1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * memory buffer pool support. Such pools are mostly used 4 * for guaranteed, deadlock-free memory allocations during 5 * extreme VM load. 6 * 7 * started by Ingo Molnar, Copyright (C) 2001 8 * debugging by David Rientjes, Copyright (C) 2015 9 */ 10 #include <linux/fault-inject.h> 11 #include <linux/mm.h> 12 #include <linux/slab.h> 13 #include <linux/highmem.h> 14 #include <linux/kasan.h> 15 #include <linux/kmemleak.h> 16 #include <linux/export.h> 17 #include <linux/mempool.h> 18 #include <linux/writeback.h> 19 #include "slab.h" 20 21 static DECLARE_FAULT_ATTR(fail_mempool_alloc); 22 static DECLARE_FAULT_ATTR(fail_mempool_alloc_bulk); 23 24 static int __init mempool_faul_inject_init(void) 25 { 26 int error; 27 28 error = PTR_ERR_OR_ZERO(fault_create_debugfs_attr("fail_mempool_alloc", 29 NULL, &fail_mempool_alloc)); 30 if (error) 31 return error; 32 33 /* booting will fail on error return here, don't bother to cleanup */ 34 return PTR_ERR_OR_ZERO( 35 fault_create_debugfs_attr("fail_mempool_alloc_bulk", NULL, 36 &fail_mempool_alloc_bulk)); 37 } 38 late_initcall(mempool_faul_inject_init); 39 40 #ifdef CONFIG_SLUB_DEBUG_ON 41 static void poison_error(struct mempool *pool, void *element, size_t size, 42 size_t byte) 43 { 44 const int nr = pool->curr_nr; 45 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); 46 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); 47 int i; 48 49 pr_err("BUG: mempool element poison mismatch\n"); 50 pr_err("Mempool %p size %zu\n", pool, size); 51 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); 52 for (i = start; i < end; i++) 53 pr_cont("%x ", *(u8 *)(element + i)); 54 pr_cont("%s\n", end < size ? "..." : ""); 55 dump_stack(); 56 } 57 58 static void __check_element(struct mempool *pool, void *element, size_t size) 59 { 60 u8 *obj = element; 61 size_t i; 62 63 for (i = 0; i < size; i++) { 64 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; 65 66 if (obj[i] != exp) { 67 poison_error(pool, element, size, i); 68 return; 69 } 70 } 71 memset(obj, POISON_INUSE, size); 72 } 73 74 static void check_element(struct mempool *pool, void *element) 75 { 76 /* Skip checking: KASAN might save its metadata in the element. */ 77 if (kasan_enabled()) 78 return; 79 80 /* Mempools backed by slab allocator */ 81 if (pool->free == mempool_kfree) { 82 __check_element(pool, element, (size_t)pool->pool_data); 83 } else if (pool->free == mempool_free_slab) { 84 __check_element(pool, element, kmem_cache_size(pool->pool_data)); 85 } else if (pool->free == mempool_free_pages) { 86 /* Mempools backed by page allocator */ 87 int order = (int)(long)pool->pool_data; 88 89 #ifdef CONFIG_HIGHMEM 90 for (int i = 0; i < (1 << order); i++) { 91 struct page *page = (struct page *)element; 92 void *addr = kmap_local_page(page + i); 93 94 __check_element(pool, addr, PAGE_SIZE); 95 kunmap_local(addr); 96 } 97 #else 98 void *addr = page_address((struct page *)element); 99 100 __check_element(pool, addr, PAGE_SIZE << order); 101 #endif 102 } 103 } 104 105 static void __poison_element(void *element, size_t size) 106 { 107 u8 *obj = element; 108 109 memset(obj, POISON_FREE, size - 1); 110 obj[size - 1] = POISON_END; 111 } 112 113 static void poison_element(struct mempool *pool, void *element) 114 { 115 /* Skip poisoning: KASAN might save its metadata in the element. */ 116 if (kasan_enabled()) 117 return; 118 119 /* Mempools backed by slab allocator */ 120 if (pool->alloc == mempool_kmalloc) { 121 __poison_element(element, (size_t)pool->pool_data); 122 } else if (pool->alloc == mempool_alloc_slab) { 123 __poison_element(element, kmem_cache_size(pool->pool_data)); 124 } else if (pool->alloc == mempool_alloc_pages) { 125 /* Mempools backed by page allocator */ 126 int order = (int)(long)pool->pool_data; 127 128 #ifdef CONFIG_HIGHMEM 129 for (int i = 0; i < (1 << order); i++) { 130 struct page *page = (struct page *)element; 131 void *addr = kmap_local_page(page + i); 132 133 __poison_element(addr, PAGE_SIZE); 134 kunmap_local(addr); 135 } 136 #else 137 void *addr = page_address((struct page *)element); 138 139 __poison_element(addr, PAGE_SIZE << order); 140 #endif 141 } 142 } 143 #else /* CONFIG_SLUB_DEBUG_ON */ 144 static inline void check_element(struct mempool *pool, void *element) 145 { 146 } 147 static inline void poison_element(struct mempool *pool, void *element) 148 { 149 } 150 #endif /* CONFIG_SLUB_DEBUG_ON */ 151 152 static __always_inline bool kasan_poison_element(struct mempool *pool, 153 void *element) 154 { 155 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 156 return kasan_mempool_poison_object(element); 157 else if (pool->alloc == mempool_alloc_pages) 158 return kasan_mempool_poison_pages(element, 159 (unsigned long)pool->pool_data); 160 return true; 161 } 162 163 static void kasan_unpoison_element(struct mempool *pool, void *element) 164 { 165 if (pool->alloc == mempool_kmalloc) 166 kasan_mempool_unpoison_object(element, (size_t)pool->pool_data); 167 else if (pool->alloc == mempool_alloc_slab) 168 kasan_mempool_unpoison_object(element, 169 kmem_cache_size(pool->pool_data)); 170 else if (pool->alloc == mempool_alloc_pages) 171 kasan_mempool_unpoison_pages(element, 172 (unsigned long)pool->pool_data); 173 } 174 175 static __always_inline void add_element(struct mempool *pool, void *element) 176 { 177 BUG_ON(pool->min_nr != 0 && pool->curr_nr >= pool->min_nr); 178 poison_element(pool, element); 179 if (kasan_poison_element(pool, element)) 180 pool->elements[pool->curr_nr++] = element; 181 } 182 183 static void *remove_element(struct mempool *pool) 184 { 185 void *element = pool->elements[--pool->curr_nr]; 186 187 BUG_ON(pool->curr_nr < 0); 188 kasan_unpoison_element(pool, element); 189 check_element(pool, element); 190 return element; 191 } 192 193 /** 194 * mempool_exit - exit a mempool initialized with mempool_init() 195 * @pool: pointer to the memory pool which was initialized with 196 * mempool_init(). 197 * 198 * Free all reserved elements in @pool and @pool itself. This function 199 * only sleeps if the free_fn() function sleeps. 200 * 201 * May be called on a zeroed but uninitialized mempool (i.e. allocated with 202 * kzalloc()). 203 */ 204 void mempool_exit(struct mempool *pool) 205 { 206 while (pool->curr_nr) { 207 void *element = remove_element(pool); 208 pool->free(element, pool->pool_data); 209 } 210 kfree(pool->elements); 211 pool->elements = NULL; 212 } 213 EXPORT_SYMBOL(mempool_exit); 214 215 /** 216 * mempool_destroy - deallocate a memory pool 217 * @pool: pointer to the memory pool which was allocated via 218 * mempool_create(). 219 * 220 * Free all reserved elements in @pool and @pool itself. This function 221 * only sleeps if the free_fn() function sleeps. 222 */ 223 void mempool_destroy(struct mempool *pool) 224 { 225 if (unlikely(!pool)) 226 return; 227 228 mempool_exit(pool); 229 kfree(pool); 230 } 231 EXPORT_SYMBOL(mempool_destroy); 232 233 int mempool_init_node(struct mempool *pool, int min_nr, 234 mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, 235 void *pool_data, gfp_t gfp_mask, int node_id) 236 { 237 spin_lock_init(&pool->lock); 238 pool->min_nr = min_nr; 239 pool->pool_data = pool_data; 240 pool->alloc = alloc_fn; 241 pool->free = free_fn; 242 init_waitqueue_head(&pool->wait); 243 /* 244 * max() used here to ensure storage for at least 1 element to support 245 * zero minimum pool 246 */ 247 pool->elements = kmalloc_array_node(max(1, min_nr), sizeof(void *), 248 gfp_mask, node_id); 249 if (!pool->elements) 250 return -ENOMEM; 251 252 /* 253 * First pre-allocate the guaranteed number of buffers, 254 * also pre-allocate 1 element for zero minimum pool. 255 */ 256 while (pool->curr_nr < max(1, pool->min_nr)) { 257 void *element; 258 259 element = pool->alloc(gfp_mask, pool->pool_data); 260 if (unlikely(!element)) { 261 mempool_exit(pool); 262 return -ENOMEM; 263 } 264 add_element(pool, element); 265 } 266 267 return 0; 268 } 269 EXPORT_SYMBOL(mempool_init_node); 270 271 /** 272 * mempool_init - initialize a memory pool 273 * @pool: pointer to the memory pool that should be initialized 274 * @min_nr: the minimum number of elements guaranteed to be 275 * allocated for this pool. 276 * @alloc_fn: user-defined element-allocation function. 277 * @free_fn: user-defined element-freeing function. 278 * @pool_data: optional private data available to the user-defined functions. 279 * 280 * Like mempool_create(), but initializes the pool in (i.e. embedded in another 281 * structure). 282 * 283 * Return: %0 on success, negative error code otherwise. 284 */ 285 int mempool_init_noprof(struct mempool *pool, int min_nr, 286 mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, 287 void *pool_data) 288 { 289 return mempool_init_node(pool, min_nr, alloc_fn, free_fn, 290 pool_data, GFP_KERNEL, NUMA_NO_NODE); 291 292 } 293 EXPORT_SYMBOL(mempool_init_noprof); 294 295 /** 296 * mempool_create_node - create a memory pool 297 * @min_nr: the minimum number of elements guaranteed to be 298 * allocated for this pool. 299 * @alloc_fn: user-defined element-allocation function. 300 * @free_fn: user-defined element-freeing function. 301 * @pool_data: optional private data available to the user-defined functions. 302 * @gfp_mask: memory allocation flags 303 * @node_id: numa node to allocate on 304 * 305 * this function creates and allocates a guaranteed size, preallocated 306 * memory pool. The pool can be used from the mempool_alloc() and mempool_free() 307 * functions. This function might sleep. Both the alloc_fn() and the free_fn() 308 * functions might sleep - as long as the mempool_alloc() function is not called 309 * from IRQ contexts. 310 * 311 * Return: pointer to the created memory pool object or %NULL on error. 312 */ 313 struct mempool *mempool_create_node_noprof(int min_nr, 314 mempool_alloc_t *alloc_fn, mempool_free_t *free_fn, 315 void *pool_data, gfp_t gfp_mask, int node_id) 316 { 317 struct mempool *pool; 318 319 pool = kmalloc_node_noprof(sizeof(*pool), gfp_mask | __GFP_ZERO, node_id); 320 if (!pool) 321 return NULL; 322 323 if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data, 324 gfp_mask, node_id)) { 325 kfree(pool); 326 return NULL; 327 } 328 329 return pool; 330 } 331 EXPORT_SYMBOL(mempool_create_node_noprof); 332 333 /** 334 * mempool_resize - resize an existing memory pool 335 * @pool: pointer to the memory pool which was allocated via 336 * mempool_create(). 337 * @new_min_nr: the new minimum number of elements guaranteed to be 338 * allocated for this pool. 339 * 340 * This function shrinks/grows the pool. In the case of growing, 341 * it cannot be guaranteed that the pool will be grown to the new 342 * size immediately, but new mempool_free() calls will refill it. 343 * This function may sleep. 344 * 345 * Note, the caller must guarantee that no mempool_destroy is called 346 * while this function is running. mempool_alloc() & mempool_free() 347 * might be called (eg. from IRQ contexts) while this function executes. 348 * 349 * Return: %0 on success, negative error code otherwise. 350 */ 351 int mempool_resize(struct mempool *pool, int new_min_nr) 352 { 353 void *element; 354 void **new_elements; 355 unsigned long flags; 356 357 BUG_ON(new_min_nr <= 0); 358 might_sleep(); 359 360 spin_lock_irqsave(&pool->lock, flags); 361 if (new_min_nr <= pool->min_nr) { 362 while (new_min_nr < pool->curr_nr) { 363 element = remove_element(pool); 364 spin_unlock_irqrestore(&pool->lock, flags); 365 pool->free(element, pool->pool_data); 366 spin_lock_irqsave(&pool->lock, flags); 367 } 368 pool->min_nr = new_min_nr; 369 goto out_unlock; 370 } 371 spin_unlock_irqrestore(&pool->lock, flags); 372 373 /* Grow the pool */ 374 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), 375 GFP_KERNEL); 376 if (!new_elements) 377 return -ENOMEM; 378 379 spin_lock_irqsave(&pool->lock, flags); 380 if (unlikely(new_min_nr <= pool->min_nr)) { 381 /* Raced, other resize will do our work */ 382 spin_unlock_irqrestore(&pool->lock, flags); 383 kfree(new_elements); 384 goto out; 385 } 386 memcpy(new_elements, pool->elements, 387 pool->curr_nr * sizeof(*new_elements)); 388 kfree(pool->elements); 389 pool->elements = new_elements; 390 pool->min_nr = new_min_nr; 391 392 while (pool->curr_nr < pool->min_nr) { 393 spin_unlock_irqrestore(&pool->lock, flags); 394 element = pool->alloc(GFP_KERNEL, pool->pool_data); 395 if (!element) 396 goto out; 397 spin_lock_irqsave(&pool->lock, flags); 398 if (pool->curr_nr < pool->min_nr) { 399 add_element(pool, element); 400 } else { 401 spin_unlock_irqrestore(&pool->lock, flags); 402 pool->free(element, pool->pool_data); /* Raced */ 403 goto out; 404 } 405 } 406 out_unlock: 407 spin_unlock_irqrestore(&pool->lock, flags); 408 out: 409 return 0; 410 } 411 EXPORT_SYMBOL(mempool_resize); 412 413 static unsigned int mempool_alloc_from_pool(struct mempool *pool, void **elems, 414 unsigned int count, unsigned int allocated, 415 gfp_t gfp_mask) 416 { 417 unsigned long flags; 418 unsigned int i; 419 420 spin_lock_irqsave(&pool->lock, flags); 421 if (unlikely(pool->curr_nr < count - allocated)) 422 goto fail; 423 for (i = 0; i < count; i++) { 424 if (!elems[i]) { 425 elems[i] = remove_element(pool); 426 allocated++; 427 } 428 } 429 spin_unlock_irqrestore(&pool->lock, flags); 430 431 /* Paired with rmb in mempool_free(), read comment there. */ 432 smp_wmb(); 433 434 /* 435 * Update the allocation stack trace as this is more useful for 436 * debugging. 437 */ 438 for (i = 0; i < count; i++) 439 kmemleak_update_trace(elems[i]); 440 return allocated; 441 442 fail: 443 if (gfp_mask & __GFP_DIRECT_RECLAIM) { 444 DEFINE_WAIT(wait); 445 446 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); 447 spin_unlock_irqrestore(&pool->lock, flags); 448 449 /* 450 * Wait for someone else to return an element to @pool, but wake 451 * up occasionally as memory pressure might have reduced even 452 * and the normal allocation in alloc_fn could succeed even if 453 * no element was returned. 454 */ 455 io_schedule_timeout(5 * HZ); 456 finish_wait(&pool->wait, &wait); 457 } else { 458 /* We must not sleep if __GFP_DIRECT_RECLAIM is not set. */ 459 spin_unlock_irqrestore(&pool->lock, flags); 460 } 461 462 return allocated; 463 } 464 465 /* 466 * Adjust the gfp flags for mempool allocations, as we never want to dip into 467 * the global emergency reserves or retry in the page allocator. 468 * 469 * The first pass also doesn't want to go reclaim, but the next passes do, so 470 * return a separate subset for that first iteration. 471 */ 472 static inline gfp_t mempool_adjust_gfp(gfp_t *gfp_mask) 473 { 474 *gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 475 return *gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); 476 } 477 478 /** 479 * mempool_alloc_bulk - allocate multiple elements from a memory pool 480 * @pool: pointer to the memory pool 481 * @elems: partially or fully populated elements array 482 * @count: number of entries in @elem that need to be allocated 483 * @allocated: number of entries in @elem already allocated 484 * 485 * Allocate elements for each slot in @elem that is non-%NULL. This is done by 486 * first calling into the alloc_fn supplied at pool initialization time, and 487 * dipping into the reserved pool when alloc_fn fails to allocate an element. 488 * 489 * On return all @count elements in @elems will be populated. 490 * 491 * Return: Always 0. If it wasn't for %$#^$ alloc tags, it would return void. 492 */ 493 int mempool_alloc_bulk_noprof(struct mempool *pool, void **elems, 494 unsigned int count, unsigned int allocated) 495 { 496 gfp_t gfp_mask = GFP_KERNEL; 497 gfp_t gfp_temp = mempool_adjust_gfp(&gfp_mask); 498 unsigned int i = 0; 499 500 VM_WARN_ON_ONCE(count > pool->min_nr); 501 might_alloc(gfp_mask); 502 503 /* 504 * If an error is injected, fail all elements in a bulk allocation so 505 * that we stress the multiple elements missing path. 506 */ 507 if (should_fail_ex(&fail_mempool_alloc_bulk, 1, FAULT_NOWARN)) { 508 pr_info("forcing mempool usage for %pS\n", 509 (void *)_RET_IP_); 510 goto use_pool; 511 } 512 513 repeat_alloc: 514 /* 515 * Try to allocate the elements using the allocation callback first as 516 * that might succeed even when the caller's bulk allocation did not. 517 */ 518 for (i = 0; i < count; i++) { 519 if (elems[i]) 520 continue; 521 elems[i] = pool->alloc(gfp_temp, pool->pool_data); 522 if (unlikely(!elems[i])) 523 goto use_pool; 524 allocated++; 525 } 526 527 return 0; 528 529 use_pool: 530 allocated = mempool_alloc_from_pool(pool, elems, count, allocated, 531 gfp_temp); 532 gfp_temp = gfp_mask; 533 goto repeat_alloc; 534 } 535 EXPORT_SYMBOL_GPL(mempool_alloc_bulk_noprof); 536 537 /** 538 * mempool_alloc - allocate an element from a memory pool 539 * @pool: pointer to the memory pool 540 * @gfp_mask: GFP_* flags. %__GFP_ZERO is not supported. 541 * 542 * Allocate an element from @pool. This is done by first calling into the 543 * alloc_fn supplied at pool initialization time, and dipping into the reserved 544 * pool when alloc_fn fails to allocate an element. 545 * 546 * This function only sleeps if the alloc_fn callback sleeps, or when waiting 547 * for elements to become available in the pool. 548 * 549 * Return: pointer to the allocated element or %NULL when failing to allocate 550 * an element. Allocation failure can only happen when @gfp_mask does not 551 * include %__GFP_DIRECT_RECLAIM. 552 */ 553 void *mempool_alloc_noprof(struct mempool *pool, gfp_t gfp_mask) 554 { 555 gfp_t gfp_temp = mempool_adjust_gfp(&gfp_mask); 556 void *element; 557 558 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); 559 might_alloc(gfp_mask); 560 561 repeat_alloc: 562 if (should_fail_ex(&fail_mempool_alloc, 1, FAULT_NOWARN)) { 563 pr_info("forcing mempool usage for %pS\n", 564 (void *)_RET_IP_); 565 element = NULL; 566 } else { 567 element = pool->alloc(gfp_temp, pool->pool_data); 568 } 569 570 if (unlikely(!element)) { 571 /* 572 * Try to allocate an element from the pool. 573 * 574 * The first pass won't have __GFP_DIRECT_RECLAIM and won't 575 * sleep in mempool_alloc_from_pool. Retry the allocation 576 * with all flags set in that case. 577 */ 578 if (!mempool_alloc_from_pool(pool, &element, 1, 0, gfp_temp)) { 579 if (gfp_temp != gfp_mask) { 580 gfp_temp = gfp_mask; 581 goto repeat_alloc; 582 } 583 if (gfp_mask & __GFP_DIRECT_RECLAIM) { 584 goto repeat_alloc; 585 } 586 } 587 } 588 589 return element; 590 } 591 EXPORT_SYMBOL(mempool_alloc_noprof); 592 593 /** 594 * mempool_alloc_preallocated - allocate an element from preallocated elements 595 * belonging to a memory pool 596 * @pool: pointer to the memory pool 597 * 598 * This function is similar to mempool_alloc(), but it only attempts allocating 599 * an element from the preallocated elements. It only takes a single spinlock_t 600 * and immediately returns if no preallocated elements are available. 601 * 602 * Return: pointer to the allocated element or %NULL if no elements are 603 * available. 604 */ 605 void *mempool_alloc_preallocated(struct mempool *pool) 606 { 607 void *element = NULL; 608 609 mempool_alloc_from_pool(pool, &element, 1, 0, GFP_NOWAIT); 610 return element; 611 } 612 EXPORT_SYMBOL(mempool_alloc_preallocated); 613 614 /** 615 * mempool_free_bulk - return elements to a mempool 616 * @pool: pointer to the memory pool 617 * @elems: elements to return 618 * @count: number of elements to return 619 * 620 * Returns a number of elements from the start of @elem to @pool if @pool needs 621 * replenishing and sets their slots in @elem to NULL. Other elements are left 622 * in @elem. 623 * 624 * Return: number of elements transferred to @pool. Elements are always 625 * transferred from the beginning of @elem, so the return value can be used as 626 * an offset into @elem for the freeing the remaining elements in the caller. 627 */ 628 unsigned int mempool_free_bulk(struct mempool *pool, void **elems, 629 unsigned int count) 630 { 631 unsigned long flags; 632 unsigned int freed = 0; 633 bool added = false; 634 635 /* 636 * Paired with the wmb in mempool_alloc(). The preceding read is 637 * for @element and the following @pool->curr_nr. This ensures 638 * that the visible value of @pool->curr_nr is from after the 639 * allocation of @element. This is necessary for fringe cases 640 * where @element was passed to this task without going through 641 * barriers. 642 * 643 * For example, assume @p is %NULL at the beginning and one task 644 * performs "p = mempool_alloc(...);" while another task is doing 645 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function 646 * may end up using curr_nr value which is from before allocation 647 * of @p without the following rmb. 648 */ 649 smp_rmb(); 650 651 /* 652 * For correctness, we need a test which is guaranteed to trigger 653 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr 654 * without locking achieves that and refilling as soon as possible 655 * is desirable. 656 * 657 * Because curr_nr visible here is always a value after the 658 * allocation of @element, any task which decremented curr_nr below 659 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets 660 * incremented to min_nr afterwards. If curr_nr gets incremented 661 * to min_nr after the allocation of @element, the elements 662 * allocated after that are subject to the same guarantee. 663 * 664 * Waiters happen iff curr_nr is 0 and the above guarantee also 665 * ensures that there will be frees which return elements to the 666 * pool waking up the waiters. 667 * 668 * For zero-minimum pools, curr_nr < min_nr (0 < 0) never succeeds, 669 * so waiters sleeping on pool->wait would never be woken by the 670 * wake-up path of previous test. This explicit check ensures the 671 * allocation of element when both min_nr and curr_nr are 0, and 672 * any active waiters are properly awakened. 673 */ 674 if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) { 675 spin_lock_irqsave(&pool->lock, flags); 676 while (pool->curr_nr < pool->min_nr && freed < count) { 677 add_element(pool, elems[freed++]); 678 added = true; 679 } 680 spin_unlock_irqrestore(&pool->lock, flags); 681 } else if (unlikely(pool->min_nr == 0 && 682 READ_ONCE(pool->curr_nr) == 0)) { 683 /* Handle the min_nr = 0 edge case: */ 684 spin_lock_irqsave(&pool->lock, flags); 685 if (likely(pool->curr_nr == 0)) { 686 add_element(pool, elems[freed++]); 687 added = true; 688 } 689 spin_unlock_irqrestore(&pool->lock, flags); 690 } 691 692 if (unlikely(added) && wq_has_sleeper(&pool->wait)) 693 wake_up(&pool->wait); 694 695 return freed; 696 } 697 EXPORT_SYMBOL_GPL(mempool_free_bulk); 698 699 /** 700 * mempool_free - return an element to the pool. 701 * @element: element to return 702 * @pool: pointer to the memory pool 703 * 704 * Returns @element to @pool if it needs replenishing, else frees it using 705 * the free_fn callback in @pool. 706 * 707 * This function only sleeps if the free_fn callback sleeps. 708 */ 709 void mempool_free(void *element, struct mempool *pool) 710 { 711 if (likely(element) && !mempool_free_bulk(pool, &element, 1)) 712 pool->free(element, pool->pool_data); 713 } 714 EXPORT_SYMBOL(mempool_free); 715 716 /* 717 * A commonly used alloc and free fn. 718 */ 719 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) 720 { 721 struct kmem_cache *mem = pool_data; 722 VM_BUG_ON(mem->ctor); 723 return kmem_cache_alloc_noprof(mem, gfp_mask); 724 } 725 EXPORT_SYMBOL(mempool_alloc_slab); 726 727 void mempool_free_slab(void *element, void *pool_data) 728 { 729 struct kmem_cache *mem = pool_data; 730 kmem_cache_free(mem, element); 731 } 732 EXPORT_SYMBOL(mempool_free_slab); 733 734 /* 735 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory 736 * specified by pool_data 737 */ 738 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) 739 { 740 size_t size = (size_t)pool_data; 741 return kmalloc_noprof(size, gfp_mask); 742 } 743 EXPORT_SYMBOL(mempool_kmalloc); 744 745 void mempool_kfree(void *element, void *pool_data) 746 { 747 kfree(element); 748 } 749 EXPORT_SYMBOL(mempool_kfree); 750 751 /* 752 * A simple mempool-backed page allocator that allocates pages 753 * of the order specified by pool_data. 754 */ 755 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) 756 { 757 int order = (int)(long)pool_data; 758 return alloc_pages_noprof(gfp_mask, order); 759 } 760 EXPORT_SYMBOL(mempool_alloc_pages); 761 762 void mempool_free_pages(void *element, void *pool_data) 763 { 764 int order = (int)(long)pool_data; 765 __free_pages(element, order); 766 } 767 EXPORT_SYMBOL(mempool_free_pages); 768