFN(res->start), NULL); 222 if (conflict_pgmap) { 223 WARN(1, "Conflicting mapping in same section\n"); 224 put_dev_pagemap(conflict_pgmap); 225 error = -ENOMEM; 226 goto err_array; 227 } 228 229 conflict_pgmap = get_dev_pagemap(PHYS_PFN(res->end), NULL); 230 if (conflict_pgmap) { 231 WARN(1, "Conflicting mapping in same section\n"); 232 put_dev_pagemap(conflict_pgmap); 233 error = -ENOMEM; 234 goto err_array; 235 } 236 237 is_ram = region_intersects(res->start, resource_size(res), 238 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE); 239 240 if (is_ram != REGION_DISJOINT) { 241 WARN_ONCE(1, "%s attempted on %s region %pr\n", __func__, 242 is_ram == REGION_MIXED ? "mixed" : "ram", res); 243 error = -ENXIO; 244 goto err_array; 245 } 246 247 error = xa_err(xa_store_range(&pgmap_array, PHYS_PFN(res->start), 248 PHYS_PFN(res->end), pgmap, GFP_KERNEL)); 249 if (error) 250 goto err_array; 251 252 if (nid < 0) 253 nid = numa_mem_id(); 254 255 error = track_pfn_remap(NULL, &pgprot, PHYS_PFN(res->start), 0, 256 resource_size(res)); 257 if (error) 258 goto err_pfn_remap; 259 260 mem_hotplug_begin(); 261 262 /* 263 * For device private memory we call add_pages() as we only need to 264 * allocate and initialize struct page for the device memory. More- 265 * over the device memory is un-accessible thus we do not want to 266 * create a linear mapping for the memory like arch_add_memory() 267 * would do. 268 * 269 * For all other device memory types, which are accessible by 270 * the CPU, we do want the linear mapping and thus use 271 * arch_add_memory(). 272 */ 273 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 274 error = add_pages(nid, PHYS_PFN(res->start), 275 PHYS_PFN(resource_size(res)), &restrictions); 276 } else { 277 error = kasan_add_zero_shadow(__va(res->start), resource_size(res)); 278 if (error) { 279 mem_hotplug_done(); 280 goto err_kasan; 281 } 282 283 error = arch_add_memory(nid, res->start, resource_size(res), 284 &restrictions); 285 } 286 287 if (!error) { 288 struct zone *zone; 289 290 zone = &NODE_DATA(nid)->node_zones[ZONE_DEVICE]; 291 move_pfn_range_to_zone(zone, PHYS_PFN(res->start), 292 PHYS_PFN(resource_size(res)), restrictions.altmap); 293 } 294 295 mem_hotplug_done(); 296 if (error) 297 goto err_add_memory; 298 299 /* 300 * Initialization of the pages has been deferred until now in order 301 * to allow us to do the work while not holding the hotplug lock. 302 */ 303 memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE], 304 PHYS_PFN(res->start), 305 PHYS_PFN(resource_size(res)), pgmap); 306 percpu_ref_get_many(pgmap->ref, pfn_end(pgmap) - pfn_first(pgmap)); 307 return __va(res->start); 308 309 err_add_memory: 310 kasan_remove_zero_shadow(__va(res->start), resource_size(res)); 311 err_kasan: 312 untrack_pfn(NULL, PHYS_PFN(res->start), resource_size(res)); 313 err_pfn_remap: 314 pgmap_array_delete(res); 315 err_array: 316 dev_pagemap_kill(pgmap); 317 dev_pagemap_cleanup(pgmap); 318 devmap_managed_enable_put(); 319 return ERR_PTR(error); 320 } 321 EXPORT_SYMBOL_GPL(memremap_pages); 322 323 /** 324 * devm_memremap_pages - remap and provide memmap backing for the given resource 325 * @dev: hosting device for @res 326 * @pgmap: pointer to a struct dev_pagemap 327 * 328 * Notes: 329 * 1/ At a minimum the res and type members of @pgmap must be initialized 330 * by the caller before passing it to this function 331 * 332 * 2/ The altmap field may optionally be initialized, in which case 333 * PGMAP_ALTMAP_VALID must be set in pgmap->flags. 334 * 335 * 3/ The ref field may optionally be provided, in which pgmap->ref must be 336 * 'live' on entry and will be killed and reaped at 337 * devm_memremap_pages_release() time, or if this routine fails. 338 * 339 * 4/ res is expected to be a host memory range that could feasibly be 340 * treated as a "System RAM" range, i.e. not a device mmio range, but 341 * this is not enforced. 342 */ 343 void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap) 344 { 345 int error; 346 void *ret; 347 348 ret = memremap_pages(pgmap, dev_to_node(dev)); 349 if (IS_ERR(ret)) 350 return ret; 351 352 error = devm_add_action_or_reset(dev, devm_memremap_pages_release, 353 pgmap); 354 if (error) 355 return ERR_PTR(error); 356 return ret; 357 } 358 EXPORT_SYMBOL_GPL(devm_memremap_pages); 359 360 void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap) 361 { 362 devm_release_action(dev, devm_memremap_pages_release, pgmap); 363 } 364 EXPORT_SYMBOL_GPL(devm_memunmap_pages); 365 366 unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 367 { 368 /* number of pfns from base where pfn_to_page() is valid */ 369 if (altmap) 370 return altmap->reserve + altmap->free; 371 return 0; 372 } 373 374 void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns) 375 { 376 altmap->alloc -= nr_pfns; 377 } 378 379 /** 380 * get_dev_pagemap() - take a new live reference on the dev_pagemap for @pfn 381 * @pfn: page frame number to lookup page_map 382 * @pgmap: optional known pgmap that already has a reference 383 * 384 * If @pgmap is non-NULL and covers @pfn it will be returned as-is. If @pgmap 385 * is non-NULL but does not cover @pfn the reference to it will be released. 386 */ 387 struct dev_pagemap *get_dev_pagemap(unsigned long pfn, 388 struct dev_pagemap *pgmap) 389 { 390 resource_size_t phys = PFN_PHYS(pfn); 391 392 /* 393 * In the cached case we're already holding a live reference. 394 */ 395 if (pgmap) { 396 if (phys >= pgmap->res.start && phys <= pgmap->res.end) 397 return pgmap; 398 put_dev_pagemap(pgmap); 399 } 400 401 /* fall back to slow path lookup */ 402 rcu_read_lock(); 403 pgmap = xa_load(&pgmap_array, PHYS_PFN(phys)); 404 if (pgmap && !percpu_ref_tryget_live(pgmap->ref)) 405 pgmap = NULL; 406 rcu_read_unlock(); 407 408 return pgmap; 409 } 410 EXPORT_SYMBOL_GPL(get_dev_pagemap); 411 412 #ifdef CONFIG_DEV_PAGEMAP_OPS 413 void __put_devmap_managed_page(struct page *page) 414 { 415 int count = page_ref_dec_return(page); 416 417 /* 418 * If refcount is 1 then page is freed and refcount is stable as nobody 419 * holds a reference on the page. 420 */ 421 if (count == 1) { 422 /* Clear Active bit in case of parallel mark_page_accessed */ 423 __ClearPageActive(page); 424 __ClearPageWaiters(page); 425 426 mem_cgroup_uncharge(page); 427 428 /* 429 * When a device_private page is freed, the page->mapping field 430 * may still contain a (stale) mapping value. For example, the 431 * lower bits of page->mapping may still identify the page as 432 * an anonymous page. Ultimately, this entire field is just 433 * stale and wrong, and it will cause errors if not cleared. 434 * One example is: 435 * 436 * migrate_vma_pages() 437 * migrate_vma_insert_page() 438 * page_add_new_anon_rmap() 439 * __page_set_anon_rmap() 440 * ...checks page->mapping, via PageAnon(page) call, 441 * and incorrectly concludes that the page is an 442 * anonymous page. Therefore, it incorrectly, 443 * silently fails to set up the new anon rmap. 444 * 445 * For other types of ZONE_DEVICE pages, migration is either 446 * handled differently or not done at all, so there is no need 447 * to clear page->mapping. 448 */ 449 if (is_device_private_page(page)) 450 page->mapping = NULL; 451 452 page->pgmap->ops->page_free(page); 453 } else if (!count) 454 __put_page(page); 455 } 456 EXPORT_SYMBOL(__put_devmap_managed_page); 457 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 458