1 /* 2 * linux/mm/mempool.c 3 * 4 * memory buffer pool support. Such pools are mostly used 5 * for guaranteed, deadlock-free memory allocations during 6 * extreme VM load. 7 * 8 * started by Ingo Molnar, Copyright (C) 2001 9 * debugging by David Rientjes, Copyright (C) 2015 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/slab.h> 14 #include <linux/highmem.h> 15 #include <linux/kasan.h> 16 #include <linux/kmemleak.h> 17 #include <linux/export.h> 18 #include <linux/mempool.h> 19 #include <linux/blkdev.h> 20 #include <linux/writeback.h> 21 #include "slab.h" 22 23 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 24 static void poison_error(mempool_t *pool, void *element, size_t size, 25 size_t byte) 26 { 27 const int nr = pool->curr_nr; 28 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); 29 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); 30 int i; 31 32 pr_err("BUG: mempool element poison mismatch\n"); 33 pr_err("Mempool %p size %zu\n", pool, size); 34 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); 35 for (i = start; i < end; i++) 36 pr_cont("%x ", *(u8 *)(element + i)); 37 pr_cont("%s\n", end < size ? "..." : ""); 38 dump_stack(); 39 } 40 41 static void __check_element(mempool_t *pool, void *element, size_t size) 42 { 43 u8 *obj = element; 44 size_t i; 45 46 for (i = 0; i < size; i++) { 47 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; 48 49 if (obj[i] != exp) { 50 poison_error(pool, element, size, i); 51 return; 52 } 53 } 54 memset(obj, POISON_INUSE, size); 55 } 56 57 static void check_element(mempool_t *pool, void *element) 58 { 59 /* Mempools backed by slab allocator */ 60 if (pool->free == mempool_free_slab || pool->free == mempool_kfree) 61 __check_element(pool, element, ksize(element)); 62 63 /* Mempools backed by page allocator */ 64 if (pool->free == mempool_free_pages) { 65 int order = (int)(long)pool->pool_data; 66 void *addr = kmap_atomic((struct page *)element); 67 68 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order)); 69 kunmap_atomic(addr); 70 } 71 } 72 73 static void __poison_element(void *element, size_t size) 74 { 75 u8 *obj = element; 76 77 memset(obj, POISON_FREE, size - 1); 78 obj[size - 1] = POISON_END; 79 } 80 81 static void poison_element(mempool_t *pool, void *element) 82 { 83 /* Mempools backed by slab allocator */ 84 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 85 __poison_element(element, ksize(element)); 86 87 /* Mempools backed by page allocator */ 88 if (pool->alloc == mempool_alloc_pages) { 89 int order = (int)(long)pool->pool_data; 90 void *addr = kmap_atomic((struct page *)element); 91 92 __poison_element(addr, 1UL << (PAGE_SHIFT + order)); 93 kunmap_atomic(addr); 94 } 95 } 96 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 97 static inline void check_element(mempool_t *pool, void *element) 98 { 99 } 100 static inline void poison_element(mempool_t *pool, void *element) 101 { 102 } 103 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 104 105 static void kasan_poison_element(mempool_t *pool, void *element) 106 { 107 if (pool->alloc == mempool_alloc_slab) 108 kasan_slab_free(pool->pool_data, element); 109 if (pool->alloc == mempool_kmalloc) 110 kasan_kfree(element); 111 if (pool->alloc == mempool_alloc_pages) 112 kasan_free_pages(element, (unsigned long)pool->pool_data); 113 } 114 115 static void kasan_unpoison_element(mempool_t *pool, void *element) 116 { 117 if (pool->alloc == mempool_alloc_slab) 118 kasan_slab_alloc(pool->pool_data, element); 119 if (pool->alloc == mempool_kmalloc) 120 kasan_krealloc(element, (size_t)pool->pool_data); 121 if (pool->alloc == mempool_alloc_pages) 122 kasan_alloc_pages(element, (unsigned long)pool->pool_data); 123 } 124 125 static void add_element(mempool_t *pool, void *element) 126 { 127 BUG_ON(pool->curr_nr >= pool->min_nr); 128 poison_element(pool, element); 129 kasan_poison_element(pool, element); 130 pool->elements[pool->curr_nr++] = element; 131 } 132 133 static void *remove_element(mempool_t *pool) 134 { 135 void *element = pool->elements[--pool->curr_nr]; 136 137 BUG_ON(pool->curr_nr < 0); 138 check_element(pool, element); 139 kasan_unpoison_element(pool, element); 140 return element; 141 } 142 143 /** 144 * mempool_destroy - deallocate a memory pool 145 * @pool: pointer to the memory pool which was allocated via 146 * mempool_create(). 147 * 148 * Free all reserved elements in @pool and @pool itself. This function 149 * only sleeps if the free_fn() function sleeps. 150 */ 151 void mempool_destroy(mempool_t *pool) 152 { 153 while (pool->curr_nr) { 154 void *element = remove_element(pool); 155 pool->free(element, pool->pool_data); 156 } 157 kfree(pool->elements); 158 kfree(pool); 159 } 160 EXPORT_SYMBOL(mempool_destroy); 161 162 /** 163 * mempool_create - create a memory pool 164 * @min_nr: the minimum number of elements guaranteed to be 165 * allocated for this pool. 166 * @alloc_fn: user-defined element-allocation function. 167 * @free_fn: user-defined element-freeing function. 168 * @pool_data: optional private data available to the user-defined functions. 169 * 170 * this function creates and allocates a guaranteed size, preallocated 171 * memory pool. The pool can be used from the mempool_alloc() and mempool_free() 172 * functions. This function might sleep. Both the alloc_fn() and the free_fn() 173 * functions might sleep - as long as the mempool_alloc() function is not called 174 * from IRQ contexts. 175 */ 176 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, 177 mempool_free_t *free_fn, void *pool_data) 178 { 179 return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data, 180 GFP_KERNEL, NUMA_NO_NODE); 181 } 182 EXPORT_SYMBOL(mempool_create); 183 184 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, 185 mempool_free_t *free_fn, void *pool_data, 186 gfp_t gfp_mask, int node_id) 187 { 188 mempool_t *pool; 189 pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); 190 if (!pool) 191 return NULL; 192 pool->elements = kmalloc_node(min_nr * sizeof(void *), 193 gfp_mask, node_id); 194 if (!pool->elements) { 195 kfree(pool); 196 return NULL; 197 } 198 spin_lock_init(&pool->lock); 199 pool->min_nr = min_nr; 200 pool->pool_data = pool_data; 201 init_waitqueue_head(&pool->wait); 202 pool->alloc = alloc_fn; 203 pool->free = free_fn; 204 205 /* 206 * First pre-allocate the guaranteed number of buffers. 207 */ 208 while (pool->curr_nr < pool->min_nr) { 209 void *element; 210 211 element = pool->alloc(gfp_mask, pool->pool_data); 212 if (unlikely(!element)) { 213 mempool_destroy(pool); 214 return NULL; 215 } 216 add_element(pool, element); 217 } 218 return pool; 219 } 220 EXPORT_SYMBOL(mempool_create_node); 221 222 /** 223 * mempool_resize - resize an existing memory pool 224 * @pool: pointer to the memory pool which was allocated via 225 * mempool_create(). 226 * @new_min_nr: the new minimum number of elements guaranteed to be 227 * allocated for this pool. 228 * 229 * This function shrinks/grows the pool. In the case of growing, 230 * it cannot be guaranteed that the pool will be grown to the new 231 * size immediately, but new mempool_free() calls will refill it. 232 * This function may sleep. 233 * 234 * Note, the caller must guarantee that no mempool_destroy is called 235 * while this function is running. mempool_alloc() & mempool_free() 236 * might be called (eg. from IRQ contexts) while this function executes. 237 */ 238 int mempool_resize(mempool_t *pool, int new_min_nr) 239 { 240 void *element; 241 void **new_elements; 242 unsigned long flags; 243 244 BUG_ON(new_min_nr <= 0); 245 might_sleep(); 246 247 spin_lock_irqsave(&pool->lock, flags); 248 if (new_min_nr <= pool->min_nr) { 249 while (new_min_nr < pool->curr_nr) { 250 element = remove_element(pool); 251 spin_unlock_irqrestore(&pool->lock, flags); 252 pool->free(element, pool->pool_data); 253 spin_lock_irqsave(&pool->lock, flags); 254 } 255 pool->min_nr = new_min_nr; 256 goto out_unlock; 257 } 258 spin_unlock_irqrestore(&pool->lock, flags); 259 260 /* Grow the pool */ 261 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), 262 GFP_KERNEL); 263 if (!new_elements) 264 return -ENOMEM; 265 266 spin_lock_irqsave(&pool->lock, flags); 267 if (unlikely(new_min_nr <= pool->min_nr)) { 268 /* Raced, other resize will do our work */ 269 spin_unlock_irqrestore(&pool->lock, flags); 270 kfree(new_elements); 271 goto out; 272 } 273 memcpy(new_elements, pool->elements, 274 pool->curr_nr * sizeof(*new_elements)); 275 kfree(pool->elements); 276 pool->elements = new_elements; 277 pool->min_nr = new_min_nr; 278 279 while (pool->curr_nr < pool->min_nr) { 280 spin_unlock_irqrestore(&pool->lock, flags); 281 element = pool->alloc(GFP_KERNEL, pool->pool_data); 282 if (!element) 283 goto out; 284 spin_lock_irqsave(&pool->lock, flags); 285 if (pool->curr_nr < pool->min_nr) { 286 add_element(pool, element); 287 } else { 288 spin_unlock_irqrestore(&pool->lock, flags); 289 pool->free(element, pool->pool_data); /* Raced */ 290 goto out; 291 } 292 } 293 out_unlock: 294 spin_unlock_irqrestore(&pool->lock, flags); 295 out: 296 return 0; 297 } 298 EXPORT_SYMBOL(mempool_resize); 299 300 /** 301 * mempool_alloc - allocate an element from a specific memory pool 302 * @pool: pointer to the memory pool which was allocated via 303 * mempool_create(). 304 * @gfp_mask: the usual allocation bitmask. 305 * 306 * this function only sleeps if the alloc_fn() function sleeps or 307 * returns NULL. Note that due to preallocation, this function 308 * *never* fails when called from process contexts. (it might 309 * fail if called from an IRQ context.) 310 * Note: using __GFP_ZERO is not supported. 311 */ 312 void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask) 313 { 314 void *element; 315 unsigned long flags; 316 wait_queue_t wait; 317 gfp_t gfp_temp; 318 319 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); 320 might_sleep_if(gfp_mask & __GFP_WAIT); 321 322 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */ 323 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */ 324 gfp_mask |= __GFP_NOWARN; /* failures are OK */ 325 326 gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO); 327 328 repeat_alloc: 329 330 element = pool->alloc(gfp_temp, pool->pool_data); 331 if (likely(element != NULL)) 332 return element; 333 334 spin_lock_irqsave(&pool->lock, flags); 335 if (likely(pool->curr_nr)) { 336 element = remove_element(pool); 337 spin_unlock_irqrestore(&pool->lock, flags); 338 /* paired with rmb in mempool_free(), read comment there */ 339 smp_wmb(); 340 /* 341 * Update the allocation stack trace as this is more useful 342 * for debugging. 343 */ 344 kmemleak_update_trace(element); 345 return element; 346 } 347 348 /* 349 * We use gfp mask w/o __GFP_WAIT or IO for the first round. If 350 * alloc failed with that and @pool was empty, retry immediately. 351 */ 352 if (gfp_temp != gfp_mask) { 353 spin_unlock_irqrestore(&pool->lock, flags); 354 gfp_temp = gfp_mask; 355 goto repeat_alloc; 356 } 357 358 /* We must not sleep if !__GFP_WAIT */ 359 if (!(gfp_mask & __GFP_WAIT)) { 360 spin_unlock_irqrestore(&pool->lock, flags); 361 return NULL; 362 } 363 364 /* Let's wait for someone else to return an element to @pool */ 365 init_wait(&wait); 366 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); 367 368 spin_unlock_irqrestore(&pool->lock, flags); 369 370 /* 371 * FIXME: this should be io_schedule(). The timeout is there as a 372 * workaround for some DM problems in 2.6.18. 373 */ 374 io_schedule_timeout(5*HZ); 375 376 finish_wait(&pool->wait, &wait); 377 goto repeat_alloc; 378 } 379 EXPORT_SYMBOL(mempool_alloc); 380 381 /** 382 * mempool_free - return an element to the pool. 383 * @element: pool element pointer. 384 * @pool: pointer to the memory pool which was allocated via 385 * mempool_create(). 386 * 387 * this function only sleeps if the free_fn() function sleeps. 388 */ 389 void mempool_free(void *element, mempool_t *pool) 390 { 391 unsigned long flags; 392 393 if (unlikely(element == NULL)) 394 return; 395 396 /* 397 * Paired with the wmb in mempool_alloc(). The preceding read is 398 * for @element and the following @pool->curr_nr. This ensures 399 * that the visible value of @pool->curr_nr is from after the 400 * allocation of @element. This is necessary for fringe cases 401 * where @element was passed to this task without going through 402 * barriers. 403 * 404 * For example, assume @p is %NULL at the beginning and one task 405 * performs "p = mempool_alloc(...);" while another task is doing 406 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function 407 * may end up using curr_nr value which is from before allocation 408 * of @p without the following rmb. 409 */ 410 smp_rmb(); 411 412 /* 413 * For correctness, we need a test which is guaranteed to trigger 414 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr 415 * without locking achieves that and refilling as soon as possible 416 * is desirable. 417 * 418 * Because curr_nr visible here is always a value after the 419 * allocation of @element, any task which decremented curr_nr below 420 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets 421 * incremented to min_nr afterwards. If curr_nr gets incremented 422 * to min_nr after the allocation of @element, the elements 423 * allocated after that are subject to the same guarantee. 424 * 425 * Waiters happen iff curr_nr is 0 and the above guarantee also 426 * ensures that there will be frees which return elements to the 427 * pool waking up the waiters. 428 */ 429 if (unlikely(pool->curr_nr < pool->min_nr)) { 430 spin_lock_irqsave(&pool->lock, flags); 431 if (likely(pool->curr_nr < pool->min_nr)) { 432 add_element(pool, element); 433 spin_unlock_irqrestore(&pool->lock, flags); 434 wake_up(&pool->wait); 435 return; 436 } 437 spin_unlock_irqrestore(&pool->lock, flags); 438 } 439 pool->free(element, pool->pool_data); 440 } 441 EXPORT_SYMBOL(mempool_free); 442 443 /* 444 * A commonly used alloc and free fn. 445 */ 446 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) 447 { 448 struct kmem_cache *mem = pool_data; 449 VM_BUG_ON(mem->ctor); 450 return kmem_cache_alloc(mem, gfp_mask); 451 } 452 EXPORT_SYMBOL(mempool_alloc_slab); 453 454 void mempool_free_slab(void *element, void *pool_data) 455 { 456 struct kmem_cache *mem = pool_data; 457 kmem_cache_free(mem, element); 458 } 459 EXPORT_SYMBOL(mempool_free_slab); 460 461 /* 462 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory 463 * specified by pool_data 464 */ 465 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) 466 { 467 size_t size = (size_t)pool_data; 468 return kmalloc(size, gfp_mask); 469 } 470 EXPORT_SYMBOL(mempool_kmalloc); 471 472 void mempool_kfree(void *element, void *pool_data) 473 { 474 kfree(element); 475 } 476 EXPORT_SYMBOL(mempool_kfree); 477 478 /* 479 * A simple mempool-backed page allocator that allocates pages 480 * of the order specified by pool_data. 481 */ 482 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) 483 { 484 int order = (int)(long)pool_data; 485 return alloc_pages(gfp_mask, order); 486 } 487 EXPORT_SYMBOL(mempool_alloc_pages); 488 489 void mempool_free_pages(void *element, void *pool_data) 490 { 491 int order = (int)(long)pool_data; 492 __free_pages(element, order); 493 } 494 EXPORT_SYMBOL(mempool_free_pages); 495