1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mempool.c 4 * 5 * memory buffer pool support. Such pools are mostly used 6 * for guaranteed, deadlock-free memory allocations during 7 * extreme VM load. 8 * 9 * started by Ingo Molnar, Copyright (C) 2001 10 * debugging by David Rientjes, Copyright (C) 2015 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/slab.h> 15 #include <linux/highmem.h> 16 #include <linux/kasan.h> 17 #include <linux/kmemleak.h> 18 #include <linux/export.h> 19 #include <linux/mempool.h> 20 #include <linux/writeback.h> 21 #include "slab.h" 22 23 #ifdef CONFIG_SLUB_DEBUG_ON 24 static void poison_error(mempool_t *pool, void *element, size_t size, 25 size_t byte) 26 { 27 const int nr = pool->curr_nr; 28 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); 29 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); 30 int i; 31 32 pr_err("BUG: mempool element poison mismatch\n"); 33 pr_err("Mempool %p size %zu\n", pool, size); 34 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); 35 for (i = start; i < end; i++) 36 pr_cont("%x ", *(u8 *)(element + i)); 37 pr_cont("%s\n", end < size ? "..." : ""); 38 dump_stack(); 39 } 40 41 static void __check_element(mempool_t *pool, void *element, size_t size) 42 { 43 u8 *obj = element; 44 size_t i; 45 46 for (i = 0; i < size; i++) { 47 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; 48 49 if (obj[i] != exp) { 50 poison_error(pool, element, size, i); 51 return; 52 } 53 } 54 memset(obj, POISON_INUSE, size); 55 } 56 57 static void check_element(mempool_t *pool, void *element) 58 { 59 /* Skip checking: KASAN might save its metadata in the element. */ 60 if (kasan_enabled()) 61 return; 62 63 /* Mempools backed by slab allocator */ 64 if (pool->free == mempool_kfree) { 65 __check_element(pool, element, (size_t)pool->pool_data); 66 } else if (pool->free == mempool_free_slab) { 67 __check_element(pool, element, kmem_cache_size(pool->pool_data)); 68 } else if (pool->free == mempool_free_pages) { 69 /* Mempools backed by page allocator */ 70 int order = (int)(long)pool->pool_data; 71 void *addr = kmap_local_page((struct page *)element); 72 73 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order)); 74 kunmap_local(addr); 75 } 76 } 77 78 static void __poison_element(void *element, size_t size) 79 { 80 u8 *obj = element; 81 82 memset(obj, POISON_FREE, size - 1); 83 obj[size - 1] = POISON_END; 84 } 85 86 static void poison_element(mempool_t *pool, void *element) 87 { 88 /* Skip poisoning: KASAN might save its metadata in the element. */ 89 if (kasan_enabled()) 90 return; 91 92 /* Mempools backed by slab allocator */ 93 if (pool->alloc == mempool_kmalloc) { 94 __poison_element(element, (size_t)pool->pool_data); 95 } else if (pool->alloc == mempool_alloc_slab) { 96 __poison_element(element, kmem_cache_size(pool->pool_data)); 97 } else if (pool->alloc == mempool_alloc_pages) { 98 /* Mempools backed by page allocator */ 99 int order = (int)(long)pool->pool_data; 100 void *addr = kmap_local_page((struct page *)element); 101 102 __poison_element(addr, 1UL << (PAGE_SHIFT + order)); 103 kunmap_local(addr); 104 } 105 } 106 #else /* CONFIG_SLUB_DEBUG_ON */ 107 static inline void check_element(mempool_t *pool, void *element) 108 { 109 } 110 static inline void poison_element(mempool_t *pool, void *element) 111 { 112 } 113 #endif /* CONFIG_SLUB_DEBUG_ON */ 114 115 static __always_inline bool kasan_poison_element(mempool_t *pool, void *element) 116 { 117 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 118 return kasan_mempool_poison_object(element); 119 else if (pool->alloc == mempool_alloc_pages) 120 return kasan_mempool_poison_pages(element, 121 (unsigned long)pool->pool_data); 122 return true; 123 } 124 125 static void kasan_unpoison_element(mempool_t *pool, void *element) 126 { 127 if (pool->alloc == mempool_kmalloc) 128 kasan_mempool_unpoison_object(element, (size_t)pool->pool_data); 129 else if (pool->alloc == mempool_alloc_slab) 130 kasan_mempool_unpoison_object(element, 131 kmem_cache_size(pool->pool_data)); 132 else if (pool->alloc == mempool_alloc_pages) 133 kasan_mempool_unpoison_pages(element, 134 (unsigned long)pool->pool_data); 135 } 136 137 static __always_inline void add_element(mempool_t *pool, void *element) 138 { 139 BUG_ON(pool->curr_nr >= pool->min_nr); 140 poison_element(pool, element); 141 if (kasan_poison_element(pool, element)) 142 pool->elements[pool->curr_nr++] = element; 143 } 144 145 static void *remove_element(mempool_t *pool) 146 { 147 void *element = pool->elements[--pool->curr_nr]; 148 149 BUG_ON(pool->curr_nr < 0); 150 kasan_unpoison_element(pool, element); 151 check_element(pool, element); 152 return element; 153 } 154 155 /** 156 * mempool_exit - exit a mempool initialized with mempool_init() 157 * @pool: pointer to the memory pool which was initialized with 158 * mempool_init(). 159 * 160 * Free all reserved elements in @pool and @pool itself. This function 161 * only sleeps if the free_fn() function sleeps. 162 * 163 * May be called on a zeroed but uninitialized mempool (i.e. allocated with 164 * kzalloc()). 165 */ 166 void mempool_exit(mempool_t *pool) 167 { 168 while (pool->curr_nr) { 169 void *element = remove_element(pool); 170 pool->free(element, pool->pool_data); 171 } 172 kfree(pool->elements); 173 pool->elements = NULL; 174 } 175 EXPORT_SYMBOL(mempool_exit); 176 177 /** 178 * mempool_destroy - deallocate a memory pool 179 * @pool: pointer to the memory pool which was allocated via 180 * mempool_create(). 181 * 182 * Free all reserved elements in @pool and @pool itself. This function 183 * only sleeps if the free_fn() function sleeps. 184 */ 185 void mempool_destroy(mempool_t *pool) 186 { 187 if (unlikely(!pool)) 188 return; 189 190 mempool_exit(pool); 191 kfree(pool); 192 } 193 EXPORT_SYMBOL(mempool_destroy); 194 195 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, 196 mempool_free_t *free_fn, void *pool_data, 197 gfp_t gfp_mask, int node_id) 198 { 199 spin_lock_init(&pool->lock); 200 pool->min_nr = min_nr; 201 pool->pool_data = pool_data; 202 pool->alloc = alloc_fn; 203 pool->free = free_fn; 204 init_waitqueue_head(&pool->wait); 205 206 pool->elements = kmalloc_array_node(min_nr, sizeof(void *), 207 gfp_mask, node_id); 208 if (!pool->elements) 209 return -ENOMEM; 210 211 /* 212 * First pre-allocate the guaranteed number of buffers. 213 */ 214 while (pool->curr_nr < pool->min_nr) { 215 void *element; 216 217 element = pool->alloc(gfp_mask, pool->pool_data); 218 if (unlikely(!element)) { 219 mempool_exit(pool); 220 return -ENOMEM; 221 } 222 add_element(pool, element); 223 } 224 225 return 0; 226 } 227 EXPORT_SYMBOL(mempool_init_node); 228 229 /** 230 * mempool_init - initialize a memory pool 231 * @pool: pointer to the memory pool that should be initialized 232 * @min_nr: the minimum number of elements guaranteed to be 233 * allocated for this pool. 234 * @alloc_fn: user-defined element-allocation function. 235 * @free_fn: user-defined element-freeing function. 236 * @pool_data: optional private data available to the user-defined functions. 237 * 238 * Like mempool_create(), but initializes the pool in (i.e. embedded in another 239 * structure). 240 * 241 * Return: %0 on success, negative error code otherwise. 242 */ 243 int mempool_init_noprof(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, 244 mempool_free_t *free_fn, void *pool_data) 245 { 246 return mempool_init_node(pool, min_nr, alloc_fn, free_fn, 247 pool_data, GFP_KERNEL, NUMA_NO_NODE); 248 249 } 250 EXPORT_SYMBOL(mempool_init_noprof); 251 252 /** 253 * mempool_create_node - create a memory pool 254 * @min_nr: the minimum number of elements guaranteed to be 255 * allocated for this pool. 256 * @alloc_fn: user-defined element-allocation function. 257 * @free_fn: user-defined element-freeing function. 258 * @pool_data: optional private data available to the user-defined functions. 259 * @gfp_mask: memory allocation flags 260 * @node_id: numa node to allocate on 261 * 262 * this function creates and allocates a guaranteed size, preallocated 263 * memory pool. The pool can be used from the mempool_alloc() and mempool_free() 264 * functions. This function might sleep. Both the alloc_fn() and the free_fn() 265 * functions might sleep - as long as the mempool_alloc() function is not called 266 * from IRQ contexts. 267 * 268 * Return: pointer to the created memory pool object or %NULL on error. 269 */ 270 mempool_t *mempool_create_node_noprof(int min_nr, mempool_alloc_t *alloc_fn, 271 mempool_free_t *free_fn, void *pool_data, 272 gfp_t gfp_mask, int node_id) 273 { 274 mempool_t *pool; 275 276 pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); 277 if (!pool) 278 return NULL; 279 280 if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data, 281 gfp_mask, node_id)) { 282 kfree(pool); 283 return NULL; 284 } 285 286 return pool; 287 } 288 EXPORT_SYMBOL(mempool_create_node_noprof); 289 290 /** 291 * mempool_resize - resize an existing memory pool 292 * @pool: pointer to the memory pool which was allocated via 293 * mempool_create(). 294 * @new_min_nr: the new minimum number of elements guaranteed to be 295 * allocated for this pool. 296 * 297 * This function shrinks/grows the pool. In the case of growing, 298 * it cannot be guaranteed that the pool will be grown to the new 299 * size immediately, but new mempool_free() calls will refill it. 300 * This function may sleep. 301 * 302 * Note, the caller must guarantee that no mempool_destroy is called 303 * while this function is running. mempool_alloc() & mempool_free() 304 * might be called (eg. from IRQ contexts) while this function executes. 305 * 306 * Return: %0 on success, negative error code otherwise. 307 */ 308 int mempool_resize(mempool_t *pool, int new_min_nr) 309 { 310 void *element; 311 void **new_elements; 312 unsigned long flags; 313 314 BUG_ON(new_min_nr <= 0); 315 might_sleep(); 316 317 spin_lock_irqsave(&pool->lock, flags); 318 if (new_min_nr <= pool->min_nr) { 319 while (new_min_nr < pool->curr_nr) { 320 element = remove_element(pool); 321 spin_unlock_irqrestore(&pool->lock, flags); 322 pool->free(element, pool->pool_data); 323 spin_lock_irqsave(&pool->lock, flags); 324 } 325 pool->min_nr = new_min_nr; 326 goto out_unlock; 327 } 328 spin_unlock_irqrestore(&pool->lock, flags); 329 330 /* Grow the pool */ 331 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), 332 GFP_KERNEL); 333 if (!new_elements) 334 return -ENOMEM; 335 336 spin_lock_irqsave(&pool->lock, flags); 337 if (unlikely(new_min_nr <= pool->min_nr)) { 338 /* Raced, other resize will do our work */ 339 spin_unlock_irqrestore(&pool->lock, flags); 340 kfree(new_elements); 341 goto out; 342 } 343 memcpy(new_elements, pool->elements, 344 pool->curr_nr * sizeof(*new_elements)); 345 kfree(pool->elements); 346 pool->elements = new_elements; 347 pool->min_nr = new_min_nr; 348 349 while (pool->curr_nr < pool->min_nr) { 350 spin_unlock_irqrestore(&pool->lock, flags); 351 element = pool->alloc(GFP_KERNEL, pool->pool_data); 352 if (!element) 353 goto out; 354 spin_lock_irqsave(&pool->lock, flags); 355 if (pool->curr_nr < pool->min_nr) { 356 add_element(pool, element); 357 } else { 358 spin_unlock_irqrestore(&pool->lock, flags); 359 pool->free(element, pool->pool_data); /* Raced */ 360 goto out; 361 } 362 } 363 out_unlock: 364 spin_unlock_irqrestore(&pool->lock, flags); 365 out: 366 return 0; 367 } 368 EXPORT_SYMBOL(mempool_resize); 369 370 /** 371 * mempool_alloc - allocate an element from a specific memory pool 372 * @pool: pointer to the memory pool which was allocated via 373 * mempool_create(). 374 * @gfp_mask: the usual allocation bitmask. 375 * 376 * this function only sleeps if the alloc_fn() function sleeps or 377 * returns NULL. Note that due to preallocation, this function 378 * *never* fails when called from process contexts. (it might 379 * fail if called from an IRQ context.) 380 * Note: using __GFP_ZERO is not supported. 381 * 382 * Return: pointer to the allocated element or %NULL on error. 383 */ 384 void *mempool_alloc_noprof(mempool_t *pool, gfp_t gfp_mask) 385 { 386 void *element; 387 unsigned long flags; 388 wait_queue_entry_t wait; 389 gfp_t gfp_temp; 390 391 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); 392 might_alloc(gfp_mask); 393 394 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */ 395 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */ 396 gfp_mask |= __GFP_NOWARN; /* failures are OK */ 397 398 gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO); 399 400 repeat_alloc: 401 402 element = pool->alloc(gfp_temp, pool->pool_data); 403 if (likely(element != NULL)) 404 return element; 405 406 spin_lock_irqsave(&pool->lock, flags); 407 if (likely(pool->curr_nr)) { 408 element = remove_element(pool); 409 spin_unlock_irqrestore(&pool->lock, flags); 410 /* paired with rmb in mempool_free(), read comment there */ 411 smp_wmb(); 412 /* 413 * Update the allocation stack trace as this is more useful 414 * for debugging. 415 */ 416 kmemleak_update_trace(element); 417 return element; 418 } 419 420 /* 421 * We use gfp mask w/o direct reclaim or IO for the first round. If 422 * alloc failed with that and @pool was empty, retry immediately. 423 */ 424 if (gfp_temp != gfp_mask) { 425 spin_unlock_irqrestore(&pool->lock, flags); 426 gfp_temp = gfp_mask; 427 goto repeat_alloc; 428 } 429 430 /* We must not sleep if !__GFP_DIRECT_RECLAIM */ 431 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 432 spin_unlock_irqrestore(&pool->lock, flags); 433 return NULL; 434 } 435 436 /* Let's wait for someone else to return an element to @pool */ 437 init_wait(&wait); 438 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); 439 440 spin_unlock_irqrestore(&pool->lock, flags); 441 442 /* 443 * FIXME: this should be io_schedule(). The timeout is there as a 444 * workaround for some DM problems in 2.6.18. 445 */ 446 io_schedule_timeout(5*HZ); 447 448 finish_wait(&pool->wait, &wait); 449 goto repeat_alloc; 450 } 451 EXPORT_SYMBOL(mempool_alloc_noprof); 452 453 /** 454 * mempool_alloc_preallocated - allocate an element from preallocated elements 455 * belonging to a specific memory pool 456 * @pool: pointer to the memory pool which was allocated via 457 * mempool_create(). 458 * 459 * This function is similar to mempool_alloc, but it only attempts allocating 460 * an element from the preallocated elements. It does not sleep and immediately 461 * returns if no preallocated elements are available. 462 * 463 * Return: pointer to the allocated element or %NULL if no elements are 464 * available. 465 */ 466 void *mempool_alloc_preallocated(mempool_t *pool) 467 { 468 void *element; 469 unsigned long flags; 470 471 spin_lock_irqsave(&pool->lock, flags); 472 if (likely(pool->curr_nr)) { 473 element = remove_element(pool); 474 spin_unlock_irqrestore(&pool->lock, flags); 475 /* paired with rmb in mempool_free(), read comment there */ 476 smp_wmb(); 477 /* 478 * Update the allocation stack trace as this is more useful 479 * for debugging. 480 */ 481 kmemleak_update_trace(element); 482 return element; 483 } 484 spin_unlock_irqrestore(&pool->lock, flags); 485 486 return NULL; 487 } 488 EXPORT_SYMBOL(mempool_alloc_preallocated); 489 490 /** 491 * mempool_free - return an element to the pool. 492 * @element: pool element pointer. 493 * @pool: pointer to the memory pool which was allocated via 494 * mempool_create(). 495 * 496 * this function only sleeps if the free_fn() function sleeps. 497 */ 498 void mempool_free(void *element, mempool_t *pool) 499 { 500 unsigned long flags; 501 502 if (unlikely(element == NULL)) 503 return; 504 505 /* 506 * Paired with the wmb in mempool_alloc(). The preceding read is 507 * for @element and the following @pool->curr_nr. This ensures 508 * that the visible value of @pool->curr_nr is from after the 509 * allocation of @element. This is necessary for fringe cases 510 * where @element was passed to this task without going through 511 * barriers. 512 * 513 * For example, assume @p is %NULL at the beginning and one task 514 * performs "p = mempool_alloc(...);" while another task is doing 515 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function 516 * may end up using curr_nr value which is from before allocation 517 * of @p without the following rmb. 518 */ 519 smp_rmb(); 520 521 /* 522 * For correctness, we need a test which is guaranteed to trigger 523 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr 524 * without locking achieves that and refilling as soon as possible 525 * is desirable. 526 * 527 * Because curr_nr visible here is always a value after the 528 * allocation of @element, any task which decremented curr_nr below 529 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets 530 * incremented to min_nr afterwards. If curr_nr gets incremented 531 * to min_nr after the allocation of @element, the elements 532 * allocated after that are subject to the same guarantee. 533 * 534 * Waiters happen iff curr_nr is 0 and the above guarantee also 535 * ensures that there will be frees which return elements to the 536 * pool waking up the waiters. 537 */ 538 if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) { 539 spin_lock_irqsave(&pool->lock, flags); 540 if (likely(pool->curr_nr < pool->min_nr)) { 541 add_element(pool, element); 542 spin_unlock_irqrestore(&pool->lock, flags); 543 wake_up(&pool->wait); 544 return; 545 } 546 spin_unlock_irqrestore(&pool->lock, flags); 547 } 548 pool->free(element, pool->pool_data); 549 } 550 EXPORT_SYMBOL(mempool_free); 551 552 /* 553 * A commonly used alloc and free fn. 554 */ 555 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) 556 { 557 struct kmem_cache *mem = pool_data; 558 VM_BUG_ON(mem->ctor); 559 return kmem_cache_alloc_noprof(mem, gfp_mask); 560 } 561 EXPORT_SYMBOL(mempool_alloc_slab); 562 563 void mempool_free_slab(void *element, void *pool_data) 564 { 565 struct kmem_cache *mem = pool_data; 566 kmem_cache_free(mem, element); 567 } 568 EXPORT_SYMBOL(mempool_free_slab); 569 570 /* 571 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory 572 * specified by pool_data 573 */ 574 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) 575 { 576 size_t size = (size_t)pool_data; 577 return kmalloc_noprof(size, gfp_mask); 578 } 579 EXPORT_SYMBOL(mempool_kmalloc); 580 581 void mempool_kfree(void *element, void *pool_data) 582 { 583 kfree(element); 584 } 585 EXPORT_SYMBOL(mempool_kfree); 586 587 void *mempool_kvmalloc(gfp_t gfp_mask, void *pool_data) 588 { 589 size_t size = (size_t)pool_data; 590 return kvmalloc(size, gfp_mask); 591 } 592 EXPORT_SYMBOL(mempool_kvmalloc); 593 594 void mempool_kvfree(void *element, void *pool_data) 595 { 596 kvfree(element); 597 } 598 EXPORT_SYMBOL(mempool_kvfree); 599 600 /* 601 * A simple mempool-backed page allocator that allocates pages 602 * of the order specified by pool_data. 603 */ 604 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) 605 { 606 int order = (int)(long)pool_data; 607 return alloc_pages_noprof(gfp_mask, order); 608 } 609 EXPORT_SYMBOL(mempool_alloc_pages); 610 611 void mempool_free_pages(void *element, void *pool_data) 612 { 613 int order = (int)(long)pool_data; 614 __free_pages(element, order); 615 } 616 EXPORT_SYMBOL(mempool_free_pages); 617