xref: /linux/mm/memremap.c (revision 4bb1eb3cd4bd6241d5e5f99bbfd801ea5a007b6c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 2015 Intel Corporation. All rights reserved. */
3 #include <linux/device.h>
4 #include <linux/io.h>
5 #include <linux/kasan.h>
6 #include <linux/memory_hotplug.h>
7 #include <linux/mm.h>
8 #include <linux/pfn_t.h>
9 #include <linux/swap.h>
10 #include <linux/mmzone.h>
11 #include <linux/swapops.h>
12 #include <linux/types.h>
13 #include <linux/wait_bit.h>
14 #include <linux/xarray.h>
15 
16 static DEFINE_XARRAY(pgmap_array);
17 
18 /*
19  * The memremap() and memremap_pages() interfaces are alternately used
20  * to map persistent memory namespaces. These interfaces place different
21  * constraints on the alignment and size of the mapping (namespace).
22  * memremap() can map individual PAGE_SIZE pages. memremap_pages() can
23  * only map subsections (2MB), and at least one architecture (PowerPC)
24  * the minimum mapping granularity of memremap_pages() is 16MB.
25  *
26  * The role of memremap_compat_align() is to communicate the minimum
27  * arch supported alignment of a namespace such that it can freely
28  * switch modes without violating the arch constraint. Namely, do not
29  * allow a namespace to be PAGE_SIZE aligned since that namespace may be
30  * reconfigured into a mode that requires SUBSECTION_SIZE alignment.
31  */
32 #ifndef CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN
33 unsigned long memremap_compat_align(void)
34 {
35 	return SUBSECTION_SIZE;
36 }
37 EXPORT_SYMBOL_GPL(memremap_compat_align);
38 #endif
39 
40 #ifdef CONFIG_DEV_PAGEMAP_OPS
41 DEFINE_STATIC_KEY_FALSE(devmap_managed_key);
42 EXPORT_SYMBOL(devmap_managed_key);
43 static atomic_t devmap_managed_enable;
44 
45 static void devmap_managed_enable_put(void)
46 {
47 	if (atomic_dec_and_test(&devmap_managed_enable))
48 		static_branch_disable(&devmap_managed_key);
49 }
50 
51 static int devmap_managed_enable_get(struct dev_pagemap *pgmap)
52 {
53 	if (pgmap->type == MEMORY_DEVICE_PRIVATE &&
54 	    (!pgmap->ops || !pgmap->ops->page_free)) {
55 		WARN(1, "Missing page_free method\n");
56 		return -EINVAL;
57 	}
58 
59 	if (atomic_inc_return(&devmap_managed_enable) == 1)
60 		static_branch_enable(&devmap_managed_key);
61 	return 0;
62 }
63 #else
64 static int devmap_managed_enable_get(struct dev_pagemap *pgmap)
65 {
66 	return -EINVAL;
67 }
68 static void devmap_managed_enable_put(void)
69 {
70 }
71 #endif /* CONFIG_DEV_PAGEMAP_OPS */
72 
73 static void pgmap_array_delete(struct resource *res)
74 {
75 	xa_store_range(&pgmap_array, PHYS_PFN(res->start), PHYS_PFN(res->end),
76 			NULL, GFP_KERNEL);
77 	synchronize_rcu();
78 }
79 
80 static unsigned long pfn_first(struct dev_pagemap *pgmap)
81 {
82 	return PHYS_PFN(pgmap->res.start) +
83 		vmem_altmap_offset(pgmap_altmap(pgmap));
84 }
85 
86 static unsigned long pfn_end(struct dev_pagemap *pgmap)
87 {
88 	const struct resource *res = &pgmap->res;
89 
90 	return (res->start + resource_size(res)) >> PAGE_SHIFT;
91 }
92 
93 static unsigned long pfn_next(unsigned long pfn)
94 {
95 	if (pfn % 1024 == 0)
96 		cond_resched();
97 	return pfn + 1;
98 }
99 
100 #define for_each_device_pfn(pfn, map) \
101 	for (pfn = pfn_first(map); pfn < pfn_end(map); pfn = pfn_next(pfn))
102 
103 static void dev_pagemap_kill(struct dev_pagemap *pgmap)
104 {
105 	if (pgmap->ops && pgmap->ops->kill)
106 		pgmap->ops->kill(pgmap);
107 	else
108 		percpu_ref_kill(pgmap->ref);
109 }
110 
111 static void dev_pagemap_cleanup(struct dev_pagemap *pgmap)
112 {
113 	if (pgmap->ops && pgmap->ops->cleanup) {
114 		pgmap->ops->cleanup(pgmap);
115 	} else {
116 		wait_for_completion(&pgmap->done);
117 		percpu_ref_exit(pgmap->ref);
118 	}
119 	/*
120 	 * Undo the pgmap ref assignment for the internal case as the
121 	 * caller may re-enable the same pgmap.
122 	 */
123 	if (pgmap->ref == &pgmap->internal_ref)
124 		pgmap->ref = NULL;
125 }
126 
127 void memunmap_pages(struct dev_pagemap *pgmap)
128 {
129 	struct resource *res = &pgmap->res;
130 	struct page *first_page;
131 	unsigned long pfn;
132 	int nid;
133 
134 	dev_pagemap_kill(pgmap);
135 	for_each_device_pfn(pfn, pgmap)
136 		put_page(pfn_to_page(pfn));
137 	dev_pagemap_cleanup(pgmap);
138 
139 	/* make sure to access a memmap that was actually initialized */
140 	first_page = pfn_to_page(pfn_first(pgmap));
141 
142 	/* pages are dead and unused, undo the arch mapping */
143 	nid = page_to_nid(first_page);
144 
145 	mem_hotplug_begin();
146 	remove_pfn_range_from_zone(page_zone(first_page), PHYS_PFN(res->start),
147 				   PHYS_PFN(resource_size(res)));
148 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
149 		__remove_pages(PHYS_PFN(res->start),
150 			       PHYS_PFN(resource_size(res)), NULL);
151 	} else {
152 		arch_remove_memory(nid, res->start, resource_size(res),
153 				pgmap_altmap(pgmap));
154 		kasan_remove_zero_shadow(__va(res->start), resource_size(res));
155 	}
156 	mem_hotplug_done();
157 
158 	untrack_pfn(NULL, PHYS_PFN(res->start), resource_size(res));
159 	pgmap_array_delete(res);
160 	WARN_ONCE(pgmap->altmap.alloc, "failed to free all reserved pages\n");
161 	devmap_managed_enable_put();
162 }
163 EXPORT_SYMBOL_GPL(memunmap_pages);
164 
165 static void devm_memremap_pages_release(void *data)
166 {
167 	memunmap_pages(data);
168 }
169 
170 static void dev_pagemap_percpu_release(struct percpu_ref *ref)
171 {
172 	struct dev_pagemap *pgmap =
173 		container_of(ref, struct dev_pagemap, internal_ref);
174 
175 	complete(&pgmap->done);
176 }
177 
178 /*
179  * Not device managed version of dev_memremap_pages, undone by
180  * memunmap_pages().  Please use dev_memremap_pages if you have a struct
181  * device available.
182  */
183 void *memremap_pages(struct dev_pagemap *pgmap, int nid)
184 {
185 	struct resource *res = &pgmap->res;
186 	struct dev_pagemap *conflict_pgmap;
187 	struct mhp_params params = {
188 		/*
189 		 * We do not want any optional features only our own memmap
190 		 */
191 		.altmap = pgmap_altmap(pgmap),
192 		.pgprot = PAGE_KERNEL,
193 	};
194 	int error, is_ram;
195 	bool need_devmap_managed = true;
196 
197 	switch (pgmap->type) {
198 	case MEMORY_DEVICE_PRIVATE:
199 		if (!IS_ENABLED(CONFIG_DEVICE_PRIVATE)) {
200 			WARN(1, "Device private memory not supported\n");
201 			return ERR_PTR(-EINVAL);
202 		}
203 		if (!pgmap->ops || !pgmap->ops->migrate_to_ram) {
204 			WARN(1, "Missing migrate_to_ram method\n");
205 			return ERR_PTR(-EINVAL);
206 		}
207 		if (!pgmap->owner) {
208 			WARN(1, "Missing owner\n");
209 			return ERR_PTR(-EINVAL);
210 		}
211 		break;
212 	case MEMORY_DEVICE_FS_DAX:
213 		if (!IS_ENABLED(CONFIG_ZONE_DEVICE) ||
214 		    IS_ENABLED(CONFIG_FS_DAX_LIMITED)) {
215 			WARN(1, "File system DAX not supported\n");
216 			return ERR_PTR(-EINVAL);
217 		}
218 		break;
219 	case MEMORY_DEVICE_DEVDAX:
220 		need_devmap_managed = false;
221 		break;
222 	case MEMORY_DEVICE_PCI_P2PDMA:
223 		params.pgprot = pgprot_noncached(params.pgprot);
224 		need_devmap_managed = false;
225 		break;
226 	default:
227 		WARN(1, "Invalid pgmap type %d\n", pgmap->type);
228 		break;
229 	}
230 
231 	if (!pgmap->ref) {
232 		if (pgmap->ops && (pgmap->ops->kill || pgmap->ops->cleanup))
233 			return ERR_PTR(-EINVAL);
234 
235 		init_completion(&pgmap->done);
236 		error = percpu_ref_init(&pgmap->internal_ref,
237 				dev_pagemap_percpu_release, 0, GFP_KERNEL);
238 		if (error)
239 			return ERR_PTR(error);
240 		pgmap->ref = &pgmap->internal_ref;
241 	} else {
242 		if (!pgmap->ops || !pgmap->ops->kill || !pgmap->ops->cleanup) {
243 			WARN(1, "Missing reference count teardown definition\n");
244 			return ERR_PTR(-EINVAL);
245 		}
246 	}
247 
248 	if (need_devmap_managed) {
249 		error = devmap_managed_enable_get(pgmap);
250 		if (error)
251 			return ERR_PTR(error);
252 	}
253 
254 	conflict_pgmap = get_dev_pagemap(PHYS_PFN(res->start), NULL);
255 	if (conflict_pgmap) {
256 		WARN(1, "Conflicting mapping in same section\n");
257 		put_dev_pagemap(conflict_pgmap);
258 		error = -ENOMEM;
259 		goto err_array;
260 	}
261 
262 	conflict_pgmap = get_dev_pagemap(PHYS_PFN(res->end), NULL);
263 	if (conflict_pgmap) {
264 		WARN(1, "Conflicting mapping in same section\n");
265 		put_dev_pagemap(conflict_pgmap);
266 		error = -ENOMEM;
267 		goto err_array;
268 	}
269 
270 	is_ram = region_intersects(res->start, resource_size(res),
271 		IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE);
272 
273 	if (is_ram != REGION_DISJOINT) {
274 		WARN_ONCE(1, "%s attempted on %s region %pr\n", __func__,
275 				is_ram == REGION_MIXED ? "mixed" : "ram", res);
276 		error = -ENXIO;
277 		goto err_array;
278 	}
279 
280 	error = xa_err(xa_store_range(&pgmap_array, PHYS_PFN(res->start),
281 				PHYS_PFN(res->end), pgmap, GFP_KERNEL));
282 	if (error)
283 		goto err_array;
284 
285 	if (nid < 0)
286 		nid = numa_mem_id();
287 
288 	error = track_pfn_remap(NULL, &params.pgprot, PHYS_PFN(res->start),
289 				0, resource_size(res));
290 	if (error)
291 		goto err_pfn_remap;
292 
293 	mem_hotplug_begin();
294 
295 	/*
296 	 * For device private memory we call add_pages() as we only need to
297 	 * allocate and initialize struct page for the device memory. More-
298 	 * over the device memory is un-accessible thus we do not want to
299 	 * create a linear mapping for the memory like arch_add_memory()
300 	 * would do.
301 	 *
302 	 * For all other device memory types, which are accessible by
303 	 * the CPU, we do want the linear mapping and thus use
304 	 * arch_add_memory().
305 	 */
306 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
307 		error = add_pages(nid, PHYS_PFN(res->start),
308 				PHYS_PFN(resource_size(res)), &params);
309 	} else {
310 		error = kasan_add_zero_shadow(__va(res->start), resource_size(res));
311 		if (error) {
312 			mem_hotplug_done();
313 			goto err_kasan;
314 		}
315 
316 		error = arch_add_memory(nid, res->start, resource_size(res),
317 					&params);
318 	}
319 
320 	if (!error) {
321 		struct zone *zone;
322 
323 		zone = &NODE_DATA(nid)->node_zones[ZONE_DEVICE];
324 		move_pfn_range_to_zone(zone, PHYS_PFN(res->start),
325 				PHYS_PFN(resource_size(res)), params.altmap);
326 	}
327 
328 	mem_hotplug_done();
329 	if (error)
330 		goto err_add_memory;
331 
332 	/*
333 	 * Initialization of the pages has been deferred until now in order
334 	 * to allow us to do the work while not holding the hotplug lock.
335 	 */
336 	memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
337 				PHYS_PFN(res->start),
338 				PHYS_PFN(resource_size(res)), pgmap);
339 	percpu_ref_get_many(pgmap->ref, pfn_end(pgmap) - pfn_first(pgmap));
340 	return __va(res->start);
341 
342  err_add_memory:
343 	kasan_remove_zero_shadow(__va(res->start), resource_size(res));
344  err_kasan:
345 	untrack_pfn(NULL, PHYS_PFN(res->start), resource_size(res));
346  err_pfn_remap:
347 	pgmap_array_delete(res);
348  err_array:
349 	dev_pagemap_kill(pgmap);
350 	dev_pagemap_cleanup(pgmap);
351 	devmap_managed_enable_put();
352 	return ERR_PTR(error);
353 }
354 EXPORT_SYMBOL_GPL(memremap_pages);
355 
356 /**
357  * devm_memremap_pages - remap and provide memmap backing for the given resource
358  * @dev: hosting device for @res
359  * @pgmap: pointer to a struct dev_pagemap
360  *
361  * Notes:
362  * 1/ At a minimum the res and type members of @pgmap must be initialized
363  *    by the caller before passing it to this function
364  *
365  * 2/ The altmap field may optionally be initialized, in which case
366  *    PGMAP_ALTMAP_VALID must be set in pgmap->flags.
367  *
368  * 3/ The ref field may optionally be provided, in which pgmap->ref must be
369  *    'live' on entry and will be killed and reaped at
370  *    devm_memremap_pages_release() time, or if this routine fails.
371  *
372  * 4/ res is expected to be a host memory range that could feasibly be
373  *    treated as a "System RAM" range, i.e. not a device mmio range, but
374  *    this is not enforced.
375  */
376 void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap)
377 {
378 	int error;
379 	void *ret;
380 
381 	ret = memremap_pages(pgmap, dev_to_node(dev));
382 	if (IS_ERR(ret))
383 		return ret;
384 
385 	error = devm_add_action_or_reset(dev, devm_memremap_pages_release,
386 			pgmap);
387 	if (error)
388 		return ERR_PTR(error);
389 	return ret;
390 }
391 EXPORT_SYMBOL_GPL(devm_memremap_pages);
392 
393 void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap)
394 {
395 	devm_release_action(dev, devm_memremap_pages_release, pgmap);
396 }
397 EXPORT_SYMBOL_GPL(devm_memunmap_pages);
398 
399 unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
400 {
401 	/* number of pfns from base where pfn_to_page() is valid */
402 	if (altmap)
403 		return altmap->reserve + altmap->free;
404 	return 0;
405 }
406 
407 void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns)
408 {
409 	altmap->alloc -= nr_pfns;
410 }
411 
412 /**
413  * get_dev_pagemap() - take a new live reference on the dev_pagemap for @pfn
414  * @pfn: page frame number to lookup page_map
415  * @pgmap: optional known pgmap that already has a reference
416  *
417  * If @pgmap is non-NULL and covers @pfn it will be returned as-is.  If @pgmap
418  * is non-NULL but does not cover @pfn the reference to it will be released.
419  */
420 struct dev_pagemap *get_dev_pagemap(unsigned long pfn,
421 		struct dev_pagemap *pgmap)
422 {
423 	resource_size_t phys = PFN_PHYS(pfn);
424 
425 	/*
426 	 * In the cached case we're already holding a live reference.
427 	 */
428 	if (pgmap) {
429 		if (phys >= pgmap->res.start && phys <= pgmap->res.end)
430 			return pgmap;
431 		put_dev_pagemap(pgmap);
432 	}
433 
434 	/* fall back to slow path lookup */
435 	rcu_read_lock();
436 	pgmap = xa_load(&pgmap_array, PHYS_PFN(phys));
437 	if (pgmap && !percpu_ref_tryget_live(pgmap->ref))
438 		pgmap = NULL;
439 	rcu_read_unlock();
440 
441 	return pgmap;
442 }
443 EXPORT_SYMBOL_GPL(get_dev_pagemap);
444 
445 #ifdef CONFIG_DEV_PAGEMAP_OPS
446 void free_devmap_managed_page(struct page *page)
447 {
448 	/* notify page idle for dax */
449 	if (!is_device_private_page(page)) {
450 		wake_up_var(&page->_refcount);
451 		return;
452 	}
453 
454 	/* Clear Active bit in case of parallel mark_page_accessed */
455 	__ClearPageActive(page);
456 	__ClearPageWaiters(page);
457 
458 	mem_cgroup_uncharge(page);
459 
460 	/*
461 	 * When a device_private page is freed, the page->mapping field
462 	 * may still contain a (stale) mapping value. For example, the
463 	 * lower bits of page->mapping may still identify the page as an
464 	 * anonymous page. Ultimately, this entire field is just stale
465 	 * and wrong, and it will cause errors if not cleared.  One
466 	 * example is:
467 	 *
468 	 *  migrate_vma_pages()
469 	 *    migrate_vma_insert_page()
470 	 *      page_add_new_anon_rmap()
471 	 *        __page_set_anon_rmap()
472 	 *          ...checks page->mapping, via PageAnon(page) call,
473 	 *            and incorrectly concludes that the page is an
474 	 *            anonymous page. Therefore, it incorrectly,
475 	 *            silently fails to set up the new anon rmap.
476 	 *
477 	 * For other types of ZONE_DEVICE pages, migration is either
478 	 * handled differently or not done at all, so there is no need
479 	 * to clear page->mapping.
480 	 */
481 	page->mapping = NULL;
482 	page->pgmap->ops->page_free(page);
483 }
484 #endif /* CONFIG_DEV_PAGEMAP_OPS */
485