xref: /linux/mm/mempool.c (revision bf80eef2212a1e8451df13b52533f4bc31bb4f8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/mempool.c
4  *
5  *  memory buffer pool support. Such pools are mostly used
6  *  for guaranteed, deadlock-free memory allocations during
7  *  extreme VM load.
8  *
9  *  started by Ingo Molnar, Copyright (C) 2001
10  *  debugging by David Rientjes, Copyright (C) 2015
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kasan.h>
17 #include <linux/kmemleak.h>
18 #include <linux/export.h>
19 #include <linux/mempool.h>
20 #include <linux/writeback.h>
21 #include "slab.h"
22 
23 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
24 static void poison_error(mempool_t *pool, void *element, size_t size,
25 			 size_t byte)
26 {
27 	const int nr = pool->curr_nr;
28 	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
29 	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
30 	int i;
31 
32 	pr_err("BUG: mempool element poison mismatch\n");
33 	pr_err("Mempool %p size %zu\n", pool, size);
34 	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
35 	for (i = start; i < end; i++)
36 		pr_cont("%x ", *(u8 *)(element + i));
37 	pr_cont("%s\n", end < size ? "..." : "");
38 	dump_stack();
39 }
40 
41 static void __check_element(mempool_t *pool, void *element, size_t size)
42 {
43 	u8 *obj = element;
44 	size_t i;
45 
46 	for (i = 0; i < size; i++) {
47 		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
48 
49 		if (obj[i] != exp) {
50 			poison_error(pool, element, size, i);
51 			return;
52 		}
53 	}
54 	memset(obj, POISON_INUSE, size);
55 }
56 
57 static void check_element(mempool_t *pool, void *element)
58 {
59 	/* Mempools backed by slab allocator */
60 	if (pool->free == mempool_free_slab || pool->free == mempool_kfree) {
61 		__check_element(pool, element, ksize(element));
62 	} else if (pool->free == mempool_free_pages) {
63 		/* Mempools backed by page allocator */
64 		int order = (int)(long)pool->pool_data;
65 		void *addr = kmap_atomic((struct page *)element);
66 
67 		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
68 		kunmap_atomic(addr);
69 	}
70 }
71 
72 static void __poison_element(void *element, size_t size)
73 {
74 	u8 *obj = element;
75 
76 	memset(obj, POISON_FREE, size - 1);
77 	obj[size - 1] = POISON_END;
78 }
79 
80 static void poison_element(mempool_t *pool, void *element)
81 {
82 	/* Mempools backed by slab allocator */
83 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) {
84 		__poison_element(element, ksize(element));
85 	} else if (pool->alloc == mempool_alloc_pages) {
86 		/* Mempools backed by page allocator */
87 		int order = (int)(long)pool->pool_data;
88 		void *addr = kmap_atomic((struct page *)element);
89 
90 		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
91 		kunmap_atomic(addr);
92 	}
93 }
94 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
95 static inline void check_element(mempool_t *pool, void *element)
96 {
97 }
98 static inline void poison_element(mempool_t *pool, void *element)
99 {
100 }
101 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
102 
103 static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
104 {
105 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
106 		kasan_slab_free_mempool(element);
107 	else if (pool->alloc == mempool_alloc_pages)
108 		kasan_poison_pages(element, (unsigned long)pool->pool_data,
109 				   false);
110 }
111 
112 static void kasan_unpoison_element(mempool_t *pool, void *element)
113 {
114 	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
115 		kasan_unpoison_range(element, __ksize(element));
116 	else if (pool->alloc == mempool_alloc_pages)
117 		kasan_unpoison_pages(element, (unsigned long)pool->pool_data,
118 				     false);
119 }
120 
121 static __always_inline void add_element(mempool_t *pool, void *element)
122 {
123 	BUG_ON(pool->curr_nr >= pool->min_nr);
124 	poison_element(pool, element);
125 	kasan_poison_element(pool, element);
126 	pool->elements[pool->curr_nr++] = element;
127 }
128 
129 static void *remove_element(mempool_t *pool)
130 {
131 	void *element = pool->elements[--pool->curr_nr];
132 
133 	BUG_ON(pool->curr_nr < 0);
134 	kasan_unpoison_element(pool, element);
135 	check_element(pool, element);
136 	return element;
137 }
138 
139 /**
140  * mempool_exit - exit a mempool initialized with mempool_init()
141  * @pool:      pointer to the memory pool which was initialized with
142  *             mempool_init().
143  *
144  * Free all reserved elements in @pool and @pool itself.  This function
145  * only sleeps if the free_fn() function sleeps.
146  *
147  * May be called on a zeroed but uninitialized mempool (i.e. allocated with
148  * kzalloc()).
149  */
150 void mempool_exit(mempool_t *pool)
151 {
152 	while (pool->curr_nr) {
153 		void *element = remove_element(pool);
154 		pool->free(element, pool->pool_data);
155 	}
156 	kfree(pool->elements);
157 	pool->elements = NULL;
158 }
159 EXPORT_SYMBOL(mempool_exit);
160 
161 /**
162  * mempool_destroy - deallocate a memory pool
163  * @pool:      pointer to the memory pool which was allocated via
164  *             mempool_create().
165  *
166  * Free all reserved elements in @pool and @pool itself.  This function
167  * only sleeps if the free_fn() function sleeps.
168  */
169 void mempool_destroy(mempool_t *pool)
170 {
171 	if (unlikely(!pool))
172 		return;
173 
174 	mempool_exit(pool);
175 	kfree(pool);
176 }
177 EXPORT_SYMBOL(mempool_destroy);
178 
179 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
180 		      mempool_free_t *free_fn, void *pool_data,
181 		      gfp_t gfp_mask, int node_id)
182 {
183 	spin_lock_init(&pool->lock);
184 	pool->min_nr	= min_nr;
185 	pool->pool_data = pool_data;
186 	pool->alloc	= alloc_fn;
187 	pool->free	= free_fn;
188 	init_waitqueue_head(&pool->wait);
189 
190 	pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
191 					    gfp_mask, node_id);
192 	if (!pool->elements)
193 		return -ENOMEM;
194 
195 	/*
196 	 * First pre-allocate the guaranteed number of buffers.
197 	 */
198 	while (pool->curr_nr < pool->min_nr) {
199 		void *element;
200 
201 		element = pool->alloc(gfp_mask, pool->pool_data);
202 		if (unlikely(!element)) {
203 			mempool_exit(pool);
204 			return -ENOMEM;
205 		}
206 		add_element(pool, element);
207 	}
208 
209 	return 0;
210 }
211 EXPORT_SYMBOL(mempool_init_node);
212 
213 /**
214  * mempool_init - initialize a memory pool
215  * @pool:      pointer to the memory pool that should be initialized
216  * @min_nr:    the minimum number of elements guaranteed to be
217  *             allocated for this pool.
218  * @alloc_fn:  user-defined element-allocation function.
219  * @free_fn:   user-defined element-freeing function.
220  * @pool_data: optional private data available to the user-defined functions.
221  *
222  * Like mempool_create(), but initializes the pool in (i.e. embedded in another
223  * structure).
224  *
225  * Return: %0 on success, negative error code otherwise.
226  */
227 int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
228 		 mempool_free_t *free_fn, void *pool_data)
229 {
230 	return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
231 				 pool_data, GFP_KERNEL, NUMA_NO_NODE);
232 
233 }
234 EXPORT_SYMBOL(mempool_init);
235 
236 /**
237  * mempool_create - create a memory pool
238  * @min_nr:    the minimum number of elements guaranteed to be
239  *             allocated for this pool.
240  * @alloc_fn:  user-defined element-allocation function.
241  * @free_fn:   user-defined element-freeing function.
242  * @pool_data: optional private data available to the user-defined functions.
243  *
244  * this function creates and allocates a guaranteed size, preallocated
245  * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
246  * functions. This function might sleep. Both the alloc_fn() and the free_fn()
247  * functions might sleep - as long as the mempool_alloc() function is not called
248  * from IRQ contexts.
249  *
250  * Return: pointer to the created memory pool object or %NULL on error.
251  */
252 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
253 				mempool_free_t *free_fn, void *pool_data)
254 {
255 	return mempool_create_node(min_nr, alloc_fn, free_fn, pool_data,
256 				   GFP_KERNEL, NUMA_NO_NODE);
257 }
258 EXPORT_SYMBOL(mempool_create);
259 
260 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
261 			       mempool_free_t *free_fn, void *pool_data,
262 			       gfp_t gfp_mask, int node_id)
263 {
264 	mempool_t *pool;
265 
266 	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
267 	if (!pool)
268 		return NULL;
269 
270 	if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
271 			      gfp_mask, node_id)) {
272 		kfree(pool);
273 		return NULL;
274 	}
275 
276 	return pool;
277 }
278 EXPORT_SYMBOL(mempool_create_node);
279 
280 /**
281  * mempool_resize - resize an existing memory pool
282  * @pool:       pointer to the memory pool which was allocated via
283  *              mempool_create().
284  * @new_min_nr: the new minimum number of elements guaranteed to be
285  *              allocated for this pool.
286  *
287  * This function shrinks/grows the pool. In the case of growing,
288  * it cannot be guaranteed that the pool will be grown to the new
289  * size immediately, but new mempool_free() calls will refill it.
290  * This function may sleep.
291  *
292  * Note, the caller must guarantee that no mempool_destroy is called
293  * while this function is running. mempool_alloc() & mempool_free()
294  * might be called (eg. from IRQ contexts) while this function executes.
295  *
296  * Return: %0 on success, negative error code otherwise.
297  */
298 int mempool_resize(mempool_t *pool, int new_min_nr)
299 {
300 	void *element;
301 	void **new_elements;
302 	unsigned long flags;
303 
304 	BUG_ON(new_min_nr <= 0);
305 	might_sleep();
306 
307 	spin_lock_irqsave(&pool->lock, flags);
308 	if (new_min_nr <= pool->min_nr) {
309 		while (new_min_nr < pool->curr_nr) {
310 			element = remove_element(pool);
311 			spin_unlock_irqrestore(&pool->lock, flags);
312 			pool->free(element, pool->pool_data);
313 			spin_lock_irqsave(&pool->lock, flags);
314 		}
315 		pool->min_nr = new_min_nr;
316 		goto out_unlock;
317 	}
318 	spin_unlock_irqrestore(&pool->lock, flags);
319 
320 	/* Grow the pool */
321 	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
322 				     GFP_KERNEL);
323 	if (!new_elements)
324 		return -ENOMEM;
325 
326 	spin_lock_irqsave(&pool->lock, flags);
327 	if (unlikely(new_min_nr <= pool->min_nr)) {
328 		/* Raced, other resize will do our work */
329 		spin_unlock_irqrestore(&pool->lock, flags);
330 		kfree(new_elements);
331 		goto out;
332 	}
333 	memcpy(new_elements, pool->elements,
334 			pool->curr_nr * sizeof(*new_elements));
335 	kfree(pool->elements);
336 	pool->elements = new_elements;
337 	pool->min_nr = new_min_nr;
338 
339 	while (pool->curr_nr < pool->min_nr) {
340 		spin_unlock_irqrestore(&pool->lock, flags);
341 		element = pool->alloc(GFP_KERNEL, pool->pool_data);
342 		if (!element)
343 			goto out;
344 		spin_lock_irqsave(&pool->lock, flags);
345 		if (pool->curr_nr < pool->min_nr) {
346 			add_element(pool, element);
347 		} else {
348 			spin_unlock_irqrestore(&pool->lock, flags);
349 			pool->free(element, pool->pool_data);	/* Raced */
350 			goto out;
351 		}
352 	}
353 out_unlock:
354 	spin_unlock_irqrestore(&pool->lock, flags);
355 out:
356 	return 0;
357 }
358 EXPORT_SYMBOL(mempool_resize);
359 
360 /**
361  * mempool_alloc - allocate an element from a specific memory pool
362  * @pool:      pointer to the memory pool which was allocated via
363  *             mempool_create().
364  * @gfp_mask:  the usual allocation bitmask.
365  *
366  * this function only sleeps if the alloc_fn() function sleeps or
367  * returns NULL. Note that due to preallocation, this function
368  * *never* fails when called from process contexts. (it might
369  * fail if called from an IRQ context.)
370  * Note: using __GFP_ZERO is not supported.
371  *
372  * Return: pointer to the allocated element or %NULL on error.
373  */
374 void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
375 {
376 	void *element;
377 	unsigned long flags;
378 	wait_queue_entry_t wait;
379 	gfp_t gfp_temp;
380 
381 	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
382 	might_alloc(gfp_mask);
383 
384 	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
385 	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
386 	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
387 
388 	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
389 
390 repeat_alloc:
391 
392 	element = pool->alloc(gfp_temp, pool->pool_data);
393 	if (likely(element != NULL))
394 		return element;
395 
396 	spin_lock_irqsave(&pool->lock, flags);
397 	if (likely(pool->curr_nr)) {
398 		element = remove_element(pool);
399 		spin_unlock_irqrestore(&pool->lock, flags);
400 		/* paired with rmb in mempool_free(), read comment there */
401 		smp_wmb();
402 		/*
403 		 * Update the allocation stack trace as this is more useful
404 		 * for debugging.
405 		 */
406 		kmemleak_update_trace(element);
407 		return element;
408 	}
409 
410 	/*
411 	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
412 	 * alloc failed with that and @pool was empty, retry immediately.
413 	 */
414 	if (gfp_temp != gfp_mask) {
415 		spin_unlock_irqrestore(&pool->lock, flags);
416 		gfp_temp = gfp_mask;
417 		goto repeat_alloc;
418 	}
419 
420 	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
421 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
422 		spin_unlock_irqrestore(&pool->lock, flags);
423 		return NULL;
424 	}
425 
426 	/* Let's wait for someone else to return an element to @pool */
427 	init_wait(&wait);
428 	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
429 
430 	spin_unlock_irqrestore(&pool->lock, flags);
431 
432 	/*
433 	 * FIXME: this should be io_schedule().  The timeout is there as a
434 	 * workaround for some DM problems in 2.6.18.
435 	 */
436 	io_schedule_timeout(5*HZ);
437 
438 	finish_wait(&pool->wait, &wait);
439 	goto repeat_alloc;
440 }
441 EXPORT_SYMBOL(mempool_alloc);
442 
443 /**
444  * mempool_free - return an element to the pool.
445  * @element:   pool element pointer.
446  * @pool:      pointer to the memory pool which was allocated via
447  *             mempool_create().
448  *
449  * this function only sleeps if the free_fn() function sleeps.
450  */
451 void mempool_free(void *element, mempool_t *pool)
452 {
453 	unsigned long flags;
454 
455 	if (unlikely(element == NULL))
456 		return;
457 
458 	/*
459 	 * Paired with the wmb in mempool_alloc().  The preceding read is
460 	 * for @element and the following @pool->curr_nr.  This ensures
461 	 * that the visible value of @pool->curr_nr is from after the
462 	 * allocation of @element.  This is necessary for fringe cases
463 	 * where @element was passed to this task without going through
464 	 * barriers.
465 	 *
466 	 * For example, assume @p is %NULL at the beginning and one task
467 	 * performs "p = mempool_alloc(...);" while another task is doing
468 	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
469 	 * may end up using curr_nr value which is from before allocation
470 	 * of @p without the following rmb.
471 	 */
472 	smp_rmb();
473 
474 	/*
475 	 * For correctness, we need a test which is guaranteed to trigger
476 	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
477 	 * without locking achieves that and refilling as soon as possible
478 	 * is desirable.
479 	 *
480 	 * Because curr_nr visible here is always a value after the
481 	 * allocation of @element, any task which decremented curr_nr below
482 	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
483 	 * incremented to min_nr afterwards.  If curr_nr gets incremented
484 	 * to min_nr after the allocation of @element, the elements
485 	 * allocated after that are subject to the same guarantee.
486 	 *
487 	 * Waiters happen iff curr_nr is 0 and the above guarantee also
488 	 * ensures that there will be frees which return elements to the
489 	 * pool waking up the waiters.
490 	 */
491 	if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
492 		spin_lock_irqsave(&pool->lock, flags);
493 		if (likely(pool->curr_nr < pool->min_nr)) {
494 			add_element(pool, element);
495 			spin_unlock_irqrestore(&pool->lock, flags);
496 			wake_up(&pool->wait);
497 			return;
498 		}
499 		spin_unlock_irqrestore(&pool->lock, flags);
500 	}
501 	pool->free(element, pool->pool_data);
502 }
503 EXPORT_SYMBOL(mempool_free);
504 
505 /*
506  * A commonly used alloc and free fn.
507  */
508 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
509 {
510 	struct kmem_cache *mem = pool_data;
511 	VM_BUG_ON(mem->ctor);
512 	return kmem_cache_alloc(mem, gfp_mask);
513 }
514 EXPORT_SYMBOL(mempool_alloc_slab);
515 
516 void mempool_free_slab(void *element, void *pool_data)
517 {
518 	struct kmem_cache *mem = pool_data;
519 	kmem_cache_free(mem, element);
520 }
521 EXPORT_SYMBOL(mempool_free_slab);
522 
523 /*
524  * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
525  * specified by pool_data
526  */
527 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
528 {
529 	size_t size = (size_t)pool_data;
530 	return kmalloc(size, gfp_mask);
531 }
532 EXPORT_SYMBOL(mempool_kmalloc);
533 
534 void mempool_kfree(void *element, void *pool_data)
535 {
536 	kfree(element);
537 }
538 EXPORT_SYMBOL(mempool_kfree);
539 
540 /*
541  * A simple mempool-backed page allocator that allocates pages
542  * of the order specified by pool_data.
543  */
544 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
545 {
546 	int order = (int)(long)pool_data;
547 	return alloc_pages(gfp_mask, order);
548 }
549 EXPORT_SYMBOL(mempool_alloc_pages);
550 
551 void mempool_free_pages(void *element, void *pool_data)
552 {
553 	int order = (int)(long)pool_data;
554 	__free_pages(element, order);
555 }
556 EXPORT_SYMBOL(mempool_free_pages);
557