xref: /linux/mm/memremap.c (revision 5a48b7433a5aee719ab242d2feadaf4c9e065989)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2015 Intel Corporation. All rights reserved. */
3 #include <linux/device.h>
4 #include <linux/io.h>
5 #include <linux/kasan.h>
6 #include <linux/memory_hotplug.h>
7 #include <linux/memremap.h>
8 #include <linux/pfn_t.h>
9 #include <linux/swap.h>
10 #include <linux/mmzone.h>
11 #include <linux/swapops.h>
12 #include <linux/types.h>
13 #include <linux/wait_bit.h>
14 #include <linux/xarray.h>
15 #include "internal.h"
16 
17 static DEFINE_XARRAY(pgmap_array);
18 
19 /*
20  * The memremap() and memremap_pages() interfaces are alternately used
21  * to map persistent memory namespaces. These interfaces place different
22  * constraints on the alignment and size of the mapping (namespace).
23  * memremap() can map individual PAGE_SIZE pages. memremap_pages() can
24  * only map subsections (2MB), and at least one architecture (PowerPC)
25  * the minimum mapping granularity of memremap_pages() is 16MB.
26  *
27  * The role of memremap_compat_align() is to communicate the minimum
28  * arch supported alignment of a namespace such that it can freely
29  * switch modes without violating the arch constraint. Namely, do not
30  * allow a namespace to be PAGE_SIZE aligned since that namespace may be
31  * reconfigured into a mode that requires SUBSECTION_SIZE alignment.
32  */
33 #ifndef CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN
34 unsigned long memremap_compat_align(void)
35 {
36 	return SUBSECTION_SIZE;
37 }
38 EXPORT_SYMBOL_GPL(memremap_compat_align);
39 #endif
40 
41 #ifdef CONFIG_FS_DAX
42 DEFINE_STATIC_KEY_FALSE(devmap_managed_key);
43 EXPORT_SYMBOL(devmap_managed_key);
44 
45 static void devmap_managed_enable_put(struct dev_pagemap *pgmap)
46 {
47 	if (pgmap->type == MEMORY_DEVICE_FS_DAX)
48 		static_branch_dec(&devmap_managed_key);
49 }
50 
51 static void devmap_managed_enable_get(struct dev_pagemap *pgmap)
52 {
53 	if (pgmap->type == MEMORY_DEVICE_FS_DAX)
54 		static_branch_inc(&devmap_managed_key);
55 }
56 #else
57 static void devmap_managed_enable_get(struct dev_pagemap *pgmap)
58 {
59 }
60 static void devmap_managed_enable_put(struct dev_pagemap *pgmap)
61 {
62 }
63 #endif /* CONFIG_FS_DAX */
64 
65 static void pgmap_array_delete(struct range *range)
66 {
67 	xa_store_range(&pgmap_array, PHYS_PFN(range->start), PHYS_PFN(range->end),
68 			NULL, GFP_KERNEL);
69 	synchronize_rcu();
70 }
71 
72 static unsigned long pfn_first(struct dev_pagemap *pgmap, int range_id)
73 {
74 	struct range *range = &pgmap->ranges[range_id];
75 	unsigned long pfn = PHYS_PFN(range->start);
76 
77 	if (range_id)
78 		return pfn;
79 	return pfn + vmem_altmap_offset(pgmap_altmap(pgmap));
80 }
81 
82 bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn)
83 {
84 	int i;
85 
86 	for (i = 0; i < pgmap->nr_range; i++) {
87 		struct range *range = &pgmap->ranges[i];
88 
89 		if (pfn >= PHYS_PFN(range->start) &&
90 		    pfn <= PHYS_PFN(range->end))
91 			return pfn >= pfn_first(pgmap, i);
92 	}
93 
94 	return false;
95 }
96 
97 static unsigned long pfn_end(struct dev_pagemap *pgmap, int range_id)
98 {
99 	const struct range *range = &pgmap->ranges[range_id];
100 
101 	return (range->start + range_len(range)) >> PAGE_SHIFT;
102 }
103 
104 static unsigned long pfn_len(struct dev_pagemap *pgmap, unsigned long range_id)
105 {
106 	return (pfn_end(pgmap, range_id) -
107 		pfn_first(pgmap, range_id)) >> pgmap->vmemmap_shift;
108 }
109 
110 static void pageunmap_range(struct dev_pagemap *pgmap, int range_id)
111 {
112 	struct range *range = &pgmap->ranges[range_id];
113 	struct page *first_page;
114 
115 	/* make sure to access a memmap that was actually initialized */
116 	first_page = pfn_to_page(pfn_first(pgmap, range_id));
117 
118 	/* pages are dead and unused, undo the arch mapping */
119 	mem_hotplug_begin();
120 	remove_pfn_range_from_zone(page_zone(first_page), PHYS_PFN(range->start),
121 				   PHYS_PFN(range_len(range)));
122 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
123 		__remove_pages(PHYS_PFN(range->start),
124 			       PHYS_PFN(range_len(range)), NULL);
125 	} else {
126 		arch_remove_memory(range->start, range_len(range),
127 				pgmap_altmap(pgmap));
128 		kasan_remove_zero_shadow(__va(range->start), range_len(range));
129 	}
130 	mem_hotplug_done();
131 
132 	untrack_pfn(NULL, PHYS_PFN(range->start), range_len(range));
133 	pgmap_array_delete(range);
134 }
135 
136 void memunmap_pages(struct dev_pagemap *pgmap)
137 {
138 	int i;
139 
140 	percpu_ref_kill(&pgmap->ref);
141 	for (i = 0; i < pgmap->nr_range; i++)
142 		percpu_ref_put_many(&pgmap->ref, pfn_len(pgmap, i));
143 	wait_for_completion(&pgmap->done);
144 	percpu_ref_exit(&pgmap->ref);
145 
146 	for (i = 0; i < pgmap->nr_range; i++)
147 		pageunmap_range(pgmap, i);
148 
149 	WARN_ONCE(pgmap->altmap.alloc, "failed to free all reserved pages\n");
150 	devmap_managed_enable_put(pgmap);
151 }
152 EXPORT_SYMBOL_GPL(memunmap_pages);
153 
154 static void devm_memremap_pages_release(void *data)
155 {
156 	memunmap_pages(data);
157 }
158 
159 static void dev_pagemap_percpu_release(struct percpu_ref *ref)
160 {
161 	struct dev_pagemap *pgmap = container_of(ref, struct dev_pagemap, ref);
162 
163 	complete(&pgmap->done);
164 }
165 
166 static int pagemap_range(struct dev_pagemap *pgmap, struct mhp_params *params,
167 		int range_id, int nid)
168 {
169 	const bool is_private = pgmap->type == MEMORY_DEVICE_PRIVATE;
170 	struct range *range = &pgmap->ranges[range_id];
171 	struct dev_pagemap *conflict_pgmap;
172 	int error, is_ram;
173 
174 	if (WARN_ONCE(pgmap_altmap(pgmap) && range_id > 0,
175 				"altmap not supported for multiple ranges\n"))
176 		return -EINVAL;
177 
178 	conflict_pgmap = get_dev_pagemap(PHYS_PFN(range->start), NULL);
179 	if (conflict_pgmap) {
180 		WARN(1, "Conflicting mapping in same section\n");
181 		put_dev_pagemap(conflict_pgmap);
182 		return -ENOMEM;
183 	}
184 
185 	conflict_pgmap = get_dev_pagemap(PHYS_PFN(range->end), NULL);
186 	if (conflict_pgmap) {
187 		WARN(1, "Conflicting mapping in same section\n");
188 		put_dev_pagemap(conflict_pgmap);
189 		return -ENOMEM;
190 	}
191 
192 	is_ram = region_intersects(range->start, range_len(range),
193 		IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE);
194 
195 	if (is_ram != REGION_DISJOINT) {
196 		WARN_ONCE(1, "attempted on %s region %#llx-%#llx\n",
197 				is_ram == REGION_MIXED ? "mixed" : "ram",
198 				range->start, range->end);
199 		return -ENXIO;
200 	}
201 
202 	error = xa_err(xa_store_range(&pgmap_array, PHYS_PFN(range->start),
203 				PHYS_PFN(range->end), pgmap, GFP_KERNEL));
204 	if (error)
205 		return error;
206 
207 	if (nid < 0)
208 		nid = numa_mem_id();
209 
210 	error = track_pfn_remap(NULL, &params->pgprot, PHYS_PFN(range->start), 0,
211 			range_len(range));
212 	if (error)
213 		goto err_pfn_remap;
214 
215 	if (!mhp_range_allowed(range->start, range_len(range), !is_private)) {
216 		error = -EINVAL;
217 		goto err_pfn_remap;
218 	}
219 
220 	mem_hotplug_begin();
221 
222 	/*
223 	 * For device private memory we call add_pages() as we only need to
224 	 * allocate and initialize struct page for the device memory. More-
225 	 * over the device memory is un-accessible thus we do not want to
226 	 * create a linear mapping for the memory like arch_add_memory()
227 	 * would do.
228 	 *
229 	 * For all other device memory types, which are accessible by
230 	 * the CPU, we do want the linear mapping and thus use
231 	 * arch_add_memory().
232 	 */
233 	if (is_private) {
234 		error = add_pages(nid, PHYS_PFN(range->start),
235 				PHYS_PFN(range_len(range)), params);
236 	} else {
237 		error = kasan_add_zero_shadow(__va(range->start), range_len(range));
238 		if (error) {
239 			mem_hotplug_done();
240 			goto err_kasan;
241 		}
242 
243 		error = arch_add_memory(nid, range->start, range_len(range),
244 					params);
245 	}
246 
247 	if (!error) {
248 		struct zone *zone;
249 
250 		zone = &NODE_DATA(nid)->node_zones[ZONE_DEVICE];
251 		move_pfn_range_to_zone(zone, PHYS_PFN(range->start),
252 				PHYS_PFN(range_len(range)), params->altmap,
253 				MIGRATE_MOVABLE);
254 	}
255 
256 	mem_hotplug_done();
257 	if (error)
258 		goto err_add_memory;
259 
260 	/*
261 	 * Initialization of the pages has been deferred until now in order
262 	 * to allow us to do the work while not holding the hotplug lock.
263 	 */
264 	memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
265 				PHYS_PFN(range->start),
266 				PHYS_PFN(range_len(range)), pgmap);
267 	percpu_ref_get_many(&pgmap->ref, pfn_len(pgmap, range_id));
268 	return 0;
269 
270 err_add_memory:
271 	if (!is_private)
272 		kasan_remove_zero_shadow(__va(range->start), range_len(range));
273 err_kasan:
274 	untrack_pfn(NULL, PHYS_PFN(range->start), range_len(range));
275 err_pfn_remap:
276 	pgmap_array_delete(range);
277 	return error;
278 }
279 
280 
281 /*
282  * Not device managed version of dev_memremap_pages, undone by
283  * memunmap_pages().  Please use dev_memremap_pages if you have a struct
284  * device available.
285  */
286 void *memremap_pages(struct dev_pagemap *pgmap, int nid)
287 {
288 	struct mhp_params params = {
289 		.altmap = pgmap_altmap(pgmap),
290 		.pgprot = PAGE_KERNEL,
291 	};
292 	const int nr_range = pgmap->nr_range;
293 	int error, i;
294 
295 	if (WARN_ONCE(!nr_range, "nr_range must be specified\n"))
296 		return ERR_PTR(-EINVAL);
297 
298 	switch (pgmap->type) {
299 	case MEMORY_DEVICE_PRIVATE:
300 		if (!IS_ENABLED(CONFIG_DEVICE_PRIVATE)) {
301 			WARN(1, "Device private memory not supported\n");
302 			return ERR_PTR(-EINVAL);
303 		}
304 		if (!pgmap->ops || !pgmap->ops->migrate_to_ram) {
305 			WARN(1, "Missing migrate_to_ram method\n");
306 			return ERR_PTR(-EINVAL);
307 		}
308 		if (!pgmap->ops->page_free) {
309 			WARN(1, "Missing page_free method\n");
310 			return ERR_PTR(-EINVAL);
311 		}
312 		if (!pgmap->owner) {
313 			WARN(1, "Missing owner\n");
314 			return ERR_PTR(-EINVAL);
315 		}
316 		break;
317 	case MEMORY_DEVICE_FS_DAX:
318 		if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) {
319 			WARN(1, "File system DAX not supported\n");
320 			return ERR_PTR(-EINVAL);
321 		}
322 		break;
323 	case MEMORY_DEVICE_GENERIC:
324 		break;
325 	case MEMORY_DEVICE_PCI_P2PDMA:
326 		params.pgprot = pgprot_noncached(params.pgprot);
327 		break;
328 	default:
329 		WARN(1, "Invalid pgmap type %d\n", pgmap->type);
330 		break;
331 	}
332 
333 	init_completion(&pgmap->done);
334 	error = percpu_ref_init(&pgmap->ref, dev_pagemap_percpu_release, 0,
335 				GFP_KERNEL);
336 	if (error)
337 		return ERR_PTR(error);
338 
339 	devmap_managed_enable_get(pgmap);
340 
341 	/*
342 	 * Clear the pgmap nr_range as it will be incremented for each
343 	 * successfully processed range. This communicates how many
344 	 * regions to unwind in the abort case.
345 	 */
346 	pgmap->nr_range = 0;
347 	error = 0;
348 	for (i = 0; i < nr_range; i++) {
349 		error = pagemap_range(pgmap, &params, i, nid);
350 		if (error)
351 			break;
352 		pgmap->nr_range++;
353 	}
354 
355 	if (i < nr_range) {
356 		memunmap_pages(pgmap);
357 		pgmap->nr_range = nr_range;
358 		return ERR_PTR(error);
359 	}
360 
361 	return __va(pgmap->ranges[0].start);
362 }
363 EXPORT_SYMBOL_GPL(memremap_pages);
364 
365 /**
366  * devm_memremap_pages - remap and provide memmap backing for the given resource
367  * @dev: hosting device for @res
368  * @pgmap: pointer to a struct dev_pagemap
369  *
370  * Notes:
371  * 1/ At a minimum the res and type members of @pgmap must be initialized
372  *    by the caller before passing it to this function
373  *
374  * 2/ The altmap field may optionally be initialized, in which case
375  *    PGMAP_ALTMAP_VALID must be set in pgmap->flags.
376  *
377  * 3/ The ref field may optionally be provided, in which pgmap->ref must be
378  *    'live' on entry and will be killed and reaped at
379  *    devm_memremap_pages_release() time, or if this routine fails.
380  *
381  * 4/ range is expected to be a host memory range that could feasibly be
382  *    treated as a "System RAM" range, i.e. not a device mmio range, but
383  *    this is not enforced.
384  */
385 void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap)
386 {
387 	int error;
388 	void *ret;
389 
390 	ret = memremap_pages(pgmap, dev_to_node(dev));
391 	if (IS_ERR(ret))
392 		return ret;
393 
394 	error = devm_add_action_or_reset(dev, devm_memremap_pages_release,
395 			pgmap);
396 	if (error)
397 		return ERR_PTR(error);
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(devm_memremap_pages);
401 
402 void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap)
403 {
404 	devm_release_action(dev, devm_memremap_pages_release, pgmap);
405 }
406 EXPORT_SYMBOL_GPL(devm_memunmap_pages);
407 
408 unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
409 {
410 	/* number of pfns from base where pfn_to_page() is valid */
411 	if (altmap)
412 		return altmap->reserve + altmap->free;
413 	return 0;
414 }
415 
416 void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns)
417 {
418 	altmap->alloc -= nr_pfns;
419 }
420 
421 /**
422  * get_dev_pagemap() - take a new live reference on the dev_pagemap for @pfn
423  * @pfn: page frame number to lookup page_map
424  * @pgmap: optional known pgmap that already has a reference
425  *
426  * If @pgmap is non-NULL and covers @pfn it will be returned as-is.  If @pgmap
427  * is non-NULL but does not cover @pfn the reference to it will be released.
428  */
429 struct dev_pagemap *get_dev_pagemap(unsigned long pfn,
430 		struct dev_pagemap *pgmap)
431 {
432 	resource_size_t phys = PFN_PHYS(pfn);
433 
434 	/*
435 	 * In the cached case we're already holding a live reference.
436 	 */
437 	if (pgmap) {
438 		if (phys >= pgmap->range.start && phys <= pgmap->range.end)
439 			return pgmap;
440 		put_dev_pagemap(pgmap);
441 	}
442 
443 	/* fall back to slow path lookup */
444 	rcu_read_lock();
445 	pgmap = xa_load(&pgmap_array, PHYS_PFN(phys));
446 	if (pgmap && !percpu_ref_tryget_live(&pgmap->ref))
447 		pgmap = NULL;
448 	rcu_read_unlock();
449 
450 	return pgmap;
451 }
452 EXPORT_SYMBOL_GPL(get_dev_pagemap);
453 
454 void free_zone_device_page(struct page *page)
455 {
456 	if (WARN_ON_ONCE(!page->pgmap->ops || !page->pgmap->ops->page_free))
457 		return;
458 
459 	mem_cgroup_uncharge(page_folio(page));
460 
461 	/*
462 	 * When a device managed page is freed, the page->mapping field
463 	 * may still contain a (stale) mapping value. For example, the
464 	 * lower bits of page->mapping may still identify the page as an
465 	 * anonymous page. Ultimately, this entire field is just stale
466 	 * and wrong, and it will cause errors if not cleared.  One
467 	 * example is:
468 	 *
469 	 *  migrate_vma_pages()
470 	 *    migrate_vma_insert_page()
471 	 *      page_add_new_anon_rmap()
472 	 *        __page_set_anon_rmap()
473 	 *          ...checks page->mapping, via PageAnon(page) call,
474 	 *            and incorrectly concludes that the page is an
475 	 *            anonymous page. Therefore, it incorrectly,
476 	 *            silently fails to set up the new anon rmap.
477 	 *
478 	 * For other types of ZONE_DEVICE pages, migration is either
479 	 * handled differently or not done at all, so there is no need
480 	 * to clear page->mapping.
481 	 */
482 	page->mapping = NULL;
483 	page->pgmap->ops->page_free(page);
484 
485 	/*
486 	 * Reset the page count to 1 to prepare for handing out the page again.
487 	 */
488 	set_page_count(page, 1);
489 }
490 
491 #ifdef CONFIG_FS_DAX
492 bool __put_devmap_managed_page(struct page *page)
493 {
494 	if (page->pgmap->type != MEMORY_DEVICE_FS_DAX)
495 		return false;
496 
497 	/*
498 	 * fsdax page refcounts are 1-based, rather than 0-based: if
499 	 * refcount is 1, then the page is free and the refcount is
500 	 * stable because nobody holds a reference on the page.
501 	 */
502 	if (page_ref_dec_return(page) == 1)
503 		wake_up_var(&page->_refcount);
504 	return true;
505 }
506 EXPORT_SYMBOL(__put_devmap_managed_page);
507 #endif /* CONFIG_FS_DAX */
508