1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2015 Intel Corporation. All rights reserved. */ 3 #include <linux/device.h> 4 #include <linux/io.h> 5 #include <linux/kasan.h> 6 #include <linux/memory_hotplug.h> 7 #include <linux/memremap.h> 8 #include <linux/pfn_t.h> 9 #include <linux/swap.h> 10 #include <linux/mm.h> 11 #include <linux/mmzone.h> 12 #include <linux/swapops.h> 13 #include <linux/types.h> 14 #include <linux/wait_bit.h> 15 #include <linux/xarray.h> 16 #include "internal.h" 17 18 static DEFINE_XARRAY(pgmap_array); 19 20 /* 21 * The memremap() and memremap_pages() interfaces are alternately used 22 * to map persistent memory namespaces. These interfaces place different 23 * constraints on the alignment and size of the mapping (namespace). 24 * memremap() can map individual PAGE_SIZE pages. memremap_pages() can 25 * only map subsections (2MB), and at least one architecture (PowerPC) 26 * the minimum mapping granularity of memremap_pages() is 16MB. 27 * 28 * The role of memremap_compat_align() is to communicate the minimum 29 * arch supported alignment of a namespace such that it can freely 30 * switch modes without violating the arch constraint. Namely, do not 31 * allow a namespace to be PAGE_SIZE aligned since that namespace may be 32 * reconfigured into a mode that requires SUBSECTION_SIZE alignment. 33 */ 34 #ifndef CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN 35 unsigned long memremap_compat_align(void) 36 { 37 return SUBSECTION_SIZE; 38 } 39 EXPORT_SYMBOL_GPL(memremap_compat_align); 40 #endif 41 42 #ifdef CONFIG_FS_DAX 43 DEFINE_STATIC_KEY_FALSE(devmap_managed_key); 44 EXPORT_SYMBOL(devmap_managed_key); 45 46 static void devmap_managed_enable_put(struct dev_pagemap *pgmap) 47 { 48 if (pgmap->type == MEMORY_DEVICE_FS_DAX) 49 static_branch_dec(&devmap_managed_key); 50 } 51 52 static void devmap_managed_enable_get(struct dev_pagemap *pgmap) 53 { 54 if (pgmap->type == MEMORY_DEVICE_FS_DAX) 55 static_branch_inc(&devmap_managed_key); 56 } 57 #else 58 static void devmap_managed_enable_get(struct dev_pagemap *pgmap) 59 { 60 } 61 static void devmap_managed_enable_put(struct dev_pagemap *pgmap) 62 { 63 } 64 #endif /* CONFIG_FS_DAX */ 65 66 static void pgmap_array_delete(struct range *range) 67 { 68 xa_store_range(&pgmap_array, PHYS_PFN(range->start), PHYS_PFN(range->end), 69 NULL, GFP_KERNEL); 70 synchronize_rcu(); 71 } 72 73 static unsigned long pfn_first(struct dev_pagemap *pgmap, int range_id) 74 { 75 struct range *range = &pgmap->ranges[range_id]; 76 unsigned long pfn = PHYS_PFN(range->start); 77 78 if (range_id) 79 return pfn; 80 return pfn + vmem_altmap_offset(pgmap_altmap(pgmap)); 81 } 82 83 bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn) 84 { 85 int i; 86 87 for (i = 0; i < pgmap->nr_range; i++) { 88 struct range *range = &pgmap->ranges[i]; 89 90 if (pfn >= PHYS_PFN(range->start) && 91 pfn <= PHYS_PFN(range->end)) 92 return pfn >= pfn_first(pgmap, i); 93 } 94 95 return false; 96 } 97 98 static unsigned long pfn_end(struct dev_pagemap *pgmap, int range_id) 99 { 100 const struct range *range = &pgmap->ranges[range_id]; 101 102 return (range->start + range_len(range)) >> PAGE_SHIFT; 103 } 104 105 static unsigned long pfn_len(struct dev_pagemap *pgmap, unsigned long range_id) 106 { 107 return (pfn_end(pgmap, range_id) - 108 pfn_first(pgmap, range_id)) >> pgmap->vmemmap_shift; 109 } 110 111 static void pageunmap_range(struct dev_pagemap *pgmap, int range_id) 112 { 113 struct range *range = &pgmap->ranges[range_id]; 114 struct page *first_page; 115 116 /* make sure to access a memmap that was actually initialized */ 117 first_page = pfn_to_page(pfn_first(pgmap, range_id)); 118 119 /* pages are dead and unused, undo the arch mapping */ 120 mem_hotplug_begin(); 121 remove_pfn_range_from_zone(page_zone(first_page), PHYS_PFN(range->start), 122 PHYS_PFN(range_len(range))); 123 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 124 __remove_pages(PHYS_PFN(range->start), 125 PHYS_PFN(range_len(range)), NULL); 126 } else { 127 arch_remove_memory(range->start, range_len(range), 128 pgmap_altmap(pgmap)); 129 kasan_remove_zero_shadow(__va(range->start), range_len(range)); 130 } 131 mem_hotplug_done(); 132 133 untrack_pfn(NULL, PHYS_PFN(range->start), range_len(range), true); 134 pgmap_array_delete(range); 135 } 136 137 void memunmap_pages(struct dev_pagemap *pgmap) 138 { 139 int i; 140 141 percpu_ref_kill(&pgmap->ref); 142 if (pgmap->type != MEMORY_DEVICE_PRIVATE && 143 pgmap->type != MEMORY_DEVICE_COHERENT) 144 for (i = 0; i < pgmap->nr_range; i++) 145 percpu_ref_put_many(&pgmap->ref, pfn_len(pgmap, i)); 146 147 wait_for_completion(&pgmap->done); 148 149 for (i = 0; i < pgmap->nr_range; i++) 150 pageunmap_range(pgmap, i); 151 percpu_ref_exit(&pgmap->ref); 152 153 WARN_ONCE(pgmap->altmap.alloc, "failed to free all reserved pages\n"); 154 devmap_managed_enable_put(pgmap); 155 } 156 EXPORT_SYMBOL_GPL(memunmap_pages); 157 158 static void devm_memremap_pages_release(void *data) 159 { 160 memunmap_pages(data); 161 } 162 163 static void dev_pagemap_percpu_release(struct percpu_ref *ref) 164 { 165 struct dev_pagemap *pgmap = container_of(ref, struct dev_pagemap, ref); 166 167 complete(&pgmap->done); 168 } 169 170 static int pagemap_range(struct dev_pagemap *pgmap, struct mhp_params *params, 171 int range_id, int nid) 172 { 173 const bool is_private = pgmap->type == MEMORY_DEVICE_PRIVATE; 174 struct range *range = &pgmap->ranges[range_id]; 175 struct dev_pagemap *conflict_pgmap; 176 int error, is_ram; 177 178 if (WARN_ONCE(pgmap_altmap(pgmap) && range_id > 0, 179 "altmap not supported for multiple ranges\n")) 180 return -EINVAL; 181 182 conflict_pgmap = get_dev_pagemap(PHYS_PFN(range->start), NULL); 183 if (conflict_pgmap) { 184 WARN(1, "Conflicting mapping in same section\n"); 185 put_dev_pagemap(conflict_pgmap); 186 return -ENOMEM; 187 } 188 189 conflict_pgmap = get_dev_pagemap(PHYS_PFN(range->end), NULL); 190 if (conflict_pgmap) { 191 WARN(1, "Conflicting mapping in same section\n"); 192 put_dev_pagemap(conflict_pgmap); 193 return -ENOMEM; 194 } 195 196 is_ram = region_intersects(range->start, range_len(range), 197 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE); 198 199 if (is_ram != REGION_DISJOINT) { 200 WARN_ONCE(1, "attempted on %s region %#llx-%#llx\n", 201 is_ram == REGION_MIXED ? "mixed" : "ram", 202 range->start, range->end); 203 return -ENXIO; 204 } 205 206 error = xa_err(xa_store_range(&pgmap_array, PHYS_PFN(range->start), 207 PHYS_PFN(range->end), pgmap, GFP_KERNEL)); 208 if (error) 209 return error; 210 211 if (nid < 0) 212 nid = numa_mem_id(); 213 214 error = track_pfn_remap(NULL, ¶ms->pgprot, PHYS_PFN(range->start), 0, 215 range_len(range)); 216 if (error) 217 goto err_pfn_remap; 218 219 if (!mhp_range_allowed(range->start, range_len(range), !is_private)) { 220 error = -EINVAL; 221 goto err_kasan; 222 } 223 224 mem_hotplug_begin(); 225 226 /* 227 * For device private memory we call add_pages() as we only need to 228 * allocate and initialize struct page for the device memory. More- 229 * over the device memory is un-accessible thus we do not want to 230 * create a linear mapping for the memory like arch_add_memory() 231 * would do. 232 * 233 * For all other device memory types, which are accessible by 234 * the CPU, we do want the linear mapping and thus use 235 * arch_add_memory(). 236 */ 237 if (is_private) { 238 error = add_pages(nid, PHYS_PFN(range->start), 239 PHYS_PFN(range_len(range)), params); 240 } else { 241 error = kasan_add_zero_shadow(__va(range->start), range_len(range)); 242 if (error) { 243 mem_hotplug_done(); 244 goto err_kasan; 245 } 246 247 error = arch_add_memory(nid, range->start, range_len(range), 248 params); 249 } 250 251 if (!error) { 252 struct zone *zone; 253 254 zone = &NODE_DATA(nid)->node_zones[ZONE_DEVICE]; 255 move_pfn_range_to_zone(zone, PHYS_PFN(range->start), 256 PHYS_PFN(range_len(range)), params->altmap, 257 MIGRATE_MOVABLE); 258 } 259 260 mem_hotplug_done(); 261 if (error) 262 goto err_add_memory; 263 264 /* 265 * Initialization of the pages has been deferred until now in order 266 * to allow us to do the work while not holding the hotplug lock. 267 */ 268 memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE], 269 PHYS_PFN(range->start), 270 PHYS_PFN(range_len(range)), pgmap); 271 if (pgmap->type != MEMORY_DEVICE_PRIVATE && 272 pgmap->type != MEMORY_DEVICE_COHERENT) 273 percpu_ref_get_many(&pgmap->ref, pfn_len(pgmap, range_id)); 274 return 0; 275 276 err_add_memory: 277 if (!is_private) 278 kasan_remove_zero_shadow(__va(range->start), range_len(range)); 279 err_kasan: 280 untrack_pfn(NULL, PHYS_PFN(range->start), range_len(range), true); 281 err_pfn_remap: 282 pgmap_array_delete(range); 283 return error; 284 } 285 286 287 /* 288 * Not device managed version of devm_memremap_pages, undone by 289 * memunmap_pages(). Please use devm_memremap_pages if you have a struct 290 * device available. 291 */ 292 void *memremap_pages(struct dev_pagemap *pgmap, int nid) 293 { 294 struct mhp_params params = { 295 .altmap = pgmap_altmap(pgmap), 296 .pgmap = pgmap, 297 .pgprot = PAGE_KERNEL, 298 }; 299 const int nr_range = pgmap->nr_range; 300 int error, i; 301 302 if (WARN_ONCE(!nr_range, "nr_range must be specified\n")) 303 return ERR_PTR(-EINVAL); 304 305 switch (pgmap->type) { 306 case MEMORY_DEVICE_PRIVATE: 307 if (!IS_ENABLED(CONFIG_DEVICE_PRIVATE)) { 308 WARN(1, "Device private memory not supported\n"); 309 return ERR_PTR(-EINVAL); 310 } 311 if (!pgmap->ops || !pgmap->ops->migrate_to_ram) { 312 WARN(1, "Missing migrate_to_ram method\n"); 313 return ERR_PTR(-EINVAL); 314 } 315 if (!pgmap->ops->page_free) { 316 WARN(1, "Missing page_free method\n"); 317 return ERR_PTR(-EINVAL); 318 } 319 if (!pgmap->owner) { 320 WARN(1, "Missing owner\n"); 321 return ERR_PTR(-EINVAL); 322 } 323 break; 324 case MEMORY_DEVICE_COHERENT: 325 if (!pgmap->ops->page_free) { 326 WARN(1, "Missing page_free method\n"); 327 return ERR_PTR(-EINVAL); 328 } 329 if (!pgmap->owner) { 330 WARN(1, "Missing owner\n"); 331 return ERR_PTR(-EINVAL); 332 } 333 break; 334 case MEMORY_DEVICE_FS_DAX: 335 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) { 336 WARN(1, "File system DAX not supported\n"); 337 return ERR_PTR(-EINVAL); 338 } 339 params.pgprot = pgprot_decrypted(params.pgprot); 340 break; 341 case MEMORY_DEVICE_GENERIC: 342 break; 343 case MEMORY_DEVICE_PCI_P2PDMA: 344 params.pgprot = pgprot_noncached(params.pgprot); 345 break; 346 default: 347 WARN(1, "Invalid pgmap type %d\n", pgmap->type); 348 break; 349 } 350 351 init_completion(&pgmap->done); 352 error = percpu_ref_init(&pgmap->ref, dev_pagemap_percpu_release, 0, 353 GFP_KERNEL); 354 if (error) 355 return ERR_PTR(error); 356 357 devmap_managed_enable_get(pgmap); 358 359 /* 360 * Clear the pgmap nr_range as it will be incremented for each 361 * successfully processed range. This communicates how many 362 * regions to unwind in the abort case. 363 */ 364 pgmap->nr_range = 0; 365 error = 0; 366 for (i = 0; i < nr_range; i++) { 367 error = pagemap_range(pgmap, ¶ms, i, nid); 368 if (error) 369 break; 370 pgmap->nr_range++; 371 } 372 373 if (i < nr_range) { 374 memunmap_pages(pgmap); 375 pgmap->nr_range = nr_range; 376 return ERR_PTR(error); 377 } 378 379 return __va(pgmap->ranges[0].start); 380 } 381 EXPORT_SYMBOL_GPL(memremap_pages); 382 383 /** 384 * devm_memremap_pages - remap and provide memmap backing for the given resource 385 * @dev: hosting device for @res 386 * @pgmap: pointer to a struct dev_pagemap 387 * 388 * Notes: 389 * 1/ At a minimum the range and type members of @pgmap must be initialized 390 * by the caller before passing it to this function 391 * 392 * 2/ The altmap field may optionally be initialized, in which case 393 * PGMAP_ALTMAP_VALID must be set in pgmap->flags. 394 * 395 * 3/ The ref field may optionally be provided, in which pgmap->ref must be 396 * 'live' on entry and will be killed and reaped at 397 * devm_memremap_pages_release() time, or if this routine fails. 398 * 399 * 4/ range is expected to be a host memory range that could feasibly be 400 * treated as a "System RAM" range, i.e. not a device mmio range, but 401 * this is not enforced. 402 */ 403 void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap) 404 { 405 int error; 406 void *ret; 407 408 ret = memremap_pages(pgmap, dev_to_node(dev)); 409 if (IS_ERR(ret)) 410 return ret; 411 412 error = devm_add_action_or_reset(dev, devm_memremap_pages_release, 413 pgmap); 414 if (error) 415 return ERR_PTR(error); 416 return ret; 417 } 418 EXPORT_SYMBOL_GPL(devm_memremap_pages); 419 420 void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap) 421 { 422 devm_release_action(dev, devm_memremap_pages_release, pgmap); 423 } 424 EXPORT_SYMBOL_GPL(devm_memunmap_pages); 425 426 /** 427 * get_dev_pagemap() - take a new live reference on the dev_pagemap for @pfn 428 * @pfn: page frame number to lookup page_map 429 * @pgmap: optional known pgmap that already has a reference 430 * 431 * If @pgmap is non-NULL and covers @pfn it will be returned as-is. If @pgmap 432 * is non-NULL but does not cover @pfn the reference to it will be released. 433 */ 434 struct dev_pagemap *get_dev_pagemap(unsigned long pfn, 435 struct dev_pagemap *pgmap) 436 { 437 resource_size_t phys = PFN_PHYS(pfn); 438 439 /* 440 * In the cached case we're already holding a live reference. 441 */ 442 if (pgmap) { 443 if (phys >= pgmap->range.start && phys <= pgmap->range.end) 444 return pgmap; 445 put_dev_pagemap(pgmap); 446 } 447 448 /* fall back to slow path lookup */ 449 rcu_read_lock(); 450 pgmap = xa_load(&pgmap_array, PHYS_PFN(phys)); 451 if (pgmap && !percpu_ref_tryget_live_rcu(&pgmap->ref)) 452 pgmap = NULL; 453 rcu_read_unlock(); 454 455 return pgmap; 456 } 457 EXPORT_SYMBOL_GPL(get_dev_pagemap); 458 459 void free_zone_device_page(struct page *page) 460 { 461 if (WARN_ON_ONCE(!page->pgmap->ops || !page->pgmap->ops->page_free)) 462 return; 463 464 mem_cgroup_uncharge(page_folio(page)); 465 466 /* 467 * Note: we don't expect anonymous compound pages yet. Once supported 468 * and we could PTE-map them similar to THP, we'd have to clear 469 * PG_anon_exclusive on all tail pages. 470 */ 471 VM_BUG_ON_PAGE(PageAnon(page) && PageCompound(page), page); 472 if (PageAnon(page)) 473 __ClearPageAnonExclusive(page); 474 475 /* 476 * When a device managed page is freed, the folio->mapping field 477 * may still contain a (stale) mapping value. For example, the 478 * lower bits of folio->mapping may still identify the folio as an 479 * anonymous folio. Ultimately, this entire field is just stale 480 * and wrong, and it will cause errors if not cleared. 481 * 482 * For other types of ZONE_DEVICE pages, migration is either 483 * handled differently or not done at all, so there is no need 484 * to clear page->mapping. 485 */ 486 page->mapping = NULL; 487 page->pgmap->ops->page_free(page); 488 489 if (page->pgmap->type != MEMORY_DEVICE_PRIVATE && 490 page->pgmap->type != MEMORY_DEVICE_COHERENT) 491 /* 492 * Reset the page count to 1 to prepare for handing out the page 493 * again. 494 */ 495 set_page_count(page, 1); 496 else 497 put_dev_pagemap(page->pgmap); 498 } 499 500 void zone_device_page_init(struct page *page) 501 { 502 /* 503 * Drivers shouldn't be allocating pages after calling 504 * memunmap_pages(). 505 */ 506 WARN_ON_ONCE(!percpu_ref_tryget_live(&page->pgmap->ref)); 507 set_page_count(page, 1); 508 lock_page(page); 509 } 510 EXPORT_SYMBOL_GPL(zone_device_page_init); 511 512 #ifdef CONFIG_FS_DAX 513 bool __put_devmap_managed_page_refs(struct page *page, int refs) 514 { 515 if (page->pgmap->type != MEMORY_DEVICE_FS_DAX) 516 return false; 517 518 /* 519 * fsdax page refcounts are 1-based, rather than 0-based: if 520 * refcount is 1, then the page is free and the refcount is 521 * stable because nobody holds a reference on the page. 522 */ 523 if (page_ref_sub_return(page, refs) == 1) 524 wake_up_var(&page->_refcount); 525 return true; 526 } 527 EXPORT_SYMBOL(__put_devmap_managed_page_refs); 528 #endif /* CONFIG_FS_DAX */ 529