1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/mempool.c 4 * 5 * memory buffer pool support. Such pools are mostly used 6 * for guaranteed, deadlock-free memory allocations during 7 * extreme VM load. 8 * 9 * started by Ingo Molnar, Copyright (C) 2001 10 * debugging by David Rientjes, Copyright (C) 2015 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/slab.h> 15 #include <linux/highmem.h> 16 #include <linux/kasan.h> 17 #include <linux/kmemleak.h> 18 #include <linux/export.h> 19 #include <linux/mempool.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include "slab.h" 23 24 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 25 static void poison_error(mempool_t *pool, void *element, size_t size, 26 size_t byte) 27 { 28 const int nr = pool->curr_nr; 29 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0); 30 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size); 31 int i; 32 33 pr_err("BUG: mempool element poison mismatch\n"); 34 pr_err("Mempool %p size %zu\n", pool, size); 35 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : ""); 36 for (i = start; i < end; i++) 37 pr_cont("%x ", *(u8 *)(element + i)); 38 pr_cont("%s\n", end < size ? "..." : ""); 39 dump_stack(); 40 } 41 42 static void __check_element(mempool_t *pool, void *element, size_t size) 43 { 44 u8 *obj = element; 45 size_t i; 46 47 for (i = 0; i < size; i++) { 48 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END; 49 50 if (obj[i] != exp) { 51 poison_error(pool, element, size, i); 52 return; 53 } 54 } 55 memset(obj, POISON_INUSE, size); 56 } 57 58 static void check_element(mempool_t *pool, void *element) 59 { 60 /* Mempools backed by slab allocator */ 61 if (pool->free == mempool_free_slab || pool->free == mempool_kfree) { 62 __check_element(pool, element, ksize(element)); 63 } else if (pool->free == mempool_free_pages) { 64 /* Mempools backed by page allocator */ 65 int order = (int)(long)pool->pool_data; 66 void *addr = kmap_atomic((struct page *)element); 67 68 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order)); 69 kunmap_atomic(addr); 70 } 71 } 72 73 static void __poison_element(void *element, size_t size) 74 { 75 u8 *obj = element; 76 77 memset(obj, POISON_FREE, size - 1); 78 obj[size - 1] = POISON_END; 79 } 80 81 static void poison_element(mempool_t *pool, void *element) 82 { 83 /* Mempools backed by slab allocator */ 84 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) { 85 __poison_element(element, ksize(element)); 86 } else if (pool->alloc == mempool_alloc_pages) { 87 /* Mempools backed by page allocator */ 88 int order = (int)(long)pool->pool_data; 89 void *addr = kmap_atomic((struct page *)element); 90 91 __poison_element(addr, 1UL << (PAGE_SHIFT + order)); 92 kunmap_atomic(addr); 93 } 94 } 95 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 96 static inline void check_element(mempool_t *pool, void *element) 97 { 98 } 99 static inline void poison_element(mempool_t *pool, void *element) 100 { 101 } 102 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */ 103 104 static __always_inline void kasan_poison_element(mempool_t *pool, void *element) 105 { 106 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 107 kasan_slab_free_mempool(element); 108 else if (pool->alloc == mempool_alloc_pages) 109 kasan_poison_pages(element, (unsigned long)pool->pool_data, 110 false); 111 } 112 113 static void kasan_unpoison_element(mempool_t *pool, void *element) 114 { 115 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) 116 kasan_unpoison_range(element, __ksize(element)); 117 else if (pool->alloc == mempool_alloc_pages) 118 kasan_unpoison_pages(element, (unsigned long)pool->pool_data, 119 false); 120 } 121 122 static __always_inline void add_element(mempool_t *pool, void *element) 123 { 124 BUG_ON(pool->curr_nr >= pool->min_nr); 125 poison_element(pool, element); 126 kasan_poison_element(pool, element); 127 pool->elements[pool->curr_nr++] = element; 128 } 129 130 static void *remove_element(mempool_t *pool) 131 { 132 void *element = pool->elements[--pool->curr_nr]; 133 134 BUG_ON(pool->curr_nr < 0); 135 kasan_unpoison_element(pool, element); 136 check_element(pool, element); 137 return element; 138 } 139 140 /** 141 * mempool_exit - exit a mempool initialized with mempool_init() 142 * @pool: pointer to the memory pool which was initialized with 143 * mempool_init(). 144 * 145 * Free all reserved elements in @pool and @pool itself. This function 146 * only sleeps if the free_fn() function sleeps. 147 * 148 * May be called on a zeroed but uninitialized mempool (i.e. allocated with 149 * kzalloc()). 150 */ 151 void mempool_exit(mempool_t *pool) 152 { 153 while (pool->curr_nr) { 154 void *element = remove_element(pool); 155 pool->free(element, pool->pool_data); 156 } 157 kfree(pool->elements); 158 pool->elements = NULL; 159 } 160 EXPORT_SYMBOL(mempool_exit); 161 162 /** 163 * mempool_destroy - deallocate a memory pool 164 * @pool: pointer to the memory pool which was allocated via 165 * mempool_create(). 166 * 167 * Free all reserved elements in @pool and @pool itself. This function 168 * only sleeps if the free_fn() function sleeps. 169 */ 170 void mempool_destroy(mempool_t *pool) 171 { 172 if (unlikely(!pool)) 173 return; 174 175 mempool_exit(pool); 176 kfree(pool); 177 } 178 EXPORT_SYMBOL(mempool_destroy); 179 180 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, 181 mempool_free_t *free_fn, void *pool_data, 182 gfp_t gfp_mask, int node_id) 183 { 184 spin_lock_init(&pool->lock); 185 pool->min_nr = min_nr; 186 pool->pool_data = pool_data; 187 pool->alloc = alloc_fn; 188 pool->free = free_fn; 189 init_waitqueue_head(&pool->wait); 190 191 pool->elements = kmalloc_array_node(min_nr, sizeof(void *), 192 gfp_mask, node_id); 193 if (!pool->elements) 194 return -ENOMEM; 195 196 /* 197 * First pre-allocate the guaranteed number of buffers. 198 */ 199 while (pool->curr_nr < pool->min_nr) { 200 void *element; 201 202 element = pool->alloc(gfp_mask, pool->pool_data); 203 if (unlikely(!element)) { 204 mempool_exit(pool); 205 return -ENOMEM; 206 } 207 add_element(pool, element); 208 } 209 210 return 0; 211 } 212 EXPORT_SYMBOL(mempool_init_node); 213 214 /** 215 * mempool_init - initialize a memory pool 216 * @pool: pointer to the memory pool that should be initialized 217 * @min_nr: the minimum number of elements guaranteed to be 218 * allocated for this pool. 219 * @alloc_fn: user-defined element-allocation function. 220 * @free_fn: user-defined element-freeing function. 221 * @pool_data: optional private data available to the user-defined functions. 222 * 223 * Like mempool_create(), but initializes the pool in (i.e. embedded in another 224 * structure). 225 * 226 * Return: %0 on success, negative error code otherwise. 227 */ 228 int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn, 229 mempool_free_t *free_fn, void *pool_data) 230 { 231 return mempool_init_node(pool, min_nr, alloc_fn, free_fn, 232 pool_data, GFP_KERNEL, NUMA_NO_NODE); 233 234 } 235 EXPORT_SYMBOL(mempool_init); 236 237 /** 238 * mempool_create - create a memory pool 239 * @min_nr: the minimum number of elements guaranteed to be 240 * allocated for this pool. 241 * @alloc_fn: user-defined element-allocation function. 242 * @free_fn: user-defined element-freeing function. 243 * @pool_data: optional private data available to the user-defined functions. 244 * 245 * this function creates and allocates a guaranteed size, preallocated 246 * memory pool. The pool can be used from the mempool_alloc() and mempool_free() 247 * functions. This function might sleep. Both the alloc_fn() and the free_fn() 248 * functions might sleep - as long as the mempool_alloc() function is not called 249 * from IRQ contexts. 250 * 251 * Return: pointer to the created memory pool object or %NULL on error. 252 */ 253 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn, 254 mempool_free_t *free_fn, void *pool_data) 255 { 256 return mempool_create_node(min_nr, alloc_fn, free_fn, pool_data, 257 GFP_KERNEL, NUMA_NO_NODE); 258 } 259 EXPORT_SYMBOL(mempool_create); 260 261 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, 262 mempool_free_t *free_fn, void *pool_data, 263 gfp_t gfp_mask, int node_id) 264 { 265 mempool_t *pool; 266 267 pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); 268 if (!pool) 269 return NULL; 270 271 if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data, 272 gfp_mask, node_id)) { 273 kfree(pool); 274 return NULL; 275 } 276 277 return pool; 278 } 279 EXPORT_SYMBOL(mempool_create_node); 280 281 /** 282 * mempool_resize - resize an existing memory pool 283 * @pool: pointer to the memory pool which was allocated via 284 * mempool_create(). 285 * @new_min_nr: the new minimum number of elements guaranteed to be 286 * allocated for this pool. 287 * 288 * This function shrinks/grows the pool. In the case of growing, 289 * it cannot be guaranteed that the pool will be grown to the new 290 * size immediately, but new mempool_free() calls will refill it. 291 * This function may sleep. 292 * 293 * Note, the caller must guarantee that no mempool_destroy is called 294 * while this function is running. mempool_alloc() & mempool_free() 295 * might be called (eg. from IRQ contexts) while this function executes. 296 * 297 * Return: %0 on success, negative error code otherwise. 298 */ 299 int mempool_resize(mempool_t *pool, int new_min_nr) 300 { 301 void *element; 302 void **new_elements; 303 unsigned long flags; 304 305 BUG_ON(new_min_nr <= 0); 306 might_sleep(); 307 308 spin_lock_irqsave(&pool->lock, flags); 309 if (new_min_nr <= pool->min_nr) { 310 while (new_min_nr < pool->curr_nr) { 311 element = remove_element(pool); 312 spin_unlock_irqrestore(&pool->lock, flags); 313 pool->free(element, pool->pool_data); 314 spin_lock_irqsave(&pool->lock, flags); 315 } 316 pool->min_nr = new_min_nr; 317 goto out_unlock; 318 } 319 spin_unlock_irqrestore(&pool->lock, flags); 320 321 /* Grow the pool */ 322 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements), 323 GFP_KERNEL); 324 if (!new_elements) 325 return -ENOMEM; 326 327 spin_lock_irqsave(&pool->lock, flags); 328 if (unlikely(new_min_nr <= pool->min_nr)) { 329 /* Raced, other resize will do our work */ 330 spin_unlock_irqrestore(&pool->lock, flags); 331 kfree(new_elements); 332 goto out; 333 } 334 memcpy(new_elements, pool->elements, 335 pool->curr_nr * sizeof(*new_elements)); 336 kfree(pool->elements); 337 pool->elements = new_elements; 338 pool->min_nr = new_min_nr; 339 340 while (pool->curr_nr < pool->min_nr) { 341 spin_unlock_irqrestore(&pool->lock, flags); 342 element = pool->alloc(GFP_KERNEL, pool->pool_data); 343 if (!element) 344 goto out; 345 spin_lock_irqsave(&pool->lock, flags); 346 if (pool->curr_nr < pool->min_nr) { 347 add_element(pool, element); 348 } else { 349 spin_unlock_irqrestore(&pool->lock, flags); 350 pool->free(element, pool->pool_data); /* Raced */ 351 goto out; 352 } 353 } 354 out_unlock: 355 spin_unlock_irqrestore(&pool->lock, flags); 356 out: 357 return 0; 358 } 359 EXPORT_SYMBOL(mempool_resize); 360 361 /** 362 * mempool_alloc - allocate an element from a specific memory pool 363 * @pool: pointer to the memory pool which was allocated via 364 * mempool_create(). 365 * @gfp_mask: the usual allocation bitmask. 366 * 367 * this function only sleeps if the alloc_fn() function sleeps or 368 * returns NULL. Note that due to preallocation, this function 369 * *never* fails when called from process contexts. (it might 370 * fail if called from an IRQ context.) 371 * Note: using __GFP_ZERO is not supported. 372 * 373 * Return: pointer to the allocated element or %NULL on error. 374 */ 375 void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask) 376 { 377 void *element; 378 unsigned long flags; 379 wait_queue_entry_t wait; 380 gfp_t gfp_temp; 381 382 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO); 383 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 384 385 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */ 386 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */ 387 gfp_mask |= __GFP_NOWARN; /* failures are OK */ 388 389 gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO); 390 391 repeat_alloc: 392 393 element = pool->alloc(gfp_temp, pool->pool_data); 394 if (likely(element != NULL)) 395 return element; 396 397 spin_lock_irqsave(&pool->lock, flags); 398 if (likely(pool->curr_nr)) { 399 element = remove_element(pool); 400 spin_unlock_irqrestore(&pool->lock, flags); 401 /* paired with rmb in mempool_free(), read comment there */ 402 smp_wmb(); 403 /* 404 * Update the allocation stack trace as this is more useful 405 * for debugging. 406 */ 407 kmemleak_update_trace(element); 408 return element; 409 } 410 411 /* 412 * We use gfp mask w/o direct reclaim or IO for the first round. If 413 * alloc failed with that and @pool was empty, retry immediately. 414 */ 415 if (gfp_temp != gfp_mask) { 416 spin_unlock_irqrestore(&pool->lock, flags); 417 gfp_temp = gfp_mask; 418 goto repeat_alloc; 419 } 420 421 /* We must not sleep if !__GFP_DIRECT_RECLAIM */ 422 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 423 spin_unlock_irqrestore(&pool->lock, flags); 424 return NULL; 425 } 426 427 /* Let's wait for someone else to return an element to @pool */ 428 init_wait(&wait); 429 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE); 430 431 spin_unlock_irqrestore(&pool->lock, flags); 432 433 /* 434 * FIXME: this should be io_schedule(). The timeout is there as a 435 * workaround for some DM problems in 2.6.18. 436 */ 437 io_schedule_timeout(5*HZ); 438 439 finish_wait(&pool->wait, &wait); 440 goto repeat_alloc; 441 } 442 EXPORT_SYMBOL(mempool_alloc); 443 444 /** 445 * mempool_free - return an element to the pool. 446 * @element: pool element pointer. 447 * @pool: pointer to the memory pool which was allocated via 448 * mempool_create(). 449 * 450 * this function only sleeps if the free_fn() function sleeps. 451 */ 452 void mempool_free(void *element, mempool_t *pool) 453 { 454 unsigned long flags; 455 456 if (unlikely(element == NULL)) 457 return; 458 459 /* 460 * Paired with the wmb in mempool_alloc(). The preceding read is 461 * for @element and the following @pool->curr_nr. This ensures 462 * that the visible value of @pool->curr_nr is from after the 463 * allocation of @element. This is necessary for fringe cases 464 * where @element was passed to this task without going through 465 * barriers. 466 * 467 * For example, assume @p is %NULL at the beginning and one task 468 * performs "p = mempool_alloc(...);" while another task is doing 469 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function 470 * may end up using curr_nr value which is from before allocation 471 * of @p without the following rmb. 472 */ 473 smp_rmb(); 474 475 /* 476 * For correctness, we need a test which is guaranteed to trigger 477 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr 478 * without locking achieves that and refilling as soon as possible 479 * is desirable. 480 * 481 * Because curr_nr visible here is always a value after the 482 * allocation of @element, any task which decremented curr_nr below 483 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets 484 * incremented to min_nr afterwards. If curr_nr gets incremented 485 * to min_nr after the allocation of @element, the elements 486 * allocated after that are subject to the same guarantee. 487 * 488 * Waiters happen iff curr_nr is 0 and the above guarantee also 489 * ensures that there will be frees which return elements to the 490 * pool waking up the waiters. 491 */ 492 if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) { 493 spin_lock_irqsave(&pool->lock, flags); 494 if (likely(pool->curr_nr < pool->min_nr)) { 495 add_element(pool, element); 496 spin_unlock_irqrestore(&pool->lock, flags); 497 wake_up(&pool->wait); 498 return; 499 } 500 spin_unlock_irqrestore(&pool->lock, flags); 501 } 502 pool->free(element, pool->pool_data); 503 } 504 EXPORT_SYMBOL(mempool_free); 505 506 /* 507 * A commonly used alloc and free fn. 508 */ 509 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data) 510 { 511 struct kmem_cache *mem = pool_data; 512 VM_BUG_ON(mem->ctor); 513 return kmem_cache_alloc(mem, gfp_mask); 514 } 515 EXPORT_SYMBOL(mempool_alloc_slab); 516 517 void mempool_free_slab(void *element, void *pool_data) 518 { 519 struct kmem_cache *mem = pool_data; 520 kmem_cache_free(mem, element); 521 } 522 EXPORT_SYMBOL(mempool_free_slab); 523 524 /* 525 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory 526 * specified by pool_data 527 */ 528 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data) 529 { 530 size_t size = (size_t)pool_data; 531 return kmalloc(size, gfp_mask); 532 } 533 EXPORT_SYMBOL(mempool_kmalloc); 534 535 void mempool_kfree(void *element, void *pool_data) 536 { 537 kfree(element); 538 } 539 EXPORT_SYMBOL(mempool_kfree); 540 541 /* 542 * A simple mempool-backed page allocator that allocates pages 543 * of the order specified by pool_data. 544 */ 545 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data) 546 { 547 int order = (int)(long)pool_data; 548 return alloc_pages(gfp_mask, order); 549 } 550 EXPORT_SYMBOL(mempool_alloc_pages); 551 552 void mempool_free_pages(void *element, void *pool_data) 553 { 554 int order = (int)(long)pool_data; 555 __free_pages(element, order); 556 } 557 EXPORT_SYMBOL(mempool_free_pages); 558