1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright(c) 2015 Intel Corporation. All rights reserved. */ 3 #include <linux/device.h> 4 #include <linux/io.h> 5 #include <linux/kasan.h> 6 #include <linux/memory_hotplug.h> 7 #include <linux/mm.h> 8 #include <linux/pfn_t.h> 9 #include <linux/swap.h> 10 #include <linux/swapops.h> 11 #include <linux/types.h> 12 #include <linux/wait_bit.h> 13 #include <linux/xarray.h> 14 15 static DEFINE_XARRAY(pgmap_array); 16 #define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1) 17 #define SECTION_SIZE (1UL << PA_SECTION_SHIFT) 18 19 #ifdef CONFIG_DEV_PAGEMAP_OPS 20 DEFINE_STATIC_KEY_FALSE(devmap_managed_key); 21 EXPORT_SYMBOL(devmap_managed_key); 22 static atomic_t devmap_managed_enable; 23 24 static void devmap_managed_enable_put(void) 25 { 26 if (atomic_dec_and_test(&devmap_managed_enable)) 27 static_branch_disable(&devmap_managed_key); 28 } 29 30 static int devmap_managed_enable_get(struct dev_pagemap *pgmap) 31 { 32 if (!pgmap->ops || !pgmap->ops->page_free) { 33 WARN(1, "Missing page_free method\n"); 34 return -EINVAL; 35 } 36 37 if (atomic_inc_return(&devmap_managed_enable) == 1) 38 static_branch_enable(&devmap_managed_key); 39 return 0; 40 } 41 #else 42 static int devmap_managed_enable_get(struct dev_pagemap *pgmap) 43 { 44 return -EINVAL; 45 } 46 static void devmap_managed_enable_put(void) 47 { 48 } 49 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 50 51 static void pgmap_array_delete(struct resource *res) 52 { 53 xa_store_range(&pgmap_array, PHYS_PFN(res->start), PHYS_PFN(res->end), 54 NULL, GFP_KERNEL); 55 synchronize_rcu(); 56 } 57 58 static unsigned long pfn_first(struct dev_pagemap *pgmap) 59 { 60 return PHYS_PFN(pgmap->res.start) + 61 vmem_altmap_offset(pgmap_altmap(pgmap)); 62 } 63 64 static unsigned long pfn_end(struct dev_pagemap *pgmap) 65 { 66 const struct resource *res = &pgmap->res; 67 68 return (res->start + resource_size(res)) >> PAGE_SHIFT; 69 } 70 71 static unsigned long pfn_next(unsigned long pfn) 72 { 73 if (pfn % 1024 == 0) 74 cond_resched(); 75 return pfn + 1; 76 } 77 78 #define for_each_device_pfn(pfn, map) \ 79 for (pfn = pfn_first(map); pfn < pfn_end(map); pfn = pfn_next(pfn)) 80 81 static void dev_pagemap_kill(struct dev_pagemap *pgmap) 82 { 83 if (pgmap->ops && pgmap->ops->kill) 84 pgmap->ops->kill(pgmap); 85 else 86 percpu_ref_kill(pgmap->ref); 87 } 88 89 static void dev_pagemap_cleanup(struct dev_pagemap *pgmap) 90 { 91 if (pgmap->ops && pgmap->ops->cleanup) { 92 pgmap->ops->cleanup(pgmap); 93 } else { 94 wait_for_completion(&pgmap->done); 95 percpu_ref_exit(pgmap->ref); 96 } 97 /* 98 * Undo the pgmap ref assignment for the internal case as the 99 * caller may re-enable the same pgmap. 100 */ 101 if (pgmap->ref == &pgmap->internal_ref) 102 pgmap->ref = NULL; 103 } 104 105 void memunmap_pages(struct dev_pagemap *pgmap) 106 { 107 struct resource *res = &pgmap->res; 108 unsigned long pfn; 109 int nid; 110 111 dev_pagemap_kill(pgmap); 112 for_each_device_pfn(pfn, pgmap) 113 put_page(pfn_to_page(pfn)); 114 dev_pagemap_cleanup(pgmap); 115 116 /* pages are dead and unused, undo the arch mapping */ 117 nid = page_to_nid(pfn_to_page(PHYS_PFN(res->start))); 118 119 mem_hotplug_begin(); 120 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 121 pfn = PHYS_PFN(res->start); 122 __remove_pages(page_zone(pfn_to_page(pfn)), pfn, 123 PHYS_PFN(resource_size(res)), NULL); 124 } else { 125 arch_remove_memory(nid, res->start, resource_size(res), 126 pgmap_altmap(pgmap)); 127 kasan_remove_zero_shadow(__va(res->start), resource_size(res)); 128 } 129 mem_hotplug_done(); 130 131 untrack_pfn(NULL, PHYS_PFN(res->start), resource_size(res)); 132 pgmap_array_delete(res); 133 WARN_ONCE(pgmap->altmap.alloc, "failed to free all reserved pages\n"); 134 devmap_managed_enable_put(); 135 } 136 EXPORT_SYMBOL_GPL(memunmap_pages); 137 138 static void devm_memremap_pages_release(void *data) 139 { 140 memunmap_pages(data); 141 } 142 143 static void dev_pagemap_percpu_release(struct percpu_ref *ref) 144 { 145 struct dev_pagemap *pgmap = 146 container_of(ref, struct dev_pagemap, internal_ref); 147 148 complete(&pgmap->done); 149 } 150 151 /* 152 * Not device managed version of dev_memremap_pages, undone by 153 * memunmap_pages(). Please use dev_memremap_pages if you have a struct 154 * device available. 155 */ 156 void *memremap_pages(struct dev_pagemap *pgmap, int nid) 157 { 158 struct resource *res = &pgmap->res; 159 struct dev_pagemap *conflict_pgmap; 160 struct mhp_restrictions restrictions = { 161 /* 162 * We do not want any optional features only our own memmap 163 */ 164 .altmap = pgmap_altmap(pgmap), 165 }; 166 pgprot_t pgprot = PAGE_KERNEL; 167 int error, is_ram; 168 bool need_devmap_managed = true; 169 170 switch (pgmap->type) { 171 case MEMORY_DEVICE_PRIVATE: 172 if (!IS_ENABLED(CONFIG_DEVICE_PRIVATE)) { 173 WARN(1, "Device private memory not supported\n"); 174 return ERR_PTR(-EINVAL); 175 } 176 if (!pgmap->ops || !pgmap->ops->migrate_to_ram) { 177 WARN(1, "Missing migrate_to_ram method\n"); 178 return ERR_PTR(-EINVAL); 179 } 180 break; 181 case MEMORY_DEVICE_FS_DAX: 182 if (!IS_ENABLED(CONFIG_ZONE_DEVICE) || 183 IS_ENABLED(CONFIG_FS_DAX_LIMITED)) { 184 WARN(1, "File system DAX not supported\n"); 185 return ERR_PTR(-EINVAL); 186 } 187 break; 188 case MEMORY_DEVICE_DEVDAX: 189 case MEMORY_DEVICE_PCI_P2PDMA: 190 need_devmap_managed = false; 191 break; 192 default: 193 WARN(1, "Invalid pgmap type %d\n", pgmap->type); 194 break; 195 } 196 197 if (!pgmap->ref) { 198 if (pgmap->ops && (pgmap->ops->kill || pgmap->ops->cleanup)) 199 return ERR_PTR(-EINVAL); 200 201 init_completion(&pgmap->done); 202 error = percpu_ref_init(&pgmap->internal_ref, 203 dev_pagemap_percpu_release, 0, GFP_KERNEL); 204 if (error) 205 return ERR_PTR(error); 206 pgmap->ref = &pgmap->internal_ref; 207 } else { 208 if (!pgmap->ops || !pgmap->ops->kill || !pgmap->ops->cleanup) { 209 WARN(1, "Missing reference count teardown definition\n"); 210 return ERR_PTR(-EINVAL); 211 } 212 } 213 214 if (need_devmap_managed) { 215 error = devmap_managed_enable_get(pgmap); 216 if (error) 217 return ERR_PTR(error); 218 } 219 220 conflict_pgmap = get_dev_pagemap(PHYS_PFN(res->start), NULL); 221 if (conflict_pgmap) { 222 WARN(1, "Conflicting mapping in same section\n"); 223 put_dev_pagemap(conflict_pgmap); 224 error = -ENOMEM; 225 goto err_array; 226 } 227 228 conflict_pgmap = get_dev_pagemap(PHYS_PFN(res->end), NULL); 229 if (conflict_pgmap) { 230 WARN(1, "Conflicting mapping in same section\n"); 231 put_dev_pagemap(conflict_pgmap); 232 error = -ENOMEM; 233 goto err_array; 234 } 235 236 is_ram = region_intersects(res->start, resource_size(res), 237 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE); 238 239 if (is_ram != REGION_DISJOINT) { 240 WARN_ONCE(1, "%s attempted on %s region %pr\n", __func__, 241 is_ram == REGION_MIXED ? "mixed" : "ram", res); 242 error = -ENXIO; 243 goto err_array; 244 } 245 246 error = xa_err(xa_store_range(&pgmap_array, PHYS_PFN(res->start), 247 PHYS_PFN(res->end), pgmap, GFP_KERNEL)); 248 if (error) 249 goto err_array; 250 251 if (nid < 0) 252 nid = numa_mem_id(); 253 254 error = track_pfn_remap(NULL, &pgprot, PHYS_PFN(res->start), 0, 255 resource_size(res)); 256 if (error) 257 goto err_pfn_remap; 258 259 mem_hotplug_begin(); 260 261 /* 262 * For device private memory we call add_pages() as we only need to 263 * allocate and initialize struct page for the device memory. More- 264 * over the device memory is un-accessible thus we do not want to 265 * create a linear mapping for the memory like arch_add_memory() 266 * would do. 267 * 268 * For all other device memory types, which are accessible by 269 * the CPU, we do want the linear mapping and thus use 270 * arch_add_memory(). 271 */ 272 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 273 error = add_pages(nid, PHYS_PFN(res->start), 274 PHYS_PFN(resource_size(res)), &restrictions); 275 } else { 276 error = kasan_add_zero_shadow(__va(res->start), resource_size(res)); 277 if (error) { 278 mem_hotplug_done(); 279 goto err_kasan; 280 } 281 282 error = arch_add_memory(nid, res->start, resource_size(res), 283 &restrictions); 284 } 285 286 if (!error) { 287 struct zone *zone; 288 289 zone = &NODE_DATA(nid)->node_zones[ZONE_DEVICE]; 290 move_pfn_range_to_zone(zone, PHYS_PFN(res->start), 291 PHYS_PFN(resource_size(res)), restrictions.altmap); 292 } 293 294 mem_hotplug_done(); 295 if (error) 296 goto err_add_memory; 297 298 /* 299 * Initialization of the pages has been deferred until now in order 300 * to allow us to do the work while not holding the hotplug lock. 301 */ 302 memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE], 303 PHYS_PFN(res->start), 304 PHYS_PFN(resource_size(res)), pgmap); 305 percpu_ref_get_many(pgmap->ref, pfn_end(pgmap) - pfn_first(pgmap)); 306 return __va(res->start); 307 308 err_add_memory: 309 kasan_remove_zero_shadow(__va(res->start), resource_size(res)); 310 err_kasan: 311 untrack_pfn(NULL, PHYS_PFN(res->start), resource_size(res)); 312 err_pfn_remap: 313 pgmap_array_delete(res); 314 err_array: 315 dev_pagemap_kill(pgmap); 316 dev_pagemap_cleanup(pgmap); 317 devmap_managed_enable_put(); 318 return ERR_PTR(error); 319 } 320 EXPORT_SYMBOL_GPL(memremap_pages); 321 322 /** 323 * devm_memremap_pages - remap and provide memmap backing for the given resource 324 * @dev: hosting device for @res 325 * @pgmap: pointer to a struct dev_pagemap 326 * 327 * Notes: 328 * 1/ At a minimum the res and type members of @pgmap must be initialized 329 * by the caller before passing it to this function 330 * 331 * 2/ The altmap field may optionally be initialized, in which case 332 * PGMAP_ALTMAP_VALID must be set in pgmap->flags. 333 * 334 * 3/ The ref field may optionally be provided, in which pgmap->ref must be 335 * 'live' on entry and will be killed and reaped at 336 * devm_memremap_pages_release() time, or if this routine fails. 337 * 338 * 4/ res is expected to be a host memory range that could feasibly be 339 * treated as a "System RAM" range, i.e. not a device mmio range, but 340 * this is not enforced. 341 */ 342 void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap) 343 { 344 int error; 345 void *ret; 346 347 ret = memremap_pages(pgmap, dev_to_node(dev)); 348 if (IS_ERR(ret)) 349 return ret; 350 351 error = devm_add_action_or_reset(dev, devm_memremap_pages_release, 352 pgmap); 353 if (error) 354 return ERR_PTR(error); 355 return ret; 356 } 357 EXPORT_SYMBOL_GPL(devm_memremap_pages); 358 359 void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap) 360 { 361 devm_release_action(dev, devm_memremap_pages_release, pgmap); 362 } 363 EXPORT_SYMBOL_GPL(devm_memunmap_pages); 364 365 unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 366 { 367 /* number of pfns from base where pfn_to_page() is valid */ 368 if (altmap) 369 return altmap->reserve + altmap->free; 370 return 0; 371 } 372 373 void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns) 374 { 375 altmap->alloc -= nr_pfns; 376 } 377 378 /** 379 * get_dev_pagemap() - take a new live reference on the dev_pagemap for @pfn 380 * @pfn: page frame number to lookup page_map 381 * @pgmap: optional known pgmap that already has a reference 382 * 383 * If @pgmap is non-NULL and covers @pfn it will be returned as-is. If @pgmap 384 * is non-NULL but does not cover @pfn the reference to it will be released. 385 */ 386 struct dev_pagemap *get_dev_pagemap(unsigned long pfn, 387 struct dev_pagemap *pgmap) 388 { 389 resource_size_t phys = PFN_PHYS(pfn); 390 391 /* 392 * In the cached case we're already holding a live reference. 393 */ 394 if (pgmap) { 395 if (phys >= pgmap->res.start && phys <= pgmap->res.end) 396 return pgmap; 397 put_dev_pagemap(pgmap); 398 } 399 400 /* fall back to slow path lookup */ 401 rcu_read_lock(); 402 pgmap = xa_load(&pgmap_array, PHYS_PFN(phys)); 403 if (pgmap && !percpu_ref_tryget_live(pgmap->ref)) 404 pgmap = NULL; 405 rcu_read_unlock(); 406 407 return pgmap; 408 } 409 EXPORT_SYMBOL_GPL(get_dev_pagemap); 410 411 #ifdef CONFIG_DEV_PAGEMAP_OPS 412 void __put_devmap_managed_page(struct page *page) 413 { 414 int count = page_ref_dec_return(page); 415 416 /* 417 * If refcount is 1 then page is freed and refcount is stable as nobody 418 * holds a reference on the page. 419 */ 420 if (count == 1) { 421 /* Clear Active bit in case of parallel mark_page_accessed */ 422 __ClearPageActive(page); 423 __ClearPageWaiters(page); 424 425 mem_cgroup_uncharge(page); 426 427 /* 428 * When a device_private page is freed, the page->mapping field 429 * may still contain a (stale) mapping value. For example, the 430 * lower bits of page->mapping may still identify the page as 431 * an anonymous page. Ultimately, this entire field is just 432 * stale and wrong, and it will cause errors if not cleared. 433 * One example is: 434 * 435 * migrate_vma_pages() 436 * migrate_vma_insert_page() 437 * page_add_new_anon_rmap() 438 * __page_set_anon_rmap() 439 * ...checks page->mapping, via PageAnon(page) call, 440 * and incorrectly concludes that the page is an 441 * anonymous page. Therefore, it incorrectly, 442 * silently fails to set up the new anon rmap. 443 * 444 * For other types of ZONE_DEVICE pages, migration is either 445 * handled differently or not done at all, so there is no need 446 * to clear page->mapping. 447 */ 448 if (is_device_private_page(page)) 449 page->mapping = NULL; 450 451 page->pgmap->ops->page_free(page); 452 } else if (!count) 453 __put_page(page); 454 } 455 EXPORT_SYMBOL(__put_devmap_managed_page); 456 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 457